JP2016166683A - Heating device - Google Patents

Heating device Download PDF

Info

Publication number
JP2016166683A
JP2016166683A JP2015045571A JP2015045571A JP2016166683A JP 2016166683 A JP2016166683 A JP 2016166683A JP 2015045571 A JP2015045571 A JP 2015045571A JP 2015045571 A JP2015045571 A JP 2015045571A JP 2016166683 A JP2016166683 A JP 2016166683A
Authority
JP
Japan
Prior art keywords
exhaust gas
heat exchanger
fuel
combustion
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015045571A
Other languages
Japanese (ja)
Inventor
勝弥 榊原
Katsuya Sakakibara
勝弥 榊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ahresty Corp
Original Assignee
Ahresty Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ahresty Corp filed Critical Ahresty Corp
Priority to JP2015045571A priority Critical patent/JP2016166683A/en
Publication of JP2016166683A publication Critical patent/JP2016166683A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Gas Burners (AREA)
  • Air Supply (AREA)
  • Control Of Combustion (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heating device capable of reducing a use amount of fuel by improving fuel economy.SOLUTION: A heating device 30 includes a burner 31 for jetting a combustion gas 20 in which a fuel 22 is burned toward a combustion space 3 of a heating furnace 1, and discharges an exhaust gas 26 after heating the combustion space 3 from an exhaust gas discharge passage 36. A first heat exchanger 31a disposed in the exhaust gas discharge passage 36 is incorporated in the burner 31, and a second heat exchanger 38 is disposed in the exhaust gas discharge passage 36 on the further downstream than the first heat exchanger 31a. Air 24 for combustion mixed in the fuel 22 in combustion is supplied to the burner 31 from an air passage 34, and the second heat exchanger 38 is disposed on the upstream side of the air passage 34 and the first heat exchanger 31a is disposed on the downstream side of the air passage 34 respectively. Heat is imparted to the low-temperature air 24 for combustion from the high-temperature exhaust gas 26 by comparing with each other by the first heat exchanger 31a and the second heat exchanger 38, so that fuel economy is improved and the use amount of the fuel 22 can be reduced.SELECTED DRAWING: Figure 4

Description

本発明は加熱装置に関し、燃費を向上して燃料の使用量を低減できる加熱装置に関するものである。   The present invention relates to a heating device, and more particularly to a heating device that can improve fuel efficiency and reduce the amount of fuel used.

従来、加熱炉の燃焼空間を加熱する加熱装置には、排気ガスの熱を回収して燃焼用空気に与えることで、ガス使用量を低減して燃費の向上を図ったものが知られている。例えば、排気ガスの熱を燃焼用空気に与える熱交換器をバーナに内蔵することで、加熱装置の大型化を抑制しつつ燃費の向上を図ったものがある(特許文献1)。   Conventionally, as a heating apparatus for heating a combustion space of a heating furnace, an apparatus in which the heat of exhaust gas is recovered and applied to combustion air to reduce the amount of gas used and improve fuel efficiency is known. . For example, there is one in which a heat exchanger that gives heat of exhaust gas to combustion air is built in a burner to improve fuel consumption while suppressing an increase in size of a heating device (Patent Document 1).

特許第5581422号公報Japanese Patent No. 5581422

しかしながら、バーナ又は炉壁に熱交換器を配設した加熱装置の場合、燃料の燃焼により高温となるバーナ又は炉壁の内側では排気ガスの熱が外部に放熱され難いので、熱交換器を通る排気ガスの温度が高く、熱交換器には耐熱温度が高い材料を用いる必要がある。例えば、耐熱温度が高く熱伝導率の高い炭化ケイ素が挙げられる。炭化ケイ素は加工が難しいので、熱交換率を向上させるために熱交換器の形状を工夫して伝熱面積を大きくすることが困難である。即ち、バーナ又は炉壁に熱交換器を設けた加熱装置では熱交換率に限界があり、燃費を向上することが困難である。   However, in the case of a heating device in which a heat exchanger is disposed on the burner or the furnace wall, the heat of the exhaust gas is difficult to be radiated to the outside inside the burner or the furnace wall that becomes high temperature due to the combustion of fuel. It is necessary to use a material having a high exhaust gas temperature and a high heat-resistant temperature for the heat exchanger. For example, silicon carbide having a high heat-resistant temperature and high thermal conductivity can be given. Since silicon carbide is difficult to process, it is difficult to increase the heat transfer area by devising the shape of the heat exchanger in order to improve the heat exchange rate. That is, in a heating device in which a heat exchanger is provided on a burner or a furnace wall, the heat exchange rate is limited, and it is difficult to improve fuel consumption.

本発明は上述した問題を解決するためになされたものであり、燃費を向上して燃料の使用量を低減できる加熱装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a heating device that can improve fuel efficiency and reduce the amount of fuel used.

課題を解決するための手段および発明の効果Means for Solving the Problems and Effects of the Invention

請求項1記載の加熱装置によれば、燃料路を通って供給される燃料を燃焼させた燃焼ガスを加熱炉の炉壁に囲まれた燃焼空間へ向けて噴出するバーナを備え、燃焼空間を加熱した後の排気ガスを排ガス排出路から排出する。排ガス排出路、及び、バーナ又は炉壁に第1熱交換器が配設され、第1熱交換器より下流の排ガス排出路に第2熱交換器が配設される。燃料を燃焼させる際に燃料に混合される燃焼用空気を空気路からバーナに供給し、第2熱交換器が空気路の上流側に、第1熱交換器が空気路の下流側にそれぞれ配設される。排ガス排出路を通る排気ガスと空気路を通る燃焼用空気との間で第1熱交換器および第2熱交換器によりそれぞれ熱交換が行われるので、相互に比較して高温の排気ガスから低温の燃焼用空気へ熱が与えられる。2段階の熱交換により燃焼用空気が加熱されるので、燃費を向上して燃料の使用量を低減できる効果がある。   According to the heating device of the first aspect, the combustion apparatus includes a burner that ejects combustion gas obtained by burning the fuel supplied through the fuel passage toward the combustion space surrounded by the furnace wall of the heating furnace, The heated exhaust gas is discharged from the exhaust gas discharge passage. A first heat exchanger is disposed in the exhaust gas discharge path and the burner or the furnace wall, and a second heat exchanger is disposed in the exhaust gas discharge path downstream from the first heat exchanger. Combustion air mixed with fuel when the fuel is burned is supplied from the air passage to the burner. The second heat exchanger is arranged upstream of the air passage, and the first heat exchanger is arranged downstream of the air passage. Established. Since heat exchange is performed by the first heat exchanger and the second heat exchanger between the exhaust gas passing through the exhaust gas discharge passage and the combustion air passing through the air passage, the temperature of the exhaust gas is lower than that of the hot exhaust gas. Heat is applied to the combustion air. Since the combustion air is heated by the two-stage heat exchange, there is an effect that the fuel consumption can be improved and the amount of fuel used can be reduced.

また、空気路および排ガス排出路それぞれの上流側と下流側とで相互に比較して、高温の燃焼用空気と高温の排気ガスとの間で第1熱交換器により熱交換をし、低温の燃焼用空気と低温の排気ガスとの間で第2熱交換器により熱交換をする。第1熱交換器および第2熱交換器における燃焼用空気と排気ガスとの温度差を小さくできるので、第1熱交換器および第2熱交換器の耐久性を向上できる効果がある。   Also, compared with the upstream side and the downstream side of each of the air passage and the exhaust gas discharge passage, heat exchange is performed by the first heat exchanger between the high-temperature combustion air and the high-temperature exhaust gas, Heat is exchanged between the combustion air and the low-temperature exhaust gas by the second heat exchanger. Since the temperature difference between the combustion air and the exhaust gas in the first heat exchanger and the second heat exchanger can be reduced, the durability of the first heat exchanger and the second heat exchanger can be improved.

請求項2記載の加熱装置によれば、第1熱交換器と第2熱交換器とを相互に比較して、第1熱交換器は耐熱温度が高いと共に熱交換率が低く、第2熱交換器は耐熱温度が低いと共に熱交換率が高い。燃料の燃焼により高温となるバーナ又は炉壁の内側では排気ガスの熱が外部に放熱され難いので、バーナ又は炉壁に配設される第1熱交換器を通る排気ガスの温度が高い。耐熱温度が高い第1熱交換器をバーナ又は炉壁に配設することで、第1熱交換器の耐久性を確保できる。   According to the heating device of the second aspect, the first heat exchanger and the second heat exchanger are compared with each other, and the first heat exchanger has a high heat-resistant temperature and a low heat exchange rate. The exchanger has a low heat-resistant temperature and a high heat exchange rate. Since the heat of the exhaust gas is hardly radiated to the outside inside the burner or the furnace wall that becomes high temperature due to the combustion of fuel, the temperature of the exhaust gas passing through the first heat exchanger disposed on the burner or the furnace wall is high. The durability of the first heat exchanger can be ensured by disposing the first heat exchanger having a high heat resistance temperature on the burner or the furnace wall.

さらに、第1熱交換器により熱が奪われた排気ガスが通る第2熱交換器の耐熱温度を低くできるので、第2熱交換器の構造や材料の自由度を高くできる。第2熱交換器の構造や形状を工夫して熱交換率を向上できるので、請求項1の効果に加え、燃費を向上して燃料の使用量をより低減できる効果がある。   Furthermore, since the heat-resistant temperature of the second heat exchanger through which the exhaust gas deprived of heat by the first heat exchanger passes can be lowered, the degree of freedom of the structure and material of the second heat exchanger can be increased. Since the heat exchange rate can be improved by devising the structure and shape of the second heat exchanger, in addition to the effect of claim 1, there is an effect that the fuel consumption can be improved and the amount of fuel used can be further reduced.

請求項3記載の加熱装置によれば、第2熱交換器より上流の空気路と燃料路とを連結する連結路により燃焼用空気の一部を燃料に混合することで、燃焼ガスの温度を下げてNOを低減できる。第2熱交換器より下流の空気路と燃料路とを連結した場合には、第2熱交換器により熱交換されて加熱された燃焼用空気と燃料とを混合するので、燃料が発火するおそれがある。第2熱交換器より上流の空気路と燃料路とを連結路により連結することで、燃焼用空気の一部を燃料に混合した際に燃料が発火することを防止できる。よって、請求項1又は2の効果に加え、燃焼用空気の一部を燃料に混合した際の発火を防止しつつNOを低減できる効果がある。 According to the heating device of the third aspect, the temperature of the combustion gas is adjusted by mixing a part of the combustion air with the fuel through the connecting passage that connects the air passage upstream of the second heat exchanger and the fuel passage. it is possible to reduce the NO X down. When the air path downstream of the second heat exchanger and the fuel path are connected, the combustion air and the fuel heated by the heat exchange by the second heat exchanger are mixed, and the fuel may ignite. There is. By connecting the air passage upstream of the second heat exchanger and the fuel passage by the connection passage, it is possible to prevent the fuel from being ignited when a part of the combustion air is mixed with the fuel. Therefore, in addition to the effect of the first or second aspect, there is an effect that NO X can be reduced while preventing ignition when a part of the combustion air is mixed with the fuel.

請求項4記載の加熱装置によれば、排ガス排出路は、排気ガスを外部に排出する開口部を備え、排ガス排出路の開口部側が下降傾斜する。2つの熱交換器により排気ガスから熱を奪った結果、開口部から排出される排気ガスの温度が露点温度を下回ることがある。その場合、排気ガス中の水分により排ガス排出路の開口部側に結露が生じるおそれがある。排ガス排出路の開口部側が下降傾斜することで結露した水分を積極的に回収できるので、請求項1から3のいずれかの効果に加え、結露した水分が排ガス排出路を逆流することを抑制できる効果がある。   According to the heating device of the fourth aspect, the exhaust gas discharge path includes an opening for discharging the exhaust gas to the outside, and the opening side of the exhaust gas discharge path is inclined downward. As a result of taking heat from the exhaust gas by the two heat exchangers, the temperature of the exhaust gas discharged from the opening may be lower than the dew point temperature. In that case, there is a possibility that condensation occurs on the opening side of the exhaust gas discharge path due to moisture in the exhaust gas. Since the dew condensation moisture can be positively collected by the downward inclination of the opening side of the exhaust gas discharge path, in addition to the effect of any one of claims 1 to 3, the dew condensation water can be prevented from flowing back through the exhaust gas discharge path. effective.

請求項5記載の加熱装置によれば、排ガス排出路における第1熱交換器の入口の排気ガスの温度を第1温度センサにより検出し、排ガス排出路における第2熱交換器の入口の排気ガスの温度を第2温度センサにより検出し、第1温度センサ及び第2温度センサが検出する温度に基づき燃料および燃焼用空気の供給量を制御装置によりフィードバック制御する。これにより、第1熱交換器および第2熱交換器の耐熱温度を超えないように燃焼量を調整できるので、請求項1から4の効果に加え、第1熱交換器および第2熱交換器の耐久性を確保できる効果がある。   According to the heating device of claim 5, the temperature of the exhaust gas at the inlet of the first heat exchanger in the exhaust gas discharge path is detected by the first temperature sensor, and the exhaust gas at the inlet of the second heat exchanger in the exhaust gas discharge path. Is detected by the second temperature sensor, and the supply amounts of the fuel and the combustion air are feedback-controlled by the control device based on the temperatures detected by the first temperature sensor and the second temperature sensor. As a result, the amount of combustion can be adjusted so as not to exceed the heat resistance temperature of the first heat exchanger and the second heat exchanger. In addition to the effects of claims 1 to 4, the first heat exchanger and the second heat exchanger There is an effect that can ensure the durability.

本発明の実施の形態における加熱炉の平面図である。It is a top view of the heating furnace in embodiment of this invention. 図1のII−II線における加熱炉の断面図である。It is sectional drawing of the heating furnace in the II-II line of FIG. 図2のIII−III線における加熱炉の断面図である。It is sectional drawing of the heating furnace in the III-III line of FIG. 図2の矢印IV方向から見た加熱装置の側面図である。It is the side view of the heating apparatus seen from the arrow IV direction of FIG. 図4のV−V線におけるバーナの断面図である。It is sectional drawing of the burner in the VV line | wire of FIG. (a)は制御装置の電気的構成を示したブロック図であり、(b)は空気路および燃料路の部分配管図である。(A) is the block diagram which showed the electrical structure of the control apparatus, (b) is the partial piping figure of an air path and a fuel path.

以下、本発明の好ましい実施の形態について、添付図面を参照して説明する。まず、図1、図2及び図3を参照して、加熱炉1について説明する。図1は本発明の一実施の形態における加熱炉1の平面図であり、図2は図1のII−II線における加熱炉1の断面図であり、図3は図2のIII−III線における加熱炉1の断面図である。なお、図1は第2熱交換器38より下流の排ガス排出路36の図示が省略され、図1及び図3は加熱炉1内部のバーナ31が破線で図示される。図2は、燃焼ガス20の流路方向が二点鎖線の白抜きの矢印で、燃料22の流路方向が二点鎖線の矢印で、燃焼用空気24の流路方向が実線の矢印で、排気ガス26の流路方向が実線の白抜きの矢印で図示される(図4,5も同様である)。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the accompanying drawings. First, the heating furnace 1 will be described with reference to FIGS. 1, 2, and 3. 1 is a plan view of a heating furnace 1 according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of the heating furnace 1 taken along line II-II in FIG. 1, and FIG. 3 is a line III-III in FIG. It is sectional drawing of the heating furnace 1 in. In FIG. 1, the illustration of the exhaust gas discharge path 36 downstream from the second heat exchanger 38 is omitted, and in FIG. 1 and FIG. 3, the burner 31 inside the heating furnace 1 is shown by a broken line. In FIG. 2, the flow direction of the combustion gas 20 is a two-dot chain line, the flow direction of the fuel 22 is a two-dot chain arrow, and the flow direction of the combustion air 24 is a solid line arrow. The flow direction of the exhaust gas 26 is indicated by a solid white arrow (the same applies to FIGS. 4 and 5).

図1及び図2に示すように、加熱炉1は、セラミックファイバ製の耐火物から構成されて下端が塞がれた略円筒状の炉壁2と、炉壁2により囲まれた略円柱状の燃焼空間3に中心軸を合わせて配置される坩堝4と、炉壁2の上端を塞ぐ炉蓋5と、燃焼空間3に向かって先端から燃焼ガス20を噴出するバーナ31を有する加熱装置30とを備えている。坩堝4は、燃焼空間3の中央に配置される坩堝台6上に配置される。   As shown in FIGS. 1 and 2, the heating furnace 1 includes a substantially cylindrical furnace wall 2 made of a ceramic fiber refractory and closed at the lower end, and a substantially columnar shape surrounded by the furnace wall 2. A heating device 30 having a crucible 4 arranged in alignment with the central axis of the combustion space 3, a furnace lid 5 that closes the upper end of the furnace wall 2, and a burner 31 that ejects the combustion gas 20 from the tip toward the combustion space 3. And. The crucible 4 is disposed on a crucible base 6 disposed in the center of the combustion space 3.

炉壁2は、平面視において3つの扇状部分と1つの正方形状部分とをそれぞれ接合して形成される。扇状部分と正方形状部分とをそれぞれ製造してから相互に接合して炉壁2を製造することができるので、炉壁2の製造を容易にできる。なお、3つの扇状部分と1つの正方形状部分とを一体に形成しても良い。   The furnace wall 2 is formed by joining three fan-shaped portions and one square-shaped portion in plan view. Since the furnace wall 2 can be manufactured by manufacturing the fan-shaped part and the square-shaped part and then joining them together, the furnace wall 2 can be easily manufactured. Note that three fan-shaped portions and one square-shaped portion may be integrally formed.

炉壁2は、正方形状部分の下端側に、正方形状部分の外壁面に対して垂直方向に先端を向けてバーナ31が取り付けられるので、バーナ31から噴出する燃焼ガス20が炉壁2の内周面に沿って螺旋状に上昇する。燃焼ガス20が螺旋状に上昇しながら燃焼空間3を加熱することで、坩堝4内の被加熱物が加熱される。燃焼ガス20は、気体燃料である燃料22に燃焼用空気24を混合してバーナ31の点火装置31b(図5参照)により着火させて燃焼させることで発生し、燃焼空間3を加熱した後に排気ガス26となる。   The furnace wall 2 is attached to the lower end side of the square-shaped portion with the burner 31 facing the front end in a direction perpendicular to the outer wall surface of the square-shaped portion, so that the combustion gas 20 ejected from the burner 31 is inside the furnace wall 2. It rises spirally along the circumference. The object to be heated in the crucible 4 is heated by heating the combustion space 3 while the combustion gas 20 rises spirally. The combustion gas 20 is generated by mixing the combustion air 24 with the fuel 22 which is a gaseous fuel and igniting and burning it by the ignition device 31b (see FIG. 5) of the burner 31. After the combustion space 3 is heated, the combustion gas 20 is exhausted. It becomes gas 26.

図2及び図3に示すように、加熱炉1は、燃焼空間3の上端側から炉壁2の径方向外側へ向かって炉壁2の周方向に等間隔に並ぶ複数の第1排ガス路10と、複数の第1排ガス路10に接続されて炉壁2に形成される平面視環状の第2排ガス路12と、第2排ガス路12から下方へ向かって炉壁2に形成される第3排ガス路14とを備え、バーナ31に設けられる排ガス孔31c(図5参照)が第3排ガス路14に開口する。排気ガス26は、燃焼空間3から第1排ガス通路10、第2排ガス路12、第3排ガス路14の順に通って排ガス孔31cに流入する。   As shown in FIGS. 2 and 3, the heating furnace 1 includes a plurality of first exhaust gas passages 10 arranged at equal intervals in the circumferential direction of the furnace wall 2 from the upper end side of the combustion space 3 toward the radially outer side of the furnace wall 2. A second exhaust gas passage 12 that is connected to the plurality of first exhaust gas passages 10 and is formed in the furnace wall 2 in a plan view, and a third gas exhaust gas that is formed in the furnace wall 2 downward from the second exhaust gas passage 12. An exhaust gas hole 31 c (see FIG. 5) provided in the burner 31 is provided in the third exhaust gas channel 14. The exhaust gas 26 flows into the exhaust gas hole 31c from the combustion space 3 through the first exhaust gas passage 10, the second exhaust gas passage 12, and the third exhaust gas passage 14 in this order.

複数の第1排ガス路10は、炉壁2の周方向に等間隔に並んでいるので、炉壁2、燃焼空間3及び坩堝4の温度を周方向に均一に保つことができる。第2排ガス路12は、複数の第1排ガス路10から下方に向かって延設されるので、第1排ガス路10から側方へ向かって第2排ガス路12が延設される場合と比較して加熱炉1の大型化を防止できる。   Since the plurality of first exhaust gas passages 10 are arranged at equal intervals in the circumferential direction of the furnace wall 2, the temperatures of the furnace wall 2, the combustion space 3 and the crucible 4 can be kept uniform in the circumferential direction. Since the second exhaust gas passage 12 extends downward from the plurality of first exhaust gas passages 10, as compared with the case where the second exhaust gas passage 12 extends from the first exhaust gas passage 10 to the side. Thus, the heating furnace 1 can be prevented from being enlarged.

第2排ガス路12は、第1排ガス路10の流路断面積と比較して流路断面積が大きく形成されるので、第1排ガス路10よりも第2排ガス路12の排気ガス26の風速を下げることができる。なお、流路断面積とは流路方向に直交する流路の面積であって、第1排ガス路10の流路断面積は周方向断面の面積であり、第2排ガス路12の流路断面積は径方向断面の面積である。   Since the second exhaust gas passage 12 is formed to have a larger flow passage cross-sectional area than the flow passage cross-sectional area of the first exhaust gas passage 10, the wind speed of the exhaust gas 26 in the second exhaust gas passage 12 than the first exhaust gas passage 10. Can be lowered. The flow path cross-sectional area is the area of the flow path orthogonal to the flow path direction, and the flow path cross-sectional area of the first exhaust gas path 10 is the area of the circumferential cross section. The area is the area of the radial cross section.

第3排ガス路14は、炉壁2の周方向において、第2排ガス路12と接続する位置が複数の第1排ガス路10の間に位置する。炉壁2の周方向において第2排ガス路12と第3排ガス路14との接続位置が第1排ガス路10の位置である場合には、第2排ガス路12と第3排ガス路14との接続位置に位置する第1排ガス路10を通る排気ガス26が支配的に第3排ガス路14へ流入する。即ち、その他の第1排ガス路10から第2排ガス路12を通って第3排ガス路14へ排気ガス26が流入し難くなり、炉壁2、燃焼空間3及び坩堝4の一部が高温になるおそれがある。炉壁2の周方向において第2排ガス路12と第3排ガス路14との接続位置が複数の第1排ガス路10の間に位置することで、炉壁2、燃焼空間3及び坩堝4の一部が高温になることを防止できる。   The position where the third exhaust gas path 14 is connected to the second exhaust gas path 12 is located between the plurality of first exhaust gas paths 10 in the circumferential direction of the furnace wall 2. When the connection position between the second exhaust gas path 12 and the third exhaust gas path 14 is the position of the first exhaust gas path 10 in the circumferential direction of the furnace wall 2, the connection between the second exhaust gas path 12 and the third exhaust gas path 14. The exhaust gas 26 passing through the first exhaust gas passage 10 located at the position predominantly flows into the third exhaust gas passage 14. That is, it becomes difficult for the exhaust gas 26 to flow into the third exhaust gas passage 14 from the other first exhaust gas passages 10 through the second exhaust gas passage 12, and the furnace wall 2, the combustion space 3, and a part of the crucible 4 become high temperature. There is a fear. Since the connection position of the second exhaust gas path 12 and the third exhaust gas path 14 is located between the plurality of first exhaust gas paths 10 in the circumferential direction of the furnace wall 2, one of the furnace wall 2, the combustion space 3, and the crucible 4 The portion can be prevented from becoming hot.

次に、図4及び図5を参照して、加熱装置30について説明する。図4は図2の矢印IV方向から見た加熱装置30の側面図であり、図5は図4のV−V線におけるバーナ31の断面図である。   Next, the heating device 30 will be described with reference to FIGS. 4 and 5. 4 is a side view of the heating device 30 as viewed from the direction of arrow IV in FIG. 2, and FIG. 5 is a cross-sectional view of the burner 31 taken along the line V-V in FIG.

図4に示すように、加熱装置30は、第1熱交換器31a(図5参照)を内蔵するバーナ31と、バーナ31に燃料22を供給する燃料路32と、バーナ31に燃焼用空気24を供給する空気路34と、排気ガス26を排出する排ガス排出路36と、バーナ31(第1熱交換器31a)より上流の空気路34、及び、バーナ31(第1熱交換器31a)より下流の排ガス排出路36に配設される第2熱交換器38とを備えている。第1熱交換器31a及び第2熱交換器38は、空気路34を通る燃焼用空気24と排ガス排出路36を通る排気ガス26との間で熱交換を行うための装置である。   As shown in FIG. 4, the heating device 30 includes a burner 31 containing a first heat exchanger 31 a (see FIG. 5), a fuel passage 32 that supplies fuel 22 to the burner 31, and combustion air 24 to the burner 31. An air passage 34 for supplying exhaust gas, an exhaust gas exhaust passage 36 for exhausting exhaust gas 26, an air passage 34 upstream from the burner 31 (first heat exchanger 31a), and a burner 31 (first heat exchanger 31a). And a second heat exchanger 38 disposed in the downstream exhaust gas discharge path 36. The first heat exchanger 31 a and the second heat exchanger 38 are devices for performing heat exchange between the combustion air 24 passing through the air passage 34 and the exhaust gas 26 passing through the exhaust gas discharge passage 36.

図5に示すように、バーナ31は、内側に燃料路32、空気路34及び排ガス排出路36が延設され、燃料路32及び空気路34から点火装置31bにそれぞれ燃料22と燃焼用空気24とが供給される。バーナ31の先端側には第3排ガス路14に開口する排ガス孔31cが設けられ、排ガス孔31cから排ガス排出路36に排気ガス26が流入する。バーナ31に内蔵される第1熱交換器31aは、空気路34と排ガス排出路36とを隔てる筒状の壁であり、炭化ケイ素から構成される並流型の熱交換器である。   As shown in FIG. 5, the burner 31 has a fuel path 32, an air path 34, and an exhaust gas discharge path 36 extending on the inner side. And are supplied. An exhaust gas hole 31 c that opens to the third exhaust gas passage 14 is provided on the tip side of the burner 31, and the exhaust gas 26 flows into the exhaust gas exhaust passage 36 from the exhaust gas hole 31 c. The first heat exchanger 31a built in the burner 31 is a cylindrical wall that separates the air passage 34 and the exhaust gas discharge passage 36, and is a parallel flow heat exchanger made of silicon carbide.

図4に戻って説明する。第2熱交換器38は、ステンレス鋼板を積層して形成される直交型の熱交換器である。燃料路32は、第2熱交換器38より上流の空気路34と連結路39を介して連結され、連結路39により燃焼用空気24の一部が燃料32に混合される。   Returning to FIG. The second heat exchanger 38 is an orthogonal heat exchanger formed by laminating stainless steel plates. The fuel path 32 is connected to the air path 34 upstream of the second heat exchanger 38 via a connection path 39, and a part of the combustion air 24 is mixed with the fuel 32 through the connection path 39.

空気路34は、第2熱交換器38の入口および出口へ向かうにつれて流路断面積が大きく形成されるので、第2熱交換器より上流および下流の空気路34の風速を確保しつつサイズの大きい第2熱交換器38を用いることができる。燃焼ガス20の風速を確保できると共に第2熱交換器38の伝熱面積を大きくできるので、燃焼ガス20から燃焼空間3への熱伝達率を確保できると共に第2熱交換器38の熱交換率を向上できる。   Since the air passage 34 is formed with a larger cross-sectional area toward the inlet and outlet of the second heat exchanger 38, the air passage 34 has a size while ensuring the wind speed of the air passage 34 upstream and downstream of the second heat exchanger. A large second heat exchanger 38 can be used. Since the wind speed of the combustion gas 20 can be secured and the heat transfer area of the second heat exchanger 38 can be increased, the heat transfer rate from the combustion gas 20 to the combustion space 3 can be secured and the heat exchange rate of the second heat exchanger 38 can be secured. Can be improved.

排ガス排出路36は、排気ガス26を外部に排出する開口部37を備え、開口部37側が下降傾斜する(図2参照)。排ガス排出路36は、第2熱交換器38の入口へ向かうにつれて流路断面積が大きく、且つ、第2熱交換器38の上流と比較して第2熱交換器38の下流の断面積が大きく形成される。よって、開口部37から外部に排出される排気ガス26の風速を下げることができる。   The exhaust gas discharge path 36 includes an opening 37 for discharging the exhaust gas 26 to the outside, and the opening 37 side is inclined downward (see FIG. 2). The exhaust gas discharge path 36 has a flow passage cross-sectional area that increases toward the inlet of the second heat exchanger 38 and has a cross-sectional area downstream of the second heat exchanger 38 as compared with the upstream side of the second heat exchanger 38. Largely formed. Therefore, the wind speed of the exhaust gas 26 discharged to the outside from the opening 37 can be reduced.

炭化ケイ素から構成される第1熱交換器31aは耐熱温度が約1200℃、ステンレス鋼から構成される第2熱交換器38は耐熱温度が約750℃である。加熱装置30は、第1熱交換器31a及び第2熱交換器38の耐熱温度を超えないように排気ガス26の温度を検出し、制御装置50により燃料22及び燃焼用空気24の供給量を調節して燃焼量を調節している。   The first heat exchanger 31a made of silicon carbide has a heat resistant temperature of about 1200 ° C., and the second heat exchanger 38 made of stainless steel has a heat resistant temperature of about 750 ° C. The heating device 30 detects the temperature of the exhaust gas 26 so as not to exceed the heat resistance temperature of the first heat exchanger 31a and the second heat exchanger 38, and the control device 50 controls the supply amount of the fuel 22 and the combustion air 24. The amount of combustion is adjusted to adjust.

次に、図6(a)及び図6(b)を参照して、加熱装置30の制御方法について説明する。図6(a)は制御装置50の電気的構成を示したブロック図であり、図6(b)は空気路34及び燃料路32の部分配管図である。   Next, a method for controlling the heating device 30 will be described with reference to FIGS. 6 (a) and 6 (b). FIG. 6A is a block diagram showing an electrical configuration of the control device 50, and FIG. 6B is a partial piping diagram of the air passage 34 and the fuel passage 32.

図6(a)に示すように、制御装置50は、CPU51、ROM52及びRAM53を備え、それらがバスライン54を介して入出力ポート55に接続されている。また、入出力ポート55には、第1温度センサ61、第2温度センサ62、送風装置63及び電磁弁64が接続されている。   As shown in FIG. 6A, the control device 50 includes a CPU 51, a ROM 52, and a RAM 53, which are connected to an input / output port 55 via a bus line 54. The input / output port 55 is connected to a first temperature sensor 61, a second temperature sensor 62, a blower 63 and an electromagnetic valve 64.

CPU51は、バスライン54により接続された各部を制御する演算装置である。ROM52は、CPU51により実行される制御プログラムや固定値データ等を記憶する書き換え不能な不揮発性のメモリである。RAM53は、制御プログラムの実行時に各種のデータを書き換え可能に記憶するためのメモリである。   The CPU 51 is an arithmetic unit that controls each unit connected by the bus line 54. The ROM 52 is a non-rewritable nonvolatile memory that stores a control program executed by the CPU 51, fixed value data, and the like. The RAM 53 is a memory for storing various data in a rewritable manner when the control program is executed.

第1温度センサ61は、排ガス排出路36における第1熱交換器31aの入口の排気ガス26の温度を検出するためのセンサであり、検出結果を処理してCPU51に送信する出力回路(図示せず)を備えている。第2温度センサ62は、排ガス排出路36における第2熱交換器38の入口の排気ガス26の温度を検出するためのセンサであり、検出結果を処理してCPU51に送信する出力回路(図示せず)を備えている。   The first temperature sensor 61 is a sensor for detecting the temperature of the exhaust gas 26 at the inlet of the first heat exchanger 31 a in the exhaust gas discharge path 36, and an output circuit (not shown) that processes the detection result and transmits it to the CPU 51. )). The second temperature sensor 62 is a sensor for detecting the temperature of the exhaust gas 26 at the inlet of the second heat exchanger 38 in the exhaust gas discharge path 36, and an output circuit (not shown) that processes the detection result and transmits it to the CPU 51. )).

図6(b)に示すように、送風装置63は、モータを駆動させることで燃焼用空気24を空気路34に供給するための装置であり、CPU51からの指示に基づいてモータが駆動制御されて燃焼用空気24の供給量が調整される。電磁弁64は、燃料路32に配設され、電流を流した際に弁が開いて燃料22を供給可能にする装置であり、CPU51からの指示に基づいて弁が開閉される。   As shown in FIG. 6B, the blower 63 is a device for supplying the combustion air 24 to the air passage 34 by driving the motor, and the motor is driven and controlled based on an instruction from the CPU 51. Thus, the supply amount of the combustion air 24 is adjusted. The electromagnetic valve 64 is a device that is disposed in the fuel path 32 and opens the valve when an electric current is passed, so that the fuel 22 can be supplied. The valve is opened and closed based on an instruction from the CPU 51.

元栓65は、電磁弁64より上流の燃料路32に配設され、手動で開閉することにより燃料22を供給可能にするものである。均圧弁66は、電磁弁64より下流の燃料路32に配設され、空気路34の燃焼用空気24の圧力と燃料路32の燃料22の圧力とが略均一になるように弁の開閉状態を調整して燃料22の供給量を調整する装置である。   The main plug 65 is disposed in the fuel passage 32 upstream from the electromagnetic valve 64, and allows the fuel 22 to be supplied by manually opening and closing. The pressure equalizing valve 66 is disposed in the fuel passage 32 downstream of the electromagnetic valve 64, and the valve is opened and closed so that the pressure of the combustion air 24 in the air passage 34 and the pressure of the fuel 22 in the fuel passage 32 are substantially uniform. This is a device for adjusting the supply amount of the fuel 22 by adjusting.

制御装置50は、第1温度センサ61及び第2温度センサ62が検出する温度に基づいて燃焼用空気24の供給量、及び、均圧弁66を介して燃料22の供給量をフィードバック制御(PID制御)する。これにより、第1熱交換器31a及び第2熱交換器38の耐熱温度を超えないように燃焼量を調整できるので、第1熱交換器31a及び第2熱交換器38の耐久性を確保できる。なお、燃料22の供給を止める際には制御装置50により電磁弁64を制御して弁を閉じる。また、制御装置50は、第1温度センサ61及び第2温度センサ62の検出結果に基づいたフィードバック制御とは別に、燃焼空間3が所望の設定温度になるように燃焼用空気24及び燃料22の供給量を制御している。   The control device 50 performs feedback control (PID control) of the supply amount of the combustion air 24 and the supply amount of the fuel 22 via the pressure equalizing valve 66 based on the temperatures detected by the first temperature sensor 61 and the second temperature sensor 62. ) As a result, the combustion amount can be adjusted so as not to exceed the heat resistance temperature of the first heat exchanger 31a and the second heat exchanger 38, so that the durability of the first heat exchanger 31a and the second heat exchanger 38 can be ensured. . When stopping the supply of fuel 22, the control device 50 controls the electromagnetic valve 64 to close the valve. In addition to the feedback control based on the detection results of the first temperature sensor 61 and the second temperature sensor 62, the control device 50 controls the combustion air 24 and the fuel 22 so that the combustion space 3 has a desired set temperature. The supply amount is controlled.

加熱装置30によれば、第1熱交換器31a及び第2熱交換器38により排気ガス26から燃焼用空気24へそれぞれ熱が与えられるので、即ち、2段階の熱交換により燃焼用空気24が加熱されるので、燃費を向上して燃料22の使用量を低減できる。また、第1熱交換器が空気路34の下流側および排ガス排出路36の上流側に配設され、第2熱交換器が空気路34の上流側および排ガス排出路36の下流側に配設されるので、空気路34及び排ガス排出路36それぞれの上流側と下流側とで相互に比較して、高温の燃焼用空気24と高温の排気ガス26との間で第1熱交換器31aにより熱交換をし、低温の燃焼用空気24と低温の排気ガス26との間で第2熱交換器38により熱交換をする。これにより、第1熱交換器31a及び第2熱交換器38における燃焼用空気24と排気ガス26との温度差を小さくできるので、第1熱交換器31a及び第2熱交換器38の耐久性を向上できる。   According to the heating device 30, heat is applied from the exhaust gas 26 to the combustion air 24 by the first heat exchanger 31 a and the second heat exchanger 38, that is, the combustion air 24 is converted into two stages of heat exchange. Since it is heated, the fuel consumption can be improved and the amount of fuel 22 used can be reduced. The first heat exchanger is disposed on the downstream side of the air passage 34 and the upstream side of the exhaust gas discharge passage 36, and the second heat exchanger is disposed on the upstream side of the air passage 34 and the downstream side of the exhaust gas discharge passage 36. Therefore, the upstream side and the downstream side of each of the air passage 34 and the exhaust gas discharge passage 36 are compared with each other by the first heat exchanger 31a between the high-temperature combustion air 24 and the high-temperature exhaust gas 26. Heat exchange is performed, and heat exchange is performed between the low-temperature combustion air 24 and the low-temperature exhaust gas 26 by the second heat exchanger 38. Thereby, since the temperature difference between the combustion air 24 and the exhaust gas 26 in the first heat exchanger 31a and the second heat exchanger 38 can be reduced, the durability of the first heat exchanger 31a and the second heat exchanger 38 is improved. Can be improved.

また、相互に比較して、炭化ケイ素から構成される第1熱交換器31aは耐熱温度が高く、ステンレス鋼から構成される第2熱交換器38は耐熱温度が低い。燃料22の燃焼により高温となるバーナ31の内側を通る排気ガス26の熱は外部に放熱され難いので、バーナ31に内蔵される第1熱交換器31aを通る排気ガス26の温度が高い。耐熱温度が高い第1熱交換器31aをバーナ31に内蔵するので、第1熱交換器31aの耐久性を確保できる。さらに、第1熱交換器31aにより熱が奪われた排気ガス26が通る第2熱交換器38の耐熱温度を低くできるので、第2熱交換器38の構造や材料の自由度を高くできる。第2熱交換器38を熱伝導率の高い材料で構成することができると共に、第2熱交換器38の形状や構造を工夫して熱交換率を向上できるので、第1熱交換器31aと比較して第2熱交換器38の熱交換率を高くできる。これにより、燃費を向上して燃料22の使用量をより低減できる。   Moreover, compared with each other, the first heat exchanger 31a made of silicon carbide has a high heat resistant temperature, and the second heat exchanger 38 made of stainless steel has a low heat resistant temperature. Since the heat of the exhaust gas 26 passing through the inside of the burner 31 that becomes high temperature due to the combustion of the fuel 22 is difficult to dissipate to the outside, the temperature of the exhaust gas 26 passing through the first heat exchanger 31a built in the burner 31 is high. Since the 1st heat exchanger 31a with high heat-resistant temperature is incorporated in the burner 31, durability of the 1st heat exchanger 31a is securable. Furthermore, since the heat resistant temperature of the second heat exchanger 38 through which the exhaust gas 26 deprived of heat by the first heat exchanger 31a can be lowered, the degree of freedom of the structure and material of the second heat exchanger 38 can be increased. The second heat exchanger 38 can be made of a material having a high thermal conductivity, and the shape and structure of the second heat exchanger 38 can be devised to improve the heat exchange rate, so that the first heat exchanger 31a and In comparison, the heat exchange rate of the second heat exchanger 38 can be increased. Thereby, a fuel consumption can be improved and the usage-amount of the fuel 22 can be reduced more.

また、第2熱交換器38より上流の空気路34と燃料路32とを連結する連結路39により燃焼用空気24の一部を燃料22に予め混合することで、燃焼ガス20の温度を下げてNOを低減できる。一方、第2熱交換器38より下流の空気路34と燃料路32とを連結した場合、第2熱交換器38により加熱された燃焼用空気24と燃料22とを混合するので、燃料22が発火するおそれがある。第2熱交換器38より上流の空気路34と燃料路32とを連結路39により連結することで、燃焼用空気24の一部を燃料22に混合した際に燃料22が発火することを防止しつつNOを低減できる。 Further, the temperature of the combustion gas 20 is lowered by premixing a part of the combustion air 24 with the fuel 22 through a connecting passage 39 that connects the air passage 34 upstream of the second heat exchanger 38 and the fuel passage 32. it is possible to reduce the NO X Te. On the other hand, when the air passage 34 and the fuel passage 32 downstream from the second heat exchanger 38 are connected, the combustion air 24 heated by the second heat exchanger 38 and the fuel 22 are mixed, so that the fuel 22 There is a risk of fire. By connecting the air passage 34 upstream of the second heat exchanger 38 and the fuel passage 32 by the connection passage 39, the fuel 22 is prevented from igniting when a part of the combustion air 24 is mixed with the fuel 22. it is possible to reduce the NO X while.

また、第1熱交換器31a及び第2熱交換器38により排気ガス26の熱を奪った結果、排ガス排出路36の開口部37から外部に排出される排気ガス26の温度が露点温度(例えば100℃)を下回ることがある。その場合、排気ガス26中の水分により排ガス排出路36の開口部37側に結露が生じるおそれがある。排ガス排出路36の開口部37側が下降傾斜するので、結露した水分を積極的に回収できる。従って、結露した水分が排ガス排出路36を逆流することを抑制できる。   Further, as a result of depriving the heat of the exhaust gas 26 by the first heat exchanger 31a and the second heat exchanger 38, the temperature of the exhaust gas 26 discharged to the outside from the opening 37 of the exhaust gas discharge path 36 is dew point temperature (for example 100 ° C). In that case, moisture in the exhaust gas 26 may cause condensation on the opening 37 side of the exhaust gas discharge path 36. Since the opening 37 side of the exhaust gas discharge path 36 is inclined downward, the condensed moisture can be actively collected. Therefore, it is possible to suppress the condensed water from flowing back through the exhaust gas discharge path 36.

以上、実施の形態に基づき本発明を説明したが、本発明は上記実施の形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変形が可能であることは容易に推察できるものである。例えば、上記実施の形態では、燃料22が気体燃料である場合について説明したが、必ずしもこれに限られるものではなく、燃料22に液体燃料を採用することは当然可能である。   The present invention has been described above based on the embodiments. However, the present invention is not limited to the above embodiments, and various improvements and modifications can be made without departing from the spirit of the present invention. It can be easily guessed. For example, in the above embodiment, the case where the fuel 22 is a gaseous fuel has been described. However, the present invention is not necessarily limited to this, and it is naturally possible to employ a liquid fuel as the fuel 22.

上記実施の形態では、炉壁2がセラミックファイバ製の耐火物から構成される場合について説明したが、必ずしもこれに限られるものではなく、その他の耐火物を炉壁2に用いることは当然可能である。例えば、アルミナ等のセラミックスやレンガ、コンクリートが挙げられる。   In the above embodiment, the case where the furnace wall 2 is made of a refractory made of ceramic fiber has been described. However, the present invention is not necessarily limited to this, and other refractories can naturally be used for the furnace wall 2. is there. Examples thereof include ceramics such as alumina, bricks, and concrete.

上記実施の形態では、第1熱交換器31aが筒状の炭化ケイ素から構成される並流型の熱交換器であり、第2熱交換器38がステンレス鋼板を積層して形成される直交型の熱交換器である場合について説明したが、必ずしもこれに限られるものではなく、所望の耐熱温度を満足するように構造や材料を適宜変更することが可能である。例えば、向流型の熱交換器や、周期的に流路を切替えて蓄熱と放熱とを行う熱交換器が挙げられる。このとき、第1熱交換器31aと第2熱交換器38とを相互に比較して、第1熱交換器31aの耐熱温度が高く、第2熱交換器38の熱交換率が高ければ良い。   In the above-described embodiment, the first heat exchanger 31a is a co-current type heat exchanger composed of cylindrical silicon carbide, and the second heat exchanger 38 is formed by stacking stainless steel plates. However, the present invention is not necessarily limited to this, and the structure and material can be appropriately changed so as to satisfy a desired heat-resistant temperature. For example, a counter-flow type heat exchanger and a heat exchanger that periodically switches the flow path to store and release heat can be used. At this time, the first heat exchanger 31a and the second heat exchanger 38 are compared with each other as long as the heat-resistant temperature of the first heat exchanger 31a is high and the heat exchange rate of the second heat exchanger 38 is high. .

上記実施の形態では、バーナ31に第1熱交換器31aが内蔵(内側に配設)され、バーナ31の内側に排ガス排出路36を設ける場合について説明したが、必ずしもこれに限られるものではなく、バーナ31の外側に第1熱交換器31aを配設することは当然可能である。また、炉壁2に排ガス排出路36及び第1熱交換器31aを配設することも可能である。高温となるバーナ31又は炉壁2の外側の排ガス排出路36では排気ガス26の熱が外部に放熱され易いので、バーナ31又は炉壁2の外側の排ガス排出路36の下流側では排気ガス26の温度が下がり易い。バーナ31又は炉壁2の内側の排ガス排出路36や、バーナ31又は炉壁2の外側の排ガス排出路36の上流側に第1熱交換器31aを配設すること、即ち、バーナ31又は炉壁2に第1熱交換器31aを配設することで、排気ガス26の熱が外部に放熱されることを抑制して燃費を向上できる。   In the above embodiment, the case where the first heat exchanger 31a is built into the burner 31 (disposed inside) and the exhaust gas discharge path 36 is provided inside the burner 31 has been described, but the present invention is not necessarily limited thereto. Of course, it is possible to arrange the first heat exchanger 31 a outside the burner 31. It is also possible to dispose the exhaust gas discharge path 36 and the first heat exchanger 31 a on the furnace wall 2. Since the heat of the exhaust gas 26 is easily radiated to the outside in the exhaust gas exhaust path 36 outside the burner 31 or the furnace wall 2, the exhaust gas 26 is downstream in the exhaust gas exhaust path 36 outside the burner 31 or the furnace wall 2. The temperature is easy to fall. The first heat exchanger 31a is disposed upstream of the exhaust gas exhaust path 36 inside the burner 31 or the furnace wall 2 and the exhaust gas exhaust path 36 outside the burner 31 or the furnace wall 2, that is, the burner 31 or the furnace. By disposing the first heat exchanger 31a on the wall 2, it is possible to suppress the heat of the exhaust gas 26 from being radiated to the outside and improve the fuel efficiency.

上記実施の形態では、排ガス排出路36の開口部37側を下降傾斜して結露した水分を積極的に回収する場合について説明したが、必ずしもこれに限られるものではなく、排ガス排出路36の開口部37側の内周面に吸湿材料を設けて、結露した水分の逆流を抑制することも可能である。   In the above-described embodiment, the case where the condensed moisture is actively collected by descending and tilting the opening 37 side of the exhaust gas discharge passage 36 is not necessarily limited to this, but the opening of the exhaust gas discharge passage 36 is not necessarily limited thereto. It is also possible to provide a hygroscopic material on the inner peripheral surface on the part 37 side to suppress the backflow of condensed moisture.

上記実施の形態では、制御装置50により均圧弁66を介して燃料22の供給量を制御する場合について説明したが、必ずしもこれに限られるものではなく、制御装置50により直接制御して燃料22の供給量を調整できる弁を均圧弁66の代わりに設けることは当然可能である。   In the above-described embodiment, the case where the control device 50 controls the supply amount of the fuel 22 via the pressure equalizing valve 66 has been described. However, the present invention is not necessarily limited to this. Of course, a valve capable of adjusting the supply amount may be provided instead of the pressure equalizing valve 66.

1 加熱炉
2 炉壁
3 燃焼空間
20 燃焼ガス
22 燃料
24 燃焼用空気
26 排気ガス
30 加熱装置
31 バーナ
31a 第1熱交換器
32 燃料路
34 空気路
36 排ガス排出路
37 開口部
38 第2熱交換器
39 連結路
50 制御装置
61 第1温度センサ
62 第2温度センサ
DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Furnace wall 3 Combustion space 20 Combustion gas 22 Fuel 24 Combustion air 26 Exhaust gas 30 Heating device 31 Burner 31a 1st heat exchanger 32 Fuel path 34 Air path 36 Exhaust gas discharge path 37 Opening part 38 2nd heat exchange 39 Connection 50 Control device 61 First temperature sensor 62 Second temperature sensor

Claims (5)

燃料路を通って供給される燃料を燃焼させた燃焼ガスを加熱炉の炉壁に囲まれた燃焼空間へ向けて噴出するバーナと、
前記燃焼空間を加熱した後の排気ガスを排出する排ガス排出路と、
その排ガス排出路、及び、前記バーナ又は前記炉壁に配設される第1熱交換器と、
その第1熱交換器より下流の前記排ガス排出路に配設される第2熱交換器と、
その第2熱交換器が上流側に、前記第1熱交換器が下流側にそれぞれ配設されて前記バーナに燃焼用空気を供給する空気路とを備えていることを特徴とする加熱装置。
A burner for injecting combustion gas obtained by burning fuel supplied through a fuel path toward a combustion space surrounded by a furnace wall of a heating furnace;
An exhaust gas exhaust passage for exhausting exhaust gas after heating the combustion space;
The exhaust gas discharge path, and a first heat exchanger disposed on the burner or the furnace wall;
A second heat exchanger disposed in the exhaust gas discharge path downstream from the first heat exchanger;
The heating apparatus, wherein the second heat exchanger is provided on the upstream side, and the first heat exchanger is provided on the downstream side, and an air passage for supplying combustion air to the burner.
前記第2熱交換器は、前記第1熱交換器と比較して耐熱温度が低いと共に熱交換率が高いことを特徴とする請求項1記載の加熱装置。   2. The heating apparatus according to claim 1, wherein the second heat exchanger has a lower heat-resistant temperature and a higher heat exchange rate than the first heat exchanger. 前記第2熱交換器より上流の前記空気路と前記燃料路とを連結し、前記燃焼用空気の一部を前記燃料に混合させる連結路を備えていることを特徴とする請求項1又は2に記載の加熱装置。   The said air path upstream from a said 2nd heat exchanger and the said fuel path are connected, The connection path which mixes a part of said combustion air with the said fuel is provided. The heating device according to 1. 前記排ガス排出路は、前記排気ガスを外部に排出する開口部を備え、
前記排ガス排出路の前記開口部側が下降傾斜することを特徴とする請求項1から3のいずれかに記載の加熱装置。
The exhaust gas discharge path includes an opening for discharging the exhaust gas to the outside,
The heating apparatus according to any one of claims 1 to 3, wherein the opening side of the exhaust gas discharge path is inclined downward.
前記排ガス排出路における前記第1熱交換器の入口の前記排気ガスの温度を検出する第1温度センサと、
前記排ガス排出路における前記第2熱交換器の入口の前記排気ガスの温度を検出する第2温度センサと、
前記第1温度センサ及び前記第2温度センサが検出する温度に基づき前記燃料および前記燃焼用空気の供給量をフィードバック制御する制御装置とを備えていることを特徴とする請求項1から4のいずれかに記載の加熱装置。
A first temperature sensor for detecting a temperature of the exhaust gas at an inlet of the first heat exchanger in the exhaust gas discharge path;
A second temperature sensor for detecting the temperature of the exhaust gas at the inlet of the second heat exchanger in the exhaust gas discharge path;
5. The apparatus according to claim 1, further comprising: a control device that feedback-controls a supply amount of the fuel and the combustion air based on temperatures detected by the first temperature sensor and the second temperature sensor. A heating apparatus according to the above.
JP2015045571A 2015-03-09 2015-03-09 Heating device Pending JP2016166683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015045571A JP2016166683A (en) 2015-03-09 2015-03-09 Heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015045571A JP2016166683A (en) 2015-03-09 2015-03-09 Heating device

Publications (1)

Publication Number Publication Date
JP2016166683A true JP2016166683A (en) 2016-09-15

Family

ID=56898250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015045571A Pending JP2016166683A (en) 2015-03-09 2015-03-09 Heating device

Country Status (1)

Country Link
JP (1) JP2016166683A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3361156A1 (en) 2017-02-08 2018-08-15 Toyota Jidosha Kabushiki Kaisha Hydrogen gas burner device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005326123A (en) * 2004-05-17 2005-11-24 Toho Gas Co Ltd Radiant tube burner
JP2007010300A (en) * 2005-07-04 2007-01-18 Noritz Corp Gas supply and exhaust structure
JP2009168309A (en) * 2008-01-15 2009-07-30 Shoei Seisakusho:Kk Industrial burner
JP2011021779A (en) * 2009-07-14 2011-02-03 Katsura Seiki Seisakusho:Kk Direct combustion type deodorization furnace
JP2011185458A (en) * 2010-03-04 2011-09-22 Yokoi Kikai Kosakusho:Kk Burner
JP2012112551A (en) * 2010-11-22 2012-06-14 Ihi Corp Coal and biomass co-combustion apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005326123A (en) * 2004-05-17 2005-11-24 Toho Gas Co Ltd Radiant tube burner
JP2007010300A (en) * 2005-07-04 2007-01-18 Noritz Corp Gas supply and exhaust structure
JP2009168309A (en) * 2008-01-15 2009-07-30 Shoei Seisakusho:Kk Industrial burner
JP2011021779A (en) * 2009-07-14 2011-02-03 Katsura Seiki Seisakusho:Kk Direct combustion type deodorization furnace
JP2011185458A (en) * 2010-03-04 2011-09-22 Yokoi Kikai Kosakusho:Kk Burner
JP2012112551A (en) * 2010-11-22 2012-06-14 Ihi Corp Coal and biomass co-combustion apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3361156A1 (en) 2017-02-08 2018-08-15 Toyota Jidosha Kabushiki Kaisha Hydrogen gas burner device
US10746404B2 (en) 2017-02-08 2020-08-18 Toyota Jidosha Kabushiki Kaisha Hydrogen gas burner device

Similar Documents

Publication Publication Date Title
CN107075379B (en) Coke ovens with improved exhaust gas delivery in the secondary heating chamber
KR101065667B1 (en) Method and appararus to facilitate flameless combustion absent catalyst or high temperature oxident
TWI588416B (en) Selective oxy-fuel boost burner system and method for a regenerative furnace
JP5049093B2 (en) Laura Heartilkin
SE531957C2 (en) Method for launching oxygen in an industrial furnace with conventional burner
JPWO2015041037A1 (en) Catalytic heat storage combustion equipment
KR20120101531A (en) Burner uint for steel making facilities
EP2857780A1 (en) Firing kiln for ceramic products and the like
JP4662927B2 (en) A method of firing a mass to be fired in a regenerative furnace
JP2016166683A (en) Heating device
KR101313533B1 (en) Wood pellet boiler combustion apparatus of bottom feeding type
JP5398686B2 (en) heating furnace
JP4583256B2 (en) Heat treatment furnace
CN107448960A (en) A kind of VOC exhaust-gas efficient purification furnaces for being conveniently replaceable heating wire
JP6226181B2 (en) Combustion device and hot water device provided with the same
JP2009046536A (en) Method for adjusting temperature distribution of coke oven
JP4938630B2 (en) Thermal storage combustion device
JP4445222B2 (en) Reactor combustion control method and reactor
JP5141950B2 (en) Fluidized bed heat treatment furnace and control method thereof
KR101180241B1 (en) Melting furnace
JP2010071582A (en) Method of providing regenerative burner as burner of heating furnace
TWI751217B (en) Regenerative burner device
JP6382372B2 (en) Melting and holding furnace and lid for melting and holding furnace
JP5007100B2 (en) Crucible furnace
JP2008195902A (en) Method and apparatus for combustion of coke oven

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190402