JP2016166659A - Constant velocity joint - Google Patents

Constant velocity joint Download PDF

Info

Publication number
JP2016166659A
JP2016166659A JP2015047128A JP2015047128A JP2016166659A JP 2016166659 A JP2016166659 A JP 2016166659A JP 2015047128 A JP2015047128 A JP 2015047128A JP 2015047128 A JP2015047128 A JP 2015047128A JP 2016166659 A JP2016166659 A JP 2016166659A
Authority
JP
Japan
Prior art keywords
raceway groove
heat treatment
rolling
groove
rolling element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015047128A
Other languages
Japanese (ja)
Inventor
知弘 西田
Tomohiro Nishida
知弘 西田
鈴木 聡
Satoshi Suzuki
聡 鈴木
大江 賢次
Kenji Oe
賢次 大江
島田 正幸
Masayuki Shimada
正幸 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2015047128A priority Critical patent/JP2016166659A/en
Publication of JP2016166659A publication Critical patent/JP2016166659A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/202Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
    • F16D3/205Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part
    • F16D3/2055Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part having three pins, i.e. true tripod joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/202Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
    • F16D2003/2023Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints with linear rolling bearings between raceway and trunnion mounted shoes

Abstract

PROBLEM TO BE SOLVED: To provide a constant velocity joint capable of suppressing the generation of large stress, in a contacting part between a rolling body and a side surface of a track groove.SOLUTION: A constant velocity joint is equipped with an outside joint member 10 performing thermal processing on side surfaces 16b and 16c of a track groove 16; an inside joint member 20 equipped with a plurality of leg shafts; and a rolling body 32 rolling on the side surfaces of the track groove. A rolling surface of the rolling body and at least one of the side surfaces of the track groove after the heat processing, are formed so as to have convex center portions, and the rolling surface and the side surfaces of the track groove after the heat processing are contacted at center portions a.SELECTED DRAWING: Figure 3

Description

本発明は、回転軸線方向の伸縮を許容するスライド式の等速ジョイントに関する。   The present invention relates to a slidable constant velocity joint that allows expansion and contraction in a rotation axis direction.

従来、スライド式の等速ジョイントとして、トリポード型等速ジョイントがある。トリポード型等速ジョイントは、内側ジョイント部材(トリポード)に設けられた3本の脚軸に転動体ユニットがそれぞれ支持され、転動体が外側ジョイント部材(外輪)の内周面に形成された各軌道溝の側面を転動して内側ジョイント部材を回転軸線方向に移動可能としている。このような等速ジョイントでは、転動体が転動する軌道溝の側面の硬度を一定以上確保するため、外側ジョイント部材に熱処理を施している。しかし、この熱処理によって、外側ジョイント部材が意図せぬ形状に歪んでしまい等速ジョイントとしての性能や耐久性の低下といった課題が発生する場合がある。   Conventionally, there is a tripod type constant velocity joint as a sliding type constant velocity joint. The tripod type constant velocity joint has rolling element units supported by three leg shafts provided on the inner joint member (tripod), and the rolling elements are formed on the inner peripheral surface of the outer joint member (outer ring). The inner joint member can be moved in the rotation axis direction by rolling the side surface of the groove. In such a constant velocity joint, the outer joint member is heat-treated in order to ensure a certain level of hardness of the side surface of the raceway groove on which the rolling elements roll. However, due to this heat treatment, the outer joint member may be distorted into an unintended shape, and problems such as deterioration in performance and durability as a constant velocity joint may occur.

この対策のため、例えば、特許文献1に記載される等速ジョイントでは、熱処理後に外側ジョイント部材の軸線方向において湾曲してしまう軌道溝を、熱処理前において所定の歪んだ形状としておく。これにより、熱処理によって軌道溝を意図的に歪ませ所望の形状を得ると記載されている。また、特許文献2に記載される等速ジョイントでは、外側ジョイント部材の軸線方向において湾曲してしまう軌道溝に対し、所定の条件によって積極的に焼き入れを実施する。これにより、軌道溝を意図的に歪ませ所望の形状を得ると記載されている。また、特許文献3,4にも、ニードルである転動体が内側部材の外周を循環し、当該転動体が外側ジョイント部材の軌道溝の側面を転動する等速ジョイントが記載されている。   For this countermeasure, for example, in the constant velocity joint described in Patent Document 1, the raceway groove that is curved in the axial direction of the outer joint member after the heat treatment is formed in a predetermined distorted shape before the heat treatment. Accordingly, it is described that the raceway groove is intentionally distorted by heat treatment to obtain a desired shape. Further, in the constant velocity joint described in Patent Document 2, the raceway groove that is curved in the axial direction of the outer joint member is positively quenched according to predetermined conditions. This describes that the raceway groove is intentionally distorted to obtain a desired shape. Patent Documents 3 and 4 also describe a constant velocity joint in which a rolling element as a needle circulates around the outer periphery of the inner member, and the rolling element rolls on the side surface of the raceway groove of the outer joint member.

特開2005−180495号公報JP 2005-180495 A 特開平3−292418号公報JP-A-3-292418 特開平3−144118号公報Japanese Patent Laid-Open No. 3-144118 特開2011−58514号公報JP2011-58514A

ところで、特許文献3,4に記載の等速ジョイントにおいては、仮にニードルである転動体の端部付近が軌道溝の側面に接触すると、軌道溝の側面の接触部位に生じる応力が大きくなる。そこで、軌道溝の側面の形状は、転動体の外周面に応じた形状に成形される。しかし、前述したように外側ジョイント部材には熱処理を施すため、仮に熱処理前の形状を所望の形状に成形したとしても、熱処理後の形状によっては上記の問題が生じるおそれがある。そこで、外側ジョイント部材の厚みを厚くすることで、外側ジョイント部材が大きな応力に耐えることができるようにしている。なお、特許文献1,2には、軌道溝の側面と転動体との形状の関係について何ら記載されていない。   By the way, in the constant velocity joints described in Patent Documents 3 and 4, if the vicinity of the end of the rolling element, which is a needle, contacts the side surface of the raceway groove, the stress generated at the contact portion on the side surface of the raceway groove increases. Therefore, the shape of the side surface of the raceway groove is formed into a shape corresponding to the outer peripheral surface of the rolling element. However, since the outer joint member is subjected to heat treatment as described above, even if the shape before the heat treatment is formed into a desired shape, the above problem may occur depending on the shape after the heat treatment. Therefore, by increasing the thickness of the outer joint member, the outer joint member can withstand a large stress. Note that Patent Documents 1 and 2 do not describe any relationship between the shape of the side surface of the raceway groove and the rolling element.

本発明は、上記事情に鑑みてなされたものであり、転動体と軌道溝の側面との接触部位において、大きな応力が生じることを抑制することができる等速ジョイントを提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the constant velocity joint which can suppress that big stress arises in the contact part of a rolling element and the side surface of a track groove. .

上記課題を解決するため、請求項1に係る等速ジョイントは、筒状に形成されて内周面に複数の軌道溝が形成され、少なくとも前記軌道溝の側面に熱処理が施される外側ジョイント部材と、径方向外方に突出する複数の脚軸を備える内側ジョイント部材と、脚軸の外周面と前記軌道溝の側面との間に介在し、前記軌道溝の側面を転動する転動体と、を備え、前記転動体の前記転動面と熱処理後における前記軌道溝の前記側面の少なくとも一方は、前記軌道溝の溝深さ方向の中央部を凸形状に形成され、前記転動体の前記転動面と前記熱処理後における前記軌道溝の前記側面とは、前記中央部で接触する。   In order to solve the above-described problem, the constant velocity joint according to claim 1 is an outer joint member that is formed in a cylindrical shape and has a plurality of raceway grooves formed on an inner peripheral surface, and heat treatment is performed on at least a side surface of the raceway groove. And an inner joint member having a plurality of leg shafts projecting radially outward, a rolling element interposed between the outer peripheral surface of the leg shaft and the side surface of the raceway groove, and rolling on the side surface of the raceway groove, And at least one of the rolling surface of the rolling element and the side surface of the raceway groove after heat treatment is formed in a convex shape at the center in the groove depth direction of the raceway groove, The rolling surface and the side surface of the raceway groove after the heat treatment are in contact with each other at the central portion.

これにより、軌道溝の熱処理後において、転動体の転動面と軌道溝の側面とが、軌道溝の溝深さ方向の中央部において接触する。このため、転動体の転動面と軌道溝の側面とが、転動体の両端部で接触することがない。つまり、転動体の転動面と軌道溝の側面との接触部位において、大きな応力が生じることを抑制することができる。従って、転動体及び軌道溝の耐久性が低下する虞れはない。なお、このとき、熱処理前においては、熱処理によるひずみを考慮して、凸形状を熱処理後における凸形状より少し大きく形成しておけばよい。つまり、凸形状を、熱処理において変形する方向とは反対の方向に、熱処理により変形する量よりも少し大きく形成しておけばよい。この凸形状は、型によって容易に製作可能である。このため、余分なコストはかからず低コストに対応できる。   Thereby, after heat processing of a raceway groove, the rolling surface of a rolling element and the side surface of a raceway groove contact in the center part of the groove depth direction of a raceway groove. For this reason, the rolling surface of the rolling element and the side surface of the raceway groove do not contact at both ends of the rolling element. That is, it is possible to suppress a large stress from being generated at the contact portion between the rolling surface of the rolling element and the side surface of the raceway groove. Therefore, there is no possibility that the durability of the rolling elements and the raceway grooves is lowered. At this time, before the heat treatment, the convex shape may be formed slightly larger than the convex shape after the heat treatment in consideration of distortion caused by the heat treatment. That is, the convex shape may be formed in a direction opposite to the direction of deformation in the heat treatment and slightly larger than the amount deformed by the heat treatment. This convex shape can be easily manufactured by a mold. For this reason, no extra cost is incurred and it is possible to cope with a low cost.

上記課題を解決するため、請求項3に係る等速ジョイントは、筒状に形成されて内周面に複数の軌道溝が形成され、少なくとも前記軌道溝の側面に熱処理が施される外側ジョイント部材と、径方向外方に突出する複数の脚軸を備える内側ジョイント部材と、前記脚軸の外周面と前記軌道溝の側面との間に介在し、前記軌道溝の側面を転動する転動体と、を備え、熱処理前における前記軌道溝の前記側面は、前記軌道溝の溝深さ方向の中央部を凸形状に形成され、前記転動体の前記転動面及び前記熱処理後における前記軌道溝の前記側面は、前記軌道溝の溝深さ方向の中央部を凸形状に形成され、又は、前記軌道溝の溝深さ方向に平行に形成される。   In order to solve the above-mentioned problem, the constant velocity joint according to claim 3 is an outer joint member which is formed in a cylindrical shape and has a plurality of raceway grooves formed on the inner peripheral surface, and at least a side surface of the raceway groove is subjected to heat treatment. An inner joint member having a plurality of leg shafts projecting radially outward, and a rolling element that is interposed between the outer peripheral surface of the leg shaft and the side surface of the raceway groove and rolls on the side surface of the raceway groove. And the side surface of the raceway groove before heat treatment is formed in a convex shape at the center in the groove depth direction of the raceway groove, the rolling surface of the rolling element and the raceway groove after the heat treatment The side surface is formed in a convex shape at the center in the groove depth direction of the track groove, or is formed in parallel with the groove depth direction of the track groove.

これにより、軌道溝の熱処理前において側面の中央部を凸形状に形成された軌道溝が、熱処理後において、中央部を凸形状に形成された転動体の転動面と、軌道溝の溝深さ方向の中央部で接触する。又は、ともに軌道溝の溝深さ方向に平行に形成された軌道溝の側面と転動体の転動面とが全面同士で接触する。このため、転動体の転動面と軌道溝の側面とが、転動体の両端部で接触することがない。つまり、転動体の転動面と軌道溝の側面との接触部位において、大きな応力が生じることを抑制することができる。従って、転動体及び軌道溝の耐久性が低下する虞れはない。なお、熱処理前においては、熱処理によるひずみを考慮して、凸形状を熱処理後における凸形状または平面より少し大きく形成しておけばよい。この凸形状は、型によって容易に製作できる形状である。このため、余分なコストはかからず低コストに対応できる。   As a result, the raceway groove formed in a convex shape in the central portion of the side surface before the heat treatment of the raceway groove, the rolling surface of the rolling element formed in the convex shape in the central portion after the heat treatment, and the groove depth of the raceway groove. Contact at the center in the vertical direction. Alternatively, both the side surfaces of the raceway grooves formed in parallel to the groove depth direction of the raceway grooves and the rolling surfaces of the rolling elements are in contact with each other. For this reason, the rolling surface of the rolling element and the side surface of the raceway groove do not contact at both ends of the rolling element. That is, it is possible to suppress a large stress from being generated at the contact portion between the rolling surface of the rolling element and the side surface of the raceway groove. Therefore, there is no possibility that the durability of the rolling elements and the raceway grooves is lowered. Before the heat treatment, the convex shape may be formed slightly larger than the convex shape or the plane after the heat treatment in consideration of the strain due to the heat treatment. This convex shape is a shape that can be easily manufactured by a mold. For this reason, no extra cost is incurred and it is possible to cope with a low cost.

等速ジョイントの斜視図であり、外側ジョイント部材を軸方向に切断した状態の斜視図である。It is a perspective view of a constant velocity joint, and is a perspective view of the state where the outside joint member was cut in the axial direction. シャフトのジョイント角が0degの状態における、回転軸線と直交する断面図である。It is sectional drawing orthogonal to a rotating shaft line in the state whose joint angle of a shaft is 0 deg. 図2のB部の拡大図である。It is an enlarged view of the B section of FIG. 転動体ユニットの上面図である。It is a top view of a rolling element unit. 内側部材の上面図である。It is a top view of an inner member. 図5の6−6矢視断面拡大図である。FIG. 6 is an enlarged cross-sectional view taken along arrow 6-6 in FIG. 5. 保持器の上面図である。It is a top view of a holder | retainer. 転動体の転動面と軌道溝の側面とが軌道溝の溝深さ方向に対して平行な面同士で当接したときの接触面圧を説明する図である。It is a figure explaining the contact surface pressure when the rolling surface of a rolling element and the side surface of a raceway groove contact | abut on surfaces parallel to the groove depth direction of a raceway groove. 転動体の転動面が軌道溝の溝深さ方向に対して平行な面であり、軌道溝の側面が軌道溝の溝深さ方向に対して凹形状である場合における、転動面と軌道溝の側面との接触面圧を説明する図である。When the rolling surface of the rolling element is parallel to the groove depth direction of the raceway groove and the side surface of the raceway groove is concave with respect to the groove depth direction of the raceway groove, the rolling surface and the raceway It is a figure explaining the contact surface pressure with the side surface of a groove | channel. 転動体の転動面が軌道溝の溝深さ方向に対して平行な面であり、軌道溝の側面が軌道溝の溝深さ方向に対して凸形状である場合における、転動面と軌道溝の側面との接触面圧を説明する図である。When the rolling surface of the rolling element is a surface parallel to the groove depth direction of the raceway groove and the side surface of the raceway groove has a convex shape with respect to the groove depth direction of the raceway groove, the rolling surface and the raceway It is a figure explaining the contact surface pressure with the side surface of a groove | channel. 変形例1について説明する図である。It is a figure explaining the modification 1. FIG. 変形例2について説明する図である。It is a figure explaining the modification 2. FIG.

(1.概要)
以下、本発明の等速ジョイントの一例であるトリポード型等速ジョイント(以下、単に「等速ジョイント」と称する)を具体化した実施形態について図1〜図10を参照しつつ説明する。ここで、本実施形態の等速ジョイント1は、車両の動力伝達シャフトの連結に用いる場合を例に挙げて説明する。その場合とは、例えば、ディファレンシャルギヤに連結された軸部とドライブシャフトの中間シャフトとの連結部位に用いる場合である。
(1. Overview)
Hereinafter, an embodiment embodying a tripod type constant velocity joint (hereinafter simply referred to as “constant velocity joint”) which is an example of the constant velocity joint of the present invention will be described with reference to FIGS. Here, the case where the constant velocity joint 1 of this embodiment is used for connection of a power transmission shaft of a vehicle will be described as an example. The case is, for example, a case where the shaft portion connected to the differential gear is used as a connecting portion between the intermediate shaft of the drive shaft.

(2.等速ジョイント1の構成)
図1,図2に示すように、等速ジョイント1は、外側ジョイント部材10と、内側ジョイント部材20と、転動体ユニット30と、を備える。図1は、2点鎖線で描くシャフト2の回転軸が、外側ジョイント部材10の回転軸線に対して所定のジョイント角θだけ傾動した状態を示している。また、図2は、ジョイント角θが0degの状態において、外側ジョイント部材10の回転軸線と直交し、且つ後述する内側ジョイント部材20が有する脚軸22の軸線を通る面で切断した、外側ジョイント部材10の開口側から見た断面の一部を示している。なお、以降の説明において、特別な断りなく回転軸線といった場合、外側ジョイント部材10の回転軸線のことをいうものとする。
(2. Configuration of constant velocity joint 1)
As shown in FIGS. 1 and 2, the constant velocity joint 1 includes an outer joint member 10, an inner joint member 20, and a rolling element unit 30. FIG. 1 shows a state in which the rotation axis of the shaft 2 drawn by a two-dot chain line is tilted by a predetermined joint angle θ with respect to the rotation axis of the outer joint member 10. 2 shows an outer joint member cut at a plane orthogonal to the rotational axis of the outer joint member 10 and passing through the axis of the leg shaft 22 of the inner joint member 20 described later when the joint angle θ is 0 deg. 10 shows a part of a cross section as viewed from the opening side of 10. In the following description, the term “rotation axis” refers to the rotation axis of the outer joint member 10 without special notice.

外側ジョイント部材10は、有底の筒状に形成され、図1において、外側ジョイント部材10のA側(底側)がディファレンシャルギヤ(図示せず)に連結される。外側ジョイント部材10の筒状部分の内周面には、外側ジョイント部材10の回転軸線方向に延在する軌道溝16が、周方向に等間隔に3本(複数に相当)形成される(なお、図1には、2本のみ図示してあり、もう1本は図示省略してある)。また、本実施形態において外側ジョイント部材10の外形形状は図2、図3に示すとおりとする。つまり、軌道溝16の径方向外方の肉厚をほぼ均一にした形状とする。   The outer joint member 10 is formed in a bottomed cylindrical shape, and in FIG. 1, the A side (bottom side) of the outer joint member 10 is connected to a differential gear (not shown). On the inner peripheral surface of the cylindrical portion of the outer joint member 10, three (corresponding to a plurality) track grooves 16 extending in the rotation axis direction of the outer joint member 10 are formed at equal intervals in the circumferential direction (note that it corresponds to a plurality of tracks). In FIG. 1, only two are shown, and the other is omitted). In the present embodiment, the outer shape of the outer joint member 10 is as shown in FIGS. In other words, the outer circumferential thickness of the raceway groove 16 is made substantially uniform.

各軌道溝16における回転軸線方向に直交する断面の形状は、図2に示すとおりであり、概ね、外側ジョイント部材10の回転軸線中心に向かって開口するコの字形をなしている。図2に示すように、各軌道溝16の底面16aは、ほぼ平面状に形成されている。また、図2、図3に示すように、底面16aに直交する側面16b、16c(本発明の一方の面に相当する)は、軌道溝16の溝深さ方向における中央部aが、対向する側面16c,16bに向かってそれぞれ凸形状に突設して形成されている。ここで、底面16aに直交する側面16b、16cの、軌道溝16の溝深さ方向における中央部aとは、回転軸線に対して直交し、かつ平面状の底面16aに対して直交する方向における側面16b、16cの中央部を示している。なお、このときの側面16b、16cは、熱処理(後に詳述する)後における側面である。   The cross-sectional shape of each raceway groove 16 that is orthogonal to the direction of the rotational axis is as shown in FIG. 2, and generally has a U shape that opens toward the center of the rotational axis of the outer joint member 10. As shown in FIG. 2, the bottom surface 16a of each raceway groove 16 is formed in a substantially planar shape. As shown in FIGS. 2 and 3, side surfaces 16b and 16c (corresponding to one surface of the present invention) orthogonal to the bottom surface 16a are opposed to the central portion a in the groove depth direction of the raceway groove 16. The projections are formed so as to protrude toward the side surfaces 16c and 16b. Here, the central portion a in the groove depth direction of the raceway groove 16 of the side surfaces 16b, 16c orthogonal to the bottom surface 16a is orthogonal to the rotation axis and in a direction orthogonal to the planar bottom surface 16a. The center part of the side surfaces 16b and 16c is shown. In addition, the side surfaces 16b and 16c at this time are side surfaces after heat treatment (described in detail later).

図1に示すように、内側ジョイント部材20は、外側ジョイント部材10の内側に配置される。内側ジョイント部材20は、外側ジョイント部材10に対して、回転軸線方向に移動可能であると共に、傾動可能である。また、内側ジョイント部材20は、シャフト2に一体的に連結される。内側ジョイント部材20は、シャフト2に連結される円筒形のボス部21と、3本(複数に相当)の脚軸22とを備える。   As shown in FIG. 1, the inner joint member 20 is disposed inside the outer joint member 10. The inner joint member 20 can move with respect to the outer joint member 10 in the direction of the rotation axis and can tilt. Further, the inner joint member 20 is integrally connected to the shaft 2. The inner joint member 20 includes a cylindrical boss portion 21 connected to the shaft 2 and three (corresponding to a plurality) leg shafts 22.

3本の脚軸22は、ボス部21の円筒外周面からそれぞれボス部21の径方向外方に向かって突出される(図2には、一本の脚軸22のみ示す)。これらの脚軸22は、ボス部21の周方向に等間隔(120deg間隔)に形成される。各脚軸22は、外周面が球面凸状に形成された球面凸状部22aと、球面凸状部22aのボス部21側に形成された根元首部22bとを備える。そして、脚軸22の球面凸状部22aの先端部は、外側ジョイント部材10のそれぞれの軌道溝16内に挿入される。   The three leg shafts 22 protrude from the cylindrical outer peripheral surface of the boss portion 21 outward in the radial direction of the boss portion 21 (only one leg shaft 22 is shown in FIG. 2). These leg shafts 22 are formed at equal intervals (120 deg intervals) in the circumferential direction of the boss portion 21. Each leg shaft 22 includes a spherical convex portion 22a having an outer peripheral surface formed into a spherical convex shape, and a root neck portion 22b formed on the boss portion 21 side of the spherical convex portion 22a. And the front-end | tip part of the spherical convex part 22a of the leg axis | shaft 22 is inserted in each track groove 16 of the outer joint member 10. FIG.

図1に示す3つの転動体ユニット30は、各脚軸22の外周面に支持され、各軌道溝16の開口から軌道溝16内に挿入され、軌道溝16の側面16b、16cを転動する。図4に示すように、転動体ユニット30は、全体形状としては矩形環状である。各転動体ユニット30は、各脚軸22の軸線周りに回転可能であり、各脚軸22の軸線方向に移動可能であり、且つ各脚軸22の軸線に対して傾動可能に支持される。そして、各転動体ユニット30は、脚軸22に対して等速ジョイント1の回転方向で係合される。このようにして、各転動体ユニット30は、各脚軸22と外側ジョイント部材10との間で回転駆動力を伝達する。   The three rolling element units 30 shown in FIG. 1 are supported on the outer peripheral surface of each leg shaft 22, inserted into the raceway groove 16 from the opening of each raceway groove 16, and roll on the side surfaces 16 b and 16 c of the raceway groove 16. . As shown in FIG. 4, the rolling element unit 30 has a rectangular ring shape as a whole. Each rolling element unit 30 is rotatable around the axis of each leg shaft 22, is movable in the axial direction of each leg shaft 22, and is supported so as to be tiltable with respect to the axis of each leg shaft 22. Each rolling element unit 30 is engaged with the leg shaft 22 in the rotation direction of the constant velocity joint 1. In this way, each rolling element unit 30 transmits a rotational driving force between each leg shaft 22 and the outer joint member 10.

図2、図3、図4に示すように、転動体ユニット30は、軌道溝16を転動する複数の転動体32と、転動体32と脚軸22との間に介在する内側部材31と、2個の保持器33,33と、2個の止め輪34,34と、を備える(図2、図4参照)。転動体32は、脚軸22の外周面に配置された内側部材31と軌道溝16の側面16b,16cとの間に介在し、軌道溝16の側面16b,16cを転動する。なお、本実施形態では、転動体32は、軸状の転動体である。   As shown in FIGS. 2, 3, and 4, the rolling element unit 30 includes a plurality of rolling elements 32 that roll on the raceway groove 16, and an inner member 31 that is interposed between the rolling elements 32 and the leg shaft 22. Two retainers 33 and 33 and two retaining rings 34 and 34 are provided (see FIGS. 2 and 4). The rolling element 32 is interposed between the inner member 31 disposed on the outer peripheral surface of the leg shaft 22 and the side surfaces 16 b and 16 c of the raceway groove 16, and rolls on the side surfaces 16 b and 16 c of the raceway groove 16. In the present embodiment, the rolling element 32 is an axial rolling element.

図2、図5に示すように、内側部材31の外形形状は、直方体状に形成される。また、内側部材31は、両端面31a,31b間を貫通する貫通孔31gを備えて環状に形成される。内側部材31の素材は、例えば冷間鍛造によって成形される。そして、内側部材31の素材に対して必要な部分のみに加工を加え、内側部材31が形成される。   As shown in FIGS. 2 and 5, the outer shape of the inner member 31 is formed in a rectangular parallelepiped shape. The inner member 31 is formed in an annular shape with a through hole 31g penetrating between both end faces 31a and 31b. The material of the inner member 31 is formed by cold forging, for example. The inner member 31 is formed by processing only the necessary portions of the material of the inner member 31.

詳細には、内側部材31は、両端面31a,31bと、各側面31c〜31fと、貫通孔31gと、を有する。両端面31a,31bは、内側部材31が脚軸22に組付けられた状態において、脚軸22の軸線方向で背向する1対の平面である。また、各側面31c〜31fによって、背向する2対の平面が形成される。   Specifically, the inner member 31 has both end surfaces 31a and 31b, side surfaces 31c to 31f, and a through hole 31g. Both end surfaces 31 a and 31 b are a pair of planes facing away from each other in the axial direction of the leg shaft 22 in a state where the inner member 31 is assembled to the leg shaft 22. Moreover, two pairs of planes facing away are formed by the side surfaces 31c to 31f.

内側部材31が有する各側面31c〜31fのうち隣接する側面同士は、それぞれ任意の大きさのRで接続される。図2、図5に示すように、貫通孔31gは、両端面31a,31bの中央部に両端面31a,31b間を貫通して設けられる。貫通孔31gには、脚軸22の球面凸状部22aが挿入される。これにより、内側部材31の貫通孔31gの軸線は、脚軸22の軸線に対して傾動可能となる。このとき、上述した各脚軸22が、内側部材31に対して所定のジョイント角θだけ傾動したとき、脚軸22又はボス部21が内側部材31と接触しないよう各テーパ面31h,31iが設けられる。テーパ面31h,31iは、脚軸22又はボス部21と内側部材31との干渉が防止可能なように任意に設定すればよい。なお、以降において、特別な説明がなく内側部材31の軸線とのみいった場合には、内側部材31の貫通孔31gの軸線のことをいう。   Adjacent side surfaces of the side surfaces 31c to 31f of the inner member 31 are connected to each other with an R of an arbitrary size. As shown in FIGS. 2 and 5, the through hole 31g is provided in the central portion of the both end surfaces 31a and 31b so as to penetrate between the both end surfaces 31a and 31b. The spherical convex portion 22a of the leg shaft 22 is inserted into the through hole 31g. Thereby, the axis of the through hole 31 g of the inner member 31 can be tilted with respect to the axis of the leg shaft 22. At this time, the tapered surfaces 31h and 31i are provided so that the leg shaft 22 or the boss portion 21 does not come into contact with the inner member 31 when each of the leg shafts 22 tilts by a predetermined joint angle θ with respect to the inner member 31. It is done. The tapered surfaces 31h and 31i may be arbitrarily set so that interference between the leg shaft 22 or the boss portion 21 and the inner member 31 can be prevented. In the following, when there is no special description and only the axis of the inner member 31 is used, it means the axis of the through hole 31g of the inner member 31.

図5に示すように、内側部材31は、非円筒状の外周面を有する被嵌合部35と、止め輪34が嵌合される円弧溝36と、を備える。被嵌合部35は、内側部材円弧部35aと平面部35bとを有している。   As shown in FIG. 5, the inner member 31 includes a fitted portion 35 having a non-cylindrical outer peripheral surface, and an arc groove 36 into which the retaining ring 34 is fitted. The fitted portion 35 has an inner member arc portion 35a and a flat portion 35b.

内側部材円弧部35aは、内側部材31の貫通孔31gの軸線を中心に形成された円弧面である。つまり、内側部材円弧部35aは、貫通孔31gの軸線周りに所定の直径φD1で、両端面31a,31b側からそれぞれ所定の深さd1で形成される外周面である(図6、断面図参照)。   The inner member arc portion 35 a is an arc surface formed around the axis of the through hole 31 g of the inner member 31. In other words, the inner member arc portion 35a is an outer peripheral surface having a predetermined diameter φD1 around the axis of the through hole 31g and a predetermined depth d1 from both end surfaces 31a and 31b (see FIG. 6 and cross-sectional view). ).

図5に示す平面部35bは、内側部材31の被嵌合部35のうち、後述する保持器33の嵌合部37の平面部37bに対して周方向で係止される部位である。平面部35bは、内側部材31の各側面31c,31dとは、別の平面上に設けられる。内側部材31において、各側面31c,31dと同一面には、転動体32を転動させる平面状転走面38を有する。   The flat part 35b shown in FIG. 5 is a site | part latched in the circumferential direction with respect to the flat part 37b of the fitting part 37 of the holder | retainer 33 mentioned later among the to-be-fitted parts 35 of the inner member 31. FIG. The flat portion 35b is provided on a different plane from the side surfaces 31c and 31d of the inner member 31. The inner member 31 has a planar rolling surface 38 for rolling the rolling elements 32 on the same surface as the side surfaces 31c and 31d.

円弧溝36は、円弧状の外周面35cから、外周面35cの径方向内方に向かい、外周面35cと同軸で形成される所定深さの溝である(図5、図6参照)。円弧溝36の円弧中心は、内側部材31の貫通孔31gの軸線と一致する。外周面35cは、図6に示すように、両端面31a,31b側からそれぞれ所定の深さd2まで形成される外周面である。外周面35cは、貫通孔31gの軸線を中心に、所定の直径φD2となるよう形成される。   The arc groove 36 is a groove having a predetermined depth that is formed coaxially with the outer peripheral surface 35c from the arc-shaped outer peripheral surface 35c toward the inner side in the radial direction of the outer peripheral surface 35c (see FIGS. 5 and 6). The arc center of the arc groove 36 coincides with the axis of the through hole 31 g of the inner member 31. As shown in FIG. 6, the outer peripheral surface 35c is an outer peripheral surface formed from the both end surfaces 31a and 31b to a predetermined depth d2. The outer peripheral surface 35c is formed to have a predetermined diameter φD2 around the axis of the through hole 31g.

本実施形態においては、円弧溝36が設けられる外周面35cの直径φD2と、内側部材円弧部35aの直径φD1の各大きさの関係は、φD1>φD2となる。ただし、この態様には限らず、φD1=φD2でもよい。   In the present embodiment, the relationship between the diameter φD2 of the outer peripheral surface 35c provided with the arc groove 36 and the diameter φD1 of the inner member arc portion 35a is φD1> φD2. However, it is not limited to this aspect, and φD1 = φD2 may be used.

図7に示すように保持器33は、例えば鉄系金属によって形成された板状部材によって、ほぼ正方形形状に形成される。保持器33は、内周側に空間を有して環状に形成される。板状部材は、例えば冷間圧延鋼板であるSPCC(JIS G 3141)等である。保持器33は、板状部材をプレス成型して形成される。保持器33は、内側部材31の両端面31a、31b側にそれぞれ一対で設けられる。図7に示す、平面視における保持器33の正方形の角部は、所定のRで接続される。所定のRは任意に設定すればよい。保持器33は、嵌合部37と転動体保持部42とを有している。   As shown in FIG. 7, the cage 33 is formed in a substantially square shape by a plate-like member made of, for example, an iron-based metal. The retainer 33 is formed in an annular shape having a space on the inner peripheral side. The plate-like member is, for example, SPCC (JIS G 3141) which is a cold rolled steel plate. The cage 33 is formed by press molding a plate-like member. A pair of cages 33 are provided on both end surfaces 31 a and 31 b side of the inner member 31. The square corners of the cage 33 in plan view shown in FIG. The predetermined R may be set arbitrarily. The cage 33 includes a fitting portion 37 and a rolling element holding portion 42.

嵌合部37は、内側部材31の被嵌合部35に嵌合される部位である。図7に示すように、嵌合部37は、保持器33の非円筒状の内周面に設けられる。嵌合部37は、2箇所の保持器円弧部37aと2箇所の平面部37bとを有している。   The fitting part 37 is a part fitted to the fitted part 35 of the inner member 31. As shown in FIG. 7, the fitting portion 37 is provided on the non-cylindrical inner peripheral surface of the cage 33. The fitting portion 37 has two cage arc portions 37a and two flat portions 37b.

保持器円弧部37aは、内側部材31の被嵌合部35の4箇所の内側部材円弧部35aに嵌合する円弧面である。また、2箇所の平面部37bは、内側部材31の被嵌合部35の2箇所の平面部35bにそれぞれ嵌合し、周方向で係止する平面である。つまり、内側部材31に対し保持器33が相対回転しようとした場合に、内側部材31の2箇所の平面部35bが、周方向で保持器33の2箇所の平面部37bを相対的に係止して相対回転が不能となるように規制する。   The cage arc portion 37 a is an arc surface that fits into the four inner member arc portions 35 a of the fitted portion 35 of the inner member 31. The two plane portions 37b are planes that are respectively fitted to the two plane portions 35b of the fitted portion 35 of the inner member 31 and locked in the circumferential direction. That is, when the retainer 33 is about to rotate relative to the inner member 31, the two flat portions 35 b of the inner member 31 relatively lock the two flat portions 37 b of the retainer 33 in the circumferential direction. Thus, the relative rotation is prohibited.

図3に示すように、転動体保持部42は、軸方向移動規制部43、及び径方向移動規制部44を備える。軸方向移動規制部43は、嵌合部37から内側部材31の径方向外方に向かって延在し形成される。軸方向移動規制部43は、転動体32側に軸方向規制面43aを備える。図3に示すように、軸方向規制面43aは、転動体32の突起部41(端部)の端面と当接して転動体32の軸線方向への移動を規制する。   As shown in FIG. 3, the rolling element holding part 42 includes an axial direction movement restriction part 43 and a radial direction movement restriction part 44. The axial movement restricting portion 43 is formed to extend from the fitting portion 37 toward the radially outer side of the inner member 31. The axial movement restricting portion 43 includes an axial restricting surface 43a on the rolling element 32 side. As shown in FIG. 3, the axial restriction surface 43 a abuts on the end surface of the protrusion 41 (end portion) of the rolling element 32 and restricts the movement of the rolling element 32 in the axial direction.

径方向移動規制部44は、軸方向移動規制部43よりも外周側の部位が転動体32側に例えば直角に屈曲されて形成される。径方向移動規制部44は、転動体32の突起部41側に径方向規制面44aを備える。図3に示すように、径方向規制面44aは、転動体32の突起部41の側面と当接して転動体32の内側部材31外方への移動を規制する。このように、保持器33の外周部全周において転動体保持部42は、転動体32の突起部41を覆うように、つまり転動体32の軸線を覆うように設けられる。   The radial direction movement restricting portion 44 is formed by bending a portion on the outer peripheral side with respect to the axial direction movement restricting portion 43 toward the rolling element 32, for example, at a right angle. The radial movement restricting portion 44 includes a radial restricting surface 44 a on the protrusion 41 side of the rolling element 32. As shown in FIG. 3, the radial restriction surface 44 a abuts against the side surface of the protrusion 41 of the rolling element 32 and restricts the movement of the rolling element 32 to the outside of the inner member 31. As described above, the rolling element holding part 42 is provided so as to cover the protrusion 41 of the rolling element 32, that is, to cover the axis of the rolling element 32, in the entire outer periphery of the cage 33.

図1,図4に示すように、複数の転動体32は、内側部材31の外周を循環するように設けられる。具体的には、複数の転動体32は、突起部41,41が、内側部材31の軸線方向の両端面31a,31b側に設けられた保持器33,33の各転動体保持部42によって支持される。つまり、転動体32の両端の突起部41,41が、保持器33,33の軸方向規制面43a,43a及び径方向規制面44a,44aに転動可能に支持される。   As shown in FIGS. 1 and 4, the plurality of rolling elements 32 are provided so as to circulate around the outer periphery of the inner member 31. Specifically, the plurality of rolling elements 32 are supported by the rolling element holding portions 42 of the retainers 33 and 33 provided on the side of both end faces 31 a and 31 b in the axial direction of the inner member 31. Is done. That is, the protrusions 41 and 41 at both ends of the rolling element 32 are supported by the axial restriction surfaces 43a and 43a and the radial restriction surfaces 44a and 44a of the cages 33 and 33 so as to be able to roll.

図2、図3に示すように、転動体32は、円筒部39と、円筒部39の中心軸線と同軸に形成された突起部41とを備える。前述したように、転動体32は、軸状転動体(ニードル)である。突起部41は、円筒部39の両端から突設される。円筒部39は円筒状に形成され、つまり、外周面である転動体32の転動面32aが軌道溝16の溝深さ方向に平行に形成され、円筒部39の円筒径が突起部41の円柱径よりも大きくなるよう形成される。   As shown in FIGS. 2 and 3, the rolling element 32 includes a cylindrical portion 39 and a protruding portion 41 that is formed coaxially with the central axis of the cylindrical portion 39. As described above, the rolling element 32 is an axial rolling element (needle). The protrusion 41 protrudes from both ends of the cylindrical portion 39. The cylindrical portion 39 is formed in a cylindrical shape, that is, the rolling surface 32 a of the rolling element 32, which is the outer peripheral surface, is formed in parallel to the groove depth direction of the raceway groove 16, and the cylindrical diameter of the cylindrical portion 39 is the protrusion 41. It is formed to be larger than the cylinder diameter.

複数の転動体32のうち一部(本実施形態においては、全部で6〜7個)が、軌道溝16の各側面16b,16cと内側部材31の各側面31c,31dとの間で、各側面16b,16c,31c,31dに沿って転動可能に配置される。このように配置されることで、内側部材31の各側面31c,31dと軌道溝16の各側面16b,16cとの間で転動体32を介して回転駆動力が伝達される。   A part of the plurality of rolling elements 32 (in the present embodiment, a total of 6 to 7) is disposed between the side surfaces 16b and 16c of the raceway groove 16 and the side surfaces 31c and 31d of the inner member 31, respectively. It arrange | positions so that rolling is possible along the side surfaces 16b, 16c, 31c, and 31d. By being arranged in this way, the rotational driving force is transmitted via the rolling elements 32 between the side surfaces 31 c and 31 d of the inner member 31 and the side surfaces 16 b and 16 c of the raceway groove 16.

止め輪34、34は、円筒状の内周面を備えたC型止め輪であり、円弧溝36、36に嵌合される(図4参照)。これによって、保持器33,33の軸線方向への抜けが防止される。   The retaining rings 34, 34 are C-shaped retaining rings having a cylindrical inner peripheral surface, and are fitted into the arc grooves 36, 36 (see FIG. 4). This prevents the retainers 33, 33 from coming off in the axial direction.

(3.転動体32と軌道溝16との関係)
ここで、転動体32と軌道溝16との関係について説明する。図2に示す組付け状態において、転動体32の転動面32aと軌道溝16の側面16b、16cとの接触面圧特性の理想状態は、図8の左方に示すグラフに示す通りである。図8のグラフは、横軸に接触面圧、縦軸に転動体32の軸線方向における距離(位置)を示している。この理想状態の接触面圧特性は、図8の右方に示すような、転動面32aと軌道溝16の側面16b(16c)とが平面(軌道溝16の溝深さ方向と平行な面)同士で接触している状態における特性である。しかし、実際には、このような状態を成立させることは難しい。
(3. Relationship between rolling element 32 and raceway groove 16)
Here, the relationship between the rolling elements 32 and the raceway grooves 16 will be described. In the assembled state shown in FIG. 2, the ideal state of the contact surface pressure characteristics between the rolling surface 32a of the rolling element 32 and the side surfaces 16b and 16c of the raceway groove 16 is as shown in the graph shown on the left side of FIG. . The graph of FIG. 8 shows the contact surface pressure on the horizontal axis and the distance (position) in the axial direction of the rolling element 32 on the vertical axis. The contact surface pressure characteristic in this ideal state is such that the rolling surface 32a and the side surface 16b (16c) of the raceway groove 16 are flat surfaces (parallel to the groove depth direction of the raceway groove 16) as shown on the right side of FIG. ) It is the characteristic in the state which is contacting each other. However, in reality, it is difficult to establish such a state.

また、理想状態とは反対に好ましくない接触面圧特性は、図9の左方のグラフの実線で示す特性である。なお、グラフ中の2点鎖線は、図9のグラフの実線と比較しやすいように参考として図8のグラフの特性を記載したものである。この図9のグラフの特性は、図9の右方に示すような、転動体32の転動面32aに対して凹状態(凹形状)となった軌道溝16の側面16b(16c)と転動体32の転動面32aとが当接した場合における接触面圧特性である。この場合、接触面圧は、転動面32aの軸線方向両端部b,cでピークとなり、転動面32aの中央部a(転動面32aの軌道溝16の溝深さ方向における中央部)では著しく低下する。この状態では、転動体32及び軌道溝16の側面16b(16c)は、耐久性がともに低下する。   The contact surface pressure characteristic which is not preferable as opposed to the ideal state is a characteristic indicated by a solid line in the left graph of FIG. 9. In addition, the dashed-two dotted line in a graph describes the characteristic of the graph of FIG. 8 as reference so that it may be easily compared with the solid line of the graph of FIG. The characteristic of the graph of FIG. 9 is that the rolling contact surface 32a of the rolling element 32 has a concave state (concave shape) as shown on the right side of FIG. It is a contact surface pressure characteristic when the rolling surface 32a of the moving body 32 abuts. In this case, the contact surface pressure peaks at both ends b and c in the axial direction of the rolling surface 32a, and the central portion a of the rolling surface 32a (the central portion of the rolling surface 32a in the groove depth direction of the raceway groove 16). Then, it will drop significantly. In this state, durability of both the rolling element 32 and the side surface 16b (16c) of the raceway groove 16 is lowered.

このように、耐久性の低下をもたらす凹状態(凹形状)の側面16b、16cは、熱処理前においては平面状態であった側面16b、16cに対して、外側ジョイント部材10の製造に必要な熱処理を実施することにより側面16b、16cが歪み発生する場合がある。そこで本実施形態においては、少なくとも図9に示す好ましくない接触面圧特性にはならないよう、軌道溝16の側面16b、16cと転動体32の転動面32aとが、軌道溝16の溝深さ方向の中央部aで接触するようにする。   As described above, the side surfaces 16b and 16c in the concave state (concave shape) that cause a decrease in durability are heat treatment necessary for manufacturing the outer joint member 10 with respect to the side surfaces 16b and 16c that are in a planar state before the heat treatment. As a result, the side surfaces 16b and 16c may be distorted. Therefore, in the present embodiment, the side surface 16b, 16c of the raceway groove 16 and the rolling surface 32a of the rolling element 32 have a groove depth of the raceway groove 16 so that at least the undesirable contact pressure characteristics shown in FIG. It is made to contact in the center part a of a direction.

このため、前述したように、本実施形態においては、軌道溝16の溝深さ方向における熱処理後の軌道溝16の側面16b,16c(一方の面に相当)の中央部aを、凸形状に形成する。また、転動体32の転動面32a(他方の面)を軌道溝16の溝深さ方向に平行に形成する。これにより、転動体32の転動面32aと熱処理後における軌道溝16の側面16b,16cとは、軌道溝16の溝深さ方向の中央部aで確実に接触することとなる。なお、上記においては、熱処理の一例として高周波焼入れを例示できる。また、以降の説明においては、軌道溝16の溝深さ方向における一方及び他方の面の中央部aを「中央部a」とのみ称し、溝深さ方向に平行な側面については、「平行」とのみ称して説明する場合がある。   For this reason, as described above, in the present embodiment, the central portion a of the side surfaces 16b, 16c (corresponding to one surface) of the raceway groove 16 after the heat treatment in the groove depth direction of the raceway groove 16 is formed in a convex shape. Form. Further, the rolling surface 32 a (the other surface) of the rolling element 32 is formed in parallel to the groove depth direction of the raceway groove 16. Thereby, the rolling surface 32a of the rolling element 32 and the side surfaces 16b and 16c of the raceway groove 16 after the heat treatment are surely brought into contact with each other at the central portion a in the groove depth direction of the raceway groove 16. In the above, induction hardening can be illustrated as an example of heat treatment. In the following description, the central portion a of one and the other surface of the raceway groove 16 in the groove depth direction will be referred to as only “central portion a”, and the side surface parallel to the groove depth direction will be referred to as “parallel”. In some cases, it will be described simply as “.

本発明では、上述した軌道溝16の側面16b,16cの凸形状を得るため、熱処理前における外側ジョイント部材10の軌道溝16の形状を所定の形状とする。即ち、熱処理前において、熱処理によって発生する歪みを考慮した所定の形状で側面16b,16cが形成される。上述したように、発明者が実施した実験によれば、本実施形態の外側ジョイント部材10では、熱処理前において平面状態であった側面16b、16cが熱処理後においては、凹状態(中央部が転動体32の転動面32aから離間する状態)となることがわかっている。そこで、熱処理前における側面16b,16cの所定の形状を、図3、図10の破線に示すように、熱処理後に必要となる軌道溝16の側面16b,16cの中央部aにおける凸形状Afに対して、より突出した凸形状Beとすることとした。このときの突出量については、実際に外側ジョイント部材10を熱処理し、評価をして決定する。   In the present invention, in order to obtain the convex shape of the side surfaces 16b and 16c of the raceway groove 16 described above, the shape of the raceway groove 16 of the outer joint member 10 before the heat treatment is set to a predetermined shape. That is, before the heat treatment, the side surfaces 16b and 16c are formed in a predetermined shape in consideration of distortion generated by the heat treatment. As described above, according to the experiment conducted by the inventor, in the outer joint member 10 of the present embodiment, the side surfaces 16b and 16c, which were in a flat state before the heat treatment, are in a concave state (the center portion is rolled) after the heat treatment. It is known that the moving body 32 is separated from the rolling surface 32a. Therefore, the predetermined shape of the side surfaces 16b and 16c before the heat treatment is compared with the convex shape Af at the central portion a of the side surfaces 16b and 16c of the raceway groove 16 required after the heat treatment, as shown by the broken lines in FIGS. Thus, the protruding shape Be is more protruded. The amount of protrusion at this time is determined by actually heat-treating the outer joint member 10 and evaluating it.

上記において、凸形状Beは、外側ジョイント部材10の軌道溝16を製作する際のパンチ形状を変更することで容易に対応できる。このため、安価に対応でき、従来技術のように、熱処理前の外側ジョイント部材に対して外力を意図的に付与する、又は軌道溝の歪みをコントロールするため軌道溝表面に対する焼入れ深さを詳細な条件を振って制御する等の必要がなく安価に対応できる。   In the above description, the convex shape Be can be easily handled by changing the punch shape when the raceway groove 16 of the outer joint member 10 is manufactured. For this reason, it is possible to cope with a low cost and, as in the prior art, a detailed depth of quenching with respect to the raceway groove surface is applied in order to intentionally apply an external force to the outer joint member before heat treatment, or to control the raceway groove distortion. There is no need to control under different conditions, and it can be handled at low cost.

(4.面圧の測定結果)
上記で説明した凸形状Beを備えた外側ジョイント部材10に対し熱処理を行なった後の側面16b、16c、即ち凸形状Afを備えた側面16b、16cと平行な転動体32の転動面32aとの接触面圧を測定した結果を図10の左方のグラフに実線で示す。なお、グラフ中の2点鎖線は、図10のグラフの実線と比較しやすいように、参考として図8,図9のグラフの特性を記載したものである。図10のグラフに示す接触面圧特性によれば、転動体32の両端部b,cには、図9のグラフに示すような極端な大きさの面圧の発生はない。これにより、転動体32及び軌道溝16の各側面16b,16cの耐久性は低下することはなく良好となる。このように、外側ジョイント部材10を製造する通常の工程と同様の工程中において、軌道溝16の各側面16b,16cを形成するパンチの形状を変更したのみで、確実に側面16b、16cと転動体32の転動面32aとの接触面圧を良好なものとすることができた。
(4. Measurement result of surface pressure)
The side surfaces 16b and 16c after the outer joint member 10 having the convex shape Be described above is heat-treated, that is, the rolling surfaces 32a of the rolling elements 32 parallel to the side surfaces 16b and 16c having the convex shape Af; The result of measuring the contact surface pressure is shown by a solid line in the left graph of FIG. The two-dot chain line in the graph describes the characteristics of the graphs of FIGS. 8 and 9 as a reference so that it can be easily compared with the solid line of the graph of FIG. According to the contact surface pressure characteristics shown in the graph of FIG. 10, no extreme surface pressure is generated at both ends b and c of the rolling element 32 as shown in the graph of FIG. 9. Thereby, durability of each side surface 16b, 16c of the rolling element 32 and the raceway groove | channel 16 does not fall, and becomes favorable. In this way, in the same process as the normal process for manufacturing the outer joint member 10, only the shape of the punch that forms the side surfaces 16b and 16c of the raceway groove 16 is changed, and the side surfaces 16b and 16c can be reliably rotated. The contact surface pressure with the rolling surface 32a of the moving body 32 could be made favorable.

(5.実施形態による効果)
上記実施形態によれば、等速ジョイント1は、筒状に形成されて内周面に3本(複数)の軌道溝16が形成され、少なくとも軌道溝16の側面16b,16cに熱処理が施される外側ジョイント部材10と、径方向外方に突出する3本(複数)の脚軸22を備える内側ジョイント部材20と、脚軸22の外周面と軌道溝16の側面16b,16cとの間に介在し、軌道溝16の側面16b,16cを転動する転動体32と、を備える。そして、熱処理後における軌道溝16の側面16b,16c(少なくとも一方に相当)は、軌道溝16の溝深さ方向の中央部aを凸形状に形成され、転動体32の転動面32aは、軌道溝16の溝深さ方向に平行に形成され、転動体32の転動面32aと熱処理後における軌道溝16の側面16b,16cとは、中央部aで接触する。
(5. Effect by embodiment)
According to the above-described embodiment, the constant velocity joint 1 is formed in a cylindrical shape, and three (plural) raceway grooves 16 are formed on the inner peripheral surface, and at least the side surfaces 16b and 16c of the raceway groove 16 are subjected to heat treatment. The outer joint member 10, the inner joint member 20 having three (a plurality) leg shafts 22 projecting radially outward, and the outer peripheral surface of the leg shaft 22 and the side surfaces 16 b and 16 c of the raceway groove 16. A rolling element 32 that interposes and rolls on the side surfaces 16b and 16c of the raceway groove 16. Then, the side surfaces 16b and 16c (corresponding to at least one) of the raceway groove 16 after the heat treatment are formed in a convex shape at the central portion a in the groove depth direction of the raceway groove 16, and the rolling surface 32a of the rolling element 32 is It is formed parallel to the groove depth direction of the raceway groove 16, and the rolling surface 32a of the rolling element 32 and the side surfaces 16b, 16c of the raceway groove 16 after heat treatment are in contact with each other at the central portion a.

これにより、外側ジョイント部材10(軌道溝16)の熱処理後において、転動体32の転動面32aと軌道溝16の側面16b,16cとが、軌道溝16の溝深さ方向の中央部aにおいて接触する。このため、転動体32の転動面32aと軌道溝16の側面16b,16cとが、転動体32の両端部で接触することがない。つまり、転動体32の転動面32aと軌道溝16の側面16b,16cとの接触部位において、大きな応力が生じることを抑制することができる。従って、両者の接触によって転動体32の転動面32a及び軌道溝16の側面16b,16cの面圧が上昇し、転動体32及び軌道溝16の耐久性が低下する虞れはない。なお、このとき、熱処理前においては、熱処理による歪みを考慮して、凸形状Beを熱処理後における凸形状Afより少し大きく突出させて形成しておけばよい。つまり、凸形状を、熱処理において変形する方向とは反対の方向に、熱処理により変形する量よりも少し大きく形成しておけばよい。この凸形状Beは、型(パンチ)によって容易に製作可能である。このため、余分なコストはかからず低コストに対応できる。   Thereby, after the heat treatment of the outer joint member 10 (track groove 16), the rolling surface 32a of the rolling element 32 and the side surfaces 16b, 16c of the track groove 16 are in the central portion a of the track groove 16 in the groove depth direction. Contact. For this reason, the rolling surface 32 a of the rolling element 32 and the side surfaces 16 b and 16 c of the raceway groove 16 do not contact at both ends of the rolling element 32. That is, it is possible to suppress a large stress from being generated at the contact portion between the rolling surface 32 a of the rolling element 32 and the side surfaces 16 b and 16 c of the raceway groove 16. Therefore, there is no possibility that the surface pressure of the rolling surface 32a of the rolling element 32 and the side surfaces 16b and 16c of the raceway groove 16 increases due to the contact between both, and the durability of the rolling body 32 and the raceway groove 16 is not lowered. At this time, before the heat treatment, in consideration of distortion due to the heat treatment, the convex shape Be may be formed so as to protrude slightly larger than the convex shape Af after the heat treatment. That is, the convex shape may be formed in a direction opposite to the direction of deformation in the heat treatment and slightly larger than the amount deformed by the heat treatment. This convex shape Be can be easily manufactured by a mold (punch). For this reason, no extra cost is incurred and it is possible to cope with a low cost.

また、上記実施形態によれば、熱処理前における軌道溝16の側面16b,16cは、凸形状Beに形成される。これにより、熱処理後において、側面16b,16cに凸形状又は平行形状を確実に形成させることができる。   Moreover, according to the said embodiment, the side surfaces 16b and 16c of the track groove 16 before heat processing are formed in convex shape Be. Thereby, a convex shape or a parallel shape can be reliably formed on the side surfaces 16b and 16c after the heat treatment.

また、上記実施形態によれば、等速ジョイント1は、筒状に形成されて内周面に複数の軌道溝16が形成され、軌道溝16の側面16b,16cに熱処理が施される外側ジョイント部材10と、径方向外方に突出する3本(複数)の脚軸22を備える内側ジョイント部材20と、脚軸22の外周面と軌道溝16の側面16b,16cとの間に介在し、軌道溝16の側面16b,16cを転動する転動体32と、を備える。そして、熱処理前における軌道溝16の側面16b,16cは、軌道溝16の溝深さ方向の中央部aを凸形状に形成され、転動体32の転動面及び熱処理後における軌道溝16の側面16b,16cは、軌道溝16の溝深さ方向の中央部aを凸形状、又は軌道溝16の深さ方向に平行に形成される。   In addition, according to the above embodiment, the constant velocity joint 1 is formed in a cylindrical shape, a plurality of raceway grooves 16 are formed on the inner circumferential surface, and the side surfaces 16b and 16c of the raceway groove 16 are subjected to heat treatment. Interposed between the member 10, the inner joint member 20 having three (plural) leg shafts 22 projecting radially outward, and the outer peripheral surface of the leg shaft 22 and the side surfaces 16 b and 16 c of the raceway groove 16, Rolling elements 32 that roll on the side surfaces 16b and 16c of the raceway groove 16. The side surfaces 16b and 16c of the raceway groove 16 before the heat treatment are formed such that the central portion a in the groove depth direction of the raceway groove 16 has a convex shape, and the rolling surface of the rolling element 32 and the side surface of the raceway groove 16 after the heat treatment are formed. The central portions a in the groove depth direction of the raceway grooves 16 are convex or formed parallel to the depth direction of the raceway grooves 16.

これにより、軌道溝16の熱処理前において側面16b,16cの中央部を凸形状に形成された軌道溝16が、熱処理後において、中央部aを凸形状に形成された転動体32の転動面32aと、軌道溝16の溝深さ方向の中央部aで接触する。又は、ともに軌道溝16の溝深さ方向に平行に形成された軌道溝16の側面16b,16cと転動体32の転動面32aとが全面同士で接触する。このため、転動体32の転動面32aと軌道溝16の側面16b,16cとが、転動体32の転動面32aの両端部で接触することがない。つまり、転動体32の転動面32aと軌道溝16の側面16b,16cとの接触部位において、大きな応力が生じることを抑制することができる。従って、転動体32及び軌道溝16の側面16b,16cの耐久性が低下する虞れはない。なお、熱処理前においては、熱処理による歪みを考慮して、凸形状を熱処理後における凸形状または平面より少し大きく形成しておけばよい。この凸形状は、型によって容易に製作できる形状である。このため、余分なコストはかからず低コストに対応できる。   Thereby, the raceway groove 16 in which the central portion of the side surfaces 16b and 16c is formed in a convex shape before the heat treatment of the raceway groove 16, the rolling surface of the rolling element 32 in which the central portion a is formed in a convex shape after the heat treatment. 32a contacts with the central portion a of the raceway groove 16 in the groove depth direction. Alternatively, the side surfaces 16b and 16c of the raceway groove 16 formed in parallel with the groove depth direction of the raceway groove 16 and the rolling surface 32a of the rolling element 32 are in contact with each other. For this reason, the rolling surface 32 a of the rolling element 32 and the side surfaces 16 b and 16 c of the raceway groove 16 do not contact at both ends of the rolling surface 32 a of the rolling element 32. That is, it is possible to suppress a large stress from being generated at the contact portion between the rolling surface 32 a of the rolling element 32 and the side surfaces 16 b and 16 c of the raceway groove 16. Therefore, there is no possibility that the durability of the rolling elements 32 and the side surfaces 16b and 16c of the raceway groove 16 is lowered. Before the heat treatment, in consideration of distortion due to the heat treatment, the convex shape may be formed slightly larger than the convex shape or plane after the heat treatment. This convex shape is a shape that can be easily manufactured by a mold. For this reason, no extra cost is incurred and it is possible to cope with a low cost.

また、上記実施形態によれば、熱処理後における軌道溝16の側面16b,16cは、凸形状に形成され、転動体32の転動面32aは、平行に形成される。これにより、転動体32の転動面32aと、軌道溝16の軌道溝16の側面16b,16cとは、軌道溝16の溝深さ方向の中央部で接触する。このため、転動体32の転動面32aと軌道溝16の側面16b,16cとが、転動体32の両端部で接触することがなく、上記と同様の効果が得られる。   Moreover, according to the said embodiment, the side surfaces 16b and 16c of the track groove 16 after heat processing are formed in convex shape, and the rolling surface 32a of the rolling element 32 is formed in parallel. Thereby, the rolling surface 32a of the rolling element 32 and the side surfaces 16b, 16c of the raceway groove 16 of the raceway groove 16 are in contact with each other at the center portion of the raceway groove 16 in the groove depth direction. For this reason, the rolling surface 32a of the rolling element 32 and the side surfaces 16b and 16c of the raceway groove 16 do not contact at both ends of the rolling element 32, and the same effect as described above can be obtained.

また、上記実施形態によれば、転動体32はニードルであり、軌道溝16の側面16b,16cは、ニードルの外周面が当接して転動する。これにより、本発明は、転動体32を複数有する転動体循環式の等速ジョイントに適用できる。   Moreover, according to the said embodiment, the rolling element 32 is a needle, and the outer peripheral surface of a needle contacts the side surfaces 16b and 16c of the track groove 16, and rolls. Thus, the present invention can be applied to a rolling element circulation type constant velocity joint having a plurality of rolling elements 32.

なお、上記実施形態の態様に限らず、軌道溝16の側面16b,16cを一方の面として、側面16b,16cの中央部aを凸形状とし、他方の面を転動体32の転動面32aとし、転動面32aの中央部を凸形状に形成してもよい。また、側面16b,16cを平行な側面とし、転動体32の転動面32a(一方の面)の中央部aを凸形状形成してもよい。さらには、側面16b,16c及び転動体32の転動面32aをともに平行な側面に形成してもよい。これらによっても、上記実施形態と同様の効果が得られる。   In addition, it is not restricted to the aspect of the said embodiment, the side surfaces 16b and 16c of the track groove 16 are made into one surface, the center part a of the side surfaces 16b and 16c is made into convex shape, and the other surface is the rolling surface 32a of the rolling element 32. The center part of the rolling surface 32a may be formed in a convex shape. Further, the side surfaces 16b and 16c may be parallel side surfaces, and the central portion a of the rolling surface 32a (one surface) of the rolling element 32 may be formed in a convex shape. Furthermore, the side surfaces 16b and 16c and the rolling surface 32a of the rolling element 32 may be formed on parallel side surfaces. Also by these, the same effect as the above-mentioned embodiment is acquired.

また、上記実施形態においては、転動体32の転動面32aと、熱処理後における軌道溝16の側面16b、16cとが、中央部aの中心で接触するよう軌道溝16の側面16b、16cの面形状が凸形状Afに形成された。つまり、熱処理後における軌道溝16の側面16b、16cの歪みが、中央部aの中心が頂点となるよう突出するものと想定して説明した。しかし、実際には、外側ジョイント部材10の外周形状等の相違によって、その歪み方は様々である。そこで、外側ジョイント部材10の熱処理後において、軌道溝16の溝底(底面16a)側が、軌道溝16の開口側よりも熱処理前の状態に対しての熱収縮量が大きいような歪み方をする場合には、変形例1として、熱処理前における軌道溝16の側面16b,16cの凸形状が中央部aのうち開口側寄りに形成すればよい(図11参照)。また、外側ジョイント部材10の熱処理後において、軌道溝16の開口側が、軌道溝16の溝底(底面16a)側よりも熱処理前の状態に対しての熱収縮量が大きい場合には、変形例2として、熱処理前における軌道溝16の側面16b,16cの凸形状が中央部aのうち溝底(底面16a)側寄りに形成すればよい(図12参照)。これによって、上記実施形態と同様の効果が得られる。なお、図11、図12には、それぞれ熱処理前の凸形状Be(破線)を参考に記載しておく。   In the above embodiment, the rolling surfaces 32a of the rolling elements 32 and the side surfaces 16b and 16c of the raceway groove 16 after the heat treatment are in contact with the side surfaces 16b and 16c of the raceway groove 16 so that they contact each other at the center of the center portion a. The surface shape was formed into a convex shape Af. That is, the description has been made on the assumption that the distortion of the side surfaces 16b and 16c of the raceway groove 16 after the heat treatment protrudes so that the center of the central portion a becomes the apex. However, actually, the way of distortion varies depending on the outer peripheral shape and the like of the outer joint member 10. Therefore, after the heat treatment of the outer joint member 10, the groove bottom (bottom surface 16 a) side of the raceway groove 16 is distorted such that the amount of heat shrinkage with respect to the state before the heat treatment is larger than the opening side of the raceway groove 16. In this case, as a first modification, the convex shapes of the side surfaces 16b and 16c of the raceway groove 16 before the heat treatment may be formed closer to the opening side in the central portion a (see FIG. 11). In addition, after the heat treatment of the outer joint member 10, when the opening side of the raceway groove 16 has a larger amount of heat shrinkage than the groove bottom (bottom surface 16a) side of the raceway groove 16 with respect to the state before the heat treatment, the modified example 2, the convex shape of the side surfaces 16b and 16c of the raceway groove 16 before the heat treatment may be formed closer to the groove bottom (bottom surface 16a) side in the central portion a (see FIG. 12). As a result, the same effect as in the above embodiment can be obtained. In FIG. 11 and FIG. 12, a convex shape Be (broken line) before heat treatment is described for reference.

また、上記実施形態においては、熱処理である高周波焼入れは、外側ジョイント部材10全体に施すものとして説明した。しかし、この態様には限らず、熱処理は軌道溝16の側面16b,16cのみに施しても良い。また、熱処理は、高周波焼入れに限らず、どのようなものでもよい。これらによっても、同様の効果が得られる。   Moreover, in the said embodiment, the induction hardening which is heat processing was demonstrated as what is given to the outer side joint member 10 whole. However, the heat treatment may be performed only on the side surfaces 16b and 16c of the raceway groove 16 without being limited to this mode. Further, the heat treatment is not limited to induction hardening, and any heat treatment may be used. The same effect can be obtained by these.

また、上記実施形態においては、内側部材31を、1つの部材で形成する構成とした。しかし、この態様には限らない。内側部材は、左右で分割する分割タイプの物でもよい。これによっても、上記実施形態と同様の効果が得られる。   Moreover, in the said embodiment, it was set as the structure which forms the inner member 31 with one member. However, it is not limited to this aspect. The inner member may be a split type member that splits right and left. Also by this, the same effect as the above embodiment can be obtained.

また、上記実施形態においては、等速ジョイント1は、転動体ユニット30を備え、転動体ユニット30の複数の転動体32が、内側部材31の側面外周を循環する循環タイプの等速ジョイントであるものとして説明した。しかし、この態様には限らない。外側ジョイント部材10が内周面に軌道溝を備え、軌道溝の溝深さ方向と平行に形成される外周面を備えた転動体が軌道溝を転動するスライド式の等速ジョイントであればどのような等速ジョイントに本発明を適用してもよい。また、軌道溝を転動する転動体がローラであり、そのローラの外周面が軌道溝の溝深さ方向と平行に形成されるタイプの等速ジョイントにも本発明を適用してよい。これらによっても、上記実施形態と同様の効果が得られる。   In the above embodiment, the constant velocity joint 1 is a circulation type constant velocity joint that includes the rolling element unit 30 and in which the plurality of rolling elements 32 of the rolling element unit 30 circulate around the outer periphery of the side surface of the inner member 31. Explained as a thing. However, it is not limited to this aspect. If the outer joint member 10 has a raceway groove on the inner peripheral surface and the rolling element having an outer peripheral surface formed parallel to the groove depth direction of the raceway groove is a slide type constant velocity joint that rolls on the raceway groove The present invention may be applied to any constant velocity joint. The present invention may also be applied to a constant velocity joint of a type in which a rolling element that rolls on the raceway groove is a roller, and an outer peripheral surface of the roller is formed in parallel with the groove depth direction of the raceway groove. Also by these, the same effect as the above-mentioned embodiment is acquired.

1・・・等速ジョイント、 2・・・シャフト、 10・・・外側ジョイント部材、 16・・・軌道溝、 16a・・・溝側(底面)、 16b,16c・・・側面、 16b,16c, 1c,31d・・・各側面、 20・・・内側ジョイント部材、 22・・・脚軸、 31・・・内側部材、 32・・・転動体、 32a・・・転動面、 a・・・中央部、 Af・・・凸形状、 Be・・・凸形状。 DESCRIPTION OF SYMBOLS 1 ... Constant velocity joint, 2 ... Shaft, 10 ... Outer joint member, 16 ... Track groove, 16a ... Groove side (bottom surface), 16b, 16c ... Side, 16b, 16c 1c, 31d ... each side surface, 20 ... inner joint member, 22 ... leg shaft, 31 ... inner member, 32 ... rolling element, 32a ... rolling surface, a ... -Central part, Af ... convex shape, Be ... convex shape.

Claims (7)

筒状に形成されて内周面に複数の軌道溝が形成され、少なくとも前記軌道溝の側面に熱処理が施される外側ジョイント部材と、
径方向外方に突出する複数の脚軸を備える内側ジョイント部材と、
前記脚軸の外周面と前記軌道溝の側面との間に介在し、前記軌道溝の側面を転動する転動体と、
を備え、
前記転動体の前記転動面と熱処理後における前記軌道溝の前記側面の少なくとも一方は、前記軌道溝の溝深さ方向の中央部を凸形状に形成され、
前記転動体の前記転動面と前記熱処理後における前記軌道溝の前記側面とは、前記中央部で接触する、等速ジョイント。
A plurality of raceway grooves formed on the inner peripheral surface of the inner circumference surface, and an outer joint member that is heat-treated at least on the side surfaces of the raceway grooves;
An inner joint member comprising a plurality of leg shafts projecting radially outward;
A rolling element interposed between the outer peripheral surface of the leg shaft and the side surface of the raceway groove, and rolling on the side surface of the raceway groove;
With
At least one of the rolling surface of the rolling element and the side surface of the raceway groove after heat treatment is formed in a convex shape at the center in the groove depth direction of the raceway groove,
The constant velocity joint in which the rolling surface of the rolling element and the side surface of the raceway groove after the heat treatment are in contact with each other at the center.
前記熱処理前における前記軌道溝の前記側面は、前記凸形状に形成され、
前記熱処理後における前記軌道溝の前記側面は、前記凸形状又は前記軌道溝の溝深さ方向に平行に形成される、請求項1に記載の等速ジョイント。
The side surface of the raceway groove before the heat treatment is formed in the convex shape,
The constant velocity joint according to claim 1, wherein the side surface of the raceway groove after the heat treatment is formed in parallel with the convex shape or a groove depth direction of the raceway groove.
筒状に形成されて内周面に複数の軌道溝が形成され、少なくとも前記軌道溝の側面に熱処理が施される外側ジョイント部材と、
径方向外方に突出する複数の脚軸を備える内側ジョイント部材と、
前記脚軸の外周面と前記軌道溝の側面との間に介在し、前記軌道溝の側面を転動する転動体と、
を備え、
熱処理前における前記軌道溝の前記側面は、前記軌道溝の溝深さ方向の中央部を凸形状に形成され、
前記転動体の前記転動面及び前記熱処理後における前記軌道溝の前記側面は、前記軌道溝の溝深さ方向の中央部を凸形状に形成され、又は、前記軌道溝の溝深さ方向に平行に形成される、等速ジョイント。
A plurality of raceway grooves formed on the inner peripheral surface of the inner circumference surface, and an outer joint member that is heat-treated at least on the side surfaces of the raceway grooves;
An inner joint member comprising a plurality of leg shafts projecting radially outward;
A rolling element interposed between the outer peripheral surface of the leg shaft and the side surface of the raceway groove, and rolling on the side surface of the raceway groove;
With
The side surface of the raceway groove before heat treatment is formed in a convex shape in the center part of the groove depth direction of the raceway groove,
The rolling surface of the rolling element and the side surface of the raceway groove after the heat treatment are formed in a convex shape at the center in the groove depth direction of the raceway groove, or in the groove depth direction of the raceway groove. Constant velocity joints formed in parallel.
前記熱処理後における前記軌道溝の前記側面は、前記凸形状に形成され、
前記転動体の前記転動面は、前記凸形状又は前記軌道溝の溝深さ方向に平行に形成される、請求項1〜3の何れか1項に記載の等速ジョイント。
The side surface of the raceway groove after the heat treatment is formed in the convex shape,
The constant velocity joint according to any one of claims 1 to 3, wherein the rolling surface of the rolling element is formed in parallel with the convex shape or a groove depth direction of the raceway groove.
前記外側ジョイント部材の前記熱処理後において、
前記軌道溝の溝底側が、前記軌道溝の開口側よりも前記熱処理前に対しての熱収縮量が大きい場合には、前記熱処理前における前記軌道溝の前記側面の前記凸形状が前記中央部のうち前記開口側寄りに形成される、請求項2又は3に記載の等速ジョイント。
After the heat treatment of the outer joint member,
When the groove bottom side of the raceway groove has a larger amount of heat shrinkage than the opening side of the raceway groove before the heat treatment, the convex shape of the side surface of the raceway groove before the heat treatment is the central portion. The constant velocity joint according to claim 2, wherein the constant velocity joint is formed closer to the opening side.
前記外側ジョイント部材の前記熱処理後において、
前記軌道溝の開口側が、前記軌道溝の溝底側よりも前記熱処理前に対しての熱収縮量が大きい場合には、前記熱処理前における前記軌道溝の前記側面の前記凸形状が前記中央部のうち前記溝底側寄りに形成される、請求項2又は3に記載の等速ジョイント。
After the heat treatment of the outer joint member,
If the opening side of the raceway groove has a larger amount of heat shrinkage than the bottom side of the raceway groove before the heat treatment, the convex shape of the side surface of the raceway groove before the heat treatment is the center part. The constant velocity joint according to claim 2, wherein the constant velocity joint is formed closer to the groove bottom side.
前記転動体はニードルであり、
前記軌道溝の前記側面は、前記ニードルの外周面が当接して転動する、請求項1〜6の何れか1項に記載の等速ジョイント。
The rolling element is a needle;
The constant velocity joint according to any one of claims 1 to 6, wherein the side surface of the raceway groove rolls with an outer peripheral surface of the needle in contact therewith.
JP2015047128A 2015-03-10 2015-03-10 Constant velocity joint Pending JP2016166659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015047128A JP2016166659A (en) 2015-03-10 2015-03-10 Constant velocity joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015047128A JP2016166659A (en) 2015-03-10 2015-03-10 Constant velocity joint

Publications (1)

Publication Number Publication Date
JP2016166659A true JP2016166659A (en) 2016-09-15

Family

ID=56897485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015047128A Pending JP2016166659A (en) 2015-03-10 2015-03-10 Constant velocity joint

Country Status (1)

Country Link
JP (1) JP2016166659A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03144118A (en) * 1989-10-31 1991-06-19 Ntn Corp Constant-velocity joint
JPH03119617U (en) * 1990-03-23 1991-12-10
JPH0484922U (en) * 1990-11-30 1992-07-23
JP2004068884A (en) * 2002-08-05 2004-03-04 Toyota Motor Corp Correcting method of distortion due to thermal treatment of tooth form, and grinding method of the tooth form

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03144118A (en) * 1989-10-31 1991-06-19 Ntn Corp Constant-velocity joint
JPH03119617U (en) * 1990-03-23 1991-12-10
JPH0484922U (en) * 1990-11-30 1992-07-23
JP2004068884A (en) * 2002-08-05 2004-03-04 Toyota Motor Corp Correcting method of distortion due to thermal treatment of tooth form, and grinding method of the tooth form

Similar Documents

Publication Publication Date Title
KR101576949B1 (en) Manufacturing method for outer ring of ball bearing and outer ring of ball bearing using the same
EP3438487A1 (en) Tripod constant-velocity universal joint and method for heat-treating tripod member
EP3904716A1 (en) Tripod-type constant velocity universal joint
JP2007333022A (en) Deep groove ball bearing
US7963036B2 (en) Method of manufacturing bearing device for vehicle
JP2018021569A (en) Rolling bearing
JP2011236976A (en) Constant velocity universal joint
US8210952B2 (en) Universal joint
JP4811168B2 (en) Rolling bearing device
JP2016166659A (en) Constant velocity joint
JP2007292195A (en) Deep groove ball bearing
US9995343B2 (en) Rolling bearing
JP2017096414A (en) Rolling bearing
JP2009156401A (en) Tripod type constant velocity universal joint
WO2020195487A1 (en) Tripod-type constant-velocity universal joint
US20120157216A1 (en) Sliding type tripod constant velocity joint
EP4317732A1 (en) Tripod-type constant-velocity universal joint
KR101411612B1 (en) Wheel bearing for vehicle
JP2012013210A (en) Method of manufacturing race for thrust needle bearing, and thrust needle bearing
JP2020159546A (en) Tripod type constant velocity universal joint
JP2019090483A (en) Manufacturing method of outer joint member of constant velocity universal joint and constant velocity universal joint employing the same
JP2011208674A (en) Constant velocity universal joint
JP2000240676A (en) Tripod type constant velocity universal joint
JP2016148356A (en) Constant velocity joint
CN114458690A (en) Bearing unit made of low-carbon steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190604