JP2016169953A - Measurement device, measurement unit, and method for measuring amount of dimension change - Google Patents

Measurement device, measurement unit, and method for measuring amount of dimension change Download PDF

Info

Publication number
JP2016169953A
JP2016169953A JP2015047943A JP2015047943A JP2016169953A JP 2016169953 A JP2016169953 A JP 2016169953A JP 2015047943 A JP2015047943 A JP 2015047943A JP 2015047943 A JP2015047943 A JP 2015047943A JP 2016169953 A JP2016169953 A JP 2016169953A
Authority
JP
Japan
Prior art keywords
measurement
length
measurement sample
sample
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015047943A
Other languages
Japanese (ja)
Inventor
亮介 江副
Ryosuke Ezoe
亮介 江副
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2015047943A priority Critical patent/JP2016169953A/en
Publication of JP2016169953A publication Critical patent/JP2016169953A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measurement device, a measurement unit, and a method for measuring the amount of a dimension change for accurately measuring the amount of a change in the length of a measurement sample.SOLUTION: A support base 110 supports a measurement sample 500 along a length measurement direction P at a prescribed angle a of inclination against the vertical direction. A placement surface 120 is formed on the support base 110 so as to come in contact with the measurement sample 500 along the length measurement direction P, and an abutting surface 130 is provided at a vertically downward end of the support base 110. The abutting surface 130 comes in contact with a lower end 501 of the measurement sample 500. A first length measurement sensor 140 is provided at a vertically upward end of the support base 110, and the first length measurement sensor 140 is attached to the support base 110 so as to face an upper end 502 of the measurement sample 500 without touching the upper end 502 of the measurement sample 500. The first length measurement sensor 140 detects the amount of a change in a length S to the other end of the measurement sample 500 in the length measurement direction P.SELECTED DRAWING: Figure 1

Description

本発明は、測定装置等に関し、例えば、測定試料の長さの変化量を測定するものに関する。   The present invention relates to a measuring device and the like, for example, to a device for measuring a change in length of a measurement sample.

物体寸法の経時変化は、その様態として、水分の吸排湿や温度変化起因のものや、クリープ変形などさまざまな種類のものが挙げられる。   Changes in the object dimensions over time include various types such as those due to moisture absorption / extraction and temperature change, and creep deformation.

一方で、近年では計測工学、精密工学の進展と共により厳しい寸法安定性が測定結果に要求されている。特に、アンテナリフレクタ、光学望遠鏡など、メートル(m)オーダの大型構造物に対し、マイクロメートル(μm)あるいはナノメートル(nm)オーダの寸法安定性が要求される製品も存在する。したがって、物体寸法の経時変化に対して、誤差要因を極力排除し、より高精度な測定を提供することが求められている。   On the other hand, in recent years, stricter dimensional stability is required for measurement results with the progress of measurement engineering and precision engineering. In particular, there are products that require dimensional stability of the order of micrometers (μm) or nanometers (nm) for large structures of the order of meters (m), such as antenna reflectors and optical telescopes. Therefore, it is required to eliminate the error factor as much as possible with respect to the change of the object size with time and to provide more accurate measurement.

特許文献1には、寸法変化測定装置の発明として、測定試料の上端部を固定し、測定試料の下端部を自由端とし、当該下端部の変化量を測定するものが、開示されている。   Patent Document 1 discloses an apparatus for measuring a change in dimension, in which an upper end portion of a measurement sample is fixed, a lower end portion of the measurement sample is a free end, and a change amount of the lower end portion is measured.

図8は、特許文献1に記載の測定装置の構成を示す図である。図8に示されるように、恒温恒湿槽(不図示)内にて、短冊状の測定試料800の上端部がリファレンス板700に固定部701のねじ押さえにより把持されている。リファレンス板700の下端部側に、開口部702が形成されている。測定試料800の下端部は、伸縮自在な自由端となっており、開口部702内に配置されている。そして、レーザ外形測定器(不図示)は、開口部702の下端部Z1と、測定試料800の下端部Z2の間の距離Dを測定する。   FIG. 8 is a diagram showing the configuration of the measuring apparatus described in Patent Document 1. As shown in FIG. As shown in FIG. 8, the upper end portion of the strip-shaped measurement sample 800 is held by the reference plate 700 by a screw press of the fixing portion 701 in a constant temperature and humidity chamber (not shown). An opening 702 is formed on the lower end side of the reference plate 700. The lower end portion of the measurement sample 800 is a free end that can be expanded and contracted, and is disposed in the opening 702. A laser contour measuring instrument (not shown) measures a distance D between the lower end Z1 of the opening 702 and the lower end Z2 of the measurement sample 800.

なお、本発明に関連する技術が、特許文献2にも開示されている。   A technique related to the present invention is also disclosed in Patent Document 2.

特開平5−149899号公報JP-A-5-149899 特開平11−83417号公報Japanese Patent Laid-Open No. 11-83417

しかしながら、特許文献1に記載の発明では、固定部701のねじ押さえによって測定試料800をリファレンス板700に保持していた(把持固定方式)。このため、固定部701のねじ押さえによって測定試料800をリファレンス板700に保持する力(把持力)が経時的に小さくなり、距離Dの測定結果に影響を与えてしまうという問題があった。特に、測定精度に対して高い要求がされている場合、固定部701のねじ押さえの把持によって測定試料800に与える応力そのものが、測定誤差の要因となることがあった。   However, in the invention described in Patent Document 1, the measurement sample 800 is held on the reference plate 700 by holding the fixing portion 701 with screws (gripping and fixing method). For this reason, there is a problem that the force (gripping force) for holding the measurement sample 800 on the reference plate 700 by the screw pressing of the fixing portion 701 decreases with time, and the measurement result of the distance D is affected. In particular, when there is a high demand for measurement accuracy, the stress itself applied to the measurement sample 800 by holding the screw press of the fixing portion 701 may cause a measurement error.

本発明は、このような事情を鑑みてなされたものであり、本発明の目的は、測定試料の長さの変化量を正確に測定することができる測定装置を提供することにある。   This invention is made | formed in view of such a situation, and the objective of this invention is providing the measuring apparatus which can measure the variation | change_quantity of the length of a measurement sample correctly.

本発明の測定装置は、測定試料を前記測定試料の測長方向に沿って鉛直方向に対して所定の傾斜角度に傾斜させて支持する支持台と、前記測定試料の測長方向に沿って前記測定試料に接触するように前記支持台に形成された載置面と、前記支持台の鉛直下方側の端部に設けられ、前記測定試料の一端部に当接する突き当て端面と、前記支持台の鉛直上方側の端部に設けられ、前記測定試料の他端部に接触することなく、前記測定試料の他端部と対向するように前記支持台に取り付けられ、前記測定試料の測長方向における前記測定試料の他端部までの長さの変化量を検出する寸法変化量検出部とを備えている。   The measurement apparatus of the present invention includes a support base that supports a measurement sample by being inclined at a predetermined inclination angle with respect to a vertical direction along the length measurement direction of the measurement sample, and the measurement sample along the length measurement direction of the measurement sample. A mounting surface formed on the support table so as to contact the measurement sample, an abutting end surface provided at an end portion on the vertically lower side of the support table and in contact with one end portion of the measurement sample, and the support table Is mounted on the support base so as to face the other end of the measurement sample without contacting the other end of the measurement sample, and in the length measuring direction of the measurement sample. And a dimensional change detection unit that detects a change in length to the other end of the measurement sample.

本発明の寸法変化量検出方法は、測定装置と、前記測定装置を収容し、内部の温度および湿度を制御できる試験槽を備える測定ユニットを用いて測定試料の長さの変化量を検出する寸法変化量検出方法であって、前記測定装置は、測定試料を前記測定試料の測長方向に沿って鉛直方向に対して所定の傾斜角度に傾斜させて支持する支持台と、前記測定試料の測長方向に沿って前記測定試料に接触するように前記支持台に形成された載置面と、前記支持台の鉛直下方側の端部に設けられ、前記測定試料の一端部に当接する突き当て端面と、前記支持台の鉛直上方側の端部に設けられ、前記測定試料の他端部に接触することなく、前記測定試料の他端部と対向するように前記支持台に取り付けられ、前記測定試料の測長方向における前記測定試料の他端部までの長さの変化量を検出する寸法変化量検出部とを備え、前記測定試料を前記支持台の前記載置面上に載置する測定試料載置ステップと、前記測定試料の一端部を前記突き当て端面に当接させた状態で、前記試験槽内の温度および湿度を制御する制御ステップと、前記寸法変化量検出部が、前記測定試料の測長方向における前記測定試料の他端部までの長さの変化量を検出する寸法変化量検出ステップとを含んでいる。   The dimension change detection method of the present invention is a dimension for detecting a change amount of the length of a measurement sample using a measurement device and a measurement unit that accommodates the measurement device and includes a test tank that can control internal temperature and humidity. In the variation detection method, the measurement apparatus includes a support base that supports the measurement sample by tilting the measurement sample at a predetermined inclination angle with respect to a vertical direction along the length measurement direction of the measurement sample, and measuring the measurement sample. A mounting surface formed on the support base so as to come into contact with the measurement sample along the longitudinal direction, and an abutting portion which is provided at an end portion on the vertically lower side of the support base and contacts one end portion of the measurement sample An end face, provided at an end of the support table vertically above, and attached to the support table so as to face the other end of the measurement sample without contacting the other end of the measurement sample; The measurement sample in the measurement direction of the measurement sample A dimensional change amount detection unit that detects a change amount of the length to the other end, a measurement sample placement step of placing the measurement sample on the placement surface of the support, and a measurement sample A control step for controlling the temperature and humidity in the test tank in a state in which one end is in contact with the abutting end surface, and the dimensional change detection unit is configured to adjust the measurement sample in the length measurement direction of the measurement sample. A dimensional change detection step for detecting a change in length to the other end.

本発明にかかる測定装置によれば、測定試料の長さの変化量を正確に測定することができる。   According to the measuring apparatus according to the present invention, the amount of change in the length of the measurement sample can be accurately measured.

本発明の第1の実施の形態における測定装置を試験槽内に配置した状態を模式的に示す側面図である。It is a side view which shows typically the state which has arrange | positioned the measuring apparatus in the 1st Embodiment of this invention in a test tank. 図1の矢視Aを示す図である。It is a figure which shows the arrow A of FIG. 本発明の第1の実施の形態における測定装置を試験槽内に配置した状態を模式的に示す側面図であって、載置面に加わる力関係を示す図である。It is a side view which shows typically the state which has arrange | positioned the measuring apparatus in the 1st Embodiment of this invention in a test tank, Comprising: It is a figure which shows the force relationship added to a mounting surface. 本発明の第1の実施の形態における冷却装置を試験槽内に配置した状態を模式的に示す側面図であって、支持台の傾斜角度の最小値を説明するための図である。It is a side view which shows typically the state which has arrange | positioned the cooling device in the 1st Embodiment of this invention in a test tank, Comprising: It is a figure for demonstrating the minimum value of the inclination-angle of a support stand. 測定試料の形状の変形例を載置面に載置した状態を示す図であって、図1の矢視Aに相当する図である。It is a figure which shows the state which mounted the modification of the shape of the measurement sample on the mounting surface, Comprising: It is a figure corresponded to the arrow A of FIG. 本発明の第1の実施の形態における測定装置を複数、試験槽内に配置した状態を模式的に示す上面図である。It is a top view which shows typically the state which has arrange | positioned several measuring apparatuses in the 1st Embodiment of this invention in a test tank. 本発明の第2の実施の形態における測定装置を試験槽内に配置した状態を模式的に示す側面図である。It is a side view which shows typically the state which has arrange | positioned the measuring apparatus in the 2nd Embodiment of this invention in a test tank. 特許文献1に記載の測定装置の構成を示す図である。It is a figure which shows the structure of the measuring apparatus of patent document 1. FIG.

<第1の実施の形態>
本発明の第1の実施の形態における測定装置100の構成について説明する。図1は、測定装置100を試験槽200内に配置した状態を模式的に示す側面図である。図2は、図1の矢視Aを示す図である。なお、測定装置100および試験槽200は、測定ユニット1000を構成する。すなわち、測定ユニット1000は、測定装置100および試験槽200を備えている。
<First Embodiment>
A configuration of the measuring apparatus 100 according to the first embodiment of the present invention will be described. FIG. 1 is a side view schematically showing a state in which the measuring apparatus 100 is arranged in a test tank 200. FIG. 2 is a diagram showing an arrow A in FIG. The measuring device 100 and the test tank 200 constitute a measuring unit 1000. That is, the measurement unit 1000 includes the measurement device 100 and the test tank 200.

図1に示されるように、測定装置100は、試験槽200内に収容される。   As shown in FIG. 1, the measuring apparatus 100 is accommodated in a test tank 200.

試験槽200は、測定装置100を収容し、内部の温度および湿度を制御することができる。   The test tank 200 accommodates the measuring device 100 and can control the internal temperature and humidity.

図1および図2に示されるように、測定装置100は、支持台110と、載置面120と、突き当て面130と、第1の測長センサ140と、支持柱部150とを備えている。   As shown in FIGS. 1 and 2, the measuring apparatus 100 includes a support base 110, a mounting surface 120, an abutment surface 130, a first length measuring sensor 140, and a support column 150. Yes.

図1および図2に示されるように、測定試料500は、たとえば、円柱状に形成されている。なお、測定試料500は、円柱状以外にも、多角柱状に形成されてもよい。   As shown in FIGS. 1 and 2, the measurement sample 500 is formed in a cylindrical shape, for example. Note that the measurement sample 500 may be formed in a polygonal column shape in addition to the columnar shape.

図1および図2に示されるように、支持台110は、測定試料500を、当該測定試料500の測長方向Pに沿って、鉛直方向に対して所定の傾斜角度a(rad(ラジアン))で傾斜させて支持する。ただし、傾斜角度a<π/2(rad)である。すなわち、測定試料500の測長方向Pは、鉛直方向に対して所定の傾斜角度a(rad)の方向と平行に設定されている。支持台110の材料には、低熱膨張素材(たとえば、スーパーインバー合金[熱膨張率<1.0×10−6(/K(カルビン)])が用いられている。   As shown in FIG. 1 and FIG. 2, the support base 110 is configured to place a measurement sample 500 along a length measurement direction P of the measurement sample 500 with a predetermined inclination angle a (rad (radian)) with respect to the vertical direction. Support with tilting. However, the inclination angle a <π / 2 (rad). That is, the length measurement direction P of the measurement sample 500 is set parallel to the direction of the predetermined inclination angle a (rad) with respect to the vertical direction. A low thermal expansion material (for example, Super Invar alloy [thermal expansion coefficient <1.0 × 10 −6 (/ K (Calvin)]) is used as the material of the support base 110.

図1および図2に示されるように、載置面120は、測定試料500の測長方向Pに沿って測定試料500に接触するように支持台110に形成されている。図2に示されるように、一対の載置面120は、鉛直上方側から鉛直下方側へ向けて、支持台110の中心線CL1に近づく方向に傾斜するように、設けられている。これにより、測定試料500の円形の端面の中心は、当該測定試料500の自重によって、中心線CL1上に配置されるように規制される。なお、載置面120を構成する材料には、支持台110と同様に、低熱膨張素材(たとえば、スーパーインバー合金)が用いられている。   As shown in FIGS. 1 and 2, the mounting surface 120 is formed on the support base 110 so as to contact the measurement sample 500 along the length measurement direction P of the measurement sample 500. As shown in FIG. 2, the pair of placement surfaces 120 are provided so as to incline in a direction approaching the center line CL <b> 1 of the support base 110 from the vertically upper side to the vertically lower side. Thereby, the center of the circular end surface of the measurement sample 500 is regulated so as to be arranged on the center line CL1 by the weight of the measurement sample 500. In addition, as the material which comprises the mounting surface 120, the low thermal expansion raw material (for example, super invar alloy) is used similarly to the support stand 110. FIG.

図1に示されるように、突き当て面130は、支持台110の鉛直下方側の端部に設けられている。また、突き当て面130は、測定試料500の下端部に当接する。   As shown in FIG. 1, the abutting surface 130 is provided at an end portion on the vertically lower side of the support base 110. Further, the abutting surface 130 comes into contact with the lower end portion of the measurement sample 500.

図1に示されるように、第1の測長センサ140は、支持台110の鉛直上方側の端部に設けられている。第1の測長センサ140は、測定試料500の他端部に接触することなく、測定試料500の上端部502と対向するように支持台110に取り付けられている。第1の測長センサ140は、測定試料500の測長方向Pにおける測定試料500の上端部502までの長さSの変化量を検出または測定する。なお、第1の測長センサ140は、本発明の寸法変化量検出部に相当する。   As shown in FIG. 1, the first length measuring sensor 140 is provided at the end of the support table 110 on the vertically upper side. The first length measurement sensor 140 is attached to the support 110 so as to face the upper end 502 of the measurement sample 500 without contacting the other end of the measurement sample 500. The first length measurement sensor 140 detects or measures a change amount of the length S to the upper end portion 502 of the measurement sample 500 in the length measurement direction P of the measurement sample 500. The first length measurement sensor 140 corresponds to a dimensional change amount detection unit of the present invention.

図1に示されるように、支持柱部150は、支持台110を支持する。すなわち、支持柱部150は、支持台110が鉛直方向に対して所定の傾斜角度a(rad)で傾斜するように、支持台110を支持する。   As shown in FIG. 1, the support column 150 supports the support base 110. That is, the support column 150 supports the support base 110 such that the support base 110 is inclined at a predetermined inclination angle a (rad) with respect to the vertical direction.

ここで、載置面120に加わる力関係について説明する。図3は、測定装置100を試験槽200内に配置した状態を模式的に示す側面図であって、載置面120に加わる力関係を示す図である。   Here, the force relationship applied to the mounting surface 120 will be described. FIG. 3 is a side view schematically showing a state in which the measuring apparatus 100 is disposed in the test tank 200, and is a diagram showing a force relationship applied to the placement surface 120.

重力加速度をg(m/s2)、測定試料の質量をM(kg)、測定試料500および載置面120の間の最大静止摩擦係数をμとした場合、載置面120に加わる力関係は図3に示される。   When the gravitational acceleration is g (m / s2), the mass of the measurement sample is M (kg), and the maximum static friction coefficient between the measurement sample 500 and the placement surface 120 is μ, the force relationship applied to the placement surface 120 is It is shown in FIG.

そして、測定試料500が当該測定試料500の自重によって突き当て端面130に当接するためには、次の(式1)を満たす必要がある。なお、b(rad)=π/2−aである。   In order for the measurement sample 500 to contact the abutting end surface 130 by its own weight, it is necessary to satisfy the following (Formula 1). Note that b (rad) = π / 2−a.

μ×M×g×cos b < M×g×sin b ・・・(式1)
(式1)を変形すると次の(式2)の通りとなる。
μ × M × g × cos b <M × g × sin b (Formula 1)
When (Formula 1) is modified, the following (Formula 2) is obtained.

tan b > μ ・・・(式2)
また、傾斜角度aの最小値、すなわち、bの最大値を説明する。図4は、測定装置100を試験槽200内に配置した状態を模式的に示す側面図であって、支持台110の傾斜角度aの最小値を説明するための図である。
tan b> μ (Expression 2)
The minimum value of the inclination angle a, that is, the maximum value of b will be described. FIG. 4 is a side view schematically showing a state in which the measuring apparatus 100 is arranged in the test tank 200 and is a view for explaining the minimum value of the inclination angle a of the support base 110.

図4に示されるように、傾斜角度aが小さくなっても、測定試料500が、載置面120から離れる方向に、倒れないようにする必要がある。   As shown in FIG. 4, it is necessary to prevent the measurement sample 500 from falling in a direction away from the placement surface 120 even when the inclination angle a is reduced.

ここで、測定試料500の測長方向Pにおける前記測定試料の長さをL(mm)とし、測定試料500の測長定方向Pに対して垂直方向における前記測定対象の長さをH(mm)としたとき、次の(式3)が成立する。   Here, the length of the measurement sample in the measurement direction P of the measurement sample 500 is L (mm), and the length of the measurement object in the direction perpendicular to the measurement measurement direction P of the measurement sample 500 is H (mm). ), The following (Equation 3) holds.

tan b > L/H ・・・(式3)
よって、(式2)および(式3)から、次の(式4)が導出される。
tan b> L / H (Equation 3)
Therefore, the following (Expression 4) is derived from (Expression 2) and (Expression 3).

μ<tan b <L/H ・・・(式4)
そして、上述の通り、b(rad)=π/2−aであるので、(式4)は次の(式5)のように変形される。
μ <tan b <L / H (Formula 4)
As described above, since b (rad) = π / 2−a, (Expression 4) is transformed into the following (Expression 5).

μ<tan (π/2−a)<L/H ・・・(式5)
以上の通り、(式5)を満たすように、傾斜角度a(rad)を設定することにより、測定試料500が載置面120上に接しつつ、測定試料500の下端部501が突き当て面130に当接される。また、図2を用いて上述した通り、一対の載置面120は、鉛直上方側から鉛直下方側へ向けて、支持台110の中心線CL1に近づく方向に傾斜するように、設けられている。これにより、測定試料500の円形の端面の中心は、当該測定試料500の自重によって、中心線CL上に配置されるように規制される。
μ <tan (π / 2−a) <L / H (Formula 5)
As described above, by setting the inclination angle a (rad) so as to satisfy (Equation 5), the lower end portion 501 of the measurement sample 500 is in contact with the placement surface 120 while the measurement sample 500 is in contact with the placing surface 130. Abut. Further, as described above with reference to FIG. 2, the pair of placement surfaces 120 are provided so as to incline in a direction approaching the center line CL <b> 1 of the support base 110 from the vertically upper side to the vertically lower side. . Thereby, the center of the circular end surface of the measurement sample 500 is regulated so as to be arranged on the center line CL by the weight of the measurement sample 500.

また、支持台110および載置面120を構成する材料には、低熱膨張素材が用いられている。このため支持台110および載置面120の熱膨張は低減される。したがって、第1の測長センサ140の配置位置の変化は、極めて小さく抑えられる。ゆえに、第1の測長センサ140により、測定試料500の測長方向Pにおける測定試料500の上端部502までの長さSの変化量を検出または測定することにより、測定試料500の寸法の変化量を測定または検出することができる。ここで、第1の測定センサ140の原理や種別は、測定精度に応じて好適なものが選択される。たとえば、μm(マイクロメートル)オーダまで精度が要求されている場合、超音波式変位センサを第1の測長センサ140に用いることができる。一方、μmオーダまで精度が要求されていない場合、レーザ変位計や静電容量センサやレーザ干渉計等を第1の測長センサ140に用いることができる。   Further, a low thermal expansion material is used as the material constituting the support base 110 and the mounting surface 120. For this reason, the thermal expansion of the support base 110 and the mounting surface 120 is reduced. Therefore, the change in the arrangement position of the first length measuring sensor 140 can be suppressed to be extremely small. Therefore, the first length measurement sensor 140 detects or measures the amount of change in the length S to the upper end 502 of the measurement sample 500 in the measurement direction P of the measurement sample 500, thereby changing the dimension of the measurement sample 500. The amount can be measured or detected. Here, as the principle and type of the first measurement sensor 140, a suitable one is selected according to the measurement accuracy. For example, when accuracy is required to the order of μm (micrometer), an ultrasonic displacement sensor can be used for the first length measurement sensor 140. On the other hand, when accuracy is not required to the order of μm, a laser displacement meter, a capacitance sensor, a laser interferometer, or the like can be used for the first length measurement sensor 140.

以上、測定装置100の構成について説明した。   The configuration of the measuring apparatus 100 has been described above.

次に、測定装置100を用いて、測定試料500の長さの変化量を測定する方法について、説明する。   Next, a method for measuring the amount of change in the length of the measurement sample 500 using the measurement apparatus 100 will be described.

まず、試験槽200の内部を、たとえば常温常湿の状態に制御する。なお、常温常湿の状態とは、たとえば、ISO554−1976によれば、試験のために推奨される標準状態として、温度23℃、相対湿度50%である。   First, the inside of the test tank 200 is controlled to a normal temperature and normal humidity state, for example. Note that the normal temperature and normal humidity state is, for example, according to ISO 554-1976, a temperature of 23 ° C. and a relative humidity of 50% as a standard state recommended for testing.

つぎに、測定試料500を支持台110の載置面120上に載置する。このとき、測定試料500の下端部501を突き当て面130に当接させる。これにより、測定試料500は、当該測定試料500の自重により、規制された状態で安定して、支持台110上に保持される。   Next, the measurement sample 500 is placed on the placement surface 120 of the support base 110. At this time, the lower end portion 501 of the measurement sample 500 is brought into contact with the abutting surface 130. Accordingly, the measurement sample 500 is stably held on the support base 110 in a regulated state by the weight of the measurement sample 500.

この状態で、第1の測長センサ140は、測定試料500の測長方向Pにおける測定試料500の上端部502までの長さSの変化量(変位)を測定する。   In this state, the first length measurement sensor 140 measures the change amount (displacement) of the length S to the upper end portion 502 of the measurement sample 500 in the length measurement direction P of the measurement sample 500.

その後、試験目的に応じて試験槽200内の状態を変化させた後、長さSの変化量が飽和するまで、長さSの変化量を繰り返して測定する。これにより、要因毎の長さSの変化量を測定することができる。   Then, after changing the state in the test tank 200 according to the test purpose, the change amount of the length S is repeatedly measured until the change amount of the length S is saturated. Thereby, the variation | change_quantity of the length S for every factor can be measured.

たとえば、温度23℃、相対湿度50%の状態を保持し続ける場合、測定試料500の機械的要因による長さSの変化量を測定できる。また、たとえば、相対湿度50%を保持しつつ、湿度を任意の値に変化させた場合に、温度変化に対する長さSの変化量を測定すると、湿度歪み量を測定できる。また、たとえば、温度23℃、相対湿度0%に変化させて、その状態を長時間維持した場合に、温度変化に対する長さSの変化量を測定すると、排湿歪み量を測定できる。   For example, when the temperature 23 ° C. and the relative humidity 50% are continuously maintained, the amount of change in the length S due to the mechanical factor of the measurement sample 500 can be measured. Further, for example, when the humidity is changed to an arbitrary value while maintaining the relative humidity of 50%, the amount of humidity distortion can be measured by measuring the change amount of the length S with respect to the temperature change. Further, for example, when the temperature is changed to 23 ° C. and the relative humidity is 0% and the state is maintained for a long time, the amount of exhaust distortion can be measured by measuring the amount of change of the length S with respect to the temperature change.

以上、測定装置100を用いて、測定試料500の長さの変化量を測定する方法について、説明した。   The method for measuring the amount of change in the length of the measurement sample 500 using the measurement apparatus 100 has been described above.

以上の通り、本発明の第1の実施の形態における測定装置100は、支持台110と、載置面120と、突き当て端面130と、第1の測長センサ140(寸法変化量検出部)とを備えている。支持台110は、測定試料500を測定試料500の測長方向Pに沿って鉛直方向に対して所定の傾斜角度aに傾斜させて支持する。載置面120は、測定試料500の測長方向Pに沿って測定試料500に接触するように支持台110に形成されている。突き当て端面130は、支持台110の鉛直下方側の端部に設けられている。突き当て端面130は、測定試料500の一端部(下端部501)に当接する。第1の測長センサ140は、支持台110の鉛直上方側の端部に設けられている。第1の測長センサ140は、測定試料500の他端部(上端部502)に接触することなく、測定試料500の他端部と対向するように支持台110に取り付けられている。第1の測長センサ140は、測定試料500の測長方向Pにおける測定試料500の他端部までの長さSの変化量を検出する。   As described above, the measuring apparatus 100 according to the first embodiment of the present invention includes the support base 110, the mounting surface 120, the abutting end surface 130, and the first length measurement sensor 140 (dimension change detection unit). And. The support table 110 supports the measurement sample 500 by being inclined at a predetermined inclination angle a with respect to the vertical direction along the length measurement direction P of the measurement sample 500. The mounting surface 120 is formed on the support base 110 so as to contact the measurement sample 500 along the length measurement direction P of the measurement sample 500. The abutting end surface 130 is provided at an end portion on the vertically lower side of the support base 110. The abutting end surface 130 comes into contact with one end portion (lower end portion 501) of the measurement sample 500. The first length measurement sensor 140 is provided at the end of the support base 110 on the vertical upper side. The first length measuring sensor 140 is attached to the support base 110 so as to face the other end of the measurement sample 500 without contacting the other end (upper end 502) of the measurement sample 500. The first length measurement sensor 140 detects the amount of change in the length S to the other end of the measurement sample 500 in the length measurement direction P of the measurement sample 500.

このように、支持台110は、測定試料500を、測定試料500の測長方向Pに沿って鉛直方向に対して所定の傾斜角度aに傾斜させて支持する。また、載置面120は、測定試料500の測長方向Pに沿って測定試料500に接触するように支持台110に形成されている、そして、測定試料500の一端部(下端部501)は、突き当て端面130に当接されて、支持台110の載置面120上に支持される。このように、本発明の測定装置100では、測定試料500は、当該測定試料500の自重により、規制された状態で安定して、支持台110上に保持される。これにより、測定試料500を支持台110に支持した状態を、長時間、変化させることなく、安定させることができる。この結果、本発明の測定装置100によれば、測定試料500の長さSの変化量を正確に測定することができる。   In this way, the support base 110 supports the measurement sample 500 by inclining it at a predetermined inclination angle a with respect to the vertical direction along the length measurement direction P of the measurement sample 500. Moreover, the mounting surface 120 is formed on the support base 110 so as to contact the measurement sample 500 along the length measurement direction P of the measurement sample 500, and one end portion (lower end portion 501) of the measurement sample 500 is formed. The abutting end surface 130 is brought into contact with and is supported on the mounting surface 120 of the support base 110. As described above, in the measurement apparatus 100 of the present invention, the measurement sample 500 is stably held on the support 110 in a regulated state by the weight of the measurement sample 500. Thereby, the state which supported the measurement sample 500 on the support stand 110 can be stabilized, without changing for a long time. As a result, according to the measuring apparatus 100 of the present invention, the change amount of the length S of the measurement sample 500 can be accurately measured.

したがって、本発明の第1の実施の形態における測定装置100が複数個、設けられている場合であっても、複数の測定試料500の各々は、当該測定試料500の自重により、規制された状態で安定して、各支持台110上に保持される。ゆえに、測定試料500が支持台110に支持された状態は、複数の測定装置100の各々の間で差異がない。このため、複数の測定装置100の各々は、複数の測定装置100の各々の間で大きな相違なく、測定試料500の長さSの変化量を正確に測定することができる。   Therefore, even when a plurality of measurement apparatuses 100 according to the first embodiment of the present invention are provided, each of the plurality of measurement samples 500 is regulated by its own weight. And stably held on each support 110. Therefore, the state in which the measurement sample 500 is supported on the support base 110 is not different between each of the plurality of measurement apparatuses 100. For this reason, each of the plurality of measuring devices 100 can accurately measure the amount of change in the length S of the measurement sample 500 without a large difference between each of the plurality of measuring devices 100.

本発明の測定装置100では、特許文献1に記載の発明のように、固定部のねじ押さえによって測定試料500を支持台110に保持していない。このため、特許文献1に記載の発明のように、測定試料を保持する力(把持力)が経時的に小さくなり、測定対象の長さの測定結果に与える影響を低減することができる。   In the measurement apparatus 100 of the present invention, unlike the invention described in Patent Document 1, the measurement sample 500 is not held on the support base 110 by screw pressing of the fixing portion. For this reason, as in the invention described in Patent Document 1, the force (gripping force) for holding the measurement sample decreases with time, and the influence on the measurement result of the length of the measurement object can be reduced.

なお、特許文献2には、長さ変化率等の測定用治具の発明として、測定試料(試験体10)を、傾斜して設けられた治具本体2上に配置して、測定試料の長さの変化量を測定するものが開示されている。特許文献2に記載の測定用治具の発明では、治具本体2に取り付けられた突起3aに、測定試料の鉛直下方側の端部が当接する。また、測定試料の鉛直上方側の端部に、ダイヤルゲージ4の先端センサー4aが当接する。   In Patent Document 2, as an invention of a measuring jig such as a rate of change in length, a measurement sample (test body 10) is arranged on a jig body 2 provided at an inclination, and What measures the amount of change in length is disclosed. In the invention of the measurement jig described in Patent Document 2, the end portion on the vertically lower side of the measurement sample comes into contact with the protrusion 3 a attached to the jig body 2. Further, the tip sensor 4a of the dial gauge 4 comes into contact with the end portion on the vertically upper side of the measurement sample.

本発明の測定装置100と、特許文献2に記載の発明を対比する。特許文献2に記載の発明では、ダイヤルゲージ4の先端センサー4aが測定試料の鉛直上方側の端部に当接することにより、測定試料の長さの変化量を測定する。これに対して、本発明の測定装置100では、第1の測長センサ140は、測定試料500の上端部502に接触することなく、測定試料500の上端部502までの長さSの変化量を測定する。この点で、本発明の測定装置100と、特許文献2に記載の発明は、互いに相違する。   The measurement apparatus 100 of the present invention is compared with the invention described in Patent Document 2. In the invention described in Patent Document 2, the change amount of the length of the measurement sample is measured by the tip sensor 4a of the dial gauge 4 coming into contact with the vertical upper end of the measurement sample. On the other hand, in the measuring apparatus 100 of the present invention, the first length measuring sensor 140 does not contact the upper end portion 502 of the measurement sample 500, and the amount of change in the length S to the upper end portion 502 of the measurement sample 500. Measure. In this respect, the measuring apparatus 100 of the present invention and the invention described in Patent Document 2 are different from each other.

また、本発明の第1の実施の形態における測定装置100において、所定の角度をa(ラジアン)とした。また、測定試料500および載置面120の間の最大静止摩擦係数をμとした。また、測定試料500の測長方向Pにおける測定試料の長さをL(mm)とし、測定試料500の測長方向Pに対して垂直方向における測定試料500の長さをH(mm)とした。このとき、μ<tan(π/2−a)<L/H の関係式を満たす。   In the measuring apparatus 100 according to the first embodiment of the present invention, the predetermined angle is a (radian). Further, the maximum static friction coefficient between the measurement sample 500 and the mounting surface 120 was μ. Further, the length of the measurement sample in the length measurement direction P of the measurement sample 500 is L (mm), and the length of the measurement sample 500 in the direction perpendicular to the length measurement direction P of the measurement sample 500 is H (mm). . At this time, the relational expression of μ <tan (π / 2−a) <L / H is satisfied.

これにより、測定試料500の自重によって、測定試料500を突き当て端面130に確実に当接させることができる。また、傾斜角度aが小さくなっても、測定試料500が、載置面120から離れる方向に、倒れないようにすることができる。   Thereby, the measurement sample 500 can be reliably brought into contact with the abutting end surface 130 by the weight of the measurement sample 500. In addition, even when the inclination angle a decreases, the measurement sample 500 can be prevented from falling in a direction away from the placement surface 120.

また、本発明の第1の実施の形態における測定ユニット1000は、測定装置100と、試験槽200とを備えている。測定装置100は、前述の通りの構成を有する。試験槽200は、測定装置100を収容し、当該試験槽200の内部の温度および湿度を制御する。   The measurement unit 1000 according to the first embodiment of the present invention includes a measurement device 100 and a test tank 200. The measuring apparatus 100 has a configuration as described above. The test tank 200 accommodates the measuring device 100 and controls the temperature and humidity inside the test tank 200.

これにより、測定試料500の長さの変化量を、当該測定試料500が配置される環境(試験槽200内の温度および湿度)を変化させながら、検出することができる。   Thereby, the variation | change_quantity of the length of the measurement sample 500 is detectable, changing the environment (temperature and humidity in the test tank 200) where the said measurement sample 500 is arrange | positioned.

また、本発明の第1の実施の形態における寸法変化量測定方法は、測定装置100と、試験槽200を備える測定ユニット1000を用いて測定試料500の長さの変化量を検出する方法である。試験槽200は、測定装置100を収容し、当該試験槽200の内部の温度および湿度を制御する。   In addition, the dimensional change measurement method in the first embodiment of the present invention is a method for detecting the change in the length of the measurement sample 500 using the measurement apparatus 100 and the measurement unit 1000 including the test tank 200. . The test tank 200 accommodates the measuring device 100 and controls the temperature and humidity inside the test tank 200.

このとき、測定装置100は、支持台110と、載置面120と、突き当て端面130と、第1の測長センサ140(寸法変化量検出部)とを備えている。支持台110は、測定試料500を測定試料500の測長方向Pに沿って鉛直方向に対して所定の傾斜角度aに傾斜させて支持する。載置面120は、測定試料500の測長方向Pに沿って測定試料500に接触するように支持台110に形成されている。突き当て端面130は、支持台110の鉛直下方側の端部に設けられている。突き当て端面130は、測定試料500の一端部(下端部501)に当接する。第1の測長センサ140は、支持台110の鉛直上方側の端部に設けられている。第1の測長センサ140は、測定試料500の他端部(上端部502)に接触することなく、測定試料500の他端部と対向するように支持台110に取り付けられている。第1の測長センサ140は、測定試料500の測長方向Pにおける測定試料500の他端部までの長さSの変化量を検出する。   At this time, the measuring apparatus 100 includes a support base 110, a placement surface 120, an abutting end surface 130, and a first length measurement sensor 140 (a dimensional change detection unit). The support table 110 supports the measurement sample 500 by being inclined at a predetermined inclination angle a with respect to the vertical direction along the length measurement direction P of the measurement sample 500. The mounting surface 120 is formed on the support base 110 so as to contact the measurement sample 500 along the length measurement direction P of the measurement sample 500. The abutting end surface 130 is provided at an end portion on the vertically lower side of the support base 110. The abutting end surface 130 comes into contact with one end portion (lower end portion 501) of the measurement sample 500. The first length measurement sensor 140 is provided at the end of the support base 110 on the vertical upper side. The first length measuring sensor 140 is attached to the support base 110 so as to face the other end of the measurement sample 500 without contacting the other end (upper end 502) of the measurement sample 500. The first length measurement sensor 140 detects the amount of change in the length S to the other end of the measurement sample 500 in the length measurement direction P of the measurement sample 500.

そして、本発明の第1の実施の形態における寸法変化量測定方法は、測定試料載置ステップと、制御ステップと、寸法変化量検出ステップとを含んでいる。測定試料載置ステップは、測定試料500を支持台110の載置面120上に載置する。制御ステップは、測定試料500の一端部(下端部501)を突き当て端面130に当接させた状態で、試験槽200内の温度および湿度を制御する。寸法変化量検出ステップは、寸法変化量検出部が、測定試料500の測長方向Pにおける測定試料500の他端部(上端部502)までの長さSの変化量を検出する。   The dimensional change measurement method according to the first embodiment of the present invention includes a measurement sample placement step, a control step, and a dimensional change detection step. In the measurement sample placement step, the measurement sample 500 is placed on the placement surface 120 of the support base 110. In the control step, the temperature and humidity in the test chamber 200 are controlled in a state where one end portion (lower end portion 501) of the measurement sample 500 is in contact with the abutting end surface 130. In the dimensional change detection step, the dimensional change detection unit detects a change in the length S to the other end (upper end 502) of the measurement sample 500 in the measurement direction P of the measurement sample 500.

本発明の第1の実施の形態における寸法変化量測定方法によっても、前述した測定装置100および測定ユニット1000の効果を奏することができる。   The effects of the measurement apparatus 100 and the measurement unit 1000 described above can also be achieved by the dimensional change measurement method according to the first embodiment of the present invention.

<第2の実施の形態>
本発明の第2の実施の形態における測定装置100Aの構成について説明する。図7は、測定装置100Aを試験槽200内に配置した状態を模式的に示す側面図である。なお、図7では、図1〜図6で示した各構成要素と同等の構成要素には、図1〜図6に示した符号と同等の符号を付している。また、図7に示した矢視Aも、図2と同じである。なお、測定装置100Aおよび試験槽200は、測定ユニット1000Aを構成する。すなわち、測定ユニット1000Aは、測定装置100Aおよび試験槽200を備えている。
<Second Embodiment>
A configuration of a measuring apparatus 100A according to the second embodiment of the present invention will be described. FIG. 7 is a side view schematically showing a state in which the measuring apparatus 100 </ b> A is arranged in the test tank 200. In FIG. 7, constituent elements that are equivalent to the constituent elements shown in FIGS. 1 to 6 are given the same reference numerals as those shown in FIGS. 1 to 6. Moreover, the arrow A shown in FIG. 7 is also the same as FIG. The measuring apparatus 100A and the test tank 200 constitute a measuring unit 1000A. That is, the measurement unit 1000A includes a measurement device 100A and a test tank 200.

ここで、図1と図7を対比する。図7では、第2の測長センサ160が新たに追加して設けられている点で、図1と相違する。この関係から、第1の測長センサ140および第2の測長センサ160を含む構成が、寸法変化量検出部170となるものとする。   Here, FIG. 1 and FIG. 7 are compared. 7 is different from FIG. 1 in that a second length measuring sensor 160 is newly added. From this relationship, it is assumed that the configuration including the first length measurement sensor 140 and the second length measurement sensor 160 is the dimensional change amount detection unit 170.

図1に示されるように、測定装置100は、支持台110と、載置面120と、突き当て面130と、第1の測長センサ140と、支持柱部150と、第2の測長センサ160とを備えている。   As shown in FIG. 1, the measuring apparatus 100 includes a support base 110, a mounting surface 120, an abutment surface 130, a first length measurement sensor 140, a support column 150, and a second length measurement. Sensor 160.

図7に示されるように、第2の測長センサ160は、支持台110の鉛直上方側の端部に設けられている。第2の測長センサ160は、測定試料500の他端部に接触することなく、測定試料500の上端部502と対向するように支持台110に取り付けられている。第2の測長センサ160は、測定試料500の測長方向Pにおける突き当て面130までの長さSAの変化量を検出または測定する。なお、第1の測長センサ140および第2の測長センサ160は、寸法変化量検出部170に含まれる。すなわち、本発明の寸法変化量検出部170は、第1の測長センサ140および第2の測長センサ160を備えている。   As shown in FIG. 7, the second length measurement sensor 160 is provided at an end portion on the vertically upper side of the support base 110. The second length measurement sensor 160 is attached to the support 110 so as to face the upper end 502 of the measurement sample 500 without contacting the other end of the measurement sample 500. The second length measurement sensor 160 detects or measures the amount of change in the length SA up to the abutting surface 130 in the length measurement direction P of the measurement sample 500. The first length measurement sensor 140 and the second length measurement sensor 160 are included in the dimensional change detection unit 170. That is, the dimensional change detection unit 170 of the present invention includes the first length measurement sensor 140 and the second length measurement sensor 160.

そして、本発明の寸法変化量検出部170は、第1の測長センサ140および第2の測長センサ160の測定値の差分に基づいて、測定試料500の測長方向Pにおける測定試料500の上端部502(他端部)までの距離Sの変化量を検出する。より具体的には、本発明の寸法変化量検出部は、第1の測長センサ140の測定結果(長さS)と、第2の測定センサ160の測定結果(長さSA)の相対差分を計算したうえで、測定試料500の測長方向Pにおける測定試料500の上端部502(他端部)までの距離Sの変化量を検出する。   Then, the dimensional change detection unit 170 of the present invention, based on the difference between the measurement values of the first length measurement sensor 140 and the second length measurement sensor 160, the measurement sample 500 in the length measurement direction P of the measurement sample 500. The amount of change in the distance S to the upper end 502 (the other end) is detected. More specifically, the dimensional change detection unit of the present invention is a relative difference between the measurement result (length S) of the first length measurement sensor 140 and the measurement result (length SA) of the second measurement sensor 160. Is calculated, and the amount of change in the distance S to the upper end 502 (the other end) of the measurement sample 500 in the length measurement direction P of the measurement sample 500 is detected.

これにより、支持台110の伸縮量を相殺することができるので、測定試料500の上端部502(他端部)までの距離Sの変化量の測定精度を向上することができる。また、本実施の形態における測定装置100Aでは、第2の測長センサ160によって、測定試料500の測長方向Pにおける支持台110の長さを測定できるので、必ずしも、支持台110の材料を低熱膨張素材で形成しなくてもよくなる。ただし、支持台110を低熱膨張素材で形成することにより、測長方向P以外においても支持台110の伸縮による変形を抑えることができ、測定結果の信頼性を高めることができる。   Thereby, since the expansion / contraction amount of the support base 110 can be offset, the measurement accuracy of the change amount of the distance S to the upper end portion 502 (the other end portion) of the measurement sample 500 can be improved. In the measurement apparatus 100A in the present embodiment, the length of the support base 110 in the length measurement direction P of the measurement sample 500 can be measured by the second length measurement sensor 160. It does not have to be formed of an expanded material. However, by forming the support base 110 with a low thermal expansion material, deformation due to the expansion and contraction of the support base 110 can be suppressed in directions other than the length measurement direction P, and the reliability of the measurement result can be improved.

第2の測長センサ160は、第1の測長センサ140と同様に、測定精度により好適なものが選択される。一方、支持台110および測定試料500の寸法によっては、測長距離が長大になる。したがって、第2の測長センサ160には、たとえば、レーザ干渉計など最大測定可能距離が長大なものが用いられる。   As the second length measurement sensor 160, a suitable one according to the measurement accuracy is selected in the same manner as the first length measurement sensor 140. On the other hand, depending on the dimensions of the support table 110 and the measurement sample 500, the measurement distance becomes long. Therefore, a sensor having a long maximum measurable distance, such as a laser interferometer, is used for the second length measuring sensor 160.

また、第1の測長センサ140および第2の測長センサ160は、必ずしも同一原理のものでなくともよいが、同一原理のものを使用した方が測定結果の信頼性は向上することが知られている。   Further, the first length measuring sensor 140 and the second length measuring sensor 160 do not necessarily have the same principle, but it is known that the reliability of the measurement result is improved by using the same length measuring sensor. It has been.

なお、本実施の形態においても第1の実施の形態と同様に、測定装置100Aを測定試料500の数に応じて、試験槽200内に複数組、用意することができる。これにより、複数の測定試料500の長さの変化を、特許文献1に記載の技術のような固定方式によるばらつきを生じることなく、同時に測定することができる。   In the present embodiment as well, a plurality of sets of measuring devices 100A can be prepared in the test tank 200 according to the number of measurement samples 500, as in the first embodiment. Thereby, the change of the length of the some measurement sample 500 can be measured simultaneously, without producing the dispersion | variation by a fixing system like the technique of patent document 1. FIG.

また、本実施の形態では、第2の測長センサ160を追加することにより、試験系のコストが増える面がある。一方で、本実施の形態における測定装置100Aは、支持台110の微細な熱膨張すら影響するような高精度および高分解能が要求される測定に適している。   In the present embodiment, the addition of the second length measuring sensor 160 increases the cost of the test system. On the other hand, the measurement apparatus 100A according to the present embodiment is suitable for measurement that requires high accuracy and high resolution so that even the fine thermal expansion of the support base 110 is affected.

以上、測定装置100Aの構成について説明した。   The configuration of the measurement apparatus 100A has been described above.

次に、測定装置100Aを用いて、測定試料500の長さの変化量を測定する方法について、説明する。   Next, a method for measuring the amount of change in the length of the measurement sample 500 using the measurement apparatus 100A will be described.

まず、試験槽200の内部を、たとえば常温常湿の状態に制御する。つぎに、測定試料500を支持台110の載置面120上に載置する。このとき、測定試料500の下端部501を突き当て面130に当接させる。   First, the inside of the test tank 200 is controlled to a normal temperature and normal humidity state, for example. Next, the measurement sample 500 is placed on the placement surface 120 of the support base 110. At this time, the lower end portion 501 of the measurement sample 500 is brought into contact with the abutting surface 130.

この状態で、第1の測長センサ140は、測定試料500の測長方向Pにおける測定試料500の上端部502までの長さSの変化量(変位)を測定する。また、第2の測長センサ160は、測定試料500の測長方向Pにおける突き当て面130までの長さSAの変化量を測定する。   In this state, the first length measurement sensor 140 measures the change amount (displacement) of the length S to the upper end portion 502 of the measurement sample 500 in the length measurement direction P of the measurement sample 500. Further, the second length measurement sensor 160 measures the amount of change in the length SA of the measurement sample 500 to the abutting surface 130 in the length measurement direction P.

そして、寸法変化量検出部170は、第1の測長センサ140および第2の測長センサ160の測定値の差分に基づいて、測定試料500の測長方向Pにおける測定試料500の上端部502(他端部)までの距離Sの変化量を検出する。より具体的には、本発明の寸法変化量検出部は、第1の測長センサ140の測定結果(長さS)と、第2の測定センサ160の測定結果(長さSA)の相対差分を計算したうえで、測定試料500の測長方向Pにおける測定試料500の上端部502(他端部)までの距離Sの変化量を検出する。   Then, the dimensional change amount detection unit 170 is based on the difference between the measurement values of the first length measurement sensor 140 and the second length measurement sensor 160, and the upper end portion 502 of the measurement sample 500 in the length measurement direction P of the measurement sample 500. The amount of change in the distance S to (the other end) is detected. More specifically, the dimensional change detection unit of the present invention is a relative difference between the measurement result (length S) of the first length measurement sensor 140 and the measurement result (length SA) of the second measurement sensor 160. Is calculated, and the amount of change in the distance S to the upper end 502 (the other end) of the measurement sample 500 in the length measurement direction P of the measurement sample 500 is detected.

その後、試験目的に応じて試験槽200内の状態を変化させた後、長さSの変化量が飽和するまで、長さSの変化量を繰り返して測定する。これにより、要因毎の長さSの変化量を測定することができる。   Then, after changing the state in the test tank 200 according to the test purpose, the change amount of the length S is repeatedly measured until the change amount of the length S is saturated. Thereby, the variation | change_quantity of the length S for every factor can be measured.

以上、測定装置100Aを用いて、測定試料500の長さの変化量を測定する方法について、説明した。   The method for measuring the amount of change in the length of the measurement sample 500 using the measurement apparatus 100A has been described above.

以上の通り、本発明の第2の実施の形態における測定装置100Aにおいて、寸法変化量検出部170は、第1の測長センサ140と、第2の測長センサ160とを備えている。第1の測長センサ140は、測定試料500の測長方向Pにおける測定試料500の上端部502(他端部)までの長さSの変化量を測定する。第2の測長センサ160は、測定試料500の測長方向Pにおける突き当て面130までの長さSAの変化量を測定する。そして、寸法変化量検出部170は、第1の測長センサ140および第2の測長センサ160の測定値の差分に基づいて、測定試料500の測長方向Pにおける測定試料500の上端部502(他端部)までの距離Sの変化量を検出する。   As described above, in the measuring apparatus 100A according to the second embodiment of the present invention, the dimensional change detection unit 170 includes the first length measurement sensor 140 and the second length measurement sensor 160. The first length measurement sensor 140 measures the amount of change in the length S up to the upper end 502 (the other end) of the measurement sample 500 in the length measurement direction P of the measurement sample 500. The second length measurement sensor 160 measures the amount of change in the length SA to the abutting surface 130 in the length measurement direction P of the measurement sample 500. Then, the dimensional change amount detection unit 170 is based on the difference between the measurement values of the first length measurement sensor 140 and the second length measurement sensor 160, and the upper end portion 502 of the measurement sample 500 in the length measurement direction P of the measurement sample 500. The amount of change in the distance S to (the other end) is detected.

このように、寸法変化量検出部170は、第1の測長センサ140および第2の測長センサ160の測定値の差分に基づいて、測定試料500の測長方向Pにおける測定試料500の上端部502(他端部)までの距離Sの変化量を検出する。より具体的には、本発明の寸法変化量検出部は、第1の測長センサ140の測定結果(長さS)と、第2の測定センサ160の測定結果(長さSA)の相対差分を計算したうえで、測定試料500の測長方向Pにおける測定試料500の上端部502(他端部)までの距離Sの変化量を検出する。   In this way, the dimensional change detection unit 170 is based on the difference between the measurement values of the first length measurement sensor 140 and the second length measurement sensor 160, and the upper end of the measurement sample 500 in the length measurement direction P of the measurement sample 500. The amount of change in the distance S to the unit 502 (the other end) is detected. More specifically, the dimensional change detection unit of the present invention is a relative difference between the measurement result (length S) of the first length measurement sensor 140 and the measurement result (length SA) of the second measurement sensor 160. Is calculated, and the amount of change in the distance S to the upper end 502 (the other end) of the measurement sample 500 in the length measurement direction P of the measurement sample 500 is detected.

これにより、支持台110の伸縮量を相殺することができるので、測定試料500の上端部502(他端部)までの距離Sの変化量の測定精度を向上することができる。また、本実施の形態における測定装置100Aでは、第2の測長センサ160によって、測定試料500の測長方向Pにおける支持台110の長さを測定できるので、必ずしも、支持台110の材料を低熱膨張素材で形成しなくてもよくなる。   Thereby, since the expansion / contraction amount of the support base 110 can be offset, the measurement accuracy of the change amount of the distance S to the upper end portion 502 (the other end portion) of the measurement sample 500 can be improved. In the measurement apparatus 100A in the present embodiment, the length of the support base 110 in the length measurement direction P of the measurement sample 500 can be measured by the second length measurement sensor 160. It does not have to be formed of an expanded material.

また、本発明の第2の実施の形態における寸法変化量測定方法は、測定装置100Aと、試験槽200を備える測定ユニット1000Aを用いて測定試料500の長さの変化量を検出する方法である。   In addition, the dimensional change measurement method in the second embodiment of the present invention is a method for detecting the change in the length of the measurement sample 500 using the measurement device 100A and the measurement unit 1000A including the test tank 200. .

このとき、寸法変化量検出部170は、第1の測長センサ140と、第2の測長センサ160とを備えている。第1の測長センサ140は、測定試料500の測長方向Pにおける測定試料500の上端部502(他端部)までの長さSの変化量を測定する。第2の測長センサ160は、測定試料500の測長方向Pにおける突き当て面130までの長さSAの変化量を測定する。   At this time, the dimensional change detection unit 170 includes a first length measurement sensor 140 and a second length measurement sensor 160. The first length measurement sensor 140 measures the amount of change in the length S up to the upper end 502 (the other end) of the measurement sample 500 in the length measurement direction P of the measurement sample 500. The second length measurement sensor 160 measures the amount of change in the length SA to the abutting surface 130 in the length measurement direction P of the measurement sample 500.

そして、寸法変化量検出ステップは、第1の測定ステップと、第2の測定ステップとを含んでいる。第1の測定ステップでは、第1の測長センサ140が、測定試料500の測長方向Pにおける測定試料500の上端部502(他端部)までの長さSの変化量を測定する。第2の測定ステップでは、第2の測長センサ160が、測定試料500の測長方向Pにおける突き当て面130までの長さSAの変化量を測定する。そして、寸法変化量検出部170が、第1の測長センサ140および第2の測長センサ160の測定値の差分に基づいて、測定試料500の測長方向Pにおける測定試料500の上端部502(他端部)までの距離の変化量Sを検出する。   The dimensional change detection step includes a first measurement step and a second measurement step. In the first measurement step, the first length measurement sensor 140 measures the amount of change in the length S to the upper end portion 502 (the other end portion) of the measurement sample 500 in the length measurement direction P of the measurement sample 500. In the second measurement step, the second length measurement sensor 160 measures the amount of change in the length SA of the measurement sample 500 to the abutment surface 130 in the length measurement direction P. Then, the dimensional change amount detection unit 170 is based on the difference between the measurement values of the first length measurement sensor 140 and the second length measurement sensor 160, and the upper end portion 502 of the measurement sample 500 in the length measurement direction P of the measurement sample 500. A change amount S of the distance to (the other end) is detected.

本発明の第2の実施の形態における寸法変化量測定方法によっても、前述した測定装置100Aおよび測定ユニット1000Aの効果を奏することができる。   The effects of the measurement apparatus 100A and the measurement unit 1000A described above can also be achieved by the dimensional change measurement method according to the second embodiment of the present invention.

以上、実施の形態をもとに本発明を説明した。実施の形態は例示であり、本発明の主旨から逸脱しない限り、上述各実施の形態に対して、さまざまな変更、増減、組合せを加えてもよい。これらの変更、増減、組合せが加えられた変形例も本発明の範囲にあることは当業者に理解されるところである。   The present invention has been described above based on the embodiment. The embodiment is an exemplification, and various modifications, increases / decreases, and combinations may be added to the above-described embodiments without departing from the gist of the present invention. It will be understood by those skilled in the art that modifications to which these changes, increases / decreases, and combinations are also within the scope of the present invention.

100、100A 測定装置
110 支持台
120 載置面
130 突き当て面
140 第1の測長センサ
150 支持柱部
160 第2の測長センサ
170 寸法変化量検出部
200 試験槽
500 測定試料
1000、1000A 測定ユニット
DESCRIPTION OF SYMBOLS 100,100A Measuring apparatus 110 Support stand 120 Mounting surface 130 Abutting surface 140 1st length measurement sensor 150 Support pillar part 160 2nd length measurement sensor 170 Dimensional change detection part 200 Test tank 500 Measurement sample 1000, 1000A measurement unit

Claims (6)

測定試料を前記測定試料の測長方向に沿って鉛直方向に対して所定の傾斜角度に傾斜させて支持する支持台と、
前記測定試料の測長方向に沿って前記測定試料に接触するように前記支持台に形成された載置面と、
前記支持台の鉛直下方側の端部に設けられ、前記測定試料の一端部に当接する突き当て端面と、
前記支持台の鉛直上方側の端部に設けられ、前記測定試料の他端部に接触することなく、前記測定試料の他端部と対向するように前記支持台に取り付けられ、前記測定試料の測長方向における前記測定試料の他端部までの長さの変化量を検出する寸法変化量検出部とを備えた測定装置。
A support base for supporting the measurement sample by inclining at a predetermined inclination angle with respect to the vertical direction along the length measurement direction of the measurement sample;
A mounting surface formed on the support so as to contact the measurement sample along the length measurement direction of the measurement sample;
An abutting end surface provided at an end portion of the support base on the vertically lower side and in contact with one end portion of the measurement sample;
Provided at the end on the vertically upper side of the support base, attached to the support base so as to face the other end of the measurement sample without contacting the other end of the measurement sample, A measurement apparatus comprising: a dimensional change amount detection unit that detects a change amount of a length to the other end of the measurement sample in the length measurement direction.
前記所定の角度をa(ラジアン)とし、前記測定試料および前記載置面の間の最大静止摩擦係数をμとし、前記測定試料の測長方向における前記測定試料の長さをL(mm)とし、前記測定試料の測長方向に対して垂直方向における前記測定試料の長さをH(mm)としたとき、
μ<tan(π/2−a)<L/H
の関係式を満たす請求項1に記載の測定装置。
The predetermined angle is a (radian), the maximum static friction coefficient between the measurement sample and the mounting surface is μ, and the length of the measurement sample in the measurement direction of the measurement sample is L (mm). When the length of the measurement sample in the direction perpendicular to the measurement direction of the measurement sample is H (mm),
μ <tan (π / 2−a) <L / H
The measuring apparatus according to claim 1, wherein the relational expression is satisfied.
前記寸法変化量検出部は、
前記測定試料の測長方向における前記測定試料の他端部までの長さの変化量を測定する第1の測長センサと、
前記測定試料の測長方向における前記突き当て面までの長さの変化量を測定する第2の測長センサとを備え、
前記第1の測長センサおよび前記第2の測長センサの測定値の差分に基づいて、前記測定試料の測長方向における前記測定試料の他端部までの距離の変化量を検出する請求項1または2に記載の測定装置。
The dimensional change detection unit is
A first length measurement sensor for measuring a change in length of the measurement sample in the length measurement direction to the other end of the measurement sample;
A second length measurement sensor for measuring a change in length of the measurement sample to the abutting surface in the length measurement direction;
The amount of change in the distance to the other end of the measurement sample in the length measurement direction of the measurement sample is detected based on a difference between measurement values of the first length measurement sensor and the second length measurement sensor. 3. The measuring device according to 1 or 2.
請求項1〜3のいずれか1項に記載の測定装置と、
前記測定装置を収容し、内部の温度および湿度を制御する試験槽とを備える測定ユニット。
The measuring apparatus according to any one of claims 1 to 3,
A measurement unit comprising: a test tank that houses the measurement device and controls internal temperature and humidity.
測定装置と、前記測定装置を収容し、内部の温度および湿度を制御できる試験槽を備える測定ユニットを用いて測定試料の長さの変化量を検出する寸法変化量検出方法であって、
前記測定装置は、
測定試料を前記測定試料の測長方向に沿って鉛直方向に対して所定の傾斜角度に傾斜させて支持する支持台と、
前記測定試料の測長方向に沿って前記測定試料に接触するように前記支持台に形成された載置面と、
前記支持台の鉛直下方側の端部に設けられ、前記測定試料の一端部に当接する突き当て端面と、
前記支持台の鉛直上方側の端部に設けられ、前記測定試料の他端部に接触することなく、前記測定試料の他端部と対向するように前記支持台に取り付けられ、前記測定試料の測長方向における前記測定試料の他端部までの長さの変化量を検出する寸法変化量検出部とを備え、
前記測定試料を前記支持台の前記載置面上に載置する測定試料載置ステップと、
前記測定試料の一端部を前記突き当て端面に当接させた状態で、前記試験槽内の温度および湿度を制御する制御ステップと、
前記寸法変化量検出部が、前記測定試料の測長方向における前記測定試料の他端部までの長さの変化量を検出する寸法変化量検出ステップとを含む寸法変化量検出方法。
A dimensional change detection method for detecting a change in the length of a measurement sample using a measurement unit including a measurement device and a measurement unit including a test tank capable of controlling the temperature and humidity inside the measurement device,
The measuring device is
A support base for supporting the measurement sample by inclining at a predetermined inclination angle with respect to the vertical direction along the length measurement direction of the measurement sample;
A mounting surface formed on the support so as to contact the measurement sample along the length measurement direction of the measurement sample;
An abutting end surface provided at an end portion of the support base on the vertically lower side and in contact with one end portion of the measurement sample;
Provided at the end on the vertically upper side of the support base, attached to the support base so as to face the other end of the measurement sample without contacting the other end of the measurement sample, A dimensional change detection unit that detects a change in length to the other end of the measurement sample in the measurement direction;
A measurement sample placement step of placing the measurement sample on the placement surface of the support;
A control step of controlling the temperature and humidity in the test chamber in a state where one end of the measurement sample is in contact with the abutting end surface;
A dimensional change detection method, comprising: a dimensional change detection step in which the dimensional change detection unit detects a change in length to the other end of the measurement sample in the measurement direction of the measurement sample.
前記寸法変化量検出部は、
前記測定試料の測長方向における前記測定試料の他端部までの長さの変化量を測定する第1の測長センサと、
前記測定試料の測長さ向における前記突き当て面までの長さの変化量を測定する第2の測長センサとを備え、
前記寸法変化量検出ステップは、
前記第1の測長センサが、前記測定試料の測長方向における前記測定試料の他端部までの長さの変化量を検出する第1の測定ステップと、
前記第2の測長センサが、前記測定試料の測長方向における前記突き当て面までの長さの変化量を測定する第2の測定ステップと、
前記寸法変化量検出部が、前記第1の測長センサおよび前記第2の測長センサの測定値の差分に基づいて、前記測定試料の測長方向における前記測定試料の他端部までの距離の変化量を検出する寸法変化量検出ステップとを含む請求項5に記載の寸法変化量検出方法。
The dimensional change detection unit is
A first length measurement sensor for measuring a change in length of the measurement sample in the length measurement direction to the other end of the measurement sample;
A second length measurement sensor for measuring a change in length to the abutting surface in the measurement direction of the measurement sample;
The dimensional change detection step includes
A first measurement step in which the first length measurement sensor detects a change in length to the other end of the measurement sample in the length measurement direction of the measurement sample;
A second measurement step in which the second length measurement sensor measures the amount of change in length to the abutting surface in the length measurement direction of the measurement sample;
The dimensional change detection unit is a distance to the other end of the measurement sample in the measurement direction of the measurement sample based on a difference between measurement values of the first length measurement sensor and the second length measurement sensor. The dimensional change detection method according to claim 5, further comprising a dimensional change detection step for detecting a change amount of.
JP2015047943A 2015-03-11 2015-03-11 Measurement device, measurement unit, and method for measuring amount of dimension change Pending JP2016169953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015047943A JP2016169953A (en) 2015-03-11 2015-03-11 Measurement device, measurement unit, and method for measuring amount of dimension change

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015047943A JP2016169953A (en) 2015-03-11 2015-03-11 Measurement device, measurement unit, and method for measuring amount of dimension change

Publications (1)

Publication Number Publication Date
JP2016169953A true JP2016169953A (en) 2016-09-23

Family

ID=56982247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015047943A Pending JP2016169953A (en) 2015-03-11 2015-03-11 Measurement device, measurement unit, and method for measuring amount of dimension change

Country Status (1)

Country Link
JP (1) JP2016169953A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183417A (en) * 1997-09-09 1999-03-26 Sumitomo Metal Mining Co Ltd Measuring jig of changing ratio of length or the like
JPH11118430A (en) * 1997-10-08 1999-04-30 Japan Science & Technology Corp Non-contact type concrete length testing machine and mortar specimen receiving base used therefor
JP2000121321A (en) * 1998-08-10 2000-04-28 Fpk Kk Length change testing method and apparatus for concrete
JP2010032478A (en) * 2008-07-31 2010-02-12 Toray Ind Inc Forming regimes monitoring device and method of fiber-reinforced plastic, and manufacturing method of fiber reinforced plastics therewith
CN102128579A (en) * 2010-12-07 2011-07-20 成都飞机工业(集团)有限责任公司 Detecting device for measuring appearance with compound angle length

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183417A (en) * 1997-09-09 1999-03-26 Sumitomo Metal Mining Co Ltd Measuring jig of changing ratio of length or the like
JPH11118430A (en) * 1997-10-08 1999-04-30 Japan Science & Technology Corp Non-contact type concrete length testing machine and mortar specimen receiving base used therefor
JP2000121321A (en) * 1998-08-10 2000-04-28 Fpk Kk Length change testing method and apparatus for concrete
JP2010032478A (en) * 2008-07-31 2010-02-12 Toray Ind Inc Forming regimes monitoring device and method of fiber-reinforced plastic, and manufacturing method of fiber reinforced plastics therewith
CN102128579A (en) * 2010-12-07 2011-07-20 成都飞机工业(集团)有限责任公司 Detecting device for measuring appearance with compound angle length

Similar Documents

Publication Publication Date Title
RU2633443C2 (en) Method and device for determining static unbalance
US8887584B2 (en) Load measuring apparatus
Li et al. An analogue contact probe using a compact 3D optical sensor for micro/nano coordinate measuring machines
CN204101217U (en) A kind of micro-nano force value standard set-up based on electrostatic force principle
JP6789023B2 (en) Precise method for detecting thermal expansion
CN101813499B (en) Method and device for calibrating three-dimensional micro tactile sensor
CN104155333A (en) Device and method for measuring wire and cable expansion coefficient
US8096191B2 (en) Mechanical test fixture with submicron tolerance
CN103645206B (en) Simple measurement method of expansion factors of optical fiber ring and framework material thereof
Marti et al. Micro-force measurements: a new instrument at METAS
JP2016169953A (en) Measurement device, measurement unit, and method for measuring amount of dimension change
Hu et al. Investigation of a small force standard with the mass based method
JP2017037028A (en) Measurement device
Niehe A new force measuring facility for the range of 10 mN to 10 N
US20160033882A1 (en) Methods and apparatus for substrate support alignment
Metz et al. Integration of a piezoresistive microprobe into a commercial gear measuring instrument
Moers et al. Design and verification of the Trinano ultra precision CMM
JP6072434B2 (en) Method and apparatus for measuring length change of concrete structure surface
CN104568597A (en) Device and method for measuring elasticity modulus of metal wires by using standard wires
US2480891A (en) Attachment for dial indicators
JP6128639B2 (en) Measuring method
EP4215869A1 (en) Structural system design for the verification and calibration of measuring instruments
RU104320U1 (en) PENDULAR ACCELEROMETER
CN108827162B (en) Device and method for comparing linearity of Fabry-Perot etalon micro-displacement measurement system based on capacitance sensor
Diethold et al. Determination of AFM-Cantilever spring constants using the TU Ilmenau force displacement measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190716