JP2016166106A - Salt production method, and salt - Google Patents

Salt production method, and salt Download PDF

Info

Publication number
JP2016166106A
JP2016166106A JP2015046705A JP2015046705A JP2016166106A JP 2016166106 A JP2016166106 A JP 2016166106A JP 2015046705 A JP2015046705 A JP 2015046705A JP 2015046705 A JP2015046705 A JP 2015046705A JP 2016166106 A JP2016166106 A JP 2016166106A
Authority
JP
Japan
Prior art keywords
salt
residual liquid
solution
saturated saline
saturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015046705A
Other languages
Japanese (ja)
Other versions
JP6547091B2 (en
Inventor
進 池田
Susumu Ikeda
進 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015046705A priority Critical patent/JP6547091B2/en
Publication of JP2016166106A publication Critical patent/JP2016166106A/en
Application granted granted Critical
Publication of JP6547091B2 publication Critical patent/JP6547091B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Seasonings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing salt easily producible, high in quality and also satisfactory in taste.SOLUTION: Provided is a salt production method comprising: a residual liquid production step where saturated salt water concentrated with sea water is evaporated to produce a residual liquid concentrated with bittern, being the residual liquid exhausted in accordance with the production of salt; an addition step where the residual liquid is added to the saturated salt water; a crystallization step where the residual liquid and the saturated salt water are mixed and stirred to crystallize out the salt in the saturated salt water; and a filtration step where the crystallized-out salt is filtered with a filter so as to be recovered.SELECTED DRAWING: Figure 1

Description

本発明は、食塩の製造方法に関し、特に、簡易に製造でき、高品質且つ味覚も良好な食塩の製造方法に関する。   The present invention relates to a method for producing salt, and more particularly, to a method for producing salt that can be easily produced and has high quality and good taste.

近年、海水から品質の高い食塩を効率良く得る製造方法の開発が活発になされている。例えば、カルシウムおよび硫酸塩の不純物を減少させることを目的とする食塩の製造方法がある(例えば、特許文献1参照)。   In recent years, production methods for efficiently obtaining high-quality salt from seawater have been actively developed. For example, there is a method for producing sodium chloride for the purpose of reducing impurities of calcium and sulfate (see, for example, Patent Document 1).

例えば、特許文献1では、塩水(海水)を天日蒸発させて炭酸塩および石膏を晶出させ、濃縮塩水を得るステップと、(ii)前記濃縮塩水にミョウバンを加えるステップと、(iii)予備晶析器において前記浮遊粒子を重力下で沈降させて塩水を浄化するステップと、(iv)前記浄化された塩水を晶析器に供給し、天日蒸発を続行して塩を晶出させるステップと(v)ステップ(ii)〜(iv)を繰り返して、前記晶析器に塩の層を堆積するステップと(vi)前記晶析器からにがりを排出した後、新たな塩水を前記晶析器に供給し、前記塩をかき集めるステップと、を有する食塩の製造方法が開示されている。   For example, in Patent Document 1, salt water (seawater) is evaporated in the sun to crystallize carbonate and gypsum to obtain concentrated salt water, (ii) adding alum to the concentrated salt water, and (iii) preliminary A step of purifying the salt water by allowing the suspended particles to settle under gravity in a crystallizer; and (iv) a step of supplying the purified salt water to the crystallizer and continuing to evaporate the sun to crystallize the salt. And (v) repeating steps (ii) to (iv) to deposit a salt layer on the crystallizer; and (vi) draining bittern from the crystallizer and then adding fresh salt water to the crystallizer. And a step of collecting the salt by supplying to a vessel.

しかし、従来の食塩の製造方法では、ミョウバンなどの添加剤が必要とされ、当該添加剤そのものに係るコストや、その除去に係るコストがかかるうえに、添加剤が添加されることによって食塩本来の味を損なう虞もある。   However, the conventional method for producing salt requires an additive such as alum, and the cost associated with the additive itself and the cost for removing the additive are added. There is also a risk of losing taste.

そのため、余分な添加剤を用いることなく、簡易な方法によって、海水から高品質且つ味覚も良好な食塩の製造方法が期待されているが、現在のところ、そのような食塩の製造方法は見当たらない。   Therefore, a method for producing high quality and good taste salt from seawater is expected by a simple method without using an extra additive, but no method for producing such salt is found at present. .

特開2007−099605号公報JP 2007-099605 A

本発明は前記課題を解決するためになされたものであり、簡易に製造でき、高品質且つ味覚も良好な食塩の製造方法の提供を目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for producing salt, which can be easily manufactured, has high quality and good taste.

本発明者は、鋭意研究の結果、海水を濃縮した飽和食塩水(通称「灌水」と呼ばれるものも対象に含まれる)を、蒸発させて食塩を得た後に排出される残液を、にがりの濃度よりも濃縮したところ、この残液を前記飽和食塩水に混合させることによって、極めて良質な粒子状の食塩が短時間で(迅速に)且つ室温で得られることを見出した。   As a result of diligent research, the present inventor has found that the residual liquid discharged after the salt solution obtained by evaporating the saturated saline (commonly called “irrigation”), which is concentrated seawater, is obtained. When the concentration was higher than the concentration, it was found that by mixing this residual solution with the saturated saline solution, extremely good quality particulate salt can be obtained in a short time (rapidly) and at room temperature.

すなわち、本願に開示する食塩製造方法は、海水を濃縮した飽和食塩水を、蒸発させて食塩が生産されるに伴って排出される残液であって、にがりが濃縮された残液を製造する残液製造工程と、前記残液を前記飽和食塩水に添加する添加工程と、前記残液と前記飽和食塩水を混合して攪拌し、前記飽和食塩水中の食塩を晶析させる晶析工程と、前記晶析された食塩をフィルタで濾過して回収する濾過工程とを含むものが提供される。このように、前記残液製造工程が、にがりよりも濃縮された前記残液を製造し、前記添加工程が、当該残液を前記飽和食塩水に添加し、前記晶析工程が、前記残液と前記飽和食塩水を混合して攪拌し、前記飽和食塩水中の食塩を晶析し、前記濾過工程が、当該晶析された食塩をフィルタで濾過して回収することから、にがりよりも濃縮された前記残液を前記飽和食塩水に添加するという簡素な方法によって添加剤を必要とすることなく、形状の整った食塩が得られることとなり、良質な食塩を簡易に製造することができる。   That is, the salt production method disclosed in the present application is a residual liquid that is discharged as salt is produced by evaporating saturated saline concentrated in seawater, and produces a residual liquid with concentrated bittern. A residual liquid production process, an addition process of adding the residual liquid to the saturated saline, a crystallization process of mixing and stirring the residual liquid and the saturated saline to crystallize the salt in the saturated saline; And a filtration step of collecting the crystallized salt by filtration through a filter. Thus, the said residual liquid manufacturing process manufactures the said residual liquid concentrated rather than bittern, the said addition process adds the said residual liquid to the said saturated salt solution, and the said crystallization process is the said residual liquid. And the saturated saline are mixed and stirred, and the sodium chloride in the saturated saline is crystallized, and the filtration step collects the crystallized salt through a filter and collects it, which is more concentrated than the bittern. In addition, a simple method of adding the residual liquid to the saturated saline solution does not require an additive, so that a well-shaped salt solution can be obtained, and a high-quality salt solution can be easily produced.

本願に開示する食塩製造方法は、必要に応じて、前記添加工程で添加される前記残液が、前記飽和食塩水との混合溶液の40〜70体積%であるものである。このように、前記添加工程で添加される前記残液が、前記飽和食塩水との混合溶液の40〜70体積%であることから、前記残液と前記飽和食塩水から食塩が晶析されやすい最適な体積混合比率となり、効率的に食塩を製造することができる。   The salt production method disclosed in the present application is such that the residual liquid added in the addition step is 40 to 70% by volume of the mixed solution with the saturated saline as necessary. Thus, since the said residual liquid added at the said addition process is 40-70 volume% of the mixed solution with the said saturated salt solution, salt will be easily crystallized from the said residual solution and the said saturated saline solution. It becomes an optimal volume mixing ratio and can produce salt efficiently.

本願に開示する食塩製造方法は、必要に応じて、前記添加工程で添加される前記残液が、前記飽和食塩水より高い温度とするものである。このように、前記添加工程で添加される前記残液が、前記飽和食塩水より高い温度であることから、相対的に高温の前記残液を前記飽和食塩水に添加することにより、最適な水温変化に伴って食塩が製造されやすい状態が形成されることとなり、効率的に食塩を製造することができる。   In the salt production method disclosed in the present application, the residual liquid added in the addition step is set to a temperature higher than that of the saturated saline as necessary. Thus, since the residual liquid added in the addition step is at a higher temperature than the saturated saline, an optimal water temperature can be obtained by adding the relatively hot residual liquid to the saturated saline. With the change, a state in which the salt is easily manufactured is formed, and the salt can be manufactured efficiently.

本願に開示する食塩製造方法は、必要に応じて、前記濾過工程で食塩が回収されるに伴って排出される排出液を、前記残液製造工程に還流し、前記残液を再製造するリサイクル工程を含み、前記添加工程が、前記再製造された前記残液を、前記飽和食塩水に添加するものである。このように、前記濾過工程で食塩が回収されるに伴って排出される排出液を、前記残液製造工程に還流し、前記残液を再製造するリサイクル工程を含むことから、食塩を回収後の排出液も、再度、食塩を製造するための原料として繰り返し利用されることとなり、資源の有効利用と、食塩製造の低コスト化を実現することができる。   The salt production method disclosed in the present application is a recycling method that recirculates the discharged liquid discharged as the salt is collected in the filtration step to the residual liquid production step, and re-produces the residual liquid, if necessary. Including the step of adding the remanufactured residual liquid to the saturated saline solution. As described above, since the waste liquid discharged as the salt is recovered in the filtration step is refluxed to the residual liquid manufacturing step, and the recycling step for remanufacturing the residual liquid is included, the sodium chloride is recovered. The effluent is again used as a raw material for producing salt, so that effective use of resources and cost reduction of salt production can be realized.

また、本願に開示する食塩は、海水を濃縮した飽和食塩水を蒸発させて、食塩が生産される際に製造されるにがりを濃縮されてなる残液を当該飽和食塩水の凝集剤として使用されることによって得られるものである。このように、本願に開示する食塩は、海水を濃縮した飽和食塩水を蒸発させて、食塩が生産される際に製造されるにがりを濃縮されてなる残液を当該飽和食塩水の凝集剤として使用されることによって得られることから、にがりよりも濃縮された前記残液を前記飽和食塩水に添加するという簡素な方法によって得られることとなり、添加剤を必要とすることなく、微細な粒径を有する良質な食塩となる。   Further, the salt disclosed in the present application is obtained by evaporating a saturated saline solution obtained by concentrating seawater, and using a residual solution obtained by concentrating the bittern produced when the salt is produced as a coagulant for the saturated saline solution. It is obtained by doing. As described above, the salt disclosed in the present application is obtained by evaporating a saturated saline solution obtained by concentrating seawater, and using the residual solution obtained by concentrating the bittern produced when the salt is produced as a coagulant for the saturated saline solution. Since it is obtained by being used, it will be obtained by a simple method of adding the residual liquid concentrated over bittern to the saturated saline solution, and does not require an additive, and has a fine particle size. A good quality salt with

本願の第1の実施形態に係る食塩製造方法のフローチャートを示す。The flowchart of the salt manufacturing method which concerns on 1st Embodiment of this application is shown. 本願の第1の実施形態に係る残液(濃縮塩水)のX線構造解析結果を示す。The X-ray structural analysis result of the residual liquid (concentrated salt water) which concerns on 1st Embodiment of this application is shown. 本願の第2の実施形態に係る食塩製造方法のフローチャートを示す。The flowchart of the salt manufacturing method which concerns on 2nd Embodiment of this application is shown. 本願の第2の実施形態に係る食塩製造方法の溶液の種類で示したフローチャートを示す。The flowchart shown with the kind of solution of the salt manufacturing method which concerns on 2nd Embodiment of this application is shown. 本願に係る実施例1で晶析した塩化ナトリウム結晶の核化及び成長写真(a)、並びに得られた食塩についてのXRD回折パターンの結果(b)を示す。The nucleation and growth photograph (a) of the sodium chloride crystal crystallized in Example 1 according to the present application, and the result (b) of the XRD diffraction pattern for the obtained salt are shown. 本願に係る実施例1で晶析した食塩に含まれる元素成分を解析した結果(a)、及び食塩に含まれるMg成分とS成分を解析した結果(b)を示す。The result (a) which analyzed the element component contained in the salt crystallized in Example 1 which concerns on this application (a), and the result (b) which analyzed the Mg component and S component which are contained in salt are shown. 本願に係る実施例1で晶析した食塩の電子顕微鏡写真の結果(a)、及び食塩に含まれるMg成分とS成分を解析した結果(b)を示す。The result (a) of the electron micrograph of the salt crystallized in Example 1 according to the present application and the result (b) of analyzing the Mg component and the S component contained in the salt are shown. 本願に係る実施例2で晶析した食塩の晶析重量と灌水の比重(d=1.20〜1.26)の関係(a)、及び本願に係る実施例3で晶析した食塩の晶析重量と濃縮塩水の体積割合及び残液の海水比重の関係(b)を示す。Relationship (a) between the crystallization weight of the salt crystallized in Example 2 according to the present application and the specific gravity of irrigation (d = 1.20-1.26), and the crystal of the salt crystallized in Example 3 according to the present application The relationship (b) of the analysis weight, the volume ratio of concentrated salt water, and the seawater specific gravity of a residual liquid is shown. 本願に係る実施例4で晶析した食塩の晶析重量と濃縮塩水の(d=1.3〜1.38)の関係(a)、及び本願に係る実施例5で晶析した食塩の灌水と濃縮塩水の混合液の液温を変動させた結果(b)を示す。Relationship (a) between the crystallization weight of the salt crystallized in Example 4 according to the present application and concentrated brine (d = 1.3-1.38), and irrigation of the salt crystallized in Example 5 according to the present application The result (b) which changed the liquid temperature of the liquid mixture of a salt water and concentrated salt water is shown.

(第1の実施形態)
本願の第1の実施形態に係る食塩製造方法を、図1のフローチャートに従い説明する。
(First embodiment)
A salt production method according to the first embodiment of the present application will be described with reference to the flowchart of FIG.

(残液製造工程)
先ず、海水を濃縮した飽和食塩水を、蒸発させて食塩が生産されるに伴って排出される残液であって、にがりが濃縮された残液を製造する(S1:残液製造工程)。
(Residual liquid production process)
First, a saturated solution that is discharged as salt is produced by evaporating a saturated saline solution obtained by concentrating seawater is produced (S1: Residual solution manufacturing step).

この原料となる海水は、一般的な海水であれば特に制限されるものではなく、例えば、比重dが1.03を示す溶液を用いることができる。この海水を濃縮した飽和食塩水としては、比重dがこの1.03より大きく、1.22以下を示す溶液(通称「灌水」と呼ばれる溶液も対象として含まれる)を用いる。   The seawater used as the raw material is not particularly limited as long as it is general seawater. For example, a solution having a specific gravity d of 1.03 can be used. As the saturated saline solution obtained by concentrating the seawater, a solution having a specific gravity d larger than 1.03 and 1.22 or less (a solution called “irrigation” is also included as a target) is used.

また、この飽和食塩水を蒸発させて食塩が生産されるに伴って排出される残液(「濾過塩水(塩化物溶液)」又は「濃縮塩水」ともいう)は、にがりが濃縮された残液であることから、一般的なにがりの比重d=1.26よりも大きい比重を有するものである。すなわち、この残液は、比重dの値がにがりより大きく、例えば、比重d=1.26〜1.38であり、より効率的に食塩を生成するという観点からは、比重d=1.32〜1.38の溶液を用いることがより好ましい。なお、上記の各比重は、市販の比重計(例えば、標準比重計No.4(アズワン(株)製))を用いて測定することができる無次元数である。   Further, the residual liquid (also referred to as “filtered salt water (chloride solution)” or “concentrated salt water”) discharged as the salt is produced by evaporating the saturated saline is the residual liquid in which bittern is concentrated. Therefore, the specific gravity of the general bittern has a specific gravity greater than 1.26. That is, the residual liquid has a specific gravity d larger than the bittern, for example, the specific gravity d = 1.26 to 1.38, and the specific gravity d = 1.32 from the viewpoint of more efficiently producing salt. More preferably, a solution of ˜1.38 is used. Each specific gravity described above is a dimensionless number that can be measured using a commercially available hydrometer (for example, standard hydrometer No. 4 (manufactured by ASONE Co., Ltd.)).

残液(濃縮塩水)を調製する一例として、海水比重がd=1.30の残液(濃縮塩水)を出発原料に用いて、残液(濃縮塩水)を調製 (海水比重d=1.32〜)して得られた溶液について、水平型X線構造解析装置(XRD7000、島津製作所製)で解析した結果を、図2に示す。   As an example of preparing the residual liquid (concentrated salt water), the residual liquid (concentrated salt water) with seawater specific gravity d = 1.30 is used as the starting material, and the residual liquid (concentrated salt water) is prepared (seawater specific gravity d = 1.32 ~) FIG. 2 shows the result of analyzing the obtained solution with a horizontal X-ray structure analyzer (XRD7000, manufactured by Shimadzu Corporation).

また、この残液は、Na、Cl、Mg を主要成分とする溶液である。この残液について、多段階(4th)晶析後に排出する残液(海水比重d=1.36)を、エネルギー分散型蛍光X線分析装置(Rayny EDX-800HS、島津製作所製)を用いて、成分分析を行った結果を以下に示す。   The remaining liquid is a solution containing Na, Cl, and Mg as main components. About this residual liquid, the residual liquid (seawater specific gravity d = 1.36) discharged | emitted after multistage (4th) crystallization is used for the energy dispersion type | mold fluorescence X-ray-analysis apparatus (Rayny EDX-800HS, Shimadzu Corporation make), The results of component analysis are shown below.

(添加工程)
次に、この残液を、前記飽和食塩水に添加する(S2:添加工程)。この残液は、より効率的に食塩を得るという観点から、前記飽和食塩水との混合溶液の40〜70体積%であることが好ましい。また、この残液は、より効率的に食塩を得るという観点から、前記飽和食塩水より高い温度とすることが好ましい。
(Addition process)
Next, this residual liquid is added to the saturated saline solution (S2: addition step). From the viewpoint of obtaining salt more efficiently, the residual liquid is preferably 40 to 70% by volume of the mixed solution with the saturated saline. Moreover, it is preferable to make this residual liquid into temperature higher than the said saturated salt solution from a viewpoint of obtaining salt more efficiently.

(晶析工程)
次に、この残液と前記飽和食塩水を混合して攪拌し、前記飽和食塩水中の食塩を晶析させる(S3:晶析工程)。この攪拌によって、この残液がこの飽和食塩水中に分散されることによって、微細化された粒径を有する食塩を容易に得ることができる。
(Crystallization process)
Next, the residual solution and the saturated saline are mixed and stirred to crystallize the salt in the saturated saline (S3: crystallization step). By this stirring, the residual liquid is dispersed in the saturated saline solution, whereby salt having a refined particle size can be easily obtained.

この攪拌には、磁力や超音波などにより振動を発生させる装置を用いることができ、例えば、マグネットスターラーや超音波振動子などを用いることができる。   For this stirring, a device that generates vibration by magnetic force, ultrasonic waves, or the like can be used. For example, a magnet stirrer, an ultrasonic vibrator, or the like can be used.

この攪拌に関する各種の条件は特に限定されるものではないが、より微細な粒径の食塩を得るという観点から、攪拌速度については、5〜300回転/分(rpm)であることが好ましく、さらに微細な粒径の塩を得るという観点から、より高速であること、すなわち、100〜300回転/分であることがより好ましく、特に好ましくは、250〜300回転/分である。また、攪拌時間については、微細な粒径の食塩を得るという観点から、比較的短時間の攪拌であること、すなわち、1〜60秒であることが好ましく、例えば、30秒とすることができる。   Various conditions relating to this stirring are not particularly limited, but from the viewpoint of obtaining salt with a finer particle size, the stirring speed is preferably 5 to 300 revolutions per minute (rpm), and From the viewpoint of obtaining a salt having a fine particle diameter, it is more preferable that the speed is higher, that is, 100 to 300 revolutions / minute, and particularly preferably 250 to 300 revolutions / minute. The stirring time is preferably a relatively short stirring from the viewpoint of obtaining salt with a fine particle size, that is, preferably 1 to 60 seconds, for example, 30 seconds. .

(濾過工程)
次に、この晶析された食塩をフィルタで濾過して回収する(S4:濾過工程)。このように、本実施形態に従えば、海水を原料として微細な食塩が、室温晶析により迅速且つ容易に得られる。
(Filtering process)
Next, the crystallized salt is collected by filtration through a filter (S4: filtration step). Thus, according to this embodiment, fine salt can be obtained quickly and easily by room temperature crystallization using seawater as a raw material.

得られる食塩は、微細な粒径を有することが確認されている(後述の実施例参照)。この微細な粒径の食塩は、かさ密度が小さい(空気を含み、ふわふわとした柔らかい質感が得られる)という特徴を有する。このようにして得られるかさ密度の小さい食塩は、食塩のかさ高さによって、食塩の外観上の体積の割に、実際の摂取量が抑えられることとなり、食した際の塩味は維持されつつも塩分摂取量は抑えられるという優れた減塩効果を奏することができる。   The obtained salt has been confirmed to have a fine particle size (see Examples described later). This fine particle size salt has a feature that the bulk density is small (air is included and a soft and soft texture is obtained). The salt with a small bulk density obtained in this way will have its actual intake reduced due to the bulk of the salt, while maintaining the salty taste when eaten. An excellent salt reducing effect that the amount of salt intake can be suppressed can be achieved.

さらに、本製造方法により製造される食塩の味覚は、強い苦味をもたらす硫酸マグネシウム成分が低下すると共に、塩化マグネシウム成分が高いことが確認されており、塩化マグネシウム成分由来の甘味を備えた旨みが得られる。   Furthermore, the taste of the salt produced by this production method has been confirmed to be reduced in the magnesium sulfate component that causes a strong bitter taste and high in the magnesium chloride component, and has a sweet taste derived from the magnesium chloride component. It is done.

このように本願に係る食塩の製造方法が優れた効果を奏するメカニズムは、詳細には解明されていないが、にがりよりも濃縮されて比重が高められた前記残液が、前記飽和水溶液に添加されることによって、前記飽和水溶液中の塩化物イオンが一時的に過剰となり、NaCl ⇔ Na+ +Cl- の電離平衡から、塩化ナトリウム水溶液中の水素イオンと塩化物イオンの平衡状態を維持する作用によって、塩化ナトリウムの結晶化を促進する状況がもたらされているものと推察される。   Although the mechanism by which the method for producing salt according to the present application exhibits an excellent effect has not been elucidated in detail, the residual liquid concentrated to a higher specific gravity than the bittern is added to the saturated aqueous solution. As a result, chloride ions in the saturated aqueous solution temporarily become excessive, and from the ionization equilibrium of NaCl ⇔ Na + + Cl-, the action of maintaining the equilibrium state of hydrogen ions and chloride ions in the aqueous sodium chloride solution, It is presumed that a situation that promotes crystallization of sodium chloride has been brought about.

すなわち、塩化ナトリウムの飽和溶液に、その電解質を構成するイオンと共通するイオン(共通イオン)を生じる別の電解質(この場合では塩化物イオン)を加えることによって、元の電解質の溶解度が減少し、塩化ナトリウムの沈殿を生じるという現象が起きているものと推察される。これにより、結晶性や品質が高く食塩としての優れた食塩が得られるものと推察される。   That is, by adding another electrolyte (in this case, chloride ion) that generates ions (common ions) that are common to ions constituting the electrolyte to a saturated solution of sodium chloride, the solubility of the original electrolyte is reduced, It is inferred that the phenomenon of precipitation of sodium chloride occurs. Thereby, it is guessed that the salt with high crystallinity and quality is excellent as salt.

このように、室温において晶析が可能となることから、晶析によって塩化ナトリウム結晶の核化及び成長が素早く進行し、食塩が短時間で生成されるという時間的な優位性も得られる。   As described above, since crystallization is possible at room temperature, nucleation and growth of sodium chloride crystals proceed rapidly by crystallization, and a temporal advantage is obtained that sodium chloride is generated in a short time.

(第2の実施形態)
本願の第2の実施形態に係る食塩製造方法を、図2のフローチャートに従い説明する。
(Second Embodiment)
A salt production method according to the second embodiment of the present application will be described with reference to the flowchart of FIG.

第2の実施形態は、図2のフローチャートに示すように、上述した第1の実施形態と同じく、前記残液製造工程と、前記添加工程と、前記晶析工程と、前記濾過工程とを含み、さらに、前記濾過工程で食塩が回収されるに伴って排出される排出液を、前記残液製造工程に還流し、前記残液を再製造するリサイクル工程を含むものであり、前記添加工程が、前記再製造された前記残液を、前記飽和食塩水に添加する特徴を有するものである。   As shown in the flowchart of FIG. 2, the second embodiment includes the residual liquid manufacturing process, the adding process, the crystallization process, and the filtering process, as in the first embodiment described above. Furthermore, the waste liquid discharged as the salt is recovered in the filtration step is recirculated to the residual liquid production step, and includes a recycling step for remanufacturing the residual liquid, and the addition step includes The remanufactured residual liquid is added to the saturated saline solution.

(リサイクル工程)
すなわち、上述の濾過工程(S4)の後工程として、上述の濾過工程(S4)で食塩が回収されるに伴って排出される排出液を、前記残液製造工程(S1)に還流し、前記残液を再製造する(S5:リサイクル工程)。この残液製造工程(S1)に還流された残液は、前記添加工程(S2)において前記飽和食塩水に添加され、それ以降は、前記第1の実施形態と同じく、前記晶析工程(S3)及び前記濾過工程(S4)へと進む。
(Recycling process)
That is, as a subsequent step of the above-described filtration step (S4), the discharged liquid discharged as the salt is recovered in the above-described filtration step (S4) is refluxed to the residual liquid production step (S1), The remaining liquid is remanufactured (S5: recycling process). The residual liquid refluxed in the residual liquid production step (S1) is added to the saturated saline in the addition step (S2), and thereafter, as in the first embodiment, the crystallization step (S3). ) And the filtration step (S4).

このように、前記濾過工程(S4)で食塩が回収されるに伴って排出される排出液を、前記残液製造工程(S1)に還流し、前記残液を再製造するリサイクル工程を含むことから、食塩を回収後の排出液も、再度、食塩を製造するための原料として繰り返し利用されることとなり、資源の有効利用と、食塩製造の低コスト化を実現することができる。溶液の種類で示したフローチャートを、図4に示す。図4に示すように、この残液は、採かんまで戻して再利用することが好ましい。   As described above, the method includes a recycling step in which the discharged liquid discharged as the salt is collected in the filtration step (S4) is returned to the residual liquid manufacturing step (S1) to remanufacture the residual liquid. Therefore, the effluent after recovering the salt is also reused as a raw material for manufacturing the salt again, so that effective use of resources and cost reduction of the salt manufacturing can be realized. A flowchart showing the types of solutions is shown in FIG. As shown in FIG. 4, it is preferable that the remaining liquid be returned to be collected and reused.

本発明の特徴を更に明らかにするため、以下に実施例を示すが、本発明はこの実施例によって制限されるものではない。   In order to further clarify the features of the present invention, examples are shown below, but the present invention is not limited to these examples.

(実施例1)
上記灌水200ml(海水比重d=1.22)に濃縮塩水50ml(海水比重d=1.36)を添加し、20℃でマグネットスターラーで攪拌(撹拌速度200rpm)し、食塩を晶析した。晶析した塩化ナトリウム結晶の核化及び成長写真を図5(a)に示す。
Example 1
Concentrated salt water 50 ml (seawater specific gravity d = 1.36) was added to 200 ml of the above irrigation water (seawater specific gravity d = 1.22), and stirred with a magnetic stirrer at 20 ° C. (stirring speed 200 rpm) to crystallize sodium chloride. A nucleation and growth photograph of the crystallized sodium chloride crystal is shown in FIG.

得られた食塩について、水平型X線構造解析装置(XRD7000、島津製作所製)で解析したXRD回折パターンの結果を図5(b)に示す。なお、図5(b)の上部で示されたデータは、この晶析後に、さらに蒸発晶析を行った場合(60℃、比重d=1.26)の結果である。このXRD回折パターンにより、確かに塩化ナトリウムを主成分とする食塩が生成されたことが確認された。   FIG. 5B shows the result of the XRD diffraction pattern obtained by analyzing the obtained salt with a horizontal X-ray structure analyzer (XRD7000, manufactured by Shimadzu Corporation). Note that the data shown in the upper part of FIG. 5B is the result when evaporation crystallization is further performed after this crystallization (60 ° C., specific gravity d = 1.26). From this XRD diffraction pattern, it was confirmed that sodium chloride as a main component was produced.

また、得られた食塩について、食塩に含まれる元素成分を、エネルギー分散型蛍光X線分析装置(Rayny EDX-800HS、島津製作所製)により解析した結果を、図6(a)に示す。また、晶析後に、さらに60℃で蒸発晶析を行った結果も合わせて示す。この解析結果により、得られた食塩では、Mg成分とS成分がほぼ同じ比率で且つ高い配合率で存在していることから、甘味及び旨みをもたらす硫酸マグネシウムの存在率が高く、味覚に優れた食塩が得られることが確認された   Moreover, about the obtained salt, the result of having analyzed the element component contained in salt with the energy dispersive X-ray fluorescence analyzer (Rayny EDX-800HS, Shimadzu Corporation Corp.) is shown in FIG. 6 (a). Further, the results of evaporation crystallization at 60 ° C. after crystallization are also shown. According to this analysis result, in the obtained salt, since the Mg component and the S component are present at almost the same ratio and at a high blending rate, the presence rate of magnesium sulfate that brings sweetness and umami is high, and the taste is excellent. It was confirmed that salt was obtained

さらに、得られた食塩について、食塩に含まれるMg成分とS成分を、エネルギー分散型蛍光X線分析装置(Rayny EDX-800HS、島津製作所製)により解析した結果を、図6(b)に示す。比較例として、灌水から直接天日により天日塩として得られた食塩も示す。また、晶析後に、さらに60℃で蒸発晶析を行った結果も合わせて示す。図6(b)に示すように、天日塩と比較して、Mg成分及びS成分の含有量が有意に増大したことが確認されたことから、本食塩では、甘味及び旨みを増強する硫酸マグネシウムの存在率が高く、味覚に優れた食塩が得られることが確認された。   Furthermore, about the obtained salt, the result of having analyzed Mg component and S component contained in salt with an energy dispersive X-ray fluorescence analyzer (Rayny EDX-800HS, manufactured by Shimadzu Corporation) is shown in FIG. 6 (b). . As a comparative example, the salt obtained as sun salt by direct sunlight from irrigation is also shown. Further, the results of evaporation crystallization at 60 ° C. after crystallization are also shown. As shown in FIG. 6 (b), it was confirmed that the contents of the Mg component and the S component were significantly increased compared to the sun salt. It was confirmed that salt with a high abundance and excellent taste was obtained.

得られた食塩について、電子顕微鏡写真の結果を、図7(a)に示す。比較例として前記残液を単に加熱晶析して得られた食塩の電子顕微鏡写真の結果を、図7(b)に示す。図7の結果から、本実施例で得られた食塩は、食塩の粒径は50〜200μmオーダーの微細な粒子であることが確認された。さらに、比較例の食塩と比較して、明らかに整った立方形状を有する食塩であることが確認された。   About the obtained salt, the result of an electron micrograph is shown to Fig.7 (a). As a comparative example, FIG. 7B shows the result of an electron micrograph of sodium chloride obtained by simply subjecting the residual liquid to heat crystallization. From the results of FIG. 7, it was confirmed that the salt obtained in this example was a fine particle having a salt particle size of the order of 50 to 200 μm. Furthermore, compared with the salt of the comparative example, it was confirmed that the salt has a clearly arranged cubic shape.

(実施例2)
上記実施例1と同じ手順にて、灌水200mlと濃縮塩水50ml(比重d=1.36)を用いて、食塩を製造し、灌水の比重をd=1.20〜1.26の範囲で変化させることにより、灌水と晶析重量の関係を得た。得られた結果を、図8(a)に示す。得られた結果から、灌水の比重dがd=1.22〜1.26の場合において、より多くの晶析量が得られ、特に灌水の比重dがd=1.22〜1.25の場合においては、さらに多くの晶析量が得られたことが確認された。
(Example 2)
Using the same procedure as in Example 1, 200 ml of irrigation and 50 ml of concentrated brine (specific gravity d = 1.36) were used to produce salt, and the specific gravity of irrigation was changed in the range of d = 1.20 to 1.26. By doing so, the relationship between irrigation and crystallization weight was obtained. The obtained result is shown in FIG. From the obtained results, when the specific gravity d of irrigation is d = 1.2-1.26, a larger amount of crystallization is obtained, and in particular, the specific gravity d of irrigation is d = 1.22 to 1.25. In some cases, it was confirmed that a larger amount of crystallization was obtained.

(実施例3)
上記実施例1と同じ手順にて、灌水と濃縮塩水(比重d=1.36)の混合溶液250mlにおける濃縮塩水の体積割合(体積%)を変化させて食塩を製造し、濃縮塩水の体積割合に及ぼす晶析重量および残液の海水比重の関係を得た。得られた結果を、図8(b)に示す。得られた結果から、前記添加工程で添加される前記残液が、前記飽和食塩水との混合溶液の40〜70体積%である場合に、特に多くの食塩が晶析されたことが確認された。
(Example 3)
In the same procedure as in Example 1 above, salt was produced by changing the volume ratio (volume%) of concentrated brine in 250 ml of a mixed solution of irrigation and concentrated brine (specific gravity d = 1.36), and the volume ratio of concentrated brine The relationship between the weight of crystallization and the specific gravity of seawater in the residual liquid was obtained. The obtained result is shown in FIG. From the obtained results, it was confirmed that particularly a large amount of salt was crystallized when the residual liquid added in the adding step was 40 to 70% by volume of the mixed solution with the saturated saline. It was.

(実施例4)
上記実施例1と同じ手順にて、灌水(比重d=1.22)に対する濃縮塩水の体積割合を20体積%として、濃縮塩水の比重dをd=1.3〜1.38の範囲で変動させて20℃で食塩を製造し、濃縮塩水の比重dと食塩晶析重量との関係を得た。得られた結果を、図9(a)に示す。得られた結果から、濃縮塩水の比重dは、d=1.34〜1.38の範囲において、より多くの食塩が晶析されたことが確認された。
Example 4
In the same procedure as in Example 1, the volume ratio of concentrated brine to irrigation (specific gravity d = 1.22) was set to 20% by volume, and the specific gravity d of concentrated brine was varied in the range of d = 1.3 to 1.38. The sodium chloride was produced at 20 ° C., and the relationship between the specific gravity d of the concentrated brine and the salt crystallization weight was obtained. The obtained result is shown in FIG. From the obtained result, it was confirmed that more salt was crystallized in the specific gravity d of the concentrated salt water in the range of d = 1.34 to 1.38.

(実施例5)
上記実施例1と同じ手順にて、灌水(比重d=1.22)に対する濃縮塩水(比重d=1.36)の体積割合を20体積%として、灌水と濃縮塩水の混合液の液温を変動させて食塩を製造し、この灌水と濃縮塩水の混合液の液温と食塩晶析重量の関係を得た。得られた結果を、図9(b)に示す。得られた結果から、前記添加工程で添加される濃縮塩水(前記残液)が、灌水(前記飽和食塩水)より高い温度の場合には、特に多くの食塩が晶析されたことが確認された。また、この灌水と濃縮塩水の混合液の液温が低いほど晶析重量が増大することも確認された。
(Example 5)
In the same procedure as in Example 1, the volume ratio of the concentrated brine (specific gravity d = 1.36) to the irrigation (specific gravity d = 1.22) is 20% by volume, and the liquid temperature of the mixed solution of irrigation and concentrated brine is Salt was produced by varying the temperature, and the relationship between the temperature of the mixed solution of irrigation and concentrated brine and the weight of salt crystallization was obtained. The obtained result is shown in FIG. From the obtained results, it was confirmed that a large amount of salt was crystallized particularly when the concentrated brine (the residual solution) added in the addition step was at a higher temperature than irrigation (saturated saline). It was. It was also confirmed that the crystallization weight increased as the temperature of the mixed solution of irrigation and concentrated brine decreased.

Claims (5)

海水を濃縮した飽和食塩水を、蒸発させて食塩が生産されるに伴って排出される残液であって、にがりが濃縮された残液を製造する残液製造工程と、
前記残液を前記飽和食塩水に添加する添加工程と、
前記残液と前記飽和食塩水を混合して攪拌し、前記飽和食塩水中の食塩を晶析させる晶析工程と、
前記晶析された食塩をフィルタで濾過して回収する濾過工程と、
を含むことを特徴とする
食塩製造方法。
A residual liquid production step for producing a residual liquid that is discharged as the salt is produced by evaporating a saturated saline solution obtained by concentrating seawater;
An addition step of adding the residual liquid to the saturated saline solution;
The residual solution and the saturated saline are mixed and stirred, and a crystallization step of crystallizing salt in the saturated saline,
A filtration step of collecting the crystallized salt by filtration through a filter;
A method for producing salt, comprising:
請求項1に記載の食塩製造方法において、
前記添加工程で添加される前記残液が、前記飽和食塩水との混合溶液の40〜70体積%であることを特徴とする
食塩製造方法。
The salt production method according to claim 1,
The said residual liquid added at the said addition process is 40-70 volume% of the mixed solution with the said saturated salt solution, The salt manufacturing method characterized by the above-mentioned.
請求項1または請求項2に記載の食塩製造方法において、
前記添加工程で添加される前記残液が、前記飽和食塩水より高い温度とすることを特徴とする
食塩製造方法。
In the salt manufacturing method according to claim 1 or 2,
The salt production method, wherein the residual liquid added in the addition step is set to a temperature higher than that of the saturated saline solution.
請求項1〜3のいずれかに記載の食塩製造方法において、
前記濾過工程で食塩が回収されるに伴って排出される排出液を、前記残液製造工程に還流し、前記残液を再製造するリサイクル工程を含み、
前記添加工程が、前記再製造された前記残液を、前記飽和食塩水に添加することを特徴とする
食塩製造方法。
In the salt manufacturing method in any one of Claims 1-3,
A recycling step of recirculating the effluent discharged as the salt is recovered in the filtration step to the residual liquid production step, and remanufacturing the residual liquid;
The said addition process adds the said remanufactured said residual liquid to the said saturated salt solution, The salt manufacturing method characterized by the above-mentioned.
海水を濃縮した飽和食塩水を蒸発させて、食塩が生産される際に製造されるにがりを濃縮されてなる残液を当該飽和食塩水の凝集剤として使用されることによって得られる
食塩。
Salt obtained by evaporating a saturated saline solution obtained by concentrating seawater, and using a residual liquid obtained by concentrating the bittern produced when the salt is produced as a coagulant for the saturated salt solution.
JP2015046705A 2015-03-10 2015-03-10 Salt production method Active JP6547091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015046705A JP6547091B2 (en) 2015-03-10 2015-03-10 Salt production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015046705A JP6547091B2 (en) 2015-03-10 2015-03-10 Salt production method

Publications (2)

Publication Number Publication Date
JP2016166106A true JP2016166106A (en) 2016-09-15
JP6547091B2 JP6547091B2 (en) 2019-07-17

Family

ID=56897398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015046705A Active JP6547091B2 (en) 2015-03-10 2015-03-10 Salt production method

Country Status (1)

Country Link
JP (1) JP6547091B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018089602A (en) * 2016-12-07 2018-06-14 株式会社ササクラ Method and apparatus for treating waste liquid in manufacturing polarizing plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138437A (en) * 1974-09-30 1976-03-31 Sanuki Enso Kk SHOKUENNOSEIZOHOHO
JP2004052449A (en) * 2002-07-23 2004-02-19 Yonekyu Corp Method of gathering marine depth water from stratum, and salt manufacture method using the same
JP2005187256A (en) * 2003-12-25 2005-07-14 Noevir Co Ltd Method for efficiently manufacturing seawater salt and bittern with stable qualities
JP2009249259A (en) * 2008-04-09 2009-10-29 Mitsukan Group Honsha:Kk Mineral salt and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138437A (en) * 1974-09-30 1976-03-31 Sanuki Enso Kk SHOKUENNOSEIZOHOHO
JP2004052449A (en) * 2002-07-23 2004-02-19 Yonekyu Corp Method of gathering marine depth water from stratum, and salt manufacture method using the same
JP2005187256A (en) * 2003-12-25 2005-07-14 Noevir Co Ltd Method for efficiently manufacturing seawater salt and bittern with stable qualities
JP2009249259A (en) * 2008-04-09 2009-10-29 Mitsukan Group Honsha:Kk Mineral salt and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018089602A (en) * 2016-12-07 2018-06-14 株式会社ササクラ Method and apparatus for treating waste liquid in manufacturing polarizing plate

Also Published As

Publication number Publication date
JP6547091B2 (en) 2019-07-17

Similar Documents

Publication Publication Date Title
JP4509568B2 (en) Method for recovering low sodium salt from bitter juice
AU627977B2 (en) Crystallizer, process and apparatus for producing sodium chloride crystals
CN109891006A (en) Method for handling the water-based composition comprising lithium sulfate and sulfuric acid
CN102574024A (en) Process for the combined regeneration of soluble salts contained in a residue of an industrial process
AU2006201116B2 (en) A cost effective process for the preparation of solar salt having high purity and whiteness
CN113751190B (en) Method and system for preparing potassium chloride from carnallite raw ore
CN108719933B (en) Method for preparing edible low-sodium salt
CN112408680B (en) Method for fine treatment of wastewater containing fluorine and chlorine
AU2010254155B2 (en) Method of producing naturally purified salt products
JP6547091B2 (en) Salt production method
JP2009249259A (en) Mineral salt and method of manufacturing the same
CN1248966C (en) Halogen-blended process of preparing low-sodium carnallite
JP6342719B2 (en) Salt making method
CN109592698B (en) Method for preparing funnel-shaped sodium sulfate from high-salinity wastewater
US20170334733A1 (en) Method of Salts Cleaning from Higher Solubility Impurities by Virtue of Homogenization Thereof with a Solvent at a Constant Temperature
JP2006282476A (en) Manufacturing method of sodium chloride crystal
Wada et al. Crystallization operation method for recovering Mg resources from the sea water desalination process
JP2021500924A (en) Crystal form for sodium reduction
RU2558577C1 (en) Method of processing technical pentaerythrite-formiate mother liquor
JP2004166605A (en) Method and apparatus for manufacturing salt
CN104495878B (en) A kind of from high calcium abandoned mine decalcification produce the method for food-grade potassium chloride
CN100383045C (en) Method for preparing potassium sulfate by utilizing brine pan potassium as raw material
Bobokulova et al. BISHOPHITE FROM SALT LAKES BARSAKELMES
JP2000169139A (en) Production of aggregated salt in salt production
CN1183036C (en) Physical process of eliminating NaCl from mixed K and Mg salt with high Na salt content

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

R150 Certificate of patent or registration of utility model

Ref document number: 6547091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250