JP2016165698A - Method for discharging carrier type hydrogenation catalyst - Google Patents

Method for discharging carrier type hydrogenation catalyst Download PDF

Info

Publication number
JP2016165698A
JP2016165698A JP2015047582A JP2015047582A JP2016165698A JP 2016165698 A JP2016165698 A JP 2016165698A JP 2015047582 A JP2015047582 A JP 2015047582A JP 2015047582 A JP2015047582 A JP 2015047582A JP 2016165698 A JP2016165698 A JP 2016165698A
Authority
JP
Japan
Prior art keywords
gas
hydrogenation catalyst
reactor
hydrogenation
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015047582A
Other languages
Japanese (ja)
Other versions
JP6443142B2 (en
Inventor
林 直人
Naoto Hayashi
直人 林
田中 善幸
Yoshiyuki Tanaka
善幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2015047582A priority Critical patent/JP6443142B2/en
Publication of JP2016165698A publication Critical patent/JP2016165698A/en
Application granted granted Critical
Publication of JP6443142B2 publication Critical patent/JP6443142B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for discharging a hydrogenation catalyst from a hydrogenation catalyst in which risk such as firing is remarkably reduced and high in safety.SOLUTION: From a hydrogenation reactor filled with a carrier type hydrogenation catalyst, the hydrogenation catalyst is discharged by the following process: an inert gas is circularly fed under pressure after the stop of the feed of hydrogen to the hydrogenation reactor, the exhausted component is introduced into a gas-liquid separator, a gas component is fed to flammable gas treatment equipment, further a liquid component is fed to waste oil treatment equipment, when the concentration of the flammable gas in the exhaust gas reaches below the explosion lower limit value, an oxygen-containing gas is fed, the hydrogenation catalyst inactivated, thereafter, the reactor is cooled, and the inactivation treatment-finished carrier is discharged.SELECTED DRAWING: None

Description

本発明は、使用済みの担持型水素添加触媒を安全に取り出す方法に関する。   The present invention relates to a method for safely removing a used supported hydrogenation catalyst.

水素添加反応(以下「水添反応」と略記することがある)は化学工業、特に石油化学工業で広く行われている反応である。中でも、オレフィン類のヒドロホルミル化反応で生成するアルデヒド類を水素添加して、対応するアルコール類を製造する方法は、高級アルコールの製造方法として広く用いられている。
この反応は主に不均一系で実施され、水素添加触媒(以下「水添触媒」と略記することがある)としてはニッケル、銅、白金、コバルト、パラジウム、モリブデン等の金属を活性成分とする担持型の触媒が多く用いられている。
The hydrogenation reaction (hereinafter sometimes abbreviated as “hydrogenation reaction”) is a reaction widely performed in the chemical industry, particularly in the petrochemical industry. Among these, a method for producing a corresponding alcohol by hydrogenating an aldehyde produced by a hydroformylation reaction of an olefin is widely used as a method for producing a higher alcohol.
This reaction is carried out mainly in a heterogeneous system, and a hydrogenation catalyst (hereinafter sometimes abbreviated as “hydrogenation catalyst”) is made of a metal such as nickel, copper, platinum, cobalt, palladium, molybdenum and the like as an active component. Many supported catalysts are used.

特開2005−279587号公報Japanese Patent Laid-Open No. 2005-279588 特開2006−28053号公報JP 2006-28053 A

上記の担持型水添触媒は、長期間使用すると徐々に活性が低下するため、所定のタイミングでこれを抜き出して、新しい触媒又は賦活した触媒と交換する必要がある。しかしながら、該触媒は、活性が低下したとは言え、有機物が共存する状態で酸素に触れると着火する可能性が非常に高い。
このような触媒を水素添加反応器(以下「水添反応器」と略記する)から安全に抜き出すためには、水添触媒の不活性化処理とともに、反応停止時に水添反応器や水添触媒中に残留していた有機物を安全に処理する方法が必要であった。
Since the activity of the supported hydrogenation catalyst gradually decreases when used for a long period of time, it is necessary to extract it at a predetermined timing and replace it with a new catalyst or an activated catalyst. However, although the activity of the catalyst is lowered, there is a very high possibility that the catalyst will ignite when it is exposed to oxygen in the presence of organic substances.
In order to safely extract such a catalyst from a hydrogenation reactor (hereinafter abbreviated as “hydrogenation reactor”), the hydrogenation catalyst is deactivated and the hydrogenation reactor or hydrogenation catalyst is stopped when the reaction is stopped. There was a need for a method for safely treating the organic matter remaining therein.

本発明者らは、上記の課題を解決すべく鋭意検討した結果、所定の手順に従うことにより、安全に水添反応器から水添触媒を取り出すことができることを見出し、本発明を完成した。
即ち、本発明の要旨は、以下の[1]〜[4]に存する。
[1] 担持型水素添加触媒を器内に有する水素添加反応器から、以下の工程により該水素添加触媒を取り出す担持型水素添加触媒の取り出し方法。
(1)水素添加反応器への水素供給を停止し、反応器内圧力を常圧付近まで降圧した後、該水素添加反応器に不活性ガスを加圧下に流通供給する、
(2)流通供給した排出ガス流を気液分離装置に導く、
(3)気液分離された気体成分を可燃性ガス処理設備に導くとともに、液体成分を廃油処理設備に導く、
(4)排出ガス流中の液状成分に油分が含まれなくなり、かつ気体成分の可燃性ガス濃度が爆発下限値未満となったことが確認できたら、不活性ガスの供給を停止し、水素添加反応器に酸素含有ガスの供給を開始する、
(5)酸素含有ガスにより水素添加触媒が失活し、供給する酸素含有ガスの酸素濃度と排出ガス流中の酸素濃度との差がなくなったら、反応器を冷却し、酸素含有ガスの供給を停止する、
(6)水素添加反応器から失活済みの担持型水素添加触媒を取り出す。
[2] 用いる不活性ガスが窒素又は水蒸気である上記[1]に記載の担持型水素添加触
媒の取り出し方法。
[3] 担持型水素添加触媒の担体が多孔質担体である上記[1]又は[2]に記載の担持型水素添加触媒の取り出し方法。
[4] 担持型水素添加触媒が、ニッケル、銅、白金、コバルト、パラジウム、及びモリブデンから選ばれる少なくとも一種の元素を含有する触媒である上記[1]〜[3]のいずれかに記載の担持型水素添加触媒の取り出し方法。
[5] 酸素含有ガスによる水素添加触媒の失活操作に際して、該酸素含有ガスを断続的に供給する上記[1]〜[4]のいずれかに記載の担持型水素添加触媒の取り出し方法。
As a result of intensive studies to solve the above problems, the present inventors have found that the hydrogenation catalyst can be safely removed from the hydrogenation reactor by following a predetermined procedure, and have completed the present invention.
That is, the gist of the present invention resides in the following [1] to [4].
[1] A method for removing a supported hydrogenation catalyst, in which the hydrogenation catalyst is extracted from a hydrogenation reactor having the supported hydrogenation catalyst in the chamber by the following steps.
(1) Stop the supply of hydrogen to the hydrogenation reactor, lower the pressure in the reactor to near normal pressure, and then circulate and supply an inert gas to the hydrogenation reactor under pressure.
(2) The flow of exhaust gas supplied in circulation is guided to a gas-liquid separator.
(3) The gas component separated into gas and liquid is guided to the combustible gas processing facility, and the liquid component is guided to the waste oil processing facility.
(4) When it is confirmed that the liquid component in the exhaust gas stream contains no oil and the combustible gas concentration of the gas component is less than the lower explosion limit, the supply of inert gas is stopped and hydrogenation is performed. Start supplying oxygen-containing gas to the reactor,
(5) When the hydrogenation catalyst is deactivated by the oxygen-containing gas and there is no difference between the oxygen concentration of the supplied oxygen-containing gas and the oxygen concentration in the exhaust gas stream, the reactor is cooled and the oxygen-containing gas is supplied. Stop,
(6) Take out the deactivated supported hydrogenation catalyst from the hydrogenation reactor.
[2] The method for removing a supported hydrogenation catalyst according to the above [1], wherein the inert gas used is nitrogen or water vapor.
[3] The method for removing a supported hydrogenation catalyst according to the above [1] or [2], wherein the carrier of the supported hydrogenation catalyst is a porous carrier.
[4] The supported hydrogenation catalyst according to any one of the above [1] to [3], wherein the supported hydrogenation catalyst is a catalyst containing at least one element selected from nickel, copper, platinum, cobalt, palladium, and molybdenum. For removing the type hydrogenation catalyst.
[5] The method for removing a supported hydrogenation catalyst according to any one of the above [1] to [4], wherein the oxygen-containing gas is intermittently supplied during the deactivation operation of the oxygen-containing gas.

本発明方法によれば、着火等の恐れが著しく低減された、安全性が高い水添反応器からの水添触媒の取り出し方法が提供される。   According to the method of the present invention, there is provided a method for taking out a hydrogenation catalyst from a hydrogenation reactor having a high safety and the risk of ignition or the like being significantly reduced.

以下、本発明を詳細に説明するが、以下の説明は具体的な例示をすることが目的であり、本発明は以下の説明によって限定されるものではない。   Hereinafter, the present invention will be described in detail, but the following description is intended to be a specific example, and the present invention is not limited to the following description.

1.発明の概要
本発明は、担持型水素添加触媒を器内に有する水素添加反応器から、水素添加触媒を安全にかつ効率的に取り出すための方法に関するものである。
本発明の対象となる水添反応は特に限定されるものではないが、例えば、アルデヒド類を水素添加して対応するアルコールを製造する水添反応に対して好ましく適用される。
このような水添反応としては、プロピレン等のオレフィン類のヒドロホルミル化反応(オキソ反応)することにより、ブチルアルデヒド等の炭素数が1増加したアルデヒド類を製造し、これを水素添加することにより、アルデヒド中のカルボニル基が水素化されたアルコール類を製造したり、ブチルアルデヒド等のアルデヒド類を縮合(アルドール縮合)して、炭素数が2倍のアルデヒド類を得た上で、そのアルデヒド基のカルボニル基を水素添加することで、対応するアルコール類を製造したりする方法が例示できる。
以下、本発明について、このアルデヒドの水添反応用の触媒を例に挙げて具体的な説明を行うが、本発明の要旨を逸脱しない限り、その具体的用法等は適宜調整して使用することができ、そのような態様も本発明の範囲に包含されるものである。
1. The present invention relates to a method for safely and efficiently removing a hydrogenation catalyst from a hydrogenation reactor having a supported hydrogenation catalyst in the chamber.
The hydrogenation reaction that is the subject of the present invention is not particularly limited, but is preferably applied to, for example, a hydrogenation reaction in which an aldehyde is hydrogenated to produce a corresponding alcohol.
As such a hydrogenation reaction, hydroformylation reaction (oxo reaction) of olefins such as propylene is carried out to produce aldehydes having 1 carbon number increased such as butyraldehyde, and this is hydrogenated. Producing alcohols in which the carbonyl group in the aldehyde is hydrogenated or condensing aldehydes such as butyraldehyde (aldol condensation) to obtain aldehydes having twice the carbon number, A method of producing a corresponding alcohol by hydrogenating a carbonyl group can be exemplified.
Hereinafter, the present invention will be described in detail by taking this aldehyde hydrogenation catalyst as an example, but the specific usage and the like should be adjusted as appropriate without departing from the gist of the present invention. Such an embodiment is also included in the scope of the present invention.

2.担持型水添触媒
上記のような水添反応に用いられる担持型水添触媒としては、例えば触媒の活性成分としては、ニッケル、銅、白金、コバルト、パラジウム、モリブデン等が好ましく用いられ、またこれらを担持する担体としては、ケイ藻土、アルミナ、シリカゲル、シリカ−アルミナ等のゼオライト類、活性炭などの多孔質固体が好ましく使用される。
2. Supported hydrogenation catalyst As the supported hydrogenation catalyst used in the above hydrogenation reaction, for example, as the active component of the catalyst, nickel, copper, platinum, cobalt, palladium, molybdenum and the like are preferably used. As the carrier for supporting, porous solids such as diatomaceous earth, zeolites such as alumina, silica gel and silica-alumina, and activated carbon are preferably used.

本発明の対象となる担持型水添触媒は、上記の触媒活性成分またはその塩を水等の溶媒に溶解した溶液を、例えば金属濃度を100〜200g/Lの濃度として上記担体に含浸させた後、乾燥・焼成して製造することができる。
上記のようにして得られた担持型水添触媒は、使用前に水素雰囲気下で加熱することにより還元し、その後必要に応じて安定化処理等を行って賦活した上で反応に供される。
The supported hydrogenation catalyst which is the subject of the present invention is obtained by impregnating the above support with a solution obtained by dissolving the above catalytically active component or a salt thereof in a solvent such as water at a metal concentration of 100 to 200 g / L, for example. Thereafter, it can be dried and fired.
The supported hydrogenation catalyst obtained as described above is reduced by heating in a hydrogen atmosphere prior to use, and then subjected to a reaction after being activated by performing a stabilization treatment or the like as necessary. .

3.水添反応
上記の水添反応は原料アルデヒドを気化させて反応させる気相法でも、また液体のまま反応器に供給する液相法でも行うことができる。中でも偏流によるホットスポット形成を防止する観点からは、液相法が好ましい。
水添反応に用いる反応器としては、通常上記の固体状の担持型水添触媒を内部に充填した固定床反応器が用いられ、反応器の形式としては、単層又は多層に充填した水添触媒に
上部から原料アルデヒドと水素とを並流で供給するトリクルベッド式反応器や、シェル−チューブ型の多管式容器のチューブ側に触媒を充填した多管式反応器などが用いられる。
3. Hydrogenation Reaction The hydrogenation reaction described above can be carried out by a gas phase method in which a raw material aldehyde is vaporized and reacted, or by a liquid phase method in which a liquid is supplied to a reactor. Among these, the liquid phase method is preferable from the viewpoint of preventing hot spot formation due to drift.
As the reactor used for the hydrogenation reaction, a fixed bed reactor filled with the above-mentioned solid supported hydrogenation catalyst is usually used. As the reactor type, hydrogenation filled in a single layer or multiple layers is used. A trickle-bed type reactor that supplies raw material aldehyde and hydrogen to the catalyst from the top in parallel flow, a multi-tube reactor in which the catalyst is packed on the tube side of a shell-tube multi-tubular vessel, and the like are used.

水添反応の反応温度は通常40〜300℃であり、水素圧は常圧〜15MPa程度で行われる。
反応は断熱反応、等温反応のいずれでも可能であり、断熱反応の場合は、反応の進行に伴って反応器の入口側から出口側に向かって徐々に温度が上昇する。等温反応の場合は冷媒による除熱や、ガス循環による除熱を行うことができる。反応の制御性からは等温反応が好ましい。
The reaction temperature of the hydrogenation reaction is usually 40 to 300 ° C., and the hydrogen pressure is about normal pressure to 15 MPa.
The reaction can be either an adiabatic reaction or an isothermal reaction. In the case of an adiabatic reaction, the temperature gradually increases from the inlet side to the outlet side of the reactor as the reaction proceeds. In the case of an isothermal reaction, heat removal by a refrigerant or heat removal by gas circulation can be performed. Isothermal reaction is preferable from the controllability of the reaction.

4.触媒の取り出し
(4−1)従来技術
上記のようにして使用した担持型水添触媒は、使用時間(反応時間)とともに徐々に活性(転化率、選択率)が低下する傾向がある。
これは、例えば触媒活性成分の飛散、劣化、担持触媒へのタール等の付着による劣化、担持触媒の相互固着(シンタリング)などが理由と考えられるが、このような状態になった場合は、反応を停止して、触媒を反応器から取り出して、触媒の交換や触媒の再活性化を行うことが必要となる。
4). Removal of catalyst (4-1) Prior art The supported hydrogenation catalyst used as described above tends to gradually decrease in activity (conversion rate, selectivity) with use time (reaction time).
This is thought to be due to, for example, scattering of the catalyst active component, deterioration, deterioration due to adhesion of tar or the like to the supported catalyst, mutual adhesion (sintering) of the supported catalyst, etc. It is necessary to stop the reaction, remove the catalyst from the reactor, and perform catalyst exchange or catalyst reactivation.

しかしながら担持型水添触媒を水添反応器から取り出す際には、
(a)活性が残った状態の触媒を酸素と接触させると着火する可能性がある。
(b)触媒や反応器内壁に、可燃性有機物が付着しており、これに着火すると火災・爆発が発生する恐れがある。
(c)付着した可燃性有機物が触媒により分解して低級炭化水素等の揮発性・可燃性が高い化合物を生成する恐れがある。
(d)担体には水素が吸着・吸蔵されており、これが着火する恐れがある。
(e)着火した担持触媒は、熱によって劣化が進むため、再生使用が困難となる。
等の危険性や問題点があるため、多くの時間と手間を掛ける必要があり、水添触媒の交換や水添反応器の修理・点検等を行うためには煩雑な準備作業が必要であった。
However, when removing the supported hydrogenation catalyst from the hydrogenation reactor,
(A) When the catalyst in which the activity remains is brought into contact with oxygen, there is a possibility of ignition.
(B) A combustible organic substance adheres to the catalyst or the inner wall of the reactor. If this is ignited, a fire or explosion may occur.
(C) The attached flammable organic substance may be decomposed by a catalyst to generate a highly volatile and flammable compound such as a lower hydrocarbon.
(D) Hydrogen is adsorbed and occluded on the carrier, which may ignite.
(E) Since the ignited supported catalyst is deteriorated by heat, it is difficult to recycle it.
Therefore, it takes a lot of time and effort to replace the hydrogenation catalyst and repair / inspection of the hydrogenation reactor. It was.

(4−2)本発明方法
本発明方法に基づいて、所定の手順に従って水添触媒を水添反応器から取り出す方法を用いることにより、発熱や着火を回避しつつ、再賦活が容易な状態で、使用済みの水添触媒を回収することが可能となった。
以下、反応停止から触媒取り出しまでの各工程について説明する。
(4-2) Method of the Present Invention Based on the method of the present invention, by using a method for removing the hydrogenation catalyst from the hydrogenation reactor according to a predetermined procedure, reactivation is easy while avoiding heat generation and ignition. The used hydrogenation catalyst can be recovered.
Hereinafter, each process from reaction stop to catalyst removal will be described.

(1)水素添加反応器に不活性ガスを加圧下に流通供給する工程
水素添加反応器への水素供給ラインを閉止して水添反応を停止した後、反応器内圧力を常圧付近まで降圧して、該水素添加反応器へ不活性ガスを加圧下に流通供給する。
この工程は、反応器中に残留した水素を加圧した不活性ガスにより系外へ排出することを目的としている。
(1) Step of supplying inert gas under pressure to the hydrogenation reactor After closing the hydrogen supply line to the hydrogenation reactor to stop the hydrogenation reaction, the pressure inside the reactor is reduced to near normal pressure. Then, an inert gas is circulated and supplied to the hydrogenation reactor under pressure.
The purpose of this step is to discharge the hydrogen remaining in the reactor out of the system with a pressurized inert gas.

加圧した不活性ガスを供給することで、担体の細孔中に吸着・吸蔵された水素や、担体表面に付着した油分、あるいやその油分に溶存する水素を、気体として放出させることができる。
ここで用いる不活性ガスとしては、窒素や水蒸気が例示できるが、水蒸気が油分除去の効率が高く好ましい。
By supplying a pressurized inert gas, hydrogen adsorbed and occluded in the pores of the carrier, oil adhering to the surface of the carrier, or hydrogen dissolved in the oil can be released as a gas. .
Nitrogen and water vapor can be exemplified as the inert gas used here, but water vapor is preferable because of its high oil removal efficiency.

また不活性ガスの供給時の温度は通常50〜300℃、好ましくは150〜250℃であり、圧力は、特に高い圧力は必要なく、通常0.1MPa(ゲージ圧)以上であり、0
.3MPa以上が好ましく、0.5MPa以上がより好ましい。圧力の上限は、関連する設備機器の耐圧を考慮して定めればよいが、過度に高い圧力とする必要はなく、通常3MPa以下、好ましくは2MPa以下、より好ましくは1MPa以下である。また、温度が50℃未満では油分の揮発性・流動性が劣るため油分除去の効率が低く、300℃を超えるような高温では、不活性ガスの圧力が高くなって設備の耐圧・耐熱強度が問題になったり、油分が変質して装置内に固着したりする恐れがあり、いずれも好ましくない。
The temperature at the time of supplying the inert gas is usually 50 to 300 ° C., preferably 150 to 250 ° C. The pressure is not particularly high, and is usually 0.1 MPa (gauge pressure) or more.
. 3 MPa or more is preferable, and 0.5 MPa or more is more preferable. The upper limit of the pressure may be determined in consideration of the pressure resistance of the related equipment, but does not need to be excessively high, and is usually 3 MPa or less, preferably 2 MPa or less, more preferably 1 MPa or less. Also, if the temperature is lower than 50 ° C, the oil component is inferior in volatility and fluidity, so the efficiency of oil removal is low. At a high temperature exceeding 300 ° C, the pressure of the inert gas increases and the pressure resistance and heat resistance strength of the equipment increases. This may cause a problem or the oil content may change and be fixed in the apparatus.

(2)水添反応器からの排出ガス流を気液分離する工程
水添反応器から排出される不活性ガスは、反応器中に残留していた水素ガス以外に、触媒担体や反応器壁等に付着していた油分などを含んでいるため、効率的な処理のために気液分離装置に導いて、常温・常圧でガス状の成分(水素、窒素等)と液状の成分(油分等)とに分離することが好ましい。
(2) Gas-liquid separation of the exhaust gas flow from the hydrogenation reactor The inert gas discharged from the hydrogenation reactor is not only hydrogen gas remaining in the reactor, but also catalyst support and reactor walls. Because it contains oil that has adhered to the gas, etc., it is led to a gas-liquid separator for efficient processing, and gaseous components (hydrogen, nitrogen, etc.) and liquid components (oil) at normal temperature and pressure Etc.).

このような気液分離装置としては、特に限定されることなく、例えば一般的なドラム、内部にコアレッサーやデミスターを装着したドラム、遠心分離機、表面張力式分離器等の設備、装置を用いることができる。
これによって、可燃性ガスを含む気体成分と、炭化水素やその誘導体を含む液状成分(油分)とを分離して、効率的に処理することが可能となる。
Such a gas-liquid separation device is not particularly limited, and for example, a general drum, a drum equipped with a coalescer or demister inside, a centrifuge, a surface tension separator, and the like are used. be able to.
As a result, it is possible to separate the gas component containing the combustible gas and the liquid component (oil component) containing the hydrocarbon or a derivative thereof and efficiently treat them.

(3)気液分離された気体成分を可燃性ガス処理設備に導くとともに、液体成分を廃油処理設備に導く工程
気液分離装置により分離された気体成分中には、上述の通り水素等の可燃性ガスが含まれている可能性がある。従って、上記気体成分は可燃性ガス処理設備に導いて処理することで、火災・爆発等の危険性を著しく低減することができる。
(3) The process of guiding the gas component separated into gas and liquid to the flammable gas treatment facility and guiding the liquid component to the waste oil treatment facility In the gas component separated by the gas and liquid separation device, flammable hydrogen or the like as described above May contain sex gases. Therefore, the risk of fire and explosion can be remarkably reduced by introducing the gas component to the combustible gas processing facility for processing.

可燃性ガス処理設備としては、例えば液中燃焼装置やフレアスタック等が例示できる。特に処理設備としてフレアスタックを用いると、可燃性ガスが完全燃焼されて水蒸気と二酸化炭素になり、無害化できるためより好ましい。
また気液分離装置により分離された液体成分は油分を含むとともに、不活性ガスとして水蒸気を使用した場合は凝縮水も含まれることとなる。この場合は、必要に応じて油水分離を行った上で、油状成分は、更に有価物を回収したり、燃料として再利用するか焼却処理したりする等の処理を行うことが好ましい。
Examples of the combustible gas treatment equipment include a submerged combustion device and a flare stack. In particular, when a flare stack is used as a treatment facility, the combustible gas is completely burned to become water vapor and carbon dioxide, which is more preferable because it can be rendered harmless.
In addition, the liquid component separated by the gas-liquid separator includes oil, and when water vapor is used as the inert gas, condensed water is also included. In this case, the oily component is preferably subjected to treatment such as recovery of valuable materials, reuse as fuel, or incineration after oil-water separation as necessary.

油水分離を行った後の分離水は、必要な処理を行った上、冷却水等に再利用するか、排水とすればよい。
上記の排出ガス流中の液体成分に油分が含まれなくなり、かつ気体成分の可燃性ガス濃度が爆発下限値未満となったことが確認されたら、不活性ガスの供給を停止し、水添反応器に酸素含有ガスを供給し、水添反応器中の水添触媒を失活・安定化する工程に移る。
The separated water after the oil-water separation may be reused as cooling water or the like after being subjected to necessary treatments.
When it is confirmed that the liquid component in the exhaust gas stream is free of oil and the combustible gas concentration of the gas component is below the lower explosion limit, the supply of inert gas is stopped and the hydrogenation reaction The oxygen-containing gas is supplied to the reactor, and the process proceeds to the step of deactivating and stabilizing the hydrogenation catalyst in the hydrogenation reactor.

排出ガス流中の液体成分に含まれる油分については、JIS等を参照して、例えば赤外分光光度計を用いた油分測定装置を用いて測定することができる。
また、気体成分中の可燃性ガス濃度の測定器としては、例えば接触燃焼式、気体熱伝導式、熱線型半導体式、オルガスタ式、等の可燃性ガス検知器が用いられ、これらは定置型やポータブル型のものが市販されている。
The oil content contained in the liquid component in the exhaust gas stream can be measured with reference to JIS or the like using, for example, an oil content measuring device using an infrared spectrophotometer.
Further, as a measuring device for the combustible gas concentration in the gas component, for example, a combustible gas detector such as a contact combustion type, a gas heat conduction type, a hot wire type semiconductor type, an orgastar type, etc. are used. A portable type is commercially available.

例えば、定置型可燃性ガス検知器としては、(株)ジコー製「ガスポイントGP−WD」等が、ポータブル型の可燃性ガス検知器としては、例えば理研計器(株)製「可燃性ガス検知器GP−88A」や新コスモス電機(株)製「可燃性ガス検知器XP−3110」等が挙げられる。
また、可燃性ガス濃度の爆発下限値については、その組成に基づいて例えば下記の文献
を参照することにより計算することができ、本発明方法では、通常不活性ガスの供給停止をこの爆発下限値未満となったことで判断する。この判断基準は「爆発下限値の80%未満」とすることがより安全であり好ましい。
For example, “Gas Point GP-WD” manufactured by Zico Co., Ltd. is used as a stationary combustible gas detector, and “Combustible Gas Detector” manufactured by Riken Keiki Co., Ltd. is used as a portable combustible gas detector. GP-88A ”,“ Combustible gas detector XP-3110 ”manufactured by Shin Cosmos Electric Co., Ltd., and the like.
Further, the explosion lower limit value of the combustible gas concentration can be calculated by referring to the following literature, for example, based on the composition thereof. Judge by being less than. It is safer and preferable that this criterion is “less than 80% of the lower limit of explosion”.

1)久保田「可燃性気体の爆発限界」Netsu Bussei(熱物性)、Vol.8(2)、p83−90(1994)
2)阿部、巽、水野「爆発範囲の測定装置」大陽日酸技報、No28、p30−31(2009)
なお、気体成分の組成分析はガスクロマトグラフィー等の分析手段を用いて行うことができる。
1) Kubota “Explosion limits of flammable gases” Netsu Bussei (Thermophysical Properties), Vol.8 (2), p83-90 (1994)
2) Abe, Kaoru, Mizuno “Explosion Range Measuring Device” Taiyo Nippon Sanso Technical Report, No28, p30-31 (2009)
The composition analysis of the gas component can be performed using an analysis means such as gas chromatography.

(4)水添反応器中の水添触媒を失活・安定化する工程
不活性ガスの供給を停止したら、次に水添触媒を酸化して不活性化するために、水添反応器に酸素含有ガスを供給する。酸素含有ガスとしては入手の容易さから空気を用いることが好ましい。なお、使用する空気はフィルター等で脱塵したものが好ましい。
酸素含有ガスを供給すると、酸化反応による発熱が起こるので、酸素含有ガスは断続的に供給して、反応器の温度が過度に高くならないようにすることが好ましい。このように酸素含有ガスを断続的に供給することで、僅かに付着・残留する可能性がある油分の酸化による反応器の異常発熱を回避して、設備を保護できるとともに、より安全に触媒の不活性化処理を行うことができる。
(4) Step of deactivating / stabilizing the hydrogenation catalyst in the hydrogenation reactor When the supply of the inert gas is stopped, the hydrogenation catalyst is then inactivated in order to oxidize and deactivate the hydrogenation catalyst. Supply oxygen-containing gas. It is preferable to use air as the oxygen-containing gas because it is easily available. The air used is preferably one that has been dedusted with a filter or the like.
When the oxygen-containing gas is supplied, heat generation due to the oxidation reaction occurs, so it is preferable to supply the oxygen-containing gas intermittently so that the temperature of the reactor does not become excessively high. By supplying oxygen-containing gas intermittently in this way, it is possible to avoid abnormal heat generation of the reactor due to oxidation of oil that may slightly adhere and remain, to protect the equipment, and to make the catalyst safer Inactivation treatment can be performed.

なお、上記断続的な酸素含有ガスの供給に際しては、その供給速度や酸素含有ガスの供給を停止する時間等を、通常最初は、供給速度を低く、供給停止時間を長く取り、不活性化の進行に応じて、速度を速く、停止時間を短くして、最終的には連続的に酸素含有ガスを供給するようにすることが好ましい。
また、酸素含有ガスの供給を停止している間に、窒素等の不活性ガスを供給することにより、系内を冷却し、発熱反応の進行を制御することもできる。
When supplying the above-mentioned intermittent oxygen-containing gas, the supply rate, the time for stopping the supply of oxygen-containing gas, etc. It is preferable to supply the oxygen-containing gas continuously with a high speed and a short stop time according to the progress.
Further, by supplying an inert gas such as nitrogen while the supply of the oxygen-containing gas is stopped, the system can be cooled and the progress of the exothermic reaction can be controlled.

上記水添触媒の失活・安定化工程の完了は、供給する酸素含有ガス中の酸素濃度と、排出されるガス流中の酸素濃度とを対比することで判定できる。即ち、両者の差がなくなったことは、触媒の酸化によって消費される酸素がなくなったことを意味するので、水添触媒が失活したものと判定される。
なお、酸素濃度の測定はガルバニ電池式、隔膜ガルバニ電池式、磁気式等の方法で行うことができ、酸素濃度測定器としては、例えば、(株)ジコー製「酸素濃度計JKO−25verII(ポータブル式)」や新コスモス電機(株)製「酸素濃度計XO−2200」、「同XO−326II」、「同XP−3180」等が挙げられる。
Completion of the dehydrogenation / stabilization step of the hydrogenation catalyst can be determined by comparing the oxygen concentration in the supplied oxygen-containing gas with the oxygen concentration in the discharged gas stream. That is, the fact that the difference between the two has been eliminated means that the oxygen consumed by the oxidation of the catalyst has disappeared, so it is determined that the hydrogenation catalyst has been deactivated.
The oxygen concentration can be measured by a galvanic cell type, a diaphragm galvanic cell type, a magnetic type or the like. As an oxygen concentration measuring device, for example, “Oxygen concentration meter JKO-25verII (portable) manufactured by Zico Co., Ltd.” Formula) ”,“ Oxygen concentration meter XO-2200 ”,“ same XO-326II ”,“ same XP-3180 ”manufactured by Shin Cosmos Electric Co., Ltd., and the like.

(5)水添反応器の冷却工程
上記工程(4)の触媒の失活操作が終了したら、反応器を冷却する。この冷却は反応器に設けられたジャケット等の温度調節装置を用いて積極的に冷却してもよく、また放置冷却(放冷)することでも問題ない。特に処理完了を急ぐ必要がない場合は、放冷すればよい。
(5) Hydrogenation reactor cooling step When the catalyst deactivation operation in step (4) is completed, the reactor is cooled. This cooling may be performed positively by using a temperature control device such as a jacket provided in the reactor, or may be allowed to cool by standing (cooling). If it is not particularly necessary to rush to complete the treatment, it may be allowed to cool.

(6)失活済み担持型水素添加触媒の取り出し工程
上記(1)〜(5)の各工程の処理が完了したら、担持型水素添加触媒は十分安定化されており、着火等の恐れは無くなっていると考えられる。
このような触媒を反応器から取り出すためには、例えば反応器底部を開放して自然落下させる方法や反応器上部〜中部等に設けられた開口部を経由して、真空吸引等によって触媒を取り出す方法等を適宜用いることができ、特に限定されるものではない。
(6) Step of taking out the deactivated supported hydrogenation catalyst When the processing of each of the above steps (1) to (5) is completed, the supported hydrogenation catalyst is sufficiently stabilized and there is no risk of ignition or the like. It is thought that.
In order to take out such a catalyst from the reactor, for example, the catalyst is taken out by vacuum suction or the like through a method in which the bottom of the reactor is opened and allowed to fall naturally or through an opening provided in the upper to middle of the reactor. Methods and the like can be used as appropriate and are not particularly limited.

以下、実施例を用いて本発明を更に詳細に説明するが、本発明はその要旨を超えない限り以下の実施例によって限定されるものではない。
(1)反応器及び触媒
水添反応器としては、塔径2.4m、塔高17.84mのステンレス(SUS304)製の固定床反応器を使用した。
また担持型水素添加触媒としては、特開2005−279587号公報に記載されているような、ペレット状の多孔質担体(ケイ藻土)にニッケル及びクロムを担持させた触媒を使用した。
EXAMPLES Hereinafter, although this invention is demonstrated further in detail using an Example, this invention is not limited by a following example, unless the summary is exceeded.
(1) Reactor and catalyst As the hydrogenation reactor, a fixed bed reactor made of stainless steel (SUS304) having a tower diameter of 2.4 m and a tower height of 17.84 m was used.
As the supported hydrogenation catalyst, a catalyst in which nickel and chromium were supported on a pellet-shaped porous support (diatomaceous earth) as described in JP-A-2005-279588 was used.

(2)水添反応
上記の水素添加反応器に、上記の担持型水添触媒31,500kgを4層に別けて各層7,875kgを均一に充填し、プロピレンのヒドロホルミル化反応で生成したn−/i−ブチルアルデヒド混合物を分離・精製して得られたn−ブチルアルデヒド(以下「NBD]と略記する)9,300kg/h及び溶剤としてのn−ブタノール49,200kg/hとを供給し(以下、上記NBDとn−ブタノールとの混合液を「供給液」と記す)、反応器内の圧力が4.9MPa(ゲージ圧、以下同じ)に保たれるように水素を供給しながら、NBDの水添反応を行った。
(2) Hydrogenation reaction In the hydrogenation reactor, the supported hydrogenation catalyst 31,500 kg was divided into four layers, and 7,875 kg of each layer was uniformly filled, and n- produced by a hydroformylation reaction of propylene. N-butyraldehyde (hereinafter abbreviated as “NBD”) 9,300 kg / h obtained by separating and purifying the / i-butyraldehyde mixture and n-butanol 49,200 kg / h as a solvent are supplied ( Hereinafter, the mixed liquid of NBD and n-butanol is referred to as “feed liquid”), while supplying hydrogen so that the pressure in the reactor is maintained at 4.9 MPa (gauge pressure, the same applies hereinafter) The hydrogenation reaction was performed.

反応器は4層の触媒層を持つトリクルベッド式反応器で、反応器上部から原料である上記供給液を供給し、各触媒層の上部と下部とに設置された計8本の温度計により温度を検知した。
反応器への供給液温度を60℃としたところ、反応器内の各層の温度は以下のようになった。
1層上: 62℃ 1層下: 75℃
2層上: 89℃ 2層下:103℃
3層上:115℃ 3層下:118℃
4層上:118℃ 4層下:118℃
The reactor is a trickle bed type reactor having four catalyst layers. The above-mentioned feed liquid as a raw material is supplied from the upper part of the reactor, and a total of eight thermometers installed at the upper and lower parts of each catalyst layer are used. The temperature was detected.
When the temperature of the liquid supplied to the reactor was 60 ° C., the temperature of each layer in the reactor was as follows.
One layer above: 62 ° C One layer below: 75 ° C
Two layers above: 89 ° C Two layers below: 103 ° C
Three layers above: 115 ° C. Three layers below: 118 ° C.
4th layer: 118 ° C 4th layer: 118 ° C

(3)水添反応の停止
所定時間反応を継続した後、水添反応を以下のようにして停止した。
上記(2)の定常反応の状態から、200kg/hのペースでNBDの供給を減少させることにより、約30時間かけてNBDの供給量を4,000kg/hまで低下させた。
その後供給液中のNBDのみ供給を停止し、溶剤のn−ブタノールと水素とを継続して供給した。反応器内に残留するNBDを完全にn−ブタノールに転化させるため、反応器内の温度を100℃以上に保った状態でn−ブタノールと水素の供給を1時間継続した後、加熱を停止し、反応器内の各触媒層の温度が50℃以下となるまで冷却した。
(3) Stopping the hydrogenation reaction After continuing the reaction for a predetermined time, the hydrogenation reaction was stopped as follows.
From the steady reaction state of (2) above, the NBD supply was reduced to 4,000 kg / h over about 30 hours by decreasing the supply of NBD at a pace of 200 kg / h.
Thereafter, only the NBD in the feed solution was stopped, and the solvent n-butanol and hydrogen were continuously supplied. In order to completely convert NBD remaining in the reactor into n-butanol, the supply of n-butanol and hydrogen was continued for 1 hour while maintaining the temperature in the reactor at 100 ° C. or higher, and then the heating was stopped. The reactor was cooled until the temperature of each catalyst layer was 50 ° C. or lower.

上記反応器温度が50℃以下となった後、n−ブタノールと水素の供給を順次停止した。
反応器内に残留する気体成分を可燃性ガス処理設備に導き、反応器の内圧を降圧した後、反応器内の液状成分を抜き出し、廃油処理設備に導いた。
次に水添反応器及び接続機器に窒素を供給し、排出されるガス中の可燃性ガス及び酸素がいずれも検出されなくなったことを確認の上、水添反応器の内圧が0.5MPaとなるように窒素を供給し、次いで0.02MPaまで放圧し、再度排ガス中の可燃性ガス及び酸素の濃度を測定し、可燃性ガス及び酸素が検出されなくなるまで、上記操作を合計8回反復した上で、水添反応器に窒素を封入した。
After the reactor temperature reached 50 ° C. or lower, the supply of n-butanol and hydrogen was sequentially stopped.
The gas component remaining in the reactor was introduced into the combustible gas treatment facility, and after reducing the internal pressure of the reactor, the liquid component in the reactor was extracted and led to the waste oil treatment facility.
Next, nitrogen is supplied to the hydrogenation reactor and the connected equipment, and after confirming that neither combustible gas nor oxygen in the discharged gas is detected, the internal pressure of the hydrogenation reactor is 0.5 MPa. Nitrogen was supplied, and then the pressure was released to 0.02 MPa, the concentrations of the combustible gas and oxygen in the exhaust gas were measured again, and the above operation was repeated a total of 8 times until no combustible gas and oxygen were detected. Above, nitrogen was sealed in the hydrogenation reactor.

(4)油状成分の排出
1.3MPa圧力の水蒸気(不活性ガス)を500kg/hで反応器の上部から3時間継続的に供給した。その後、上記供給量を毎時500kgずつ増加させ、8時間かけて蒸
気供給量を4,500kg/hとした。
反応器から排出される気液混合流は気液分離器を用いて分離し、気体成分を可燃性ガス処理設備に導き、液状成分は廃油として抜き出した。
この操作を約60時間継続し、抜き出される液状成分に油分が含まれなくなったことを目視及び油分測定により確認できたところで、この工程を終了した。
なお、油分の測定は上記液状成分を、燃焼酸化−赤外線式TOC分析法(JIS K 0102(2013)22.1に記載された方法)に従って行った。
(4) Discharge of oily component Steam (inert gas) at a pressure of 1.3 MPa was continuously supplied from the top of the reactor at 500 kg / h for 3 hours. Thereafter, the supply rate was increased by 500 kg per hour, and the steam supply rate was set to 4,500 kg / h over 8 hours.
The gas-liquid mixed stream discharged from the reactor was separated using a gas-liquid separator, the gas component was led to a combustible gas processing facility, and the liquid component was extracted as waste oil.
This operation was continued for about 60 hours, and when it was confirmed by visual observation and oil content measurement that the liquid component to be extracted contained no oil, this step was completed.
The oil component was measured in accordance with the combustion oxidation-infrared TOC analysis method (method described in JIS K 0102 (2013) 22.1).

(5)水添触媒の失活処理
油状成分の排出が完了したら、上記水蒸気の供給量を3,000kg/hまで減らした後、系内に窒素を供給し、系内の酸素濃度が0%(検出限界未満)であることを確認した上で、触媒の失活操作を行った。
失活操作に用いる酸素含有ガスとしてフィルターを介して除塵した空気を使用し、これを反応器に断続的に供給することによって触媒の失活処理を行った。
(5) Deactivation treatment of hydrogenation catalyst When the discharge of oily components is completed, the supply amount of water vapor is reduced to 3,000 kg / h, then nitrogen is supplied into the system, and the oxygen concentration in the system is 0%. The catalyst was deactivated after confirming that it was below the detection limit.
As the oxygen-containing gas used for the deactivation operation, air removed through a filter was used, and the catalyst was deactivated by intermittently supplying it to the reactor.

空気の断続的供給は、最初空気供給量を絞り(50Nm/h)、かつ供給停止の時間を長く(10分間)する条件から開始し、徐々に空気供給量を増加させ、供給停止時間を短くするようにして、最終的に空気を供給量100Nm/hで120分間供給した後、10分間供給を停止したら、以後120Nm/hの供給量で連続的に空気を供給した。
反応器からの排ガス中の酸素濃度が、供給空気中の酸素濃度と同じになったら反応器を放冷し、内温が40℃以下になったところで空気の供給を停止した。
The intermittent supply of air starts from the condition that the initial air supply amount is reduced (50 Nm 3 / h) and the supply stop time is lengthened (10 minutes). The air supply amount is gradually increased to reduce the supply stop time. The air was finally supplied at a supply rate of 100 Nm 3 / h for 120 minutes, and then the supply was stopped for 10 minutes. Thereafter, air was continuously supplied at a supply rate of 120 Nm 3 / h.
When the oxygen concentration in the exhaust gas from the reactor became the same as the oxygen concentration in the supply air, the reactor was allowed to cool, and when the internal temperature became 40 ° C. or lower, the supply of air was stopped.

(6)水添触媒の取り出し
上記手順によって失活処理を行った水添触媒は、必要に応じて破砕処理を行った後、反応器上部のマンホール経由で真空吸引することにより排出した。
(6) Removal of hydrogenation catalyst The hydrogenation catalyst that had been deactivated according to the above procedure was crushed as necessary, and then discharged by vacuum suction via a manhole at the top of the reactor.

本発明の手順に従うことで、水添反応器から担持型水添触媒を取り出す際に、水添触媒等に吸着・吸蔵されていたり、水素供給停止後に逆反応によって生成したりする水素等の可燃性ガスを予め処理設備に導くことができるので、水添反応器からの担持型水素添加触媒取り出しのような、非定常作業を安全に行うことができる。   By following the procedure of the present invention, when removing the supported hydrogenation catalyst from the hydrogenation reactor, it is adsorbed and occluded by the hydrogenation catalyst or the like, or is combustible such as hydrogen generated by the reverse reaction after the hydrogen supply is stopped. Since the reactive gas can be introduced into the treatment facility in advance, unsteady operations such as removal of the supported hydrogenation catalyst from the hydrogenation reactor can be performed safely.

Claims (5)

担持型水素添加触媒を器内に有する水素添加反応器から、以下の工程により該水素添加触媒を取り出すことを特徴とする担持型水素添加触媒の取り出し方法。
(1)水素添加反応器への水素供給を停止し、反応器内圧力を常圧付近まで降圧した後、該水素添加反応器に不活性ガスを加圧下に流通供給する、
(2)流通供給した排出ガス流を気液分離装置に導く、
(3)気液分離された気体成分を可燃性ガス処理設備に導くとともに、液体成分を廃油処理設備に導く、
(4)排出ガス流中の液状成分に油分が含まれなくなり、かつ気体成分の可燃性ガス濃度が爆発下限値未満となったことが確認できたら、不活性ガスの供給を停止し、水素添加反応器に酸素含有ガスの供給を開始する、
(5)酸素含有ガスにより水素添加触媒が失活し、供給する酸素含有ガスの酸素濃度と排出ガス流中の酸素濃度との差がなくなったら、反応器を放冷し、酸素含有ガスの供給を停止する、
(6)水素添加反応器から失活済みの担持型水素添加触媒を取り出す。
A method for removing a supported hydrogenation catalyst, which comprises removing the hydrogenation catalyst from a hydrogenation reactor having a supported hydrogenation catalyst in the reactor by the following steps.
(1) Stop the supply of hydrogen to the hydrogenation reactor, lower the pressure in the reactor to near normal pressure, and then circulate and supply an inert gas to the hydrogenation reactor under pressure.
(2) The flow of exhaust gas supplied in circulation is guided to a gas-liquid separator.
(3) The gas component separated into gas and liquid is guided to the combustible gas processing facility, and the liquid component is guided to the waste oil processing facility.
(4) When it is confirmed that the liquid component in the exhaust gas stream contains no oil and the combustible gas concentration of the gas component is less than the lower explosion limit, the supply of inert gas is stopped and hydrogenation is performed. Start supplying oxygen-containing gas to the reactor,
(5) When the hydrogenation catalyst is deactivated by the oxygen-containing gas and there is no difference between the oxygen concentration of the supplied oxygen-containing gas and the oxygen concentration in the exhaust gas stream, the reactor is allowed to cool and the oxygen-containing gas is supplied. To stop the
(6) Take out the deactivated supported hydrogenation catalyst from the hydrogenation reactor.
用いる不活性ガスが窒素又は水蒸気であることを特徴とする請求項1に記載の担持型水素添加触媒の取り出し方法。   The method for removing a supported hydrogenation catalyst according to claim 1, wherein the inert gas used is nitrogen or water vapor. 担持型水素添加触媒の担体が多孔質担体であることを特徴とする請求項1又は2に記載の担持型水素添加触媒の取り出し方法。   The method for removing a supported hydrogenation catalyst according to claim 1 or 2, wherein the support of the supported hydrogenation catalyst is a porous carrier. 担持型水素添加触媒が、ニッケル、銅、白金、コバルト、パラジウム、及びモリブデンからなる群から選ばれる少なくとも一種の元素を含有する触媒であることを特徴とする請求項1〜3のいずれか一項に記載の担持型水素添加触媒の取り出し方法。   The supported hydrogenation catalyst is a catalyst containing at least one element selected from the group consisting of nickel, copper, platinum, cobalt, palladium, and molybdenum. A method for removing the supported hydrogenation catalyst described in 1. 酸素含有ガスによる水素添加触媒の失活操作に際して、該酸素含有ガスを断続的に供給することを特徴とする請求項1〜4に記載の担持型水素添加触媒の取り出し方法。   The method for removing a supported hydrogenation catalyst according to claims 1 to 4, wherein the oxygen-containing gas is intermittently supplied during the deactivation operation of the hydrogenation catalyst with the oxygen-containing gas.
JP2015047582A 2015-03-10 2015-03-10 Removal method of supported hydrogenation catalyst Active JP6443142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015047582A JP6443142B2 (en) 2015-03-10 2015-03-10 Removal method of supported hydrogenation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015047582A JP6443142B2 (en) 2015-03-10 2015-03-10 Removal method of supported hydrogenation catalyst

Publications (2)

Publication Number Publication Date
JP2016165698A true JP2016165698A (en) 2016-09-15
JP6443142B2 JP6443142B2 (en) 2018-12-26

Family

ID=56897845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015047582A Active JP6443142B2 (en) 2015-03-10 2015-03-10 Removal method of supported hydrogenation catalyst

Country Status (1)

Country Link
JP (1) JP6443142B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6642281B1 (en) * 2000-09-01 2003-11-04 Exxonmobil Research And Engineering Company Fischer-tropsch process
US20090305869A1 (en) * 2006-07-31 2009-12-10 Basf Method of regenerating ruthenium catalysts for the ring hydrogenation of phthalates
US20100125159A1 (en) * 2008-11-19 2010-05-20 Christopher Naunheimer Moving Bed Hydrocarbon Conversion Process
US20100267989A1 (en) * 2007-10-04 2010-10-21 Didier Letourneur Continuous preparation of amines by nitrile compound hydrogenation
JP2014128754A (en) * 2012-12-28 2014-07-10 Jgc Catalysts & Chemicals Ltd Stabilized reduced nickel catalyst and method for manufacturing the same
WO2015038673A1 (en) * 2013-09-13 2015-03-19 Invista Technologies S.À R.L. Hydrogenation of dinitriles for the preparation of diamines

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6642281B1 (en) * 2000-09-01 2003-11-04 Exxonmobil Research And Engineering Company Fischer-tropsch process
JP2004518622A (en) * 2000-09-01 2004-06-24 エクソンモービル リサーチ アンド エンジニアリング カンパニー Fisher-Tropsch method
US20090305869A1 (en) * 2006-07-31 2009-12-10 Basf Method of regenerating ruthenium catalysts for the ring hydrogenation of phthalates
US20100267989A1 (en) * 2007-10-04 2010-10-21 Didier Letourneur Continuous preparation of amines by nitrile compound hydrogenation
JP2010540594A (en) * 2007-10-04 2010-12-24 ロディア オペレーションズ Method for producing amine by hydrogenation of nitrile compound
US20100125159A1 (en) * 2008-11-19 2010-05-20 Christopher Naunheimer Moving Bed Hydrocarbon Conversion Process
JP2014128754A (en) * 2012-12-28 2014-07-10 Jgc Catalysts & Chemicals Ltd Stabilized reduced nickel catalyst and method for manufacturing the same
WO2015038673A1 (en) * 2013-09-13 2015-03-19 Invista Technologies S.À R.L. Hydrogenation of dinitriles for the preparation of diamines

Also Published As

Publication number Publication date
JP6443142B2 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
KR100722500B1 (en) Non-routine reactor shutdown method
CA2789497C (en) Method and device for the absorptive removal of carbon dioxide from biogas
RU2399617C2 (en) Ethylene oxide synthesis device and method
EA005869B1 (en) Process for production of (meth)acrylic compounds and method of distillation
US10537847B2 (en) Method and apparatus for treating offgases in a acetic acid production unit
JP2006216412A (en) Microwave heating device and carbon dioxide decomposition method using it
Gumerov et al. Regeneration of the catalysts by supercritical fluid extraction
US2247087A (en) Process for the production of hydrocarbons
JP6443142B2 (en) Removal method of supported hydrogenation catalyst
NO302405B1 (en) Process for Activating a Fischer-Tropsch Catalyst, Fischer-Tropsch Catalyst Activated by the Process, and Process for Preparation of Hydrocarbons
CN100395030C (en) Process for reproducing catalyst by supercritical fluid
JP6200120B2 (en) Conjugated diene production method and production apparatus
PL202055B1 (en) Recovery of metals by incineration of metal containing basic ion exchance resin
JP5409347B2 (en) Method for processing the product stream
JP2014091733A (en) Method for manufacturing paraffin and paraffin manufacturing apparatus
JP4436683B2 (en) Acrolein purification method
EP2873450A1 (en) Method and facility for removing acid compounds from gaseous effluents from various sources
RU2434841C2 (en) Method of processing oxidation reaction waste gases and extracting power therefrom
FR2990695A1 (en) Recovering carbon dioxide emissions from catalytic cracking unit to produce hydrogen and hydrocarbons, involves collecting carbon dioxide from flue gas, regenerating amine, and recovering carbon dioxide by contacting with water
JP4908520B2 (en) Removal process of oxygenated compounds from gas phase flow
Gallyamov et al. Regeneration of a nickel-on-kieselguhr catalyst by means of supercritical carbon oxide
JPH11147093A (en) Control method of catalytic wet oxidizing treatment apparatus
JP2007001792A (en) Method and apparatus for producing hydrogen and carbon monoxide
KR20240093858A (en) Method for refining pyrolysis oil
CN102950032B (en) Catalytic cracking catalyst aging method and equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181112

R151 Written notification of patent or utility model registration

Ref document number: 6443142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151