JP2010032478A - Forming regimes monitoring device and method of fiber-reinforced plastic, and manufacturing method of fiber reinforced plastics therewith - Google Patents

Forming regimes monitoring device and method of fiber-reinforced plastic, and manufacturing method of fiber reinforced plastics therewith Download PDF

Info

Publication number
JP2010032478A
JP2010032478A JP2008197810A JP2008197810A JP2010032478A JP 2010032478 A JP2010032478 A JP 2010032478A JP 2008197810 A JP2008197810 A JP 2008197810A JP 2008197810 A JP2008197810 A JP 2008197810A JP 2010032478 A JP2010032478 A JP 2010032478A
Authority
JP
Japan
Prior art keywords
measuring means
displacement measuring
displacement
reinforcing fiber
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008197810A
Other languages
Japanese (ja)
Other versions
JP5353104B2 (en
Inventor
Yasuyuki Takayama
康之 高山
Koji Kotani
浩司 小谷
Kensuke Kunigome
健介 國米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2008197810A priority Critical patent/JP5353104B2/en
Publication of JP2010032478A publication Critical patent/JP2010032478A/en
Application granted granted Critical
Publication of JP5353104B2 publication Critical patent/JP5353104B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a good compact with thickness as a designed value, by monitoring continuously, temporarily and correctly impregnation of liquid object and forming regimes of a fiber-reinforced substrate formed through thermoset process in forming of FRPs. <P>SOLUTION: The forming regime monitoring device and the monitoring method of fiber-reinforced plastics are characterized by measuring the thickness of the fiber enhancement substrate, such that, in impregnation of liquid object into plate-like enhancement fiber substrate arranged in a form block installed in a heating oven and thermoset process, each displacement measuring means arranged on a first plane of the enhancement fiber substrate and a first plane of the form block is used to alleviate influences of thermal deformation of a fixing means of the displacement measuring means, the form block, and the displacement measuring means. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、繊維強化プラスチックの成形状況、特に加熱炉内における、液体状の含浸、及び、熱硬化状況に応じた繊維強化プラスチックの連続厚さモニタリング装置およびモニタリング方法に関する。   The present invention relates to a continuous thickness monitoring apparatus and a monitoring method for fiber reinforced plastics according to the molding conditions of fiber reinforced plastics, particularly liquid impregnation in a heating furnace, and thermosetting conditions.

炭素繊維やガラス繊維を強化繊維として用いた炭素繊維強化プラスチック(以下、CFRP)、ガラス繊維強化プラスチック(以下、GFRP)に代表される繊維強化プラスチック(以下、FRP)は軽量でかつ高い耐久性を有するため、自動車や航空機などの各種構成部材として適用されている。   Carbon fiber reinforced plastic (hereinafter referred to as CFRP) using carbon fiber or glass fiber as reinforced fiber, fiber reinforced plastic (hereinafter referred to as FRP) represented by glass fiber reinforced plastic (hereinafter referred to as GFRP) is lightweight and has high durability. Since it has, it is applied as various components, such as a motor vehicle and an aircraft.

これらFRPの代表的な製造方法としては、プリプレグを用いたオートクレーブ成形法が知られている。かかる成形法では、強化繊維にマトリックス樹脂を予め含浸させたプリプレグと呼ばれる中間基材を成形型上に積み重ねた後、フィルム材料で真空シールしてオートクレーブ中で加熱・加圧して複合材料を成形する。しかしながら、プリプレグに含浸されているマトリックス樹脂は硬化剤を含有した熱硬化性樹脂であるため硬化反応が徐々に進行してしまい、使用できる時間が短く、冷凍保管設備が必要となることから、熱硬化性樹脂のマトリックス樹脂を使用するには制約があった。   As a typical method for producing these FRPs, an autoclave molding method using a prepreg is known. In such a molding method, an intermediate base material called a prepreg in which a reinforcing fiber is impregnated with a matrix resin in advance is stacked on a mold, and then vacuum-sealed with a film material and heated and pressurized in an autoclave to form a composite material. . However, since the matrix resin impregnated in the prepreg is a thermosetting resin containing a curing agent, the curing reaction proceeds gradually, and the usable time is short and a freezer storage facility is required. There was a limitation in using a matrix resin of a curable resin.

そこで、近年では従来のプリプレグを用いたオートクレーブ成形より容易に成形できる方法として、RTM成形方法が注目されている。Resin Transfer Molding(以下、RTM)成形方法とは、強化繊維基材(あらかじめ賦形した強化繊維シートの積層体)を型に配置した状態で加熱炉内に投入した後、強化繊維基材にマトリックス樹脂を注入し、加熱によりマトリックス樹脂を硬化させる方法である。このRTM成形方法では、マトリックス樹脂の注入直前に、主剤である樹脂と硬化剤を混合させれば良く、硬化反応の進行を懸念する必要がない。また、マトリックス樹脂を主剤である樹脂と硬化剤に分けて常温で保管可能なため、大がかりな冷凍保管設備は不要である。また、成形時にオートクレーブ等の大型設備も必要としないといった利点もある。   Therefore, in recent years, the RTM molding method has attracted attention as a method that can be molded more easily than the conventional autoclave molding using a prepreg. Resin Transfer Molding (hereinafter referred to as RTM) molding method is a method in which a reinforcing fiber base material (a laminate of reinforcing fiber sheets shaped in advance) is placed in a mold and placed in a heating furnace, and then a matrix is formed on the reinforcing fiber base material. This is a method of injecting resin and curing the matrix resin by heating. In this RTM molding method, the main resin and the curing agent may be mixed just before the injection of the matrix resin, and there is no need to worry about the progress of the curing reaction. Further, since the matrix resin can be stored at room temperature by dividing the resin into the main resin and the curing agent, a large-scale freezing storage facility is not required. In addition, there is an advantage that large equipment such as an autoclave is not required at the time of molding.

一方、RTM成形方法はプリプレグを用いたオートクレーブ成形に比べると、特にマトリックス樹脂の注入工程において、強化繊維基材を含む成形部材の厚さ変化量が大きくなりやすい。このため、前記成形部材全体の厚さ変化量に相当するマトリックス樹脂の注入量を把握し、成形部材全体の厚さが目標となる厚さになった時点でマトリックス樹脂注入を停止し、注入されたマトリックス樹脂を硬化させる必要がある。しかし、加熱炉内でのマトリックス樹脂の注入工程、及び硬化工程において、目視等ではマトリックス樹脂が含浸した成形部材の厚さを把握できづらい。その結果、加熱炉内でのマトリックス樹脂の注入工程、及び硬化工程における成形部材が設計値と異なる厚さになったとしても、マトリックス樹脂の硬化および成形部材の脱型が終わるまでは確認することができないため、成形部材の一部に厚さ不良が生じて製品全部が無駄になるといったことを未然に防げない問題もある。   On the other hand, compared with autoclave molding using a prepreg, the RTM molding method tends to increase the thickness variation of the molded member including the reinforcing fiber base, particularly in the matrix resin injection step. For this reason, the injection amount of the matrix resin corresponding to the thickness change amount of the entire molding member is grasped, and when the thickness of the entire molding member reaches the target thickness, the matrix resin injection is stopped and injected. It is necessary to cure the matrix resin. However, it is difficult to visually grasp the thickness of the molded member impregnated with the matrix resin in the injection process and the curing process of the matrix resin in the heating furnace. As a result, even if the molded part in the matrix resin injection process and curing process in the heating furnace has a thickness different from the design value, check until the matrix resin has been cured and the molded part has been demolded. Therefore, there is also a problem that it is impossible to prevent the thickness of a part of the molded member from being defective and the entire product from being wasted.

特に、航空機の翼の成形のように大量に材料を用いて時間をかけて含浸を行うような成形工程では、厚さ不良による製造ロスは大きなものになる。このような理由から、加熱炉内において成形部材の厚さの変化量を連続的に測定し、マトリックス樹脂の注入、及び硬化によって経時的に変化する成形部材の厚さの変化量を常時把握することは非常に重要である。   In particular, in a molding process in which a large amount of material is used for impregnation as in the case of aircraft wing molding, manufacturing loss due to defective thickness becomes large. For this reason, the amount of change in the thickness of the molded member is continuously measured in the heating furnace, and the amount of change in the thickness of the molded member that changes over time due to the injection and curing of the matrix resin is constantly grasped. That is very important.

測定対象物の厚さを温度変化の影響を受けずに正確に測定する方法として、加熱雰囲気内に熱膨張の小さい(温度変化に対する変形の小さい)基準となる試料と、厚さ変化量を測定したい試料とを配置し、差動トランスに接続された2つの検出棒を前記各試料にそれぞれ接触させ、各検出棒の変位の差をもとに、測定したい試料の厚さを測定する方法が知られている(特許文献1)。   As a method for accurately measuring the thickness of a measurement object without being affected by temperature changes, a reference sample with small thermal expansion (small deformation with respect to temperature changes) in the heating atmosphere and the thickness change amount are measured. A method of measuring the thickness of a sample to be measured based on the difference in displacement of each detection rod by placing two detection rods connected to a differential transformer in contact with the respective samples. Known (Patent Document 1).

この測定方法では、2つの検出棒自体の温度変化に対する変形が差動トランスを用いることで相殺される工夫がなされており、測定したい試料の厚さを正確に測定することができる。   In this measurement method, a device is devised in which the deformation of the two detection rods with respect to the temperature change is offset by using a differential transformer, and the thickness of the sample to be measured can be accurately measured.

しかし、この方法では、温度変化に対する変形の小さい基準となる試料を配置することが必要であるため、測定操作上の試料準備が複雑になる。また、検出棒を測定対象物に接触させる必要があるため、測定対象物に損傷を与えるという問題がある。更に、差動トランスを用いた測定構成であることから、基準となる試料と測定したい試料との配置に関し、その距離に制約が発生し、任意のポイントの測定が困難であった。   However, in this method, since it is necessary to arrange a sample serving as a reference with a small deformation with respect to a temperature change, sample preparation for measurement operation becomes complicated. Moreover, since it is necessary to make a detection rod contact a measuring object, there exists a problem of damaging a measuring object. Furthermore, since the measurement configuration uses a differential transformer, the distance between the reference sample and the sample to be measured is limited, and it is difficult to measure an arbitrary point.

また、測定対象物の厚さを温度変化の影響を受けずに正確に測定する別の方法としては、レーザビームを用いた1つの変位センサを走査し、厚さを測定したい試料とリファレンスとなる試料との高さ(厚さ)とを、各試料と非接触の状態で測定し、それぞれの測定値の差を演算することで、各試料の温度変化に対する変形の影響を除去し、正確に測定対象物の厚さを測定する方法が知られている(特許文献2)。   As another method for accurately measuring the thickness of the measurement object without being affected by the temperature change, a single displacement sensor using a laser beam is scanned to obtain a sample and a reference whose thickness is to be measured. By measuring the height (thickness) of each sample in a non-contact state with each sample and calculating the difference between the measured values, the influence of deformation on the temperature change of each sample can be removed and accurately A method for measuring the thickness of a measurement object is known (Patent Document 2).

この方法によると、測定対象物と非接触の測定であるため測定対象物への損傷はないものの、測定対象物と同一素材かつ同一肉厚のリファレンス試料の配置が必要であるため、測定操作上の試料準備が複雑になる。また、レーザビームを発する変位センサにおいては、センサ内部の光学部品、例えばレンズなどの耐熱温度がせいぜい40℃程度までのため、それ以上の温度に加熱された環境の場合は測定できないという問題があった。   According to this method, since the measurement object is not contacted, there is no damage to the measurement object, but it is necessary to place a reference sample of the same material and thickness as the measurement object. The sample preparation becomes complicated. In addition, a displacement sensor that emits a laser beam has a problem that measurement cannot be performed in an environment heated to a temperature higher than that because the heat resistance temperature of the optical components inside the sensor, such as a lens, is about 40 ° C. at most. It was.

また、測定対象物の厚さを温度変化の影響を受けずに正確に測定する別の方法としては、レーザ光源を室温雰囲気に配置し、加熱雰囲気に配置されたビームスプリッタによりレーザビームを分光し、基準位置及び測定対象位置から反射されたレーザビームの干渉縞を用いて測定対象物の変位を測定する方法が知られている(特許文献3)。   Another method for accurately measuring the thickness of an object to be measured without being affected by changes in temperature is to place a laser light source in a room temperature atmosphere and to split the laser beam with a beam splitter placed in a heated atmosphere. A method of measuring the displacement of a measurement object using an interference fringe of a laser beam reflected from a reference position and a measurement object position is known (Patent Document 3).

この方法では、レーザ光源は室温雰囲気に配置されているため光学部品の耐熱性の点では問題なく、非接触の測定構成であるため測定対象物への損傷もない。しかし、加熱雰囲気内で反射されたレーザビームが室温雰囲気に配置された受光素子に入光する際、空気温度の違いによる屈折率の変化の影響を受けるため、正確に測定対象物の変位を測定することが出来なかった。   In this method, since the laser light source is arranged in a room temperature atmosphere, there is no problem in terms of heat resistance of the optical component, and since the measurement configuration is a non-contact, there is no damage to the measurement object. However, when the laser beam reflected in the heating atmosphere enters the light receiving element placed in the room temperature atmosphere, it is affected by the change in the refractive index due to the difference in air temperature, so it accurately measures the displacement of the measurement object. I could not do it.

以上のように、加熱雰囲気において温度変化の影響を受けずに、測定対象物に損傷なく、容易に、かつ、正確に測定対象物の厚さを測定する技術は存在しなかった。
特許第2759770号公報 特開2001−289619号公報 特開2003−302358号公報
As described above, there has been no technique for measuring the thickness of the measurement object easily and accurately without being affected by the temperature change in the heated atmosphere without damaging the measurement object.
Japanese Patent No. 2759770 JP 2001-289619 A JP 2003-302358 A

従来技術によるモニタリング方法を用いて、成形中の部材の厚さの変化を測定する場合、温度変化による厚さ変化量の測定値への影響が避けられないこと、成形中の部材に対し損傷を与えること、温度変化に対し変形の少ない基準となる試料の準備が必要となり煩雑であること、測定できるポイントに制約があることから、温度変化を有する加熱炉内での成形中部材の厚さを正確に、かつ、容易に測定することができない。   When measuring the change in thickness of a part during molding using the monitoring method according to the prior art, the influence of the change in thickness due to temperature change on the measured value is inevitable, and damage to the part during molding The thickness of the member being molded in a heating furnace with a temperature change is limited. It cannot be measured accurately and easily.

本発明の目的は、かかる問題点を解決すること、すなわち、FRPの成形において、成形中の部材の成形状況、特に成形中の部材の厚さを、温度変化の影響を受けずに連続的にモニタリングし、設計値どおりの厚さを有する良好な成形体を得ることである。   The object of the present invention is to solve such a problem, that is, in the molding of FRP, the molding condition of the member being molded, particularly the thickness of the member being molded, is continuously affected without being affected by temperature changes. Monitoring is to obtain a good molded body having a thickness as designed.

本発明は、上記目的を達成するために、次のいずれかの構成を有する。
(1)加熱炉の内部に、成形型と、導電体および前記導電体と非接触で対向する変位測定手段からなる複数組の測定手段とを備え、前記変位測定手段からの信号を処理する演算処理手段を備えたことを特徴とする、繊維強化プラスチックの成形状況モニタリング装置。
(2)前記成形型上に強化繊維基材が配置され、前記成形型上に少なくとも1組の前記測定手段を配置するとともに、前記強化繊維基材上にも少なくとも1組の前記測定手段を配置したことを特徴とする、(1)に記載の繊維強化プラスチックの成形状況モニタリング装置。
(3)前記変位測定手段は、電気的または磁気的手段によって測定することを特徴とする、(1)または(2)のいずれかに記載の繊維強化プラスチックの成形状況モニタリング装置。
(4)前記測定手段を構成する変位測定手段は、固定手段を介して固定されていることを特徴とする、(1)〜(3)のいずれかに記載の繊維強化プラスチックの成形状況モニタリング装置。
(5)前記変位測定手段を固定する前記固定手段が、1つの固定部材にまとめて固定されていることを特徴とする、(1)〜(4)のいずれかに記載の繊維強化プラスチックの成形状況モニタリング装置。
(6)加熱炉内に設けられた成形型上に配置した強化繊維基材に対して、
前記強化繊維基材の第1の面上に導電体を配置し、前記導電体に非接触で対向するように第1の変位測定手段を前記加熱炉内に配置するとともに、
前記強化繊維基材の第2の面に接する前記成形型の第1の面上に導電体を配置し、前記導電体と非接触で対向するように第2の変位測定手段を前記加熱炉内に配置して、
前記第1の変位測定手段を用いて前記強化繊維基材の厚さ方向の変位量を測定するとともに、前記第2の変位測定手段を用いて前記成形型の厚さ方向の変位量を測定することを特徴とする、繊維強化プラスチックの成形状況モニタリング方法。
(7)前記第1の変位測定手段から得られる変位量と、前記第2の変位測定手段から得られる変位量とを前記演算処理手段で補正処理し、前記強化繊維基材の厚さ方向の変位量とすることを特徴とする、(6)に記載の繊維強化プラスチックの成形状況モニタリング方法。
(8)前記第1の変位測定手段から得られる変位量と、前記第2の変位測定手段から得られる変位量との差を前記演算処理手段で演算し、前記強化繊維基材の厚さ方向の変位量とすることを特徴とする、(6)に記載の繊維強化プラスチックの成形状況モニタリング方法。
(9)前記第1の変位測定手段から得られる変位量の値と、前記第2の変位測定手段から得られる変位量の値は、前記演算処理手段で補正処理した後、前記補正処理後のそれぞれの変位量の差を前記演算処理手段で演算することを特徴とする、(6)に記載の繊維強化プラスチックの成形状況モニタリング方法。
(10)前記各第1の変位測定手段とそれに対向して配置された前記導電体との距離と、前記第2の変位測定手段とそれに対向して配置された前記導電体との距離とを前記加熱炉の加熱前に同じ距離に調整する工程を経た後、前記強化繊維基材の厚さ方向の変位量もしくは前記成形型の厚さ方向の変位量の測定を開始する工程を有することを特徴とする、(6)〜(9)のいずれかに記載の繊維強化プラスチックの成形状況モニタリング方法。
(11)前記加熱炉を加熱する前に前記強化繊維基材の厚さを予め測定する工程を有し、前記厚さ測定値と、前記加熱炉の加熱中及び加熱完了後に得られる前記強化繊維基材の厚さ方向の変位量から前記強化繊維基材の厚さを前記演算処理手段で演算することを特徴とする、(6)〜(10)のいずれかに記載の繊維強化プラスチックの成形状況モニタリング方法。
(12)強化繊維基材に液状体を含浸させる繊維強化プラスチックの製造方法であって、(6)〜(11)のいずれかに記載の成形状況モニタリング方法を用いて含浸工程、硬化工程が制御されてなることを特徴とする繊維強化プラスチックの製造方法。
In order to achieve the above object, the present invention has one of the following configurations.
(1) An operation for processing a signal from the displacement measuring means, comprising a molding die and a plurality of sets of measuring means comprising a conductor and a displacement measuring means facing the conductor in a non-contact manner inside the heating furnace. A molding condition monitoring device for fiber-reinforced plastic, characterized by comprising a processing means.
(2) A reinforcing fiber base is disposed on the mold, and at least one set of the measuring means is disposed on the mold, and at least one set of the measuring means is also disposed on the reinforcing fiber base. The molding condition monitoring apparatus for fiber-reinforced plastic according to (1), characterized in that
(3) The fiber reinforced plastic molding condition monitoring device according to any one of (1) and (2), wherein the displacement measuring means is measured by electrical or magnetic means.
(4) The fiber-reinforced plastic molding condition monitoring device according to any one of (1) to (3), wherein the displacement measuring means constituting the measuring means is fixed via a fixing means. .
(5) The fiber-reinforced plastic molding according to any one of (1) to (4), wherein the fixing means for fixing the displacement measuring means is fixed to a single fixing member. Condition monitoring device.
(6) For the reinforcing fiber substrate disposed on the mold provided in the heating furnace,
While disposing a conductor on the first surface of the reinforcing fiber base and disposing the first displacement measuring means in the heating furnace so as to face the conductor in a non-contact manner,
A conductor is disposed on the first surface of the mold that is in contact with the second surface of the reinforcing fiber substrate, and the second displacement measuring means is disposed in the heating furnace so as to face the conductor in a non-contact manner. Placed in
The displacement amount in the thickness direction of the reinforcing fiber base is measured using the first displacement measuring means, and the displacement amount in the thickness direction of the mold is measured using the second displacement measuring means. A molding condition monitoring method for fiber-reinforced plastic, characterized in that.
(7) The amount of displacement obtained from the first displacement measuring means and the amount of displacement obtained from the second displacement measuring means are corrected by the arithmetic processing means, and the thickness direction of the reinforcing fiber substrate is corrected. The method of monitoring the molding status of the fiber-reinforced plastic according to (6), characterized in that the amount of displacement is used.
(8) The difference between the displacement amount obtained from the first displacement measuring means and the displacement amount obtained from the second displacement measuring means is calculated by the arithmetic processing means, and the thickness direction of the reinforcing fiber substrate The method of monitoring the molding state of the fiber-reinforced plastic according to (6), characterized in that the amount of displacement of
(9) The value of the displacement obtained from the first displacement measuring means and the value of the displacement obtained from the second displacement measuring means are corrected by the arithmetic processing means, and then after the correction processing. The molding condition monitoring method for fiber reinforced plastics according to (6), wherein the difference between the respective displacement amounts is calculated by the calculation processing means.
(10) A distance between each of the first displacement measuring means and the conductor disposed opposite thereto, and a distance between the second displacement measuring means and the conductor disposed opposite thereto. After the step of adjusting to the same distance before heating in the heating furnace, the method includes the step of starting measurement of the displacement amount in the thickness direction of the reinforcing fiber substrate or the displacement amount in the thickness direction of the mold. The molding condition monitoring method for a fiber-reinforced plastic according to any one of (6) to (9), characterized in that it is characterized.
(11) The step of measuring the thickness of the reinforcing fiber base in advance before heating the heating furnace, the thickness measurement value, and the reinforcing fiber obtained during and after heating of the heating furnace The fiber-reinforced plastic molding according to any one of (6) to (10), wherein the arithmetic processing means calculates the thickness of the reinforcing fiber base from the amount of displacement in the thickness direction of the base. Status monitoring method.
(12) A method for producing fiber reinforced plastic in which a reinforced fiber base material is impregnated with a liquid, and the impregnation step and the curing step are controlled using the molding state monitoring method according to any one of (6) to (11). A method for producing a fiber-reinforced plastic, characterized by being made.

本発明において「成形型」とは、閉空間(成形キャビティ)を形成する成形型であれば、通常のRTM成形に用いられる複数の型を組み合わせて閉空間(成形キャビティ)を形成するものでも良いし、下型上に強化繊維基材を配置しシール材とフィルムで閉空間(成形キャビティ)を形成するフィルム材料による成形型でもよい。閉空間を形成するための被覆フィルム(バギングフィルム)の材料としては、ポリエチレンテレフタレートフィルムなどが耐熱性の観点から好ましい。本発明は、かかる閉空間内に配置した強化繊維基材に液状体を含浸、及び、硬化させる工程に適用するものである。   In the present invention, the “molding die” may be a molding die that forms a closed space (molding cavity), and may form a closed space (molding cavity) by combining a plurality of molds used in normal RTM molding. Alternatively, a molding die made of a film material in which a reinforcing fiber base material is disposed on a lower die and a closed space (molding cavity) is formed by a sealing material and a film may be used. As a material for the covering film (bagging film) for forming the closed space, a polyethylene terephthalate film or the like is preferable from the viewpoint of heat resistance. The present invention is applied to a step of impregnating and curing a liquid material in a reinforcing fiber base disposed in such a closed space.

本発明において「強化繊維基材」とは、強化繊維の織物、編み物、組み物、強化繊維の短繊維を抄紙等したもの等の強化繊維布帛を積層したものや強化繊維を3軸織物とした強化繊維がある厚さを持った集合体をいう。また、強化繊維基材に含まれる強化繊維は、通常数千〜数万本の単繊維の集合した繊維束である。   In the present invention, the term “reinforcing fiber base material” refers to a reinforced fiber fabric, knitted fabric, braided fabric, a laminate of reinforcing fiber fabrics such as paper made from short fibers of reinforcing fibers, or a reinforced fiber as a triaxial woven fabric. An aggregate with a certain thickness of reinforcing fibers. The reinforcing fiber contained in the reinforcing fiber base is usually a fiber bundle in which thousands to tens of thousands of single fibers are aggregated.

なお、本発明が対象とする強化繊維基材の形状は、少なくとも一部に板状部を有するものであれば良い。強化繊維基材の全てが板状であっても良いが、液状体を含浸し、成形状況をモニタリングする部位が板状であれば良い。強化繊維基材は、強化繊維材の積層体または単体のものであり、曲面、多角面または凹凸を持った面であってもよい。本発明において、「強化繊維基材の第1の面」とは、成形型に直接接触している強化繊維基材面と反対側の表面のことをいい、「強化繊維基材の第2の面」とは、成形型に直接接触している強化繊維基材面の表面のことをいう。   In addition, the shape of the reinforcement fiber base material which this invention makes object should just have a plate-shaped part in at least one part. Although all of the reinforcing fiber bases may be plate-shaped, the portion that is impregnated with the liquid material and that monitors the molding state may be plate-shaped. The reinforcing fiber base material is a laminate of reinforcing fiber materials or a single body, and may be a curved surface, a polygonal surface, or a surface with irregularities. In the present invention, the “first surface of the reinforcing fiber substrate” refers to a surface opposite to the reinforcing fiber substrate surface that is in direct contact with the mold, and “the second surface of the reinforcing fiber substrate”. "Surface" refers to the surface of the reinforcing fiber substrate surface that is in direct contact with the mold.

本発明における「強化繊維」は、炭素繊維及びガラス繊維、アラミド繊維などの高強度、高弾性率繊維を用いることが出来る。   As the “reinforcing fiber” in the present invention, high-strength, high-modulus fiber such as carbon fiber, glass fiber, and aramid fiber can be used.

本発明において、「成形型の第1の面」とは、強化繊維基材の第2の面と直接接触している表面のことをいう。   In the present invention, the “first surface of the mold” refers to a surface that is in direct contact with the second surface of the reinforcing fiber substrate.

本発明において、「変位測定手段」とは、変位測定用のセンサヘッドのことをいい、「第1の変位測定手段」とは、強化繊維基材上に配置された導電体と非接触で対向して配置されたセンサヘッドをいい、「第2の変位測定手段」とは、成形型上に配置された導電体と非接触で対向して配置されたセンサヘッドをいう。本発明において、「導電体」とは、変位測定手段を含む閉ループ回路において、そのグラウンド(GND)との抵抗値が4kΩ以下である電気通電性物体のことをいう。また、導電体は接地されていることが電気ノイズの影響を受けにくいという点で好ましい。   In the present invention, the “displacement measuring means” refers to a sensor head for measuring displacement, and the “first displacement measuring means” is opposed to a conductor disposed on the reinforcing fiber substrate in a non-contact manner. The “second displacement measuring means” refers to a sensor head that is disposed in a non-contact manner and opposed to the conductor disposed on the mold. In the present invention, the “conductor” means an electrically conductive object having a resistance value of 4 kΩ or less with respect to the ground (GND) in a closed loop circuit including a displacement measuring means. In addition, it is preferable that the conductor is grounded in that it is less susceptible to electrical noise.

本発明において、「測定手段」とは、前記「導電体」、及び、導電体と非接触で対向する「変位測定手段」との対をもって定義する。   In the present invention, “measuring means” is defined as a pair of the “conductor” and “displacement measuring means” that faces the conductor in a non-contact manner.

本発明において、「強化繊維基材の第1の面上に導電体を配置」するとは、導電体を直接強化繊維基材の第1の面に接触する形で配置すること以外にも、導電体と強化繊維基材の第1の面の間にバギングフィルムや金属部材などを介して配置されることも含む。   In the present invention, “arranging the conductor on the first surface of the reinforcing fiber base” means that the conductor is not only disposed in contact with the first surface of the reinforcing fiber base. It also includes disposing a bagging film or a metal member between the body and the first surface of the reinforcing fiber substrate.

本発明において、「加熱炉」とは、空気の摂氏温度が5℃以上200℃以下の範囲において、40℃以上の温度操作がなされる空間を備えた加熱炉のことをいう。加熱する手段としては加熱空気を循環し、加熱炉内の温度が設定値になるように空気を加熱するヒーター出力を制御し、加熱空気を媒体とする温風加熱方式や、熱媒により加熱された成形型から直接、加熱対象物に熱エネルギーを供給し加熱する熱媒加熱方式、電気コイルを加熱対象物に近接し、加熱対象物表面に得られる誘導電流(渦電流)によって加熱する誘導加熱方式等があり、本発明においては特に制限するものではないものの、成形型及び強化繊維基材の設置の容易さなどの観点から温風加熱方式が好ましく利用できる。   In the present invention, the “heating furnace” refers to a heating furnace having a space in which a temperature operation of 40 ° C. or higher is performed in a range where the air temperature is 5 ° C. or higher and 200 ° C. or lower. As heating means, circulating heated air, controlling the heater output to heat the air so that the temperature in the heating furnace becomes a set value, and heated by a hot air heating method using heated air as a medium or by a heating medium Heating medium heating system that supplies heat energy to the object to be heated directly from the heated mold, and induction heating that heats the electric coil close to the object to be heated by the induced current (eddy current) obtained on the surface of the object to be heated Although there is a method, and the like is not particularly limited in the present invention, a hot air heating method can be preferably used from the viewpoint of easy installation of the mold and the reinforcing fiber base.

本発明で用いる「液状体」とは、全体として流動性を有していれば良く、熱可塑性の樹脂、水等の単なる液体、固形分を含有した液体(例えば微粒子状の物質等が分散したもの)が含まれているものであってもよい。FRP成形においては主として熱硬化性樹脂を想定しているが、室温で液状のものばかりでなく、熱可塑性樹脂のように成形温度において流動するものも含む。なお、熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、メラミン樹脂などがあるが、硬化後の寸法安定性、耐水性、耐薬品性、高電気絶縁性などの観点から、エポキシ樹脂が最も好ましく用いられる。   The “liquid body” used in the present invention is only required to have fluidity as a whole, and a thermoplastic resin, a mere liquid such as water, or a liquid containing a solid content (for example, a particulate substance or the like is dispersed). May be included). In FRP molding, a thermosetting resin is mainly assumed, but includes not only liquids at room temperature but also those that flow at the molding temperature, such as thermoplastic resins. As the thermosetting resin, there are epoxy resin, phenol resin, melamine resin, etc., but epoxy resin is most preferable from the viewpoint of dimensional stability after curing, water resistance, chemical resistance, high electrical insulation, etc. Used.

なお、本発明における液状体の含浸は、上記説明では、成形型内に繊維強化基材を配置し、外部から液状体(液状樹脂)を注入するプロセスをベースとした。このプロセス以外にも、あらかじめ液状体である樹脂が部分的に含浸したシート状の強化繊維基材である部分含浸プリプレグや、室温で固形の樹脂フィルムを成形型内に配置して、積層・昇温するときに、樹脂が軟化または溶融し強化繊維間または強化繊維層間に染み込んで行くようなものも含まれる。   In the above description, the impregnation of the liquid material in the present invention is based on a process in which a fiber reinforced base material is placed in a mold and a liquid material (liquid resin) is injected from the outside. In addition to this process, a partially impregnated prepreg, which is a sheet-like reinforcing fiber substrate partially impregnated with a liquid resin in advance, and a resin film that is solid at room temperature are placed in a mold and laminated and raised. Also included are those in which the resin softens or melts and soaks between the reinforcing fibers or between the reinforcing fiber layers when warmed.

本発明によれば、液状体の含浸及び熱硬化に応じて変化する強化繊維基材の厚さを、加熱雰囲気内で、温度変化の影響を受けずに簡単かつ確実に連続モニタリングできる。そして、本発明のモニタリング方法を用いてFRP成形体を生産する場合には、強化繊維基材への液状体の含浸状態、及び熱硬化に応じて変化する成形中の部材の厚さを簡単かつ確実にモニタリングすることが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the thickness of the reinforced fiber base material which changes according to the impregnation and thermosetting of a liquid can be continuously and simply monitored in a heating atmosphere without being affected by temperature changes. And when producing a FRP molded object using the monitoring method of the present invention, the state of impregnation of the liquid material into the reinforcing fiber base material and the thickness of the member during molding that changes according to thermosetting can be simplified and It becomes possible to monitor reliably.

その結果、FRP成形体の生産における成形中の部材の厚さ測定値をもとに、マトリックス樹脂注入及び熱硬化工程における異常の早期発見、及び、商品認可基準をより確実に満足することが可能となる。更には、成形中の部材の厚さ測定値をもとに、マトリックス樹脂注入、停止操作の自動化なども可能になり人手を減らすこともできる。   As a result, early detection of abnormalities in the matrix resin injection and thermosetting processes and product approval standards can be more reliably satisfied based on the measured thickness of the part being molded in the production of FRP molded products. It becomes. Furthermore, based on the measured thickness value of the member being molded, it is possible to inject matrix resin, automate the stop operation, etc., and reduce manpower.

特に、前記した効果に加えて、従来正確に知り得なかった繊維強化プラスチックの製造条件と、強化繊維基材の厚さ変化とを関連付けることができ、最適な製造条件を選択することで、厚さが設計値通りとなる良好なFRP成形体を得ることができるという効果を奏することができる。   In particular, in addition to the effects described above, it is possible to relate the production conditions of fiber reinforced plastics, which could not be known accurately in the past, and the thickness change of the reinforcing fiber base material. Thus, it is possible to obtain an effect that a good FRP molded product having a thickness as designed can be obtained.

以下、本発明の繊維強化プラスチックの成形状況モニタリング装置およびモニタリング方法の好ましい実施形態例を、図面を参照しながら説明する。なお、強化繊維基材として平板状基材を用いる場合を例にとって説明する。なお、本発明はこれらの例に限られるものではなく、例えば強化繊維基材が多角面を有するものであってもよい。   Hereinafter, preferred embodiments of a molding condition monitoring apparatus and monitoring method for fiber reinforced plastic according to the present invention will be described with reference to the drawings. In addition, the case where a flat base material is used as the reinforcing fiber base material will be described as an example. In addition, this invention is not restricted to these examples, For example, a reinforced fiber base material may have a polygonal surface.

図1は、変位測定手段として、非接触方式の変位センサを用いた本発明にかかる繊維強化プラスチックの成形状況モニタリング装置の一実施形態を模式的に表す側面図である。温度変化を有する加熱炉5内に成形型4を配置し、成形型4の第1の面41上に強化繊維基材3が配置されている。加熱炉5内の温度は、強化繊維基材3の昇温、液状体の注入、停止、熱硬化のそれぞれの過程に応じて、常温から約200℃までの間で制御される。なお、常温とは約5℃から30℃程度のことをいう。   FIG. 1 is a side view schematically showing an embodiment of a fiber reinforced plastic molding condition monitoring apparatus according to the present invention using a non-contact type displacement sensor as a displacement measuring means. The mold 4 is disposed in the heating furnace 5 having a temperature change, and the reinforcing fiber base 3 is disposed on the first surface 41 of the mold 4. The temperature in the heating furnace 5 is controlled between room temperature and about 200 ° C. according to the respective processes of raising the temperature of the reinforcing fiber base 3, injecting and stopping the liquid material, and thermosetting. In addition, normal temperature means about 5 to 30 degreeC.

強化繊維基材3の第2の面32は成形型4の第1の面41に密着するように配置されている。強化繊維基材3の第1の面31に密着するように導電体2Sが加熱炉5内に配置され、導電体2Sに非接触で対向するように変位測定手段1Sが加熱炉5内に配置されている。また、成形型4の第1の面41に密着するように導電体2Rが加熱炉5内に配置され、導電体2Rに非接触で対向するように変位測定手段1Rが加熱炉5内に配置されている。   The second surface 32 of the reinforcing fiber base 3 is disposed so as to be in close contact with the first surface 41 of the mold 4. The conductor 2S is arranged in the heating furnace 5 so as to be in close contact with the first surface 31 of the reinforcing fiber base 3, and the displacement measuring means 1S is arranged in the heating furnace 5 so as to face the conductor 2S in a non-contact manner. Has been. Further, the conductor 2R is disposed in the heating furnace 5 so as to be in close contact with the first surface 41 of the mold 4, and the displacement measuring means 1R is disposed in the heating furnace 5 so as to face the conductor 2R in a non-contact manner. Has been.

なお、図1に図示しないが、変位測定手段1S及び1Rは、加熱炉5の外に配置された信号処理機能を有する処理アンプにケーブルを介して接続されており、また、導電体2S及び2Rも前記信号処理機能を有する処理アンプのグランド端子にケーブルを介して接続されている。   Although not shown in FIG. 1, the displacement measuring means 1S and 1R are connected to a processing amplifier having a signal processing function disposed outside the heating furnace 5 via a cable, and the conductors 2S and 2R Is also connected to the ground terminal of the processing amplifier having the signal processing function via a cable.

変位測定手段1S及び1Rは、電気式もしくは磁気的な作用により変位を測定するセンサを用いることが好ましい。例えば、電気式では、変位測定手段1S(1R)と導電体2S(2R)間に電界を形成し静電容量の変化から変位を検出する静電容量式変位センサを、磁気式では、変位測定手段1S(1R)と導電体2S(2R)間に磁界を形成しそのインピーダンス変化から変位を検出する渦電流式変位センサなどを用いることが最も好ましい。   The displacement measuring means 1S and 1R are preferably sensors that measure displacement by electric or magnetic action. For example, in the electric type, a capacitance type displacement sensor that detects displacement from a change in capacitance by forming an electric field between the displacement measuring means 1S (1R) and the conductor 2S (2R), in the magnetic type, displacement measurement is performed. It is most preferable to use an eddy current displacement sensor or the like that forms a magnetic field between the means 1S (1R) and the conductor 2S (2R) and detects displacement from the impedance change.

なお、変位測定手段1S及び1Rとして、光学式変位センサ、例えばレーザビームを照射し変位を測定するレーザ式変位センサなどを用いると、前述した通り、センサ内部の光学部品の熱損傷が発生し、測定精度が悪くなるどころかセンサ自体が故障する可能性が高くなる。このため、光学式センサを使用する場合は、センサ自体の冷却設備を別途設けなければならなくなることから、低コストの測定方法を提供するためには、前述のとおり、電気式もしくは磁気式の変位センサを用いることが最も好ましい。   As the displacement measuring means 1S and 1R, if an optical displacement sensor, such as a laser displacement sensor that measures displacement by irradiating a laser beam, is used, as described above, thermal damage to optical components inside the sensor occurs. In addition to poor measurement accuracy, the sensor itself is more likely to fail. For this reason, when an optical sensor is used, a cooling facility for the sensor itself must be provided separately. Therefore, in order to provide a low-cost measurement method, as described above, an electric or magnetic displacement is used. Most preferably, a sensor is used.

また、変位測定手段1Sに電気式のセンサを用いる場合には変位測定手段1Rも同様の電気式のセンサを用い、変位測定手段1Sに磁気式のセンサを用いる場合には変位測定手段1Rも同様の磁気式のセンサを用いることが、測定能力に対するセンサの機差を最小限にする観点から最も好ましい。更には、変位測定手段1S及び1Rは、同一型式のセンサを用いることが最も好ましい。   When an electric sensor is used for the displacement measuring means 1S, the same electric sensor is used for the displacement measuring means 1R, and when the magnetic sensor is used for the displacement measuring means 1S, the displacement measuring means 1R is the same. It is most preferable to use a magnetic type sensor from the viewpoint of minimizing the difference of the sensor with respect to the measuring ability. Furthermore, it is most preferable that the displacement measuring means 1S and 1R use the same type of sensor.

変位測定手段1S及び1Rは、固定手段6を介して配置されている。なお、図1には、変位測定手段1Rのみ固定手段6を介して配置していることを図示しており、変位測定手段1Sの固体手段は図示しないが、変位測定手段1Sに関しても、変位測定手段1Rの固定手段6と同じ固定手段で固定されている。   The displacement measuring means 1S and 1R are arranged via the fixing means 6. FIG. 1 shows that only the displacement measuring means 1R is arranged via the fixing means 6. Although the solid means of the displacement measuring means 1S is not shown, the displacement measuring means 1S is also subject to displacement measurement. It is fixed by the same fixing means as the fixing means 6 of the means 1R.

なお、変位測定手段1S及び1Rの固定手段6は全て同一の固定手段を用いることが、固定手段6自身の熱膨張を考慮する観点から最も好ましい。例えば、ステンレスなどの熱膨張しにくい材料を用い、同一寸法、同一形状の固定手段を用いればよい。全て同一の固定手段を用いることにより、特に線膨張率の小さい材質、例えばインバーやチタンなど高価な材料を用いる必要がなくなり低コストの測定方法が提供できる。   Note that it is most preferable to use the same fixing means as the fixing means 6 for the displacement measuring means 1S and 1R from the viewpoint of considering the thermal expansion of the fixing means 6 itself. For example, a material that is difficult to thermally expand, such as stainless steel, may be used, and fixing means having the same size and shape may be used. By using all the same fixing means, it is not necessary to use a material having a particularly low linear expansion coefficient, for example, an expensive material such as invar or titanium, and a low-cost measuring method can be provided.

変位測定手段1S及び1Rの固定手段6には、変位測定手段1S及び1Rを強化繊維基材3の厚さ方向に移動させる機構を有することが最も好ましい。これは、液状体の注入前に成形型4上に配置される強化繊維基材3の厚さは様々であり、強化繊維基材3の厚さに応じて、変位測定手段1Sの先端面と導電体2Sとの距離をほぼ一定になるように設定し、調整する必要があるからである。例えば、図1に示すように固定手段6にマイクロメーターヘッド6Aなどを設置し、マイクロメーターヘッド6Aの先端に変位測定手段1Sまたは1Rを配置することで、マイクロメーターヘッド6Aのつまみを回転させるだけで、変位測定手段1Sまたは1Rを強化繊維基材3の厚さ方向に容易に移動することができる。   Most preferably, the displacement measuring means 1S and 1R fixing means 6 have a mechanism for moving the displacement measuring means 1S and 1R in the thickness direction of the reinforcing fiber base 3. This is because the thickness of the reinforcing fiber base 3 arranged on the mold 4 before the injection of the liquid material varies, and depending on the thickness of the reinforcing fiber base 3, the tip surface of the displacement measuring means 1S and This is because it is necessary to set and adjust the distance to the conductor 2S to be substantially constant. For example, as shown in FIG. 1, a micrometer head 6A or the like is installed on the fixing means 6, and the displacement measuring means 1S or 1R is disposed at the tip of the micrometer head 6A, so that only the knob of the micrometer head 6A is rotated. Thus, the displacement measuring means 1S or 1R can be easily moved in the thickness direction of the reinforcing fiber base 3.

また、変位測定手段1Sまたは1Rの固定手段6が備えるマイクロメーターヘッド6Aなどの移動機構に関し、マイクロメーターヘッド6A自体も加熱炉5内の加熱により熱膨張が発生し、変位測定手段1Sまたは1Rの変位測定誤差の要因になり得る。このため、同一のマイクロメーターヘッド6Aを有する固定手段6を用いると、後述する差分演算により、マイクロメーターヘッド6A自身の熱膨張及び熱収縮の影響を相対的にキャンセルでき、強化繊維基材3の厚み変化量をより正確に測定することができる点で最も好ましい。   Further, regarding the moving mechanism such as the micrometer head 6A provided in the fixing means 6 of the displacement measuring means 1S or 1R, the micrometer head 6A itself also undergoes thermal expansion due to heating in the heating furnace 5, and the displacement measuring means 1S or 1R It can cause displacement measurement errors. For this reason, when the fixing means 6 having the same micrometer head 6A is used, the influence of the thermal expansion and contraction of the micrometer head 6A itself can be relatively canceled by the difference calculation described later, and the reinforcing fiber base 3 Most preferred is that the amount of change in thickness can be measured more accurately.

この移動機構によって、変位測定手段1Sの先端面と導電体2S、及び変位測定手段1Rの先端面と導電体2Rとの距離をそれぞれ調整することができる。それぞれの距離は、変位測定手段1Sまたは1Rの測定範囲の半分程度とすることが好ましい。例えば、変位測定手段1Sの測定範囲が0〜5mmの場合は、変位測定手段1Sの先端面と導電体2Sとの距離が2〜3mmになるように移動機構を調整する。加熱炉5内に設置した固定手段6の全てがほぼ同じ距離になるように調整することが最も好ましい。   By this moving mechanism, the distance between the tip surface of the displacement measuring means 1S and the conductor 2S and the distance between the tip surface of the displacement measuring means 1R and the conductor 2R can be adjusted. Each distance is preferably about half of the measurement range of the displacement measuring means 1S or 1R. For example, when the measurement range of the displacement measuring unit 1S is 0 to 5 mm, the moving mechanism is adjusted so that the distance between the distal end surface of the displacement measuring unit 1S and the conductor 2S is 2 to 3 mm. Most preferably, all the fixing means 6 installed in the heating furnace 5 are adjusted so as to have substantially the same distance.

変位測定手段1Sまたは1Rを固定する固定手段6は、各変位測定手段1Sまたは1Rそれぞれに対して1体ずつ準備することが好ましい。これは、変位測定手段1S及び1Rを用いて強化繊維基材3の厚さ変化量を測定する際、測定したい任意の位置に変位測定手段1Sあるいは1Rを移動させやすくするためである。   It is preferable that one fixing means 6 for fixing the displacement measuring means 1S or 1R is prepared for each displacement measuring means 1S or 1R. This is to make it easier to move the displacement measuring means 1S or 1R to an arbitrary position to be measured when measuring the thickness change amount of the reinforcing fiber base 3 using the displacement measuring means 1S and 1R.

変位測定手段1Sまたは1Rを固定する固定手段6は、1つの部材上に固定されることが好ましく、特に、図1に示すように成形型4の第1の面41上に固定されることが最も好ましい。成形型4も加熱炉5内の昇温に伴って熱膨張したり、また加熱炉5内の降温に伴って熱収縮したりするため、固定手段6を成形型4の第1の面41上に固定しておくと、成形型4の熱膨張及び熱収縮の影響は変位測定手段1S及び1Rに同一量の変位測定誤差をもたらす。このため、後述する差分演算により、成形型4の熱膨張または熱収縮の影響を相対的にキャンセルでき、強化繊維基材3の厚さ変化量をより正確に測定することができる。   The fixing means 6 for fixing the displacement measuring means 1S or 1R is preferably fixed on one member, and particularly fixed on the first surface 41 of the mold 4 as shown in FIG. Most preferred. Since the molding die 4 also thermally expands as the temperature rises in the heating furnace 5 and heat shrinks as the temperature falls in the heating furnace 5, the fixing means 6 is placed on the first surface 41 of the molding die 4. In other words, the influence of the thermal expansion and contraction of the mold 4 brings the same amount of displacement measurement error to the displacement measuring means 1S and 1R. For this reason, by the difference calculation mentioned later, the influence of the thermal expansion or thermal contraction of the shaping | molding die 4 can be canceled relatively, and the thickness variation | change_quantity of the reinforced fiber base material 3 can be measured more correctly.

導電体2S及び2Rは平板状の電気通電物質であればよく、鉄やアルミに代表される金属であることが最も好ましい。導電体2S及び2Rは、加熱状態における熱膨張の観点から同一厚さであることが好ましく、約2〜10mmの厚さが好適である。更に、同一材質であることが最も好ましい。なお、導電体2S及び2Rは線膨張係数の小さい材質、例えば、インバーやチタンなど高価な材料でもよいが、低コストの測定方法を提供するという観点からはその限りではなく、加工の容易なSUS303、SUS304のようなステンレスが好ましく用いられる。導電体2Sと変位測定手段1Sとの平行度もしくは導電体2Rと変位測定手段1Rとの平行度は、それぞれ3°以内になるように、変位測定手段1Sまたは1Rを配置するのが好ましい。   The conductors 2S and 2R may be a plate-like electrically conductive material, and are most preferably a metal typified by iron or aluminum. It is preferable that the conductors 2S and 2R have the same thickness from the viewpoint of thermal expansion in a heated state, and a thickness of about 2 to 10 mm is preferable. Furthermore, the same material is most preferable. The conductors 2S and 2R may be made of a material having a small linear expansion coefficient, for example, an expensive material such as invar or titanium, but is not limited from the viewpoint of providing a low-cost measuring method, and SUS303 that is easy to process is used. Stainless steel such as SUS304 is preferably used. The displacement measuring means 1S or 1R is preferably arranged so that the parallelism between the conductor 2S and the displacement measuring means 1S or the parallelism between the conductor 2R and the displacement measuring means 1R is within 3 °.

導電体2Sにおいて、変位測定手段1Sとの対向面の面積は、変位測定手段1Sの先端の面積以上であればよく、変位測定手段1Sの先端の面積の1.2倍以上が最も好ましい。同様に、導電体2Rにおいて、変位測定手段1Rとの対向面の面積は、変位測定手段1Rの先端の面積以上であればよく、変位測定手段1Rの先端の面積の1.2倍以上が最も好ましい。   In the conductor 2S, the area of the surface facing the displacement measuring means 1S may be equal to or larger than the area of the tip of the displacement measuring means 1S, and is most preferably 1.2 times or more the area of the tip of the displacement measuring means 1S. Similarly, in the conductor 2R, the area of the surface facing the displacement measuring means 1R may be equal to or larger than the area of the tip of the displacement measuring means 1R, and 1.2 times or more the area of the tip of the displacement measuring means 1R is the most. preferable.

また、変位測定手段1Sの先端面の任意の位置から、その先端面に対し法線方向の垂線を考えた場合、各垂線が導電体2Sの変位測定手段1Sとの対向面表面と交差するように、導電体2S及び変位測定手段1Sを配置するのが最も好ましい。同様に、変位測定手段1Rの先端面の任意の位置から、その先端面に対し法線方向の垂線を考えた場合、各垂線が導電体2Rの変位測定手段1Rとの対向面表面と交差するように、導電体2R及び変位測定手段1Rを配置するのが最も好ましい。   Further, when considering a normal line perpendicular to the tip surface from an arbitrary position on the tip surface of the displacement measuring means 1S, each perpendicular line intersects the surface of the conductor 2S facing the displacement measuring means 1S. It is most preferable to arrange the conductor 2S and the displacement measuring means 1S. Similarly, when considering a normal in the normal direction to the tip surface from an arbitrary position on the tip surface of the displacement measuring means 1R, each perpendicular intersects the surface of the conductor 2R facing the displacement measuring means 1R. As described above, it is most preferable to dispose the conductor 2R and the displacement measuring means 1R.

変位測定手段1Sの先端面と、それに対向する導電体2Sの変位測定手段1Sとの対向面との距離は、任意に設定してもよいが、距離が大きくなるほど測定精度が低下し、また変位測定手段1Sは寸法が大きなものになってしまうため実用上好ましくない。このことから、変位測定手段1Sの先端面と、それに対向する導電体2Sの変位測定手段1Sとの対向面との距離は0.5mm以上10mm以下が好ましい。更に測定精度をより高精度にするためには、強化繊維基材3の厚さの変化量の最大値になるべく近い距離に配置するのが好ましく、0.5mm以上5mm以下に配置するのが最も好ましい。変位測定手段1Rの先端面と、それに対向する導電体2Rの変位測定手段1Rとの対向面との距離に関しても同様である。   The distance between the distal end surface of the displacement measuring means 1S and the facing surface of the conductor 2S facing the displacement measuring means 1S may be arbitrarily set, but the measurement accuracy decreases as the distance increases, and the displacement Since the measuring means 1S becomes large in size, it is not practically preferable. Therefore, the distance between the distal end surface of the displacement measuring unit 1S and the facing surface of the conductor 2S facing the displacement measuring unit 1S is preferably 0.5 mm or more and 10 mm or less. Furthermore, in order to make the measurement accuracy higher, it is preferable to arrange at a distance as close as possible to the maximum value of the change in thickness of the reinforcing fiber base 3, and most preferably from 0.5 mm to 5 mm. preferable. The same applies to the distance between the distal end surface of the displacement measuring means 1R and the opposing surface of the conductor 2R facing the displacement measuring means 1R.

次に、上記のように構成されたモニタリング装置を用いるにあたり、変位測定手段1Sによって測定される変位測定手段1Sの先端面と導電体2Sとの距離、あるいは変位測定手段1Rによって測定される変位測定手段1Rの先端面と導電体2Rとの距離の演算処理に関する、好ましい実施形態例を図3に従って説明する。   Next, when using the monitoring apparatus configured as described above, the distance between the tip surface of the displacement measuring means 1S measured by the displacement measuring means 1S and the conductor 2S, or the displacement measurement measured by the displacement measuring means 1R. A preferred embodiment relating to the calculation processing of the distance between the tip surface of the means 1R and the conductor 2R will be described with reference to FIG.

図3は処理アンプ内での信号処理フローの概念図を示している。前述の通り、変位測定手段1S及び1Rは、加熱炉5の外に配置された信号処理機能を有する処理アンプ(図示せず)にケーブルを介して接続されており、変位測定手段1S及び1Rから処理アンプ内に入力される電気信号はそれぞれ、処理アンプ内で信号増幅処理などの入力処理が施され、処理アンプから電圧出力信号Voutとして出力される。 FIG. 3 shows a conceptual diagram of a signal processing flow in the processing amplifier. As described above, the displacement measuring means 1S and 1R are connected to a processing amplifier (not shown) having a signal processing function arranged outside the heating furnace 5 via a cable, and from the displacement measuring means 1S and 1R, Each electric signal input into the processing amplifier is subjected to input processing such as signal amplification processing within the processing amplifier, and is output from the processing amplifier as a voltage output signal Vout .

例えば、変位測定手段1Sの先端面と導電体2Sとの距離がdA0の場合、処理アンプからの出力電圧VoutはVa0となる。これは、理想的には、図3中の破線3Aに示すように、実距離dと出力電圧の間には、Vout=k*d+α(k:定数、α:定数)なる直線関係が成立することが好ましいものの、実際にはこの直線関係は成立せず、例えば図3中の実線3Bで示すように、直線関係が成り立たない場合が多い(これを直線性エラーという)。そこで、処理アンプの内部で直線補正処理(演算処理1)を施す。 For example, when the distance between the distal end surface of the displacement measuring means 1S and the conductor 2S is d A0 , the output voltage V out from the processing amplifier is V a0 . Ideally, as indicated by a broken line 3A in FIG. 3, a linear relationship V out = k * d + α (k: constant, α: constant) is established between the actual distance d and the output voltage. Although it is preferable to do this, this linear relationship does not actually hold. For example, as shown by the solid line 3B in FIG. 3, the linear relationship often does not hold (this is called a linearity error). Therefore, linear correction processing (calculation processing 1) is performed inside the processing amplifier.

具体的には、例えば図3に示すように、変位測定手段の先端面と導電体間の距離がdA0の場合、出力電圧Vout=Va0であるが、この出力電圧Va0を、VA0=k*dA0から算出される出力電圧VA0に変換して、Voutとして出力するものである。次に、演算処理2として差分演算処理が行われる。これに関しても、図3に従って説明する。前述のように、演算処理1によって補正処理が行われた出力電圧Voutと、変位測定手段の先端面と導電体との距離dとの間には、図3中の実線3Cに示すように直線関係が成立する。ここで、同一時刻において、変位測定手段1Sから入力され演算処理1された後の出力電圧をVA1、変位測定手段1Rから入力され演算処理1された後の出力電圧をVとすると、変位測定手段1Sの先端面と導電体2Sとの距離、及び、変位測定手段1Rの先端面と導電体2Rとの距離は、それぞれ、dA1、dと認識される。その後、同一時間経過後の同一時刻において、変位測定手段1Sから入力され演算処理1された後の出力電圧をVA1’、変位測定手段1Rから入力され演算処理1された後の出力電圧をV’とすると、変位測定手段1Sの先端面と導電体2Sとの距離、及び、変位測定手段1Rの先端面と導電体2Rとの距離は、それぞれ、dA1’、d’と認識される。 More specifically, for example, as shown in FIG. 3, when the distance between the tip surface and the conductor of the displacement measuring means is d A0, the output is a voltage V out = V a0, the output voltage V a0, V A0 = k * is converted into the output voltage V A0 calculated from d A0, and outputs as V out. Next, a difference calculation process is performed as the calculation process 2. This will also be described with reference to FIG. As described above, between the output voltage Vout corrected by the calculation process 1 and the distance d between the distal end surface of the displacement measuring means and the conductor, as indicated by a solid line 3C in FIG. A linear relationship is established. Here, at the same time, if the output voltage after being input from the displacement measuring means 1S and being subjected to the arithmetic processing 1 is V A1 and the output voltage being input from the displacement measuring means 1R and being after the arithmetic processing 1 is V B , the distal end surface and the distance of the conductor 2S measuring means 1S, and the tip surface and the distance between the conductor 2R displacement measuring means 1R, respectively, is recognized as d A1, d B. Thereafter, at the same time after the lapse of the same time, the output voltage after being input from the displacement measuring means 1S and subjected to the arithmetic processing 1 is V A1 ′, and the output voltage after being input from the displacement measuring means 1R and after the arithmetic processing 1 is V If B ′, the distance between the distal end surface of the displacement measuring means 1S and the conductor 2S and the distance between the distal end surface of the displacement measuring means 1R and the conductor 2R are recognized as d A1 ′ and d B ′, respectively. The

これらのことから、同一時間経過時の、変位測定手段1Sの先端面と導電体2Sとの距離の変化量ΔdA1=dA1’−dA1、変位測定手段1Rの先端面と導電体2Rとの距離の変化量Δd=d’−dと表され、前記両結果の差分値Δd=ΔdA1−Δdなる演算処理2(差分演算処理)を実施する。このようにして得られた差分値Δdを強化繊維基材3の厚さの変化量とする。 From these facts, the amount of change Δd A1 = d A1 ′ −d A1 between the distal end surface of the displacement measuring means 1S and the conductor 2S when the same time elapses, the distal end surface of the displacement measuring means 1R and the conductor 2R A distance change amount Δd B = d B ′ −d B is expressed, and a calculation process 2 (difference calculation process) is performed as a difference value Δd 1 = Δd A1 −Δd B between the two results. The difference value Δd 1 obtained in this way is used as the amount of change in the thickness of the reinforcing fiber base 3.

なお、前述したとおり、実際の測定においては液状体を注入する前に、更に好ましくは加熱炉の昇温を開始する前に、変位測定手段1Sから入力され演算処理1された後の出力電圧VA1と変位測定手段1Rから入力され演算処理1された後の出力電圧Vとを、言い換えると、変位測定手段1Sの先端と導電体2Sとの距離dA1と変位測定手段1Rの先端と導電体2Rとの距離dとを、マイクロメーターヘッド6Aを用いて同一に調整すれば、すなわち、dA1=dとなるように調整すれば、強化繊維基材3の厚さの変化量Δd=dA1’−d’となり、演算処理2が簡素化され、最も好ましい。 As described above, in the actual measurement, before injecting the liquid material, more preferably before starting the heating of the heating furnace, the output voltage V after being input from the displacement measuring means 1S and subjected to the arithmetic processing 1 an output voltage V B of after the input processing 1 from A1 and displacement measuring means 1R, in other words, the tip and the conductive and the distance d A1 between the tip and the conductor 2S displacement measuring means 1S displacement measuring means 1R If the distance d B to the body 2R is adjusted to be the same using the micrometer head 6A, that is, if adjusted so that d A1 = d B , the amount of change Δd in the thickness of the reinforcing fiber base 3 1 = d A1 ′ −d B ′, and the calculation process 2 is simplified, which is most preferable.

前述のような演算処理2(差分演算処理)により、以下の(a)〜(d)の効果がある。
(a)変位測定手段1S及び1Rの各固定手段6の熱膨張あるいは熱収縮の影響を軽減できる。
(b)変位測定手段1S及び1Rの温度特性の影響を軽減できる。
(c)導電体2S及び2Rの熱膨張あるいは熱収縮の影響を軽減できる。
(d)成形型4の熱膨張あるいは熱収縮の影響を軽減できる。
なお、前記(d)に関しては、変位測定手段1Sまたは1Rの各固定手段6を、前述のように成形型4の第1の面41上に配置した場合は、成形型4の熱膨張による成形型4の厚み方向の変形により、固定手段6を介して変位測定手段1Sまたは1Rもその変形に追従して強化繊維基材3の厚み方向に動くと同時に、強化繊維基材3、ならびに導電体2S及び2R自体も強化繊維基材3の厚み方向に動くため、相対的には成形型4の熱膨張の影響を受けにくくなり、成形型4の熱膨張あるいは熱収縮の影響に対する大きな効果はない。しかし、どうしても固定手段6を成形型4の第1の面41上に配置スペースの問題で配置ができず、他の1つの部材上に固定を余儀なくされる場合などは、前記差分処理を施すことにより、成形型4の厚さ方向の変位をキャンセルできるため、成形型4の熱膨張あるいは熱収縮の影響に対する効果が大きい。
The following effects (a) to (d) are obtained by the calculation process 2 (difference calculation process) as described above.
(A) The influence of thermal expansion or thermal contraction of each fixing means 6 of the displacement measuring means 1S and 1R can be reduced.
(B) The influence of the temperature characteristics of the displacement measuring means 1S and 1R can be reduced.
(C) The influence of thermal expansion or contraction of the conductors 2S and 2R can be reduced.
(D) The influence of thermal expansion or contraction of the mold 4 can be reduced.
Regarding (d), when the fixing means 6 of the displacement measuring means 1S or 1R are arranged on the first surface 41 of the mold 4 as described above, the mold 4 is molded by thermal expansion. Due to the deformation of the mold 4 in the thickness direction, the displacement measuring means 1S or 1R also moves in the thickness direction of the reinforcing fiber base 3 following the deformation via the fixing means 6, and at the same time, the reinforcing fiber base 3 and the conductor Since 2S and 2R itself also move in the thickness direction of the reinforcing fiber base 3, they are relatively less susceptible to the thermal expansion of the mold 4 and have no significant effect on the thermal expansion or contraction of the mold 4. . However, if the fixing means 6 cannot be arranged on the first surface 41 of the mold 4 due to the problem of the arrangement space and must be fixed on another member, the difference processing is performed. Thus, since the displacement in the thickness direction of the mold 4 can be canceled, the effect on the influence of thermal expansion or contraction of the mold 4 is great.

なお、前述した演算処理1(直線補正処理)及び演算処理2(差分演算処理)は、1つの処理アンプ内で実施してもよいし、個別の演算器、例えばパソコンなどを用いてそれぞれの演算処理をしても良い。このように差分処理によって得られた値を結果出力処理する。   The arithmetic processing 1 (straight line correction processing) and arithmetic processing 2 (difference arithmetic processing) described above may be performed within one processing amplifier, or each arithmetic operation may be performed using an individual arithmetic unit such as a personal computer. It may be processed. In this way, the value obtained by the difference process is output as a result.

結果出力処理とは、以下の操作を繰り返しながら算出処理することを言う。
(a)例えば図4に示すように、導電体2Sを配置した箇所の強化繊維基材3の絶対厚さを事前にマイクロメータなどの厚さ測定器具で測定しておく(絶対厚み測定値T)。
(b)図5に示すように、変位測定手段1Sあるいは1Rを、各固定手段6を介して配置し、導電体2S、2Rを配置し、変位測定手段1Sの先端面と導電体2Sとの距離をdA1、変位測定手段1Rの先端面と導電体2Rとの距離をdになるようにマイクロメータなどの移動機構6Aを用いてそれぞれ調整する。
(c)その後、図6に示す(固定手段6は図示しない)ように、ある時間経過後に、例えば、強化繊維基材3の厚さが変化(増加)した際の、変位測定手段1Sの先端面と導電体2Sとの距離をdA1’、変位測定手段1Rの先端面と導電体2Rとの距離をd’とした際に、前述の差分演算処理によって得られた値Δd=(dA1’−dA1)−(d’−d)をもとに、強化繊維基材3の厚さTを、T=T−Δdなる演算式で算出する。
Result output processing refers to calculation processing while repeating the following operations.
(A) For example, as shown in FIG. 4, the absolute thickness of the reinforcing fiber base 3 at the place where the conductor 2S is disposed is measured in advance with a thickness measuring instrument such as a micrometer (absolute thickness measurement value T 0 ).
(B) As shown in FIG. 5, the displacement measuring means 1S or 1R is arranged via the fixing means 6, the conductors 2S and 2R are arranged, and the tip surface of the displacement measuring means 1S and the conductor 2S are arranged. distance d A1, respectively adjusted using the moving mechanism 6A such as micrometers as the distance between the tip surface and the conductor 2R displacement measuring means 1R becomes d B.
(C) Thereafter, as shown in FIG. 6 (fixing means 6 is not shown), for example, the tip of the displacement measuring means 1S when the thickness of the reinforcing fiber base 3 changes (increases) after a certain period of time, for example. When the distance between the surface and the conductor 2S is d A1 ′, and the distance between the tip surface of the displacement measuring means 1R and the conductor 2R is d B ′, the value Δd 1 = ( Based on d A1 ′ −d A1 ) − (d B ′ −d B ), the thickness T of the reinforcing fiber base 3 is calculated by an arithmetic expression T = T 0 −Δd 1 .

結果出力処理には、各種データの保存、画面表示、印刷などを併せて処理することも含むことができる。   The result output process may include processing of storing various data, displaying a screen, printing, and the like.

以上のような構成及び調整を経た後、変位測定手段1Sあるいは1R、導電体2Sあるいは2R、固定手段6を配置した状態で、前述の演算処理を用いて、強化繊維基材3の成形状況の連続モニタリングを開始するとともに、加熱炉5内の昇温を開始し、所定の炉内温度、もしくは、強化繊維基材3の表面温度が所定の温度になるまで昇温を継続する。   After the configuration and adjustment as described above, in the state where the displacement measuring means 1S or 1R, the conductor 2S or 2R, and the fixing means 6 are arranged, the molding process of the reinforcing fiber base 3 is performed using the arithmetic processing described above. While starting the continuous monitoring, the heating in the heating furnace 5 is started, and the heating is continued until the predetermined furnace temperature or the surface temperature of the reinforcing fiber base 3 reaches a predetermined temperature.

この間、加熱炉5内の昇温に伴って、変位測定手段1Sあるいは1R、及び導電体2Sあるいは2R、固定手段6、強化繊維基材3、成形型4のそれぞれにおいて、主に熱膨張による変形が発生する。そのような状況下において、変位測定手段1Sは導電体2Sとの距離を時間的に連続的に測定し、また、変位測定手段1Rも導電体2Rとの距離を時間的に連続的に測定すると同時に、処理アンプにて前述の演算処理1や演算処理2、結果出力処理を実施することにより、温度変化の影響をキャンセルした上で、強化繊維基材3のみの厚さTをT=T−Δdの演算により正確に測定することができる。 During this time, the displacement measuring means 1S or 1R and the conductor 2S or 2R, the fixing means 6, the reinforcing fiber base 3, and the mold 4 are mainly deformed due to thermal expansion as the temperature in the heating furnace 5 rises. Occurs. Under such circumstances, the displacement measuring means 1S continuously measures the distance to the conductor 2S in time, and the displacement measuring means 1R also measures the distance to the conductor 2R continuously in time. At the same time, the processing amplifier performs the above-described arithmetic processing 1, arithmetic processing 2, and result output processing to cancel the influence of the temperature change, and then set the thickness T of the reinforcing fiber base 3 alone to T = T 0. It is possible to measure accurately by calculating −Δd 1 .

加熱炉5内が所定の温度に到達し、かつ所定の経過時間後に、強化繊維基材3の内部に液状体が注入される。すると、図1のハッチング部分11に示す液状体の含浸が図1中の含浸方向Dに従って進行する。図1は液状体の含浸途中の模式図を示し、液状体の含浸途中を示す未含浸部12が存在するが、液状体の含浸が完了すると未含浸部12はなくなる。   The liquid material is injected into the reinforcing fiber base 3 after the inside of the heating furnace 5 reaches a predetermined temperature and after a predetermined elapsed time. Then, the impregnation of the liquid material shown in the hatched portion 11 in FIG. 1 proceeds according to the impregnation direction D in FIG. FIG. 1 is a schematic diagram during the impregnation of the liquid material, and there is an unimpregnated portion 12 indicating the impregnation of the liquid material. However, when the impregnation of the liquid material is completed, the unimpregnated portion 12 disappears.

この液体状の含浸過程において、注入された液状体の影響で強化繊維基材3の厚さは増加し、それに伴って、強化繊維基材3の第1の面上の導電体2Sも変位測定手段1Sの先端面に近付いていく状態となり、変位測定手段1Sの先端面と導電体2Sとの距離dA1が小さくなる。この過程でも、変位測定手段1Sあるいは1R、及び導電体2Sあるいは2R、固定手段6、強化繊維基材3、成形型4のそれぞれにおいて、主に熱膨張による変形は発生しているが、演算処理1、演算処理2及び結果出力処理を実施することにより、昇温による温度変化の影響をキャンセルした上で、正確に、液状体が含浸された強化繊維基材3のみの厚さTをT=T−Δdの演算により測定できる。 In this liquid impregnation process, the thickness of the reinforcing fiber base 3 increases due to the influence of the injected liquid, and accordingly, the conductor 2S on the first surface of the reinforcing fiber base 3 is also measured for displacement. As a result, the distance d A1 between the distal end surface of the displacement measuring unit 1S and the conductor 2S becomes smaller. Even in this process, the displacement measuring means 1S or 1R and the conductor 2S or 2R, the fixing means 6, the reinforcing fiber base 3, and the molding die 4 are deformed mainly due to thermal expansion. 1. By performing the calculation process 2 and the result output process, the influence of the temperature change due to the temperature rise is canceled, and the thickness T of only the reinforcing fiber base 3 impregnated with the liquid material is accurately calculated as T = It can be measured by calculating T 0 −Δd 1 .

また、液状体が強化繊維基材3に含浸しきった後に、液状体の注入を止めた後、ブリードと呼ばれる余剰液状体の排出作業を行う。その過程では、余剰液状体が強化繊維基材3から排出されるため、強化繊維基材3の厚みは減少し、それに伴って、強化繊維基材3の第1の面上の導電体2Sも変位測定手段1Sの先端面から離れていく状態となり、変位測定手段1Sの先端面と導電体2Sとの距離dA1は、ブリード作業開始直前に比べて増加する。 In addition, after the liquid material has been impregnated into the reinforcing fiber base 3, the injection of the liquid material is stopped, and then the excess liquid material called bleed is discharged. In the process, since the surplus liquid material is discharged from the reinforcing fiber base 3, the thickness of the reinforcing fiber base 3 decreases, and accordingly, the conductor 2S on the first surface of the reinforcing fiber base 3 also becomes. The distance d A1 between the distal end surface of the displacement measuring means 1S and the conductor 2S increases compared to immediately before the bleed operation is started.

この過程でも、変位測定手段1Sあるいは1R、及び導電体2Sあるいは2R、固定手段6、強化繊維基材3、成形型4のそれぞれにおいて、主に熱膨張による変形は発生しているが、演算処理1、演算処理2及び結果出力処理を実施することにより、昇温による温度変化の影響をキャンセルした上で、液状体が含浸された強化繊維基材3のみの厚さTをT=T−Δdの演算により正確に測定できる。 Even in this process, the displacement measuring means 1S or 1R and the conductor 2S or 2R, the fixing means 6, the reinforcing fiber base 3, and the molding die 4 are deformed mainly due to thermal expansion. 1. By performing the calculation process 2 and the result output process, the influence of the temperature change due to the temperature rise is canceled, and the thickness T of only the reinforcing fiber base 3 impregnated with the liquid material is set to T = T 0 − It can be measured accurately by calculating Δd 1 .

その後、ブリードと呼ばれる余剰液状体の排出を停止し、強化繊維基材3内に含浸された液状体の注入量を維持した状態で、更に加熱炉5の温度を更に所定の温度まで上昇し、強化繊維基材3内に含浸された液状体を熱硬化させる過程となる。この過程においては、強化繊維基材3内に含浸された液状体が熱収縮するため、液状体が含浸された強化繊維基材3の厚さは減少する。それに伴って、強化繊維基材3の第1の面上の導電体2Sも変位測定手段1Sの先端面から離れていく状態となり、変位測定手段1Sの先端面と導電体2Sとの距離dA1が大きくなる。 Thereafter, the discharge of the surplus liquid material called bleed is stopped, and the temperature of the heating furnace 5 is further increased to a predetermined temperature while maintaining the injection amount of the liquid material impregnated in the reinforcing fiber base 3. This is a process of thermosetting the liquid material impregnated in the reinforcing fiber base 3. In this process, since the liquid material impregnated in the reinforcing fiber base 3 is thermally contracted, the thickness of the reinforcing fiber base 3 impregnated with the liquid is reduced. Along with this, the conductor 2S on the first surface of the reinforcing fiber base 3 also moves away from the tip surface of the displacement measuring means 1S, and the distance d A1 between the tip surface of the displacement measuring means 1S and the conductor 2S. Becomes larger.

この過程でも、加熱炉5内の昇温に伴って、変位測定手段1Sあるいは1R、及び導電体2Sあるいは2R、固定手段6、強化繊維基材3、成形型4のそれぞれにおいては、主に熱膨張による変形が発生するが、演算処理1、演算処理2及び結果出力処理を実施することにより、昇温による温度変化の影響をキャンセルした上で、正確に、液状体が含浸された強化繊維基材3のみの厚さTをT=T−Δdの演算により測定できる。 Even in this process, as the temperature in the heating furnace 5 increases, the displacement measuring means 1S or 1R, the conductor 2S or 2R, the fixing means 6, the reinforcing fiber base 3, and the mold 4 are mainly heated. Although deformation due to expansion occurs, by performing the calculation process 1, the calculation process 2 and the result output process, the influence of the temperature change due to the temperature rise is canceled, and the reinforced fiber base impregnated with the liquid material accurately. The thickness T of the material 3 alone can be measured by calculating T = T 0 −Δd 1 .

加熱炉5の温度を更に所定の温度まで上昇させた後、所定の時間経過すると、強化繊維基材3内に含浸された液状体の熱硬化が完了する。その後、加熱炉5内を常温まで降温する過程を経て、繊維強化プラスチックの成形が完了する。   After the temperature of the heating furnace 5 is further raised to a predetermined temperature, when a predetermined time has elapsed, the thermosetting of the liquid material impregnated in the reinforcing fiber base 3 is completed. Thereafter, through the process of lowering the temperature in the heating furnace 5 to room temperature, the molding of the fiber reinforced plastic is completed.

この過程においても加熱炉5内の温度は徐々に低下している状態であり、それに従って、変位測定手段1Sあるいは1R、及び導電体2Sあるいは2R、固定手段6、強化繊維基材3、成形型4のそれぞれにおいては、これまでの熱膨張による変形が緩和していく。しかし、演算処理1、演算処理2及び結果出力処理を実施することにより、降温による温度変化の影響をキャンセルした上で、正確に、液状体が含浸された強化繊維基材3のみの厚さTをT=T−Δdの演算により測定できる。加熱炉5の温度が常温になり、出来上がった繊維強化プラスチックを加熱炉5から取り出す前に、強化繊維基材3の成形状況のモニタリングを終了させる。 Even in this process, the temperature in the heating furnace 5 is gradually decreasing, and accordingly, the displacement measuring means 1S or 1R, and the conductor 2S or 2R, the fixing means 6, the reinforcing fiber base 3, the mold In each of 4, deformation due to thermal expansion so far is eased. However, by performing the calculation process 1, the calculation process 2 and the result output process, the thickness T of only the reinforcing fiber base 3 impregnated with the liquid material is accurately measured after canceling the influence of the temperature change due to the temperature drop. Can be measured by the calculation of T = T 0 −Δd 1 . Before the temperature of the heating furnace 5 reaches room temperature and the finished fiber reinforced plastic is taken out from the heating furnace 5, the monitoring of the molding state of the reinforcing fiber base 3 is terminated.

以上のような全ての過程において、本発明による成形状況のモニタリング方法を用いると、時間的に連続的に、強化繊維基材3の厚さをモニタリングすることができる。さらに、前記全ての過程において成形途中の異常の早期発見にもつながり、更にモニタリングした値をもとに各過程の移行を制御することにより、設計値どおりの厚さの繊維強化プラスチックの製造が可能となる。   In all the processes as described above, when the molding condition monitoring method according to the present invention is used, the thickness of the reinforcing fiber base 3 can be monitored continuously in time. In addition, it leads to early detection of abnormalities during molding in all the above processes, and by controlling the transition of each process based on the monitored values, it is possible to manufacture fiber reinforced plastic with the thickness as designed. It becomes.

図2は、変位測定手段として、非接触方式の変位センサを用いた本発明にかかる繊維強化プラスチックの成形状況のモニタリング方法の他の一実施形態を模式的に表す側面図である。図2に示すように、変位測定手段1S及び導電体2Sを強化繊維基材3の厚さを測定したい位置に複数(図2は変位測定手段1S及び導電体2Sを3組配置した場合の例を示す)配置し、前述の演算処理1、演算処理2及び結果出力処理を実施することにより、複数の位置における強化繊維基材3の厚さ測定を同時に実施すことも可能である。   FIG. 2 is a side view schematically showing another embodiment of the method for monitoring the molding state of the fiber reinforced plastic according to the present invention using a non-contact type displacement sensor as the displacement measuring means. As shown in FIG. 2, a plurality of displacement measuring means 1S and conductors 2S are arranged at positions where the thickness of the reinforcing fiber base 3 is to be measured (FIG. 2 shows an example in which three sets of displacement measuring means 1S and conductors 2S are arranged. It is possible to measure the thickness of the reinforcing fiber base 3 at a plurality of positions at the same time by arranging and performing the above-described arithmetic processing 1, arithmetic processing 2 and result output processing.

[実施例1]
図1に示すように、FRP構造体製造工程において、300mm×300mmの寸法の厚さ5mmの鉄製の平板状の成形型4を、加熱炉5内に設置した。この鉄製の成形型4の第1の面41上に離型処理を施し、その上に、150mm×150mmの強化繊維に炭素繊維を用いた150mm×150mmの平板状の強化繊維基材3を配置した。この強化繊維基材3は疑似等方積層の構成で、24枚の炭素繊維織物(東レ(株)製CZ8431DP、T800の一方向織物)を積層したものである。ちなみに、この強化繊維基材3の厚さTを成形型4上に配置前にマイクロメータ(ミツトヨ株式会社 型式:OMC−150MJ)を用いて測定した結果、20.642mmであった。
[Example 1]
As shown in FIG. 1, in the FRP structure manufacturing process, an iron flat plate-shaped mold 4 having a thickness of 300 mm × 300 mm and a thickness of 5 mm was installed in a heating furnace 5. A mold release treatment is performed on the first surface 41 of the iron mold 4, and a 150 mm × 150 mm flat reinforcing fiber substrate 3 using carbon fibers as a reinforcing fiber of 150 mm × 150 mm is disposed thereon. did. This reinforcing fiber base 3 has a pseudo-isotropic laminated structure, in which 24 carbon fiber fabrics (CZ8431DP, T800 unidirectional fabric manufactured by Toray Industries, Inc.) are laminated. Incidentally, the thickness T 0 of the reinforcing fiber base 3 was measured using a micrometer (Mitutoyo Corporation model: OMC-150MJ) before being placed on the mold 4 and was 20.642 mm.

強化繊維基材3の上に、強化繊維基材3を密閉するようにバギングフィルムを被せた。なお、図面では省略しているが、離型布や樹脂拡散媒体、加圧用金属プレートを、強化繊維基材3と成形型4との間、あるいは強化繊維基材3とバギングフィルムとの間に挟みこんだ。バギングフィルムに覆われた強化繊維基材3等を含む密閉空間の圧力をポンプにて減圧した後、導電体2Sを強化繊維基材3の第1の面31上に、バギングファイルムを介して配置し、それに対向する様に変位測定手段1Sを配置した。また成形型4の第1の面41上にバギングフィルムを介して導電体2Rを配置し、それに対向する様に変位測定手段1Rを配置した。   A bagging film was put on the reinforcing fiber base 3 so as to seal the reinforcing fiber base 3. Although omitted in the drawings, a release cloth, a resin diffusion medium, and a metal plate for pressurization are provided between the reinforcing fiber base 3 and the mold 4 or between the reinforcing fiber base 3 and the bagging film. I caught it. After reducing the pressure of the sealed space including the reinforcing fiber base 3 covered with the bagging film with a pump, the conductor 2S is placed on the first surface 31 of the reinforcing fiber base 3 via the bagging file. Displacement measuring means 1S was disposed so as to face it. Further, the conductor 2R is disposed on the first surface 41 of the mold 4 via a bagging film, and the displacement measuring means 1R is disposed so as to face the conductor 2R.

変位測定手段1Sと1Rとは、図1の左右の方向に約100mm離して配置した。変位測定手段1S及び1Rの固定手段6は、それぞれ成形型4の第1の面41上に設置した。固定手段6としてはマグネットスタンド(KANETEC株式会社 型式:MB−B)を用いた。マグネットスタンドを構成する各金属棒の接続箇所は全て溶接した。   Displacement measuring means 1S and 1R were disposed about 100 mm apart in the left-right direction in FIG. The displacement measuring means 1S and 1R fixing means 6 were installed on the first surface 41 of the mold 4 respectively. As the fixing means 6, a magnet stand (KANETEC Co., Ltd. model: MB-B) was used. All the connection points of the metal bars constituting the magnet stand were welded.

導電体2S及び2Rは、ともに厚さ3mm、30mm×30mmの寸法の平板状の金属板を用いた。金属板の材質はSUS303とした。また、変位測定手段1S及び1Rとして、静電容量型変位センサ(ナノテックス株式会社 200℃耐熱静電プローブ 中芯電極径φ=11mm、測定範囲:0〜5000ミクロン)を用いた。   As the conductors 2S and 2R, flat metal plates having a thickness of 3 mm and dimensions of 30 mm × 30 mm were used. The material of the metal plate was SUS303. Further, as the displacement measuring means 1S and 1R, capacitance type displacement sensors (Nanotex Corporation 200 ° C. heat resistant electrostatic probe core electrode diameter φ = 11 mm, measurement range: 0 to 5000 microns) were used.

変位測定手段1S及び1Rは、それぞれ処理アンプ(ナノテックス株式会社 型式:PS−III−2D)に約10mの高周波同軸ケーブルを介して、それぞれチャネル1、チャネル2の信号入力端子に接続した。また、導電体2S及び2Rも、それぞれ約10mの耐熱被覆ケーブル(断面積0.75mm)にて、チャネル1及びチャネル2のグランド端子(GND端子)に接続した。 Displacement measuring means 1S and 1R were respectively connected to signal input terminals of channel 1 and channel 2 via a processing amplifier (Nanotex Corporation model: PS-III-2D) via a high-frequency coaxial cable of about 10 m. The conductors 2S and 2R were also connected to the ground terminals (GND terminals) of the channel 1 and the channel 2 with a heat-resistant coated cable (cross-sectional area of 0.75 mm 2 ) of about 10 m, respectively.

処理アンプから各チャネルのモニタ出力信号(アナログ電圧出力信号)を取り出した。各チャネルのモニタ出力信号は、変位測定手段と導電体との距離が0〜5000(ミクロン)の変化に対して、0〜10(V)と変化する電圧信号が出力するように設定した。但し、出力電圧信号において、約0〜+2%の直線性(つまり、実際の距離に対して、最大100ミクロン大きめに出力される)の精度しかない。   The monitor output signal (analog voltage output signal) of each channel was extracted from the processing amplifier. The monitor output signal of each channel was set so that a voltage signal changing from 0 to 10 (V) was output with respect to a change of 0 to 5000 (microns) from the distance between the displacement measuring means and the conductor. However, the output voltage signal has only an accuracy of about 0 to + 2% linearity (that is, output up to 100 microns larger than the actual distance).

それぞれのモニタ出力信号をアナログコントローラ(キーエンス株式会社 型式:RD−50R)の入力信号端子に対し、約50cmの長さの高周波同軸ケーブルにて1対1で接続した。各アナログコントローラでは、処理アンプからの入力信号を予め設定した値に演算するリニアライズ機能を有している。これにより、処理アンプからの出力電圧信号において、約0〜+2%の直線性を、リニアライズ機能によって約0〜+0.2%の直線性(つまり、実際の距離に対して、最大10ミクロンしか大きめに出力されない)の精度に改善できることが確認できた。   Each monitor output signal was connected to an input signal terminal of an analog controller (Keyence Corporation model: RD-50R) one-to-one with a high-frequency coaxial cable having a length of about 50 cm. Each analog controller has a linearization function for calculating an input signal from the processing amplifier to a preset value. As a result, in the output voltage signal from the processing amplifier, a linearity of about 0 to + 2% is reduced to a linearity of about 0 to + 0.2% (that is, up to 10 microns with respect to the actual distance). It was confirmed that the accuracy could be improved.

アナログコントローラにてリニアライズした信号を各アナログコントローラの出力端子から取り出し、記録装置(以降、データロガーと記載する。キーエンス株式会社 型式:NR−1000)のチャネル1に処理アンプのチャネル1側(変位測定手段1S側)の信号が入力されるアナログコントローラからの出力信号を取り込んだ。また、データロガーのチャネル2に処理アンプのチャネル2側(変位測定手段1R側)の信号が入力されるアナログコントローラからの出力信号を取り込み、10秒周期で各アナログコントローラからの入力信号を記録する構成とした。   The signal linearized by the analog controller is taken out from the output terminal of each analog controller, and the channel 1 side of the processing amplifier (displacement) is connected to the channel 1 of the recording device (hereinafter referred to as data logger. KEYENCE CORPORATION Model: NR-1000). The output signal from the analog controller to which the signal of the measuring means 1S side) is input was captured. Also, the output signal from the analog controller in which the signal on the channel 2 side (displacement measuring means 1R side) of the processing amplifier is input to the channel 2 of the data logger is taken and the input signal from each analog controller is recorded at a cycle of 10 seconds. The configuration.

その後、各固定手段6に取り付けた移動機構6Aを用い、変位測定手段1Sの先端と導電体2Sとの距離dA1、及び、変位測定手段1Rの先端と導電体2Rとの距離dを、それぞれ約2500ミクロンに近づけるべく、各アナログコントローラの前面の電圧表示を見ながら、各アナログコントローラの電圧表示が、5.000±0.010(V)になるように移動機構6Aを調整した。移動機構6Aとしては、どちらもマイクロメーターヘッド(ミツトヨ株式会社 型式:MHK−15)を用いた。 Then, using the moving mechanism 6A attached to the fixed unit 6, a distance d A1 between the tip and the conductor 2S displacement measuring means 1S, and the distance d B between the tip and the conductor 2R displacement measuring means 1R, The moving mechanism 6A was adjusted so that the voltage display of each analog controller was 5.000 ± 0.010 (V) while observing the voltage display on the front surface of each analog controller so as to approach about 2500 microns. As the moving mechanism 6A, a micrometer head (Mitutoyo Corporation model: MHK-15) was used for both.

以上のような各機器の配置、及び、調整を経た後に、加熱炉5内を約20℃から約70℃に加熱を開始すると同時に、データロガーによる記録による強化繊維基材3の厚さ変化量のモニタリングを開始した。その後、加熱炉5内の温度が約70℃に到達してから一定時間保持し、加熱炉5内の温度を約70℃のままで図1における強化繊維基材3の左から、マトリックス樹脂(液状体)を左側から右側へ、つまり含浸方向Dに従って流動するように注入開始した。マトリックス樹脂としては、エポキシ樹脂組成物を用いた。   After the arrangement and adjustment of each device as described above, heating in the heating furnace 5 is started from about 20 ° C. to about 70 ° C., and at the same time, the amount of change in the thickness of the reinforcing fiber base 3 by recording with a data logger Started monitoring. Then, after the temperature in the heating furnace 5 reaches about 70 ° C., the temperature is maintained for a certain time, and the matrix resin (from the left of the reinforcing fiber base 3 in FIG. The liquid was started to flow from the left side to the right side, that is, according to the impregnation direction D. An epoxy resin composition was used as the matrix resin.

一定時間経過後、マトリックス樹脂注入を止め、ブリード作業を実施し、注入したマトリックス樹脂の一部を排出した。その後、加熱炉5内の温度を約70℃から約130℃に昇温し、加熱炉5内の温度が約130℃の状態を一定時間保持して、注入されたマトリックス樹脂を熱硬化した。その後、加熱炉5内を約40℃にまで降温した後、データロガーの記録を停止し、モニタリングを終了した。   After a certain period of time, the matrix resin injection was stopped, the bleed operation was performed, and a part of the injected matrix resin was discharged. Thereafter, the temperature in the heating furnace 5 was raised from about 70 ° C. to about 130 ° C., and the temperature in the heating furnace 5 was kept at about 130 ° C. for a certain period of time to thermally cure the injected matrix resin. Then, after the temperature in the heating furnace 5 was lowered to about 40 ° C., the recording of the data logger was stopped and the monitoring was finished.

なお、一連のモニタリングに併せて、モニタリング開始直前、樹脂注入直前、ブリード開始直前、70℃から130℃への昇温直前、降温完了後のモニタリング停止直前のタイミングで、前記マイクロメータ(ミツトヨ株式会社 型式:OMC−150MJ)を用いて強化繊維基材3の厚さを測定した。モニタリング開始直前の厚さと各タイミングでマイクロメータ測定によって得られる厚さとの差と、データロガーのチャネル1のモニタリング結果(結果出力演算結果)とを突き合わせることにより、厚さ測定精度の評価を実施した結果を表1に示す。この結果から、液状体の含浸、熱硬化などの一連の成形過程における強化繊維基材3の厚さ状況(厚さ変化量)を精度よく、具体的には、マイクロメータ測定値ΔTrefに比べて、最大30ミクロンの誤差でモニタリングすることができた。 In addition to the series of monitoring, the micrometer (Mitutoyo Co., Ltd.) was used immediately before the start of monitoring, immediately before resin injection, immediately before the start of bleed, immediately before the temperature rise from 70 ° C. to 130 ° C. The thickness of the reinforcing fiber base 3 was measured using a model: OMC-150MJ. Thickness measurement accuracy is evaluated by comparing the difference between the thickness immediately before the start of monitoring and the thickness obtained by micrometer measurement at each timing with the monitoring result (result output calculation result) of data logger channel 1. The results are shown in Table 1. From this result, the thickness situation (thickness change amount) of the reinforcing fiber base 3 in a series of molding processes such as liquid impregnation and thermosetting is accurately compared with the micrometer measurement value ΔT ref specifically. And could be monitored with an error of up to 30 microns.

Figure 2010032478
Figure 2010032478

[実施例2]
実施例1と同じ構成、条件にてモニタリングを実施し、データロガーのチャネル1とチャネル2に同一時刻に記録された各変位測定値の差分演算処理を別途準備したパソコンで実施した。実施例1と同様に、一連のモニタリングに併せて、モニタリング開始直前、樹脂注入直前、ブリード開始直前、70℃から130℃への昇温直前、降温完了後のモニタリング停止直前のタイミングで、前記マイクロメータ(ミツトヨ株式会社 型式:OMC−150MJ)を用いて強化繊維基材3の厚さを測定し、モニタリング開始直前の厚さと各タイミングでマイクロメータ測定によって得られる厚さとの差との突合せ評価を行った。結果を表2に示す。
[Example 2]
Monitoring was performed under the same configuration and conditions as in Example 1, and a differential calculation process for each displacement measurement value recorded at the same time on channel 1 and channel 2 of the data logger was performed on a separately prepared personal computer. In the same manner as in Example 1, in conjunction with a series of monitoring, at the timing immediately before the start of monitoring, immediately before the resin injection, immediately before the start of bleed, immediately before the temperature increase from 70 ° C. to 130 ° C., and immediately before the stop of the monitoring after the temperature decrease is completed. Measure the thickness of the reinforcing fiber base 3 using a meter (Mitutoyo Co., Ltd. model: OMC-150MJ), and evaluate the match between the thickness immediately before the start of monitoring and the difference between the thickness obtained by micrometer measurement at each timing. went. The results are shown in Table 2.

この結果から、差分処理を行うことにより、液状体の含浸、熱硬化などの一連の成形過程における強化繊維基材3の厚さ状況(厚さ変化量)を、加熱炉5内の温度変化による影響を軽減し、更に精度良く、具体的には、マイクロメータ測定値ΔTrefに比べて最大17ミクロンの誤差でモニタリングすることができた。 From this result, by performing the differential treatment, the thickness state (thickness change amount) of the reinforcing fiber base 3 in a series of molding processes such as liquid impregnation and thermosetting is determined by the temperature change in the heating furnace 5. It was possible to reduce the influence and to monitor with higher accuracy, specifically, with an error of a maximum of 17 microns compared to the micrometer measurement value ΔT ref .

Figure 2010032478
Figure 2010032478

[実施例3]
実施例2と同じ構成、条件にてモニタリングを実施し、データロガーのチャネル1とチャネル2に同一時刻に記録された各変位測定値の差分演算処理を別途準備したパソコンで実施した。更に、実施例1と同様に、モニタリング開始直前に、前記マイクロメータ(ミツトヨ株式会社 型式:OMC−150MJ)を用いて、強化繊維基材3の厚さを測定した結果Tを用いて、前記別途準備したパソコンでの演算で得られた差分演算結果Δdから、強化繊維基材3の厚さT=T−Δdなる演算を別途準備したパソコンで実施した。その結果を、樹脂注入直前、ブリード開始直前、70℃から130℃への昇温直前、降温完了後のモニタリング停止直前のタイミングで、前記マイクロメータ(ミツトヨ株式会社 型式:OMC−150MJ)を用いて測定した強化繊維基材3の厚さ測定結果との突合せ評価を行った。結果を表3に示す。
[Example 3]
Monitoring was performed under the same configuration and conditions as in Example 2, and a differential calculation process for each displacement measurement value recorded at the same time on channel 1 and channel 2 of the data logger was performed on a separately prepared personal computer. Further, in the same manner as in Example 1, immediately before start of monitoring, the micrometer (Mitutoyo Corporation Model: OMC-150 MJ) with using the results T 0 of the measurement of the thickness of the reinforcing fiber substrate 3, the A calculation of thickness T = T 0 −Δd 1 of the reinforcing fiber base 3 was carried out on a separately prepared personal computer from the difference calculation result Δd 1 obtained by the calculation on a separately prepared personal computer. Using the micrometer (Mitutoyo Corporation model: OMC-150MJ) at the timing immediately before resin injection, immediately before the start of bleed, immediately before the temperature rise from 70 ° C. to 130 ° C., and immediately before the stop of the monitoring after the completion of the temperature drop. A butt evaluation with the measured thickness measurement result of the reinforcing fiber base 3 was performed. The results are shown in Table 3.

この結果から、液状体の含浸、熱硬化などの一連の成形過程における強化繊維基材3の絶対厚さ量を、加熱炉5内の温度変化による影響を軽減し、更に精度良くモニタリングすることができた。   From this result, it is possible to reduce the influence of the temperature change in the heating furnace 5 and monitor the absolute thickness of the reinforcing fiber base 3 in a series of molding processes such as liquid impregnation and thermosetting with higher accuracy. did it.

Figure 2010032478
Figure 2010032478

[参考例1](変位測定手段、固定手段の個体間差と温度影響の確認テスト)
図7に示すように、強化繊維基材3を成形型4上に配置せず、導電体2Sを直接成形型4の第1の面41上に配置し、変位測定手段1Sと変位測定手段1Rの左右の方向の距離を30mmになるように配置した以外は、実施例1と同じ構成、及び条件で、データロガーのチャネル1、2で記録される変位データを測定した。測定結果を表4に示す。
[Reference Example 1] (Confirmation test of difference between individual displacement measuring means and fixing means and temperature effect)
As shown in FIG. 7, the reinforcing fiber base 3 is not disposed on the mold 4 and the conductor 2S is disposed directly on the first surface 41 of the mold 4, and the displacement measuring means 1S and the displacement measuring means 1R are disposed. The displacement data recorded in the channels 1 and 2 of the data logger were measured with the same configuration and conditions as in Example 1 except that the distance in the left and right directions was 30 mm. Table 4 shows the measurement results.

この結果から、加熱炉5内の温度変化に関わらず、データロガーのチャネル1とチャネル2の測定値の差Δdの絶対値は5ミクロン以内であり、変位測定手段1Sと変位測定手段1Rの測定能力における個体間差、及び各固定手段6の熱膨張の個体間差は極めて小さいことを確認できた。 From this result, regardless of the temperature change in the heating furnace 5, the absolute value of the difference Δd 1 between the measured values of the data logger channel 1 and channel 2 is within 5 microns, and the displacement measuring means 1S and the displacement measuring means 1R It was confirmed that the difference between individuals in the measurement ability and the difference between individuals in the thermal expansion of each fixing means 6 were extremely small.

Figure 2010032478
Figure 2010032478

上述した本発明の繊維強化プラスチックの成形状況のモニタリング装置、及びモニタリング方法は、加熱炉内において、強化繊維基材に液状の樹脂を含浸させた後、樹脂を硬化させるFRP構造体の製造方法に好ましく適用されるが、適用対象としてはこれに限定されず、たとえば、加熱炉内に配置された測定対象物の熱膨張量のモニタリングにおいても好適に用いることができる。   The above-described monitoring apparatus and monitoring method for the fiber-reinforced plastic molding of the present invention is a method for manufacturing an FRP structure in which a reinforcing resin substrate is impregnated with a liquid resin and then cured in a heating furnace. Although applied preferably, it is not limited to this as an application object, For example, it can use suitably also in monitoring of the thermal expansion amount of the measuring object arrange | positioned in a heating furnace.

本発明にかかわる変位測定手段1Sと変位測定手段1Rを用いた繊維強化プラスチックの成形状況モニタリング方法の一実施形態を模式的に表す側面図である。It is a side view which represents typically one Embodiment of the molding condition monitoring method of the fiber reinforced plastic using the displacement measuring means 1S and the displacement measuring means 1R concerning this invention. 本発明にかかわる変位測定手段1Sを複数個と変位測定手段1Rを用いた繊維強化プラスチックの成形状況モニタリング方法の一実施形態を模式的に表す側面図である。It is a side view which represents typically one Embodiment of the molding condition monitoring method of the fiber reinforced plastic using multiple displacement measuring means 1S concerning this invention and the displacement measuring means 1R. 本発明にかかわる変位測定手段1Sと変位測定手段1Rとの測定値の演算方法に関する一実施形態を示す処理フロー図である。It is a processing flowchart which shows one Embodiment regarding the calculation method of the measured value of the displacement measuring means 1S and the displacement measuring means 1R concerning this invention. 繊維強化基材3の初期厚さの測定に関するイメージを表す図である。It is a figure showing the image regarding the measurement of the initial thickness of the fiber reinforced base material 3. FIG. 加熱炉を昇温前の、変位測定手段他の配置構成のイメージを表す図である。It is a figure showing the image of arrangement | positioning structure of a displacement measurement means other before temperature rising of a heating furnace. 加熱炉を昇温開始後の、変位測定手段他の配置構成のイメージを表す図である。It is a figure showing the image of arrangement | positioning structure of a displacement measuring means other after the heating start of a heating furnace. 強化繊維基材3を成形型4上に配置しない状態での、各変位測定手段を用いて測定、演算処理を行う評価構成を表すイメージ図である。It is an image figure showing the evaluation structure which performs a measurement and a calculation process using each displacement measurement means in the state where the reinforcing fiber base material 3 is not arranged on the mold 4.

符号の説明Explanation of symbols

1S 変位測定手段
1R 変位測定手段
2S 変位測定手段1Sに対向する導電体
2R 変位測定手段1Rに対向する導電体
3 強化繊維基材
31 強化繊維基材3の第1の面
32 強化繊維基材3の第2の面
4 成形型
41 成形型4の第1の面
5 加熱炉
6 変位測定手段の固定手段
6A 変位測定手段の移動機構
11 液状体
12 液状体11の未含浸部
D 液状体11の含浸方向
d 変位測定手段の先端と導電体表面との距離
out 処理アンプ出力電圧
3A 距離dと出力電圧Voutとの理想の直線
3B 距離dと出力電圧Voutとの実際の相関を表す曲線
3C 距離dと出力電圧Voutとの相関を表す直線
A0 変位測定手段の先端と導電体表面とのある距離
a0 距離dA0に相当する補正演算前の処理アンプ出力電圧
A0 距離dA0に相当する補正演算後の処理アンプ出力電圧
A1 モニタリング開始前の変位測定手段1Sの先端と導電体2Sの距離
A1’ モニタリング開始後t秒経過後の変位測定手段1Sの先端と導電体2Sの距離
モニタリング開始前の変位測定手段1Rの先端と導電体2Rの距離
’ モニタリング開始後t秒経過後の変位測定手段1Rの先端と導電体2Rの距離
A1 変位測定手段1Sの先端と導電体2Sの距離がdA1の時の演算処理1後の出力電圧
A1’ 変位測定手段1Sの先端と導電体2Sの距離がdA1’の時の演算処理1後の出力電圧
変位測定手段1Rの先端と導電体2Rの距離がdの時の演算処理1後の出力電圧
’ 変位測定手段1Rの先端と導電体2Rの距離がd’の時の演算処理1後の出力電圧
ΔdA1A1’とdA1との差
Δd’とdとの差
Δd ΔdA1とΔdとの演算処理2(差分演算処理)の結果
T 本発明によるモニタリング方法を用いて測定した強化繊維基材3の絶対厚さ
加熱炉5の昇温前に測定される強化繊維基材3の初期絶対厚さ
ref マイクロメータによる強化繊維基材3の厚さ測定値
ΔTref マイクロメータ測定による強化繊維基材3の厚さ変化量
1S Displacement measuring means 1R Displacement measuring means 2S Conductor 2R facing the displacement measuring means 1S Conductor 3 facing the displacement measuring means 1R Reinforcing fiber substrate 31 First surface 32 of the reinforcing fiber substrate 3 Reinforcing fiber substrate 3 Second surface 4 Molding die 41 First surface 5 of molding die 4 Heating furnace 6 Displacement measuring means fixing means 6A Displacement measuring means moving mechanism 11 Liquid body 12 Unimpregnated portion D of liquid body 11 Liquid body 11 the curve representing the actual correlation between the distance V out processing amplifier output voltage 3A distance d between the impregnation direction d tip and the conductive surface of the displacement measuring means and the ideal straight line 3B distance d between the output voltage V out and the output voltage V out 3C the distance d between the output voltage V out processing amplifier output voltage before correction calculation corresponding to a distance V a0 distance d A0 between the tip and the conductive surface of the linear d A0 displacement measuring means representing a correlation between V A0 distance d A0 Phase Processing amplifier output voltage d A1 after the correction calculation The distance d A1 'between the tip of the displacement measuring means 1S before the start of monitoring and the conductor 2S d A1 ' The tip of the displacement measuring means 1S after the start of monitoring and the conductor 2S tip distance d B monitoring before the start of the displacement measuring means 1R tip and conductor 2R distance d B 'distance V A1 displacement measuring means 1S tip and conductor 2R displacement measuring means 1R after lapse monitoring starts after t seconds output voltage V B after processing 1 when the output voltage V A1 'distance of the tip and the conductor 2S displacement measuring means 1S is d A1' after processing 1 when the distance d A1 of the conductors 2S arithmetic processing when the output voltage V B after processing 1 when the distance d B of the tip and the conductor 2R displacement measuring means 1R 'distance of the tip and the conductor 2R displacement measuring means 1R is d B' 1 output voltage Δd A1 d after Enhancement was measured using a monitoring method according to the result T present invention a process of calculating the 1 and 'the difference [Delta] d B d B between d A1' and the difference [Delta] d 1 [Delta] d A1 and [Delta] d B between the d B 2 (difference operation) absolute thickness T 0 initial reinforcing fiber base 3, which is measured before heating of the heating furnace 5 absolute thickness T ref micrometer thickness readings delta Tref micrometer reinforcing fiber base 3 by the fiber substrate 3 Thickness change of reinforcing fiber base 3 by measurement

Claims (12)

加熱炉の内部に、成形型と、導電体および前記導電体と非接触で対向する変位測定手段からなる複数組の測定手段とを備え、前記変位測定手段からの信号を処理する演算処理手段を備えたことを特徴とする、繊維強化プラスチックの成形状況モニタリング装置。 Arithmetic processing means for processing a signal from the displacement measuring means, comprising a molding die and a plurality of sets of measuring means comprising a conductor and a displacement measuring means facing the conductor in a non-contact manner inside the heating furnace. A molding condition monitoring device for fiber reinforced plastic, characterized by comprising. 前記成形型上に強化繊維基材が配置され、前記成形型上に少なくとも1組の前記測定手段を配置するとともに、前記強化繊維基材上にも少なくとも1組の前記測定手段を配置したことを特徴とする、請求項1に記載の繊維強化プラスチックの成形状況モニタリング装置。 A reinforcing fiber substrate is disposed on the mold, and at least one set of the measuring means is disposed on the mold, and at least one set of the measuring means is disposed on the reinforcing fiber substrate. The molding condition monitoring device for fiber-reinforced plastic according to claim 1, characterized in that it is characterized in that 前記変位測定手段は、電気的または磁気的手段によって測定することを特徴とする、請求項1または2のいずれかに記載の繊維強化プラスチックの成形状況モニタリング装置。 3. The fiber reinforced plastic molding condition monitoring apparatus according to claim 1, wherein the displacement measuring means is measured by an electric or magnetic means. 前記測定手段を構成する変位測定手段は、固定手段を介して固定されていることを特徴とする、請求項1〜3のいずれかに記載の繊維強化プラスチックの成形状況モニタリング装置。 The fiber reinforced plastic molding condition monitoring device according to any one of claims 1 to 3, wherein the displacement measuring means constituting the measuring means is fixed via a fixing means. 前記変位測定手段を固定する前記固定手段が、1つの固定部材にまとめて固定されていることを特徴とする、請求項1〜4のいずれかに記載の繊維強化プラスチックの成形状況モニタリング装置。 The molding condition monitoring device for fiber-reinforced plastic according to any one of claims 1 to 4, wherein the fixing means for fixing the displacement measuring means are fixed together as one fixing member. 加熱炉内に設けられた成形型上に配置した強化繊維基材に対して、
前記強化繊維基材の第1の面上に導電体を配置し、前記導電体に非接触で対向するように第1の変位測定手段を前記加熱炉内に配置するとともに、
前記強化繊維基材の第2の面に接する前記成形型の第1の面上に導電体を配置し、前記導電体と非接触で対向するように第2の変位測定手段を前記加熱炉内に配置して、
前記第1の変位測定手段を用いて前記強化繊維基材の厚さ方向の変位量を測定するとともに、前記第2の変位測定手段を用いて前記成形型の厚さ方向の変位量を測定することを特徴とする、繊維強化プラスチックの成形状況モニタリング方法。
For the reinforcing fiber substrate placed on the mold provided in the heating furnace,
While disposing a conductor on the first surface of the reinforcing fiber base and disposing the first displacement measuring means in the heating furnace so as to face the conductor in a non-contact manner,
A conductor is disposed on the first surface of the mold that is in contact with the second surface of the reinforcing fiber substrate, and the second displacement measuring means is disposed in the heating furnace so as to face the conductor in a non-contact manner. Placed in
The displacement amount in the thickness direction of the reinforcing fiber base is measured using the first displacement measuring means, and the displacement amount in the thickness direction of the mold is measured using the second displacement measuring means. A molding condition monitoring method for fiber-reinforced plastic, characterized in that.
前記第1の変位測定手段から得られる変位量と、前記第2の変位測定手段から得られる変位量とを前記演算処理手段で補正処理し、前記強化繊維基材の厚さ方向の変位量とすることを特徴とする、請求項6に記載の繊維強化プラスチックの成形状況モニタリング方法。 The displacement amount obtained from the first displacement measuring means and the displacement amount obtained from the second displacement measuring means are corrected by the arithmetic processing means, and the displacement amount in the thickness direction of the reinforcing fiber base The molding condition monitoring method for fiber reinforced plastic according to claim 6, wherein: 前記第1の変位測定手段から得られる変位量と、前記第2の変位測定手段から得られる変位量との差を前記演算処理手段で演算し、前記強化繊維基材の厚さ方向の変位量とすることを特徴とする、請求項6に記載の繊維強化プラスチックの成形状況モニタリング方法。 The difference between the displacement amount obtained from the first displacement measuring means and the displacement amount obtained from the second displacement measuring means is calculated by the arithmetic processing means, and the displacement amount in the thickness direction of the reinforcing fiber substrate is calculated. The molding condition monitoring method for fiber reinforced plastics according to claim 6, wherein: 前記第1の変位測定手段から得られる変位量の値と、前記第2の変位測定手段から得られる変位量の値は、前記演算処理手段で補正処理した後、前記補正処理後のそれぞれの変位量の差を前記演算処理手段で演算することを特徴とする、請求項6に記載の繊維強化プラスチックの成形状況モニタリング方法。 The displacement amount value obtained from the first displacement measuring means and the displacement amount value obtained from the second displacement measuring means are corrected by the arithmetic processing means, and then the respective displacements after the correction processing are corrected. 7. The method of monitoring the molding status of fiber reinforced plastic according to claim 6, wherein the difference in quantity is calculated by the calculation processing means. 前記各第1の変位測定手段とそれに対向して配置された前記導電体との距離と、前記第2の変位測定手段とそれに対向して配置された前記導電体との距離とを前記加熱炉の加熱前に同じ距離に調整する工程を経た後、前記強化繊維基材の厚さ方向の変位量もしくは前記成形型の厚さ方向の変位量の測定を開始する工程を有することを特徴とする、請求項6〜9のいずれかに記載の繊維強化プラスチックの成形状況モニタリング方法。 A distance between each of the first displacement measuring means and the conductor disposed opposite to the first displacement measuring means, and a distance between the second displacement measuring means and the conductor disposed opposite to the first displacement measuring means. After the step of adjusting to the same distance before heating, the step of starting the measurement of the displacement amount in the thickness direction of the reinforcing fiber base or the displacement amount in the thickness direction of the mold The molding condition monitoring method of the fiber reinforced plastic according to any one of claims 6 to 9. 前記加熱炉を加熱する前に前記強化繊維基材の厚さを予め測定する工程を有し、前記厚さ測定値と、前記加熱炉の加熱中及び加熱完了後に得られる前記強化繊維基材の厚さ方向の変位量から前記強化繊維基材の厚さを前記演算処理手段で演算することを特徴とする、請求項6〜10のいずれかに記載の繊維強化プラスチックの成形状況モニタリング方法。 A step of measuring the thickness of the reinforcing fiber base in advance before heating the heating furnace, the thickness measurement value, and the reinforcing fiber base obtained during and after heating of the heating furnace. The method for monitoring the molding status of a fiber reinforced plastic according to any one of claims 6 to 10, wherein the thickness of the reinforcing fiber base is calculated by the calculation processing means from the amount of displacement in the thickness direction. 強化繊維基材に液状体を含浸させる繊維強化プラスチックの製造方法であって、請求項6〜11のいずれかに記載の成形状況モニタリング方法を用いて含浸工程、硬化工程が制御されてなることを特徴とする繊維強化プラスチックの製造方法。 It is a manufacturing method of the fiber reinforced plastic which makes a reinforced fiber base material impregnate a liquid substance, Comprising: An impregnation process and a hardening process are controlled using the molding condition monitoring method in any one of Claims 6-11. A method for producing a fiber-reinforced plastic characterized.
JP2008197810A 2008-07-31 2008-07-31 Method for monitoring molding condition of fiber reinforced plastic and method for producing fiber reinforced plastic Expired - Fee Related JP5353104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008197810A JP5353104B2 (en) 2008-07-31 2008-07-31 Method for monitoring molding condition of fiber reinforced plastic and method for producing fiber reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008197810A JP5353104B2 (en) 2008-07-31 2008-07-31 Method for monitoring molding condition of fiber reinforced plastic and method for producing fiber reinforced plastic

Publications (2)

Publication Number Publication Date
JP2010032478A true JP2010032478A (en) 2010-02-12
JP5353104B2 JP5353104B2 (en) 2013-11-27

Family

ID=41737114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008197810A Expired - Fee Related JP5353104B2 (en) 2008-07-31 2008-07-31 Method for monitoring molding condition of fiber reinforced plastic and method for producing fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JP5353104B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016169953A (en) * 2015-03-11 2016-09-23 日本電気株式会社 Measurement device, measurement unit, and method for measuring amount of dimension change
JP2020038190A (en) * 2018-09-03 2020-03-12 株式会社Subaru Resin impregnation measurement system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57211503A (en) * 1981-06-24 1982-12-25 Hitachi Ltd Measuring method for displacement of disc
JP2759770B2 (en) * 1995-03-03 1998-05-28 理学電機株式会社 Sample length measuring method and thermal expansion measuring method in thermomechanical analyzer
JP2000097681A (en) * 1998-09-28 2000-04-07 Sony Corp Height measuring equipment
JP2001289619A (en) * 2000-04-07 2001-10-19 Mitaka Koki Co Ltd Surface shape measuring method
JP2002206905A (en) * 2001-01-11 2002-07-26 Daido Steel Co Ltd Powder layer thickness measuring method and measuring device thereof
JP2003302358A (en) * 2002-04-09 2003-10-24 Mitsubishi Electric Corp Apparatus for measuring coefficient of linear expansion
JP2005525494A (en) * 2002-05-14 2005-08-25 本田技研工業株式会社 Gas turbine engine with active tip clearance control
JP2007085959A (en) * 2005-09-26 2007-04-05 Jeol Ltd Capacitive displacement sensor
JP2008044358A (en) * 2006-07-19 2008-02-28 Toray Ind Inc Monitoring method for forming condition of fiber-reinforced plastic

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57211503A (en) * 1981-06-24 1982-12-25 Hitachi Ltd Measuring method for displacement of disc
JP2759770B2 (en) * 1995-03-03 1998-05-28 理学電機株式会社 Sample length measuring method and thermal expansion measuring method in thermomechanical analyzer
JP2000097681A (en) * 1998-09-28 2000-04-07 Sony Corp Height measuring equipment
JP2001289619A (en) * 2000-04-07 2001-10-19 Mitaka Koki Co Ltd Surface shape measuring method
JP2002206905A (en) * 2001-01-11 2002-07-26 Daido Steel Co Ltd Powder layer thickness measuring method and measuring device thereof
JP2003302358A (en) * 2002-04-09 2003-10-24 Mitsubishi Electric Corp Apparatus for measuring coefficient of linear expansion
JP2005525494A (en) * 2002-05-14 2005-08-25 本田技研工業株式会社 Gas turbine engine with active tip clearance control
JP2007085959A (en) * 2005-09-26 2007-04-05 Jeol Ltd Capacitive displacement sensor
JP2008044358A (en) * 2006-07-19 2008-02-28 Toray Ind Inc Monitoring method for forming condition of fiber-reinforced plastic

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016169953A (en) * 2015-03-11 2016-09-23 日本電気株式会社 Measurement device, measurement unit, and method for measuring amount of dimension change
JP2020038190A (en) * 2018-09-03 2020-03-12 株式会社Subaru Resin impregnation measurement system
JP7202258B2 (en) 2018-09-03 2023-01-11 株式会社Subaru Resin impregnation measurement system

Also Published As

Publication number Publication date
JP5353104B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
Sweeting et al. Measurement of thermal conductivity for fibre-reinforced composites
US20210129431A1 (en) Methods and apparatus for embedding heating circuits into articles made by additive manufacturing and articles made therefrom
Garschke et al. Out-of-autoclave cure cycle study of a resin film infusion process using in situ process monitoring
Torres Parameters’ monitoring and in-situ instrumentation for resin transfer moulding: A review
Minakuchi et al. Composite cure simulation scheme fully integrating internal strain measurement
Nawab et al. Study of variation of thermal expansion coefficients in carbon/epoxy laminated composite plates
Xin et al. Online monitoring and analysis of resin pressure inside composite laminate during zero‐bleeding autoclave process
US20120217382A1 (en) Apparatus and method for producing a component and aircraft structure component
US11952472B2 (en) Preparation method and product of carbon fiber reinforced polymer composite with designable characteristic structure
US20140110875A1 (en) Composite product manufacturing system and method
JP6116497B2 (en) Resin flow control system and resin flow control method
Kim et al. Cure cycle effect on composite structures manufactured by resin transfer molding
JP5353104B2 (en) Method for monitoring molding condition of fiber reinforced plastic and method for producing fiber reinforced plastic
Péron et al. PvT-HADDOC: A multi-axial strain analyzer and cure monitoring device for thermoset composites characterization during manufacturing
Todoroki et al. Fatigue damage detection of CFRP using the electrical resistance change method
Zbed et al. Process-induced strains measurements through a multi-axial characterization during the entire curing cycle of an interlayer toughened Carbon/Epoxy prepreg
US11167509B2 (en) Composite-material molding apparatus and composite-material molding method
Luan et al. Fabrication and characterization of in situ structural health monitoring hybrid continuous carbon/glass fiber–reinforced thermoplastic composite
del Río et al. 3D-printed resistive carbon-fiber-reinforced sensors for monitoring the resin frontal flow during composite manufacturing
Amedewovo et al. A methodology for online characterization of the deconsolidation of fiber-reinforced thermoplastic composite laminates
Rodriguez-Cobo et al. Embedded compaction pressure sensor based on Fiber Bragg Gratings
JP4148400B2 (en) Intelligent molding system for thermosetting resin composite and intelligent molding method thereof
CN101072679A (en) Apparatus and method for ultrasonic processing of laminates
Tamagawa et al. Consolidation mechanism of composite corners cured on convex and concave tools
Liu et al. Active control of cure-induced distortion for composite parts using multi-zoned self-resistance electric heating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130812

LAPS Cancellation because of no payment of annual fees