JP2016163849A - Method for dewatering sludge using water-in-oil emulsion - Google Patents

Method for dewatering sludge using water-in-oil emulsion Download PDF

Info

Publication number
JP2016163849A
JP2016163849A JP2015044132A JP2015044132A JP2016163849A JP 2016163849 A JP2016163849 A JP 2016163849A JP 2015044132 A JP2015044132 A JP 2015044132A JP 2015044132 A JP2015044132 A JP 2015044132A JP 2016163849 A JP2016163849 A JP 2016163849A
Authority
JP
Japan
Prior art keywords
water
polyvinylamine
sludge
oil emulsion
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015044132A
Other languages
Japanese (ja)
Other versions
JP6391501B2 (en
Inventor
温 米倉
Atsushi Yonekura
温 米倉
翔平 三井
Shohei Mitsui
翔平 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hymo Corp
Original Assignee
Hymo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hymo Corp filed Critical Hymo Corp
Priority to JP2015044132A priority Critical patent/JP6391501B2/en
Publication of JP2016163849A publication Critical patent/JP2016163849A/en
Application granted granted Critical
Publication of JP6391501B2 publication Critical patent/JP6391501B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for dewatering sludge using a polyvinylamine-based water-soluble polymer whose performance is superior to those of conventional polyvinylamine-based water-soluble polymers, polyamidine-based water-soluble polymers and acrylic water-soluble polymers as a flocculation treatment agent.SOLUTION: Addition of a polyvinylamine water-in-oil emulsion having an inherent viscosity at 25°C in an NaCl aqueous solution of 1 mol/L concentration of 4.0 to 10.0 dL/g, a 0.2 mass% aqueous solution viscosity of 10 to 200 mPa s and an amination degree in the range of 30 to 80 mol% to organic sludge enables more efficient dewatering treatment compared with conventional polyvinylamine-based water-soluble polymers, polyamidine-based water-based polymers and acrylic water-based polymers.SELECTED DRAWING: None

Description

本発明は、凝集処理剤を使用する汚泥の脱水方法に関するものであり、詳しくはポリビニルアミンの油中水型エマルジョンを有機汚泥に添加する汚泥の脱水方法に関する。 The present invention relates to a sludge dewatering method using an aggregating agent, and more particularly to a sludge dewatering method of adding a water-in-oil emulsion of polyvinylamine to organic sludge.

下水から沈降させた初沈生汚泥、活性汚泥槽からの流出水から沈降させた余剰汚泥あるいは混合生汚泥といった有機性の汚泥に対して凝集処理剤を添加し脱水処理する方法が下水処理場で用いられている。凝集処理剤として、一般的にポリアクリルアミド(PAM)系水溶性高分子凝集剤が汎用されているが、ポリビニルアミン系水溶性高分子やポリアミジン系水溶性高分子は特異的に脱水ケーキ含水率が低下する場合がありPAM系水溶性高分子凝集剤とは使い分けが重要なことが知られている。この現象はPAM系水溶性高分子凝集剤中の三級アミノ基や四級アンモニウム塩と、ポリビニルアミン系水溶性高分子やポリアミジン系水溶性高分子中の一級あるいは二級アミノ基との違いに起因することが示唆される。特にポリアミジン系水溶性高分子はカチオン度が高く特異的な構造から、繊維分の少ない所謂難脱水性汚泥に優れた効果を発揮することが知られている。しかし、ポリアミジン系水溶性高分子は添加率が必要であり薬品コストが掛かることや、処理pH域が比較的狭いこと等が問題点として挙げられている。又、製造が不安定な面も指摘されている。 A sewage treatment plant is a method of dewatering by adding an aggregating agent to organic sludge such as primary sludge settled from sewage, surplus sludge settled from runoff from an activated sludge tank, or mixed sludge. It is used. As the flocculating agent, polyacrylamide (PAM) water-soluble polymer flocculants are generally used. Polyvinylamine water-soluble polymers and polyamidine water-soluble polymers have a dehydrated cake water content specifically. It is known that it is important to properly use the PAM-based water-soluble polymer flocculant. This phenomenon is due to the difference between tertiary amino groups and quaternary ammonium salts in PAM water-soluble polymer flocculants and primary or secondary amino groups in polyvinylamine water-soluble polymers and polyamidine water-soluble polymers. It is suggested that it is caused. In particular, it is known that polyamidine-based water-soluble polymers exhibit an excellent effect on so-called hardly dewatering sludge with a low fiber content because of their high cationicity and specific structure. However, polyamidine-based water-soluble polymers are required to have a high addition rate, resulting in high chemical costs and a relatively narrow treatment pH range. In addition, it has been pointed out that the manufacturing is unstable.

一方、ポリビニルアミン系水溶性高分子は、構造が最も単純な一級アミノ基含有ビニルポリマーであり、N−ビニルカルボン酸アミドの重合物を酸または塩基にて加水分解する方法、N−ビニル−O−t−ブチルカルバメートの重合物を加水分解する方法、あるいはポリアクリルアミドを次亜ハロゲン酸およびアルカリ金属水酸化物の存在下ホフマン反応を行う方法が知られている。N−ビニルカルボン酸アミド単量体の重合物を酸または塩基にて加水分解する方法は、原料となる単量体の合成が容易であり、N−ビニルカルボン酸アミドのラジカル重合反応物の加水分解で比較的容易に高分子量の重合物が得られ、安全性も高いことから工業的製造法として有用である。
そこで、凝集処理剤としてポリビニルアミンを使用する方法が種々提案されている。例えば、特許文献1では、ベンジル化ビニルアミン単位2〜30モル%を含有するポリマーから成る高分子凝集剤が提案されている。特許文献2では、ビニルアミン単位を有するカチオン性高分子凝集剤と、ポリオキシアルキレン脂肪酸エステル、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンアルケニルエーテル又はポリオキシアルキレンエーテルエステルからなる自己乳化型消泡剤を添加する汚泥脱水方法が開示されている。特許文献3では、油中水型エマルジョンのビニルアミン系水溶性高分子の凝集処理剤について開示されている。これらポリビニルアミン系水溶性高分子は、多くの場合、現状では満足できる処理効果が得られていないことが推測される。これは、ポリビニルアミン系水溶性高分子が、PAM系水溶性高分子凝集剤と比べて分子量が低いことや、薬品コストが掛かるため添加率が上げられないこと、あるいは対象とする汚泥に対して適切な物性を有するポリビニルアミン系水溶性高分子を適用していないことに起因する。そのためポリビニルアミン系水溶性高分子の有する特異的な効果を発揮しきれていないことが考えられ、凝集処理剤としてより高性能なポリビニルアミン系水溶性高分子を用いた汚泥脱水処方の開発が要望されている。
On the other hand, the polyvinylamine-based water-soluble polymer is a primary amino group-containing vinyl polymer having the simplest structure, and a method of hydrolyzing a polymer of N-vinylcarboxylic acid amide with an acid or a base, N-vinyl-O A method of hydrolyzing a polymer of -t-butyl carbamate or a method of performing a Hofmann reaction of polyacrylamide in the presence of hypohalous acid and alkali metal hydroxide are known. The method of hydrolyzing the polymer of the N-vinylcarboxylic acid amide monomer with an acid or a base makes it easy to synthesize the monomer as a raw material, and the hydrolysis of the radical polymerization reaction product of N-vinylcarboxylic acid amide. It is useful as an industrial production method because a polymer having a high molecular weight can be obtained relatively easily by decomposition and has high safety.
Therefore, various methods using polyvinylamine as an aggregating agent have been proposed. For example, Patent Document 1 proposes a polymer flocculant composed of a polymer containing 2 to 30 mol% of benzylated vinylamine units. In Patent Document 2, a cationic polymer flocculant having a vinylamine unit and a self-emulsifying antifoaming agent comprising a polyoxyalkylene fatty acid ester, a polyoxyalkylene alkyl ether, a polyoxyalkylene alkenyl ether or a polyoxyalkylene ether ester are added. A sludge dewatering method is disclosed. Patent Document 3 discloses a flocculating agent for a vinylamine water-soluble polymer in a water-in-oil emulsion. In many cases, it is presumed that these polyvinylamine-based water-soluble polymers do not provide satisfactory treatment effects under the present circumstances. This is because the polyvinylamine-based water-soluble polymer has a lower molecular weight than the PAM-based water-soluble polymer flocculant, and the addition rate cannot be increased due to the cost of chemicals. This is because a polyvinylamine-based water-soluble polymer having appropriate physical properties is not applied. Therefore, it is considered that the specific effects of polyvinylamine-based water-soluble polymers are not fully demonstrated, and there is a demand for the development of sludge dewatering formulations using higher-performance polyvinylamine-based water-soluble polymers as coagulation treatment agents. Has been.

特開平7−328323号公報JP 7-328323 A 特開平9−299998号公報JP-A-9-299998 特開2013−252476号公報JP 2013-252476 A

本発明の課題は、凝集処理剤として特異的な効果を発現するポリビニルアミン系水溶性高分子において、従来よりも性能が優れるポリビニルアミン系水溶性高分子を使用した汚泥の脱水方法を提供することにある。 An object of the present invention is to provide a method for dewatering sludge using a polyvinylamine-based water-soluble polymer that is superior in performance to conventional polyvinylamine-based water-soluble polymers that exhibit a specific effect as a coagulation treatment agent. It is in.

上記課題を解決するため鋭意検討を重ねた結果、下記に記載するような知見に因り発明を完成するに至った。即ち、1mol/L濃度のNaCl水溶液中での25℃における固有粘度が4.0〜10.0dL/g、0.2質量%水溶液粘度が10〜200mPa・sであり、アミノ化度が30〜80モル%の範囲である、ポリビニルアミンの油中水型エマルジョンからなる凝集処理剤を有機汚泥に添加することで、従来のポリビニルアミンよりも効率が良い脱水処理を可能とすることを見出した。 As a result of intensive studies to solve the above problems, the present invention has been completed based on the knowledge described below. That is, the intrinsic viscosity at 25 ° C. in a 1 mol / L NaCl aqueous solution is 4.0 to 10.0 dL / g, the 0.2 mass% aqueous solution viscosity is 10 to 200 mPa · s, and the amination degree is 30 to 30%. It has been found that by adding a coagulation treatment agent composed of a water-in-oil emulsion of polyvinylamine in the range of 80 mol% to organic sludge, dehydration can be performed more efficiently than conventional polyvinylamine.

本発明におけるポリビニルアミンの油中水型エマルジョンは、凝集処理剤として汚泥脱水剤、汚泥沈降剤あるいは排水処理剤としても使用することができる。 The water-in-oil emulsion of polyvinylamine in the present invention can also be used as a sludge dewatering agent, a sludge settling agent, or a wastewater treatment agent as a coagulation treatment agent.

本発明におけるポリビニルアミンの油中水型エマルジョンは、一般的に使用されているポリビニルアミン系水溶性高分子に比べて、特定の組成、物性値を有するため有機汚泥を対処として用いると優れた脱水処理効果を発揮する。 The water-in-oil emulsion of polyvinylamine in the present invention has a specific composition and physical property values compared to the commonly used polyvinylamine water-soluble polymer, and therefore excellent dehydration when using organic sludge as a countermeasure. Demonstrate the processing effect.

本発明におけるポリビニルアミンの油中水型エマルジョンは、公知のポリビニルアミンの製造方法で製造することができる。1mol/L濃度のNaCl水溶液中での25℃における固有粘度が4.0〜10.0dL/g、0.2質量%水溶液粘度が10〜200mPa・sであり、アミノ化度が30〜80モル%の範囲を有していれば、何れの製造方法を採用しても良いが、基本的にはN−ビニルカルボン酸アミドの重合物の油中水型エマルジョンを加水分解して製造する方法が好ましい。この方法は、先ず、N−ビニルカルボン酸アミド単量体を水、水と非混和性の炭化水素からなる油状物質、油中水型エマルジョンを形成するに有効な量とHLBを有する界面活性剤を混合し、強攪拌し油中水型エマルジョンを形成させた後、重合することにより合成する方法である。N−ビニルカルボン酸アミド単量体の重合物を酸または塩基にて加水分解する方法は、原料となる単量体の合成が容易であり、N−ビニルカルボン酸アミドのラジカル重合反応物の加水分解で比較的容易に高分子量の重合物が得られ、安全性も高いことから有用である。この様なポリビニルアミンの油中水型エマルジョンを製造する方法は、特表平10−500714号公報や特開平5−117313号公報、特開2012−153747号公報等に開示されている。 The water-in-oil emulsion of polyvinylamine in the present invention can be produced by a known method for producing polyvinylamine. The intrinsic viscosity at 25 ° C. in a 1 mol / L NaCl aqueous solution is 4.0 to 10.0 dL / g, the 0.2 mass% aqueous solution viscosity is 10 to 200 mPa · s, and the amination degree is 30 to 80 mol. %, Any production method may be adopted, but basically there is a method for producing a water-in-oil emulsion of a polymer of N-vinylcarboxylic acid amide by hydrolysis. preferable. In this method, first, N-vinylcarboxylic acid amide monomer is water, an oily substance composed of a water-immiscible hydrocarbon, a surfactant having an amount effective for forming a water-in-oil emulsion and HLB. Are mixed and vigorously stirred to form a water-in-oil emulsion, followed by polymerization. The method of hydrolyzing the polymer of the N-vinylcarboxylic acid amide monomer with an acid or a base makes it easy to synthesize the monomer as a raw material, and the hydrolysis of the radical polymerization reaction product of N-vinylcarboxylic acid amide. It is useful because a polymer having a high molecular weight can be obtained relatively easily by decomposition and has high safety. Methods for producing such a water-in-oil emulsion of polyvinylamine are disclosed in JP-T-10-500714, JP-A-5-117313, JP-A-2012-153747, and the like.

これらの公知の製造方法の中でも特開2012−153747号公報に開示されている様に界面活性剤としてポリオキシアルキレンアルキルエーテルの共存するN−ビニルカルボン酸アミド重合物水溶液の油中水型エマルジョンを酸又は塩基の存在下、加水分解することによって製造する方法では高い分子量のものが安定して得られるため好適な製造方法である。以下、この方法に則したポリビニルアミンについて説明するが公知の製造方法を組み合わせて使用しても良い。本発明におけるポリビニルアミンの油中水型エマルジョンの物性が得られれば如何なる方法も適用できる。   Among these known production methods, as disclosed in JP2012-153747, a water-in-oil emulsion of an aqueous solution of N-vinylcarboxylic acid amide polymer in which polyoxyalkylene alkyl ether coexists as a surfactant is used. The production method by hydrolysis in the presence of an acid or base is a preferred production method because a product having a high molecular weight can be stably obtained. Hereinafter, polyvinylamine conforming to this method will be described, but a known production method may be used in combination. Any method can be applied as long as the physical properties of the water-in-oil emulsion of polyvinylamine in the present invention are obtained.

N−ビニルカルボン酸アミド単量体の例としては、N−ビニルホルムアミド、N−ビニルアセトアミド、N−メチル−N−ビニルホルムアミド、N−メチル−N−ビニルアセトアミドが挙げられるが、N−ビニルホルムアミドを使用することが好ましい。 Examples of N-vinylcarboxylic acid amide monomers include N-vinylformamide, N-vinylacetamide, N-methyl-N-vinylformamide, N-methyl-N-vinylacetamide, N-vinylformamide Is preferably used.

水と非混和性の炭化水素からなる油状物質の例としては、パラフィン類あるいは灯油、軽油、中油等の鉱油、あるいはこれらと実質的に同じ範囲の沸点や粘度等の特性を有する炭化水素系合成油、あるいはこれらの混合物が挙げられる。含有量としては、油中水型エマルジョン全量に対して20〜50質量%であり、好ましくは20〜35質量%である。 Examples of oily substances composed of water-immiscible hydrocarbons include paraffins, mineral oils such as kerosene, light oil, and middle oil, or hydrocarbon-based synthesis having characteristics such as boiling point and viscosity in substantially the same range as these. An oil or a mixture thereof may be mentioned. As content, it is 20-50 mass% with respect to the water-in-oil type emulsion whole quantity, Preferably it is 20-35 mass%.

油中水型エマルジョンを形成するに有効な量とHLBを有する界面活性剤の例としては、非イオン性界面活性剤のポリオキシエチレンアルキルエーテル系、ポリオキシエチレンアルコールエーテル系、ポリオキシエチレンアルキルエステル系、あるいは分子量が1000以上のブロックおよび/またはグラフト型の高分子界面活性剤等である。具体的には、2〜10好ましくは3〜7のHLB値を有する分子量1000未満の界面活性剤、例えばグリセロールモノ−、ジ−、およびトリ−、オレエート、ステアレートあるいはパルミテートといったグリセロール脂肪酸エステル、ソルビタンモノ−、ジ−、およびポリ−、オレエート、ステアレートあるいはパルミテートといったソルビタン脂肪酸エステル、さらにこれらのエチレンオキサイドおよび/またはプロピレンオキサイドの付加物が例示できる。分子量1000以上のブロックおよび/またはグラフト型の高分子界面活性剤としては、12−ヒドロキシステアリン酸とポリ(エチレンオキサイド)の反応物であるポリエステル・ブロック−ポリ(エチレンオキシド)・ブロック−ポリエステル・ブロックコポリマーが例示できる。またこれらの中から二つ以上の界面活性剤を併用することも可能である。とくに分子量1000未満の界面活性剤と分子量1000以上のブロックおよび/またはグラフト型の高分子界面活性剤を併用することが好ましく、添加量としては、油中水型エマルジョン全量に対して0.5〜10質量%であり、好ましくは1〜5質量%の範囲である。 Examples of surfactants having an effective amount and HLB to form a water-in-oil emulsion include nonionic surfactant polyoxyethylene alkyl ethers, polyoxyethylene alcohol ethers, polyoxyethylene alkyl esters System or block and / or graft type polymer surfactants having a molecular weight of 1000 or more. Specifically, surfactants with a molecular weight of less than 1000 having an HLB value of 2-10, preferably 3-7, eg glycerol fatty acid esters such as glycerol mono-, di-, and tri-, oleate, stearate or palmitate, sorbitan Examples thereof include sorbitan fatty acid esters such as mono-, di-, and poly-, oleate, stearate or palmitate, and adducts of these ethylene oxide and / or propylene oxide. As a block and / or graft type polymer surfactant having a molecular weight of 1000 or more, a polyester block-poly (ethylene oxide) block-polyester block copolymer which is a reaction product of 12-hydroxystearic acid and poly (ethylene oxide) is used. Can be illustrated. Of these, two or more surfactants can be used in combination. In particular, it is preferable to use a surfactant having a molecular weight of less than 1000 and a block and / or graft-type polymer surfactant having a molecular weight of 1000 or more, and the addition amount is 0.5 to the total amount of the water-in-oil emulsion. It is 10 mass%, Preferably it is the range of 1-5 mass%.

重合はラジカル重合開始剤を使用し行う。これら開始剤は油溶性あるいは水溶性のどちらでも良く、アゾ系、過酸化物系、レドックス系何れでも重合することが可能である。油溶性アゾ系開始剤の例としては、2、2’−アゾビスイソブチロニトリル、1、1’−アゾビスシクロヘキサンカルボニトリル、2、2’−アゾビス−2−メチルブチロニトリル、2、2’−アゾビス−2−メチルプロピオネート、2、2’−アゾビス−(4−メトキシ−2、4−ジメチル)バレロニトリル等が挙げられる。 Polymerization is performed using a radical polymerization initiator. These initiators may be either oil-soluble or water-soluble, and can be polymerized by any of azo, peroxide, and redox systems. Examples of oil-soluble azo initiators are 2,2′-azobisisobutyronitrile, 1,1′-azobiscyclohexanecarbonitrile, 2,2′-azobis-2-methylbutyronitrile, 2'-azobis-2-methylpropionate, 2,2'-azobis- (4-methoxy-2,4-dimethyl) valeronitrile and the like.

水溶性アゾ開始剤の例としては、2、2’−アゾビス(アミジノプロパン)二塩化水素化物、2、2’−アゾビス[2−(5−メチル−イミダゾリン−2−イル)プロパン]二塩化水素化物、2、2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]二塩化水素化物、4、4’−アゾビス(4−シアノ吉草酸)等が挙げられる。又、レドックス系の例としては、ペルオキソ二硫酸アンモニウムと亜硫酸ナトリウム、亜硫酸水素ナトリウム、トリメチルアミン、テトラメチルエチレンジアミン等との組み合わせが挙げられる。更に過酸化物の例としては、ペルオキソ二硫酸アンモニウム或いはカリウム、過酸化水素、ベンゾイルペルオキサイド、ラウロイルペルオキサイド、オクタノイルペルオキサイド、サクシニックペルオキサイド、t−ブチルペルオキシ−2−エチルヘキサノエート等を挙げることができる。 Examples of water-soluble azo initiators are 2,2′-azobis (amidinopropane) dichloride, 2,2′-azobis [2- (5-methyl-imidazolin-2-yl) propane] hydrogen dichloride And 2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 4,4′-azobis (4-cyanovaleric acid), and the like. Examples of redox systems include a combination of ammonium peroxodisulfate and sodium sulfite, sodium hydrogen sulfite, trimethylamine, tetramethylethylenediamine and the like. Examples of peroxides include ammonium or potassium peroxodisulfate, hydrogen peroxide, benzoyl peroxide, lauroyl peroxide, octanoyl peroxide, succinic peroxide, t-butylperoxy-2-ethylhexanoate, etc. Can be mentioned.

重合温度は、使用する重合開始剤によって適宜決めていき、通常0〜100℃の範囲で行ない、特に10〜60℃の範囲が好ましい。 The polymerization temperature is appropriately determined depending on the polymerization initiator to be used, and is usually in the range of 0 to 100 ° C, and particularly preferably in the range of 10 to 60 ° C.

又、分子量の調整のため連鎖移動性を持つ化合物を併用することができ、例えば、2−メルカプトエタノール、2−プロパノール、亜硫酸水素ナトリウム、メタリルスルホン酸ナトリウム、次亜リン酸ナトリウム等が使用できる。 In addition, a compound having chain transfer property can be used in combination for adjusting the molecular weight, and for example, 2-mercaptoethanol, 2-propanol, sodium bisulfite, sodium methallylsulfonate, sodium hypophosphite, etc. can be used. .

N−ビニルカルボン酸アミドの濃度は適宜設定するが、通常は油中水型エマルジョン全量に対して10〜50質量%の範囲であり、特に15〜40質量%の範囲であることが好ましい。 The concentration of N-vinylcarboxylic amide is appropriately set, but is usually in the range of 10 to 50% by mass, particularly preferably in the range of 15 to 40% by mass, based on the total amount of the water-in-oil emulsion.

次に油中水型エマルジョンのN−ビニルカルボン酸アミド重合物の加水分解に関して説明する。本発明のポリビニルアミンの安定な油中水型エマルジョンは、前記N−ビニルカルボン酸アミド重合物の油中水型エマルジョンを酸または塩基で加水分解し得ることができる。目的に応じて適宜選択することが可能であり、酸の存在下で使用する必要がある場合は、酸により加水分解することが好適である。酸による加水分解では、副生成物としてギ酸が生成し製造槽や貯槽を腐食するため、塩基により加水分解することが好適である。 Next, the hydrolysis of the N-vinylcarboxylic acid amide polymer in the water-in-oil emulsion will be described. The stable water-in-oil emulsion of polyvinylamine of the present invention can hydrolyze the water-in-oil emulsion of the N-vinylcarboxylic acid amide polymer with an acid or a base. It is possible to select appropriately according to the purpose, and when it is necessary to use in the presence of an acid, it is preferable to hydrolyze with an acid. In the hydrolysis with an acid, formic acid is generated as a by-product and corrodes the production tank or the storage tank. Therefore, hydrolysis with a base is preferable.

加水分解のために適当な酸としては、加水分解の際にpHを0〜5の範囲とすることができれば制限はなく、ハロゲン化水素酸、硫酸、硝酸、リン酸といった無機酸、炭素数1〜5の範囲のモノおよびジカルボン酸、スルホン酸、ベンゼンスルホン酸、トルエンスルホン酸といった有機酸が例示でき、特にハロゲン化水素酸およびハロゲン化水素のガスを用いることが好ましく、ハロゲン化水素酸を用いることが最も好ましい。添加量は、ポリマーのホルミル基に対し0.05〜2、更に好ましくは0.4〜1.2当量の範囲で加えることが好ましい。 The acid suitable for the hydrolysis is not particularly limited as long as the pH can be adjusted to a range of 0 to 5 during the hydrolysis, and includes inorganic acids such as hydrohalic acid, sulfuric acid, nitric acid and phosphoric acid, and one carbon atom. Examples thereof include organic acids such as mono- and dicarboxylic acids, sulfonic acids, benzenesulfonic acids, and toluenesulfonic acids in the range of ˜5, and it is particularly preferable to use hydrohalic acid and hydrogen halide gas, and use hydrohalic acid. Most preferred. The addition amount is preferably 0.05 to 2, more preferably 0.4 to 1.2 equivalents relative to the formyl group of the polymer.

加水分解のために適当な塩基としては、加水分解の際にpHを8〜14の範囲とすることができれば制限はなく、周期律表第一および二a族の金属水酸化物、アンモニアおよびアンモニアのアルキル誘導体が例示でき、周期律表第一および二a族の金属水酸化物およびアンモニアを用いることが好ましく、水酸化ナトリウム、水酸化カリウム、アンモニアの水溶液を用いることが最も好ましい。添加量は、ポリマーのホルミル基に対し0.05〜2、更に好ましくは0.4〜1.2当量の範囲で加えることが好ましい。 As a suitable base for the hydrolysis, there is no limitation as long as the pH can be set in the range of 8 to 14 in the hydrolysis, and metal hydroxides of group 1a and 2a of the periodic table, ammonia and ammonia The first and second group 2a metal hydroxides and ammonia are preferably used, and an aqueous solution of sodium hydroxide, potassium hydroxide, and ammonia is most preferably used. The addition amount is preferably 0.05 to 2, more preferably 0.4 to 1.2 equivalents relative to the formyl group of the polymer.

加水分解したポリビニルアミンの油中水型エマルジョンは、前記酸または塩基で中和することが可能で、pHが6.0〜14.0の範囲に調整することが好ましい。 The hydrolyzed water-in-oil emulsion of polyvinylamine can be neutralized with the acid or base, and the pH is preferably adjusted in the range of 6.0 to 14.0.

加水分解は、HLB8.0〜14.0の範囲のポリオキシエチレンアルキルエーテルの存在下で行う必要がある。このようなポリオキシエチレンアルキルエーテルの例としては、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテルが挙げられる。これらのポリオキシエチレンアルキルエーテルは、N−ビニルカルボン酸アミドの重合時に添加することも、重合後加水分解の前に添加することも可能であるが、重合後、加水分解工程の前に添加する方法が好ましい。 The hydrolysis must be carried out in the presence of polyoxyethylene alkyl ether in the range of HLB 8.0-14.0. Examples of such polyoxyethylene alkyl ethers include polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, and polyoxyethylene oleyl ether. These polyoxyethylene alkyl ethers can be added at the time of polymerization of N-vinylcarboxylic acid amide, or can be added before hydrolysis after polymerization, but are added after polymerization and before hydrolysis step. The method is preferred.

意図しない架橋反応を防止する目的で、塩酸ヒドロキシルアミンの存在下で加水分解反応を行うことができる。この塩酸ヒドロキシルアミンは、重合後加水分解の前に添加することが好ましい。 In order to prevent an unintended crosslinking reaction, the hydrolysis reaction can be performed in the presence of hydroxylamine hydrochloride. This hydroxylamine hydrochloride is preferably added after polymerization and before hydrolysis.

加水分解を行う温度は、加水分解率と加水分解を行う時間により適宜選択することが可能であるが、通常40〜100℃、好ましくは60〜90℃の範囲で行う。 The temperature at which the hydrolysis is performed can be appropriately selected depending on the hydrolysis rate and the time for the hydrolysis, but is usually 40 to 100 ° C., preferably 60 to 90 ° C.

このようにして得られたポリビニルアミンの1mol/L濃度のNaCl水溶液中での25℃における固有粘度は、本発明の凝集処理剤として効果を発揮するためには、4.0〜10.0dL/gの範囲である必要がある。尚、固有粘度は、pH7になるまで塩酸中和したポリビニルアミン塩酸塩を測定した値である。固有粘度が4.0dL/g以下であると、凝集力が低下し、10.0dL/gより高ければフロックが過剰に大きくなり、過多に水分を取り込むため含水率が低下し好ましくはない。8.0dL/gより大きいと水溶液粘度が高くなり、0.2質量%水溶液粘度が200mPa・sを超える可能性が高いため、好ましくは4.0〜8.0dL/g、更に好ましくは4.0〜6.0dL/gの範囲である。 The intrinsic viscosity of polyvinylamine thus obtained in a 1 mol / L NaCl aqueous solution at 25 ° C. is 4.0 to 10.0 dL / in order to exhibit the effect as an aggregating agent of the present invention. It must be in the range of g. In addition, an intrinsic viscosity is the value which measured the polyvinylamine hydrochloride neutralized with hydrochloric acid until it became pH7. If the intrinsic viscosity is 4.0 dL / g or less, the cohesive force is lowered, and if it is higher than 10.0 dL / g, the floc becomes excessively large, and excessive moisture is taken in, so that the water content is lowered. If it is greater than 8.0 dL / g, the viscosity of the aqueous solution becomes high, and the viscosity of the 0.2 mass% aqueous solution is likely to exceed 200 mPa · s. Therefore, the viscosity is preferably 4.0 to 8.0 dL / g, more preferably 4. The range is 0 to 6.0 dL / g.

加水分解後は、親水性界面活性剤を添加して油の膜で被われたエマルジョン粒子が水になじみ易くし、中の水溶性高分子が溶解しやすくする処理を行なうことが好ましい。親水性界面活性剤の例としては、カチオン性界面活性剤やHLB9〜15のノ二オン性界面活性剤であり、ポリオキシエチレンポリオキシプロピレンアルキルエーテル、ポリオキシエチレンアルコールエーテル等が例示できる。 After the hydrolysis, it is preferable to add a hydrophilic surfactant to make the emulsion particles covered with the oil film easy to adjust to water and to make the water-soluble polymer therein easily dissolve. Examples of hydrophilic surfactants are cationic surfactants and HLB 9-15 nonionic surfactants, and examples include polyoxyethylene polyoxypropylene alkyl ethers and polyoxyethylene alcohol ethers.

本発明におけるポリビニルアミンは、乳化重合法により製造された油中水型エマルジョンであり、水溶液重合や逆相懸濁重合で製造されたポリビニルアミン系水溶性高分子に比べて分子量が高いため、ポリマーの収縮により絡み合いが生じ電荷が内包される傾向にあると考えられる。このため、本発明におけるポリビニルアミンの油中水型エマルジョンを汚泥に添加、撹拌されることにより内包されている電荷が高分子の外側に徐々に現れて汚泥中の懸濁物質と電荷の中和作用、再凝集を繰り返す結果、緻密で強固なフロックを形成、ケーキ含水率が低下するものと考えられる。分子量と電荷内包度合いの関係は、分子量が高ければ、必ずしも電荷内包度合いが高いとは限らない。これは、N−ビニルカルボン酸アミド重合体の重合条件や加水分解条件、ポリビニルアミンのアミノ化度等によって影響されるためである。又、単に電荷内包率が高ければ処理効果が高いとは言えず、そのため本発明におけるポリビニルアミンの油中水型エマルジョンの固有粘度が4.0〜10.0dL/gの範囲にあることが必須条件である。 The polyvinylamine in the present invention is a water-in-oil emulsion produced by an emulsion polymerization method and has a higher molecular weight than a polyvinylamine water-soluble polymer produced by aqueous solution polymerization or reverse phase suspension polymerization. It is considered that entanglement is caused by the contraction of, and the electric charge tends to be included. For this reason, the water contained in the water-in-oil emulsion of polyvinylamine in the present invention is added to the sludge, and the electric charge contained by the stirring gradually appears on the outside of the polymer to neutralize the suspended matter in the sludge and the charge. As a result of repeating the action and re-aggregation, it is considered that a dense and strong floc is formed and the moisture content of the cake is lowered. The relationship between the molecular weight and the charge inclusion degree is not necessarily high when the molecular weight is high. This is because it is influenced by the polymerization conditions and hydrolysis conditions of the N-vinylcarboxylic acid amide polymer, the degree of amination of polyvinylamine, and the like. In addition, if the charge inclusion rate is high, it cannot be said that the treatment effect is high, so that the intrinsic viscosity of the water-in-oil emulsion of polyvinylamine in the present invention is in the range of 4.0 to 10.0 dL / g. It is a condition.

次に具体的に本発明におけるポリビニルアミンの油中水型エマルジョンの使用に関して述べる。本発明におけるポリビニルアミンの油中水型エマルジョンが適用できる汚泥は、都市下水の処理場において、下水から沈降させた初沈生汚泥、活性汚泥槽からの流出水から沈降させた余剰汚泥ないしはこれらの混合物(該混合物を、通常「混合生汚泥」という)、消化汚泥等の有機汚泥である。特に有機物量(VSS)が低い汚泥、繊維分量(粗浮遊物量)が低い汚泥に有効であり、混合生汚泥や消化汚泥に特効である。これら有機汚泥に、本発明におけるポリビニルアミンの油中水型エマルジョンを添加すると強固なフロックを形成する。このフロックをベルトプレス、スクリュープレス、フィルタープレスなどの圧搾脱水装置、または遠心分離機、真空濾過機などの脱水装置で処理すると顕著な効果で脱水を行なうことができ、その結果、低含水率の脱水ケーキが得られる。これは、本発明におけるポリビニルアミンの油中水型エマルジョンのアミノ化度、固有粘度、水溶液粘度が有機汚泥に対して最適な組成、物性を有しているためと推測される。本発明で使用するポリビニルアミンの油中水型エマルジョンは、一級アミノ基を有するカチオン性高分子であり、汚泥中の懸濁粒子に対する吸着性が強い。そのため強固で巨大過ぎないフロックを形成する。その結果、脱水ケーキの含水率も低下し汚泥処理効率が非常に高い。又、従来のポリビニルアミン系水溶性高分子に比べて分子量が高く、本発明においては、分子量の指標として固有粘度を採用するが、1mol/L濃度のNaCl水溶液中での25℃における固有粘度が4.0〜10.0dL/gの範囲である。4.0dL/g未満では凝集力が不足し、また10.0dL/gを超えると溶液粘度が高くなり過ぎ分散性が低下することが推測されるためである。8.0dL/g以下が好ましい。これは、重量平均分子量で表すと100万〜500万の範囲であり、400万未満が好ましい。
本発明におけるポリビニルアミンの油中水型エマルジョンは、N−ビニルカルボン酸アミドの酸あるいはアルカリにより加水分解し、酸アミド基をアミノ基に変換することによりカチオン化するが、加水分解度すなわちアミノ化度は、完全に加水分解するよりも酸アミド基を残しておいたほうが、汚泥脱水剤としては好ましい。これは非イオン性基である酸アミド基と親水性基である一級アミノ基とのバランスに由るものと考えられる。従ってアミノ化度は30〜80モル%であることが好ましく、更に好ましくは40〜80モル%、より一層好ましくは50〜80モル%の範囲である。
Next, the use of the water-in-oil emulsion of polyvinylamine in the present invention will be specifically described. The sludge to which the water-in-oil emulsion of polyvinylamine in the present invention can be applied is the primary sludge settled from the sewage, the surplus sludge settled from the effluent from the activated sludge tank or these Organic sludge such as mixture (usually referred to as “mixed raw sludge”), digested sludge and the like. It is particularly effective for sludge with a low organic matter (VSS) and sludge with a low fiber content (crude suspended matter) and is particularly effective for mixed raw sludge and digested sludge. When the water-in-oil emulsion of polyvinylamine in the present invention is added to these organic sludges, a strong floc is formed. When this floc is processed by a pressure dehydrating device such as a belt press, screw press, filter press, or a dehydrating device such as a centrifugal separator or a vacuum filter, dehydration can be performed with a remarkable effect. A dehydrated cake is obtained. This is presumably because the degree of amination, intrinsic viscosity, and aqueous solution viscosity of the water-in-oil emulsion of polyvinylamine in the present invention has an optimal composition and physical properties with respect to organic sludge. The water-in-oil emulsion of polyvinylamine used in the present invention is a cationic polymer having a primary amino group and has a strong adsorptivity to suspended particles in sludge. Therefore, it forms a strong and not too big floc. As a result, the moisture content of the dewatered cake is reduced and the sludge treatment efficiency is very high. In addition, the molecular weight is higher than that of the conventional polyvinylamine-based water-soluble polymer. In the present invention, the intrinsic viscosity is adopted as an index of the molecular weight, but the intrinsic viscosity at 25 ° C. in a 1 mol / L NaCl aqueous solution is adopted. It is the range of 4.0-10.0 dL / g. This is because if less than 4.0 dL / g, the cohesive force is insufficient, and if it exceeds 10.0 dL / g, it is estimated that the solution viscosity becomes too high and the dispersibility is lowered. 8.0 dL / g or less is preferable. This is in the range of 1 million to 5 million when expressed in terms of weight average molecular weight, preferably less than 4 million.
The water-in-oil emulsion of polyvinylamine in the present invention is hydrolyzed with an acid or alkali of N-vinylcarboxylic acid amide, and cationized by converting the acid amide group to an amino group. It is preferable for the sludge dehydrating agent to leave the acid amide group rather than completely hydrolyze. This is considered to be due to the balance between the acid amide group which is a nonionic group and the primary amino group which is a hydrophilic group. Accordingly, the degree of amination is preferably 30 to 80 mol%, more preferably 40 to 80 mol%, still more preferably 50 to 80 mol%.

本発明におけるポリビニルアミンの油中水型エマルジョンの水溶液粘度は、アミノ化度や分子量、重合条件によって影響されるが、一般的に凝集処理剤として使用されるアクリル系水溶性高分子に比べて極めて低く、例えば、25℃において回転粘度計にて測定した0.2質量%水溶液粘度が、アクリル系水溶性高分子が300〜1000mPa・s程度に対して、10〜200mPa・sの範囲であり、好ましくは10〜150mPa・s、更に好ましくは10〜100mPa・sである。粘性が低いため対象汚泥や排水に添加した時に、分散が良く、懸濁粒子との吸着性が優れること、及びアミノ化度と固有粘度が最適な範囲にあることとの相乗効果で凝集処理効果が促進されると考えられる。但し、10mPa・sより小さいと凝集効果が低くなるため好ましくはない。   The aqueous solution viscosity of the water-in-oil emulsion of polyvinylamine in the present invention is influenced by the degree of amination, molecular weight, and polymerization conditions, but it is much higher than that of acrylic water-soluble polymers generally used as an aggregating agent. Low, for example, a 0.2% by weight aqueous solution viscosity measured at 25 ° C. with a rotational viscometer is in the range of 10 to 200 mPa · s with respect to the acrylic water-soluble polymer of about 300 to 1000 mPa · s, Preferably it is 10-150 mPa * s, More preferably, it is 10-100 mPa * s. Because of its low viscosity, when added to target sludge and wastewater, it has good dispersion and excellent adsorptivity with suspended particles, and the synergistic effect of the degree of amination and intrinsic viscosity is in the optimal range. Will be promoted. However, if it is less than 10 mPa · s, the aggregation effect is lowered, which is not preferable.

4質量%食塩水中に高分子濃度が0.5質量%になるように完全溶解したときの25℃において回転粘度計にて測定した塩水溶液粘度は、10mPa・s以上、50mPa・s以下の範囲になる。尚、高分子濃度0.5質量%の4質量%食塩水溶液中粘度は、B型粘度計において2号ローター、30rpmで測定した値である。   The salt solution viscosity measured with a rotational viscometer at 25 ° C. when the polymer concentration is completely dissolved in 4% by mass saline to 0.5% by mass is in the range of 10 mPa · s to 50 mPa · s. become. The viscosity in a 4% by mass aqueous sodium chloride solution having a polymer concentration of 0.5% by mass is a value measured with a No. 2 rotor and 30 rpm in a B-type viscometer.

本発明におけるポリビニルアミンの油中水型エマルジョンは、任意の濃度に水で溶解、希釈され汚泥に添加されるが、低粘性による効果を最大限に発揮するには溶解濃度0.05〜0.3質量%が好ましい。汚泥に対する添加率は、汚泥種や脱水機種によっても異なるが、通常汚泥固形分に対し0.005〜2.0質量%である。又、塩化第二鉄、硫酸第二鉄、PAC、硫酸バンド等の無機系凝集剤と併用しても良い。使用する脱水機の種類は、ベルトプレス、遠心脱水機、スクリュープレス、多重円盤型脱水機、ロータリープレス、フィルタープレス等に対応できる。 The water-in-oil emulsion of polyvinylamine in the present invention is dissolved and diluted with water to an arbitrary concentration and added to sludge. However, in order to maximize the effect of low viscosity, the dissolution concentration is 0.05 to 0.00. 3 mass% is preferable. Although the addition rate with respect to sludge changes with sludge seed | species and a dehydration model, it is 0.005-2.0 mass% normally with respect to sludge solid content. Moreover, you may use together with inorganic type coagulants, such as ferric chloride, ferric sulfate, PAC, and a sulfuric acid band. The type of dehydrator to be used can correspond to a belt press, a centrifugal dehydrator, a screw press, a multi-disc dehydrator, a rotary press, a filter press and the like.

以下、実施例によって本発明をさらに詳しく説明するが、本発明はその要旨を超えない限り、以下の実施例に制約されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not restrict | limited to a following example, unless the summary is exceeded.

特開2012−153747号公報等の方法に基づいて、本発明におけるポリビニルアミンの油中水型エマルジョン試料群Xを調製した。物性値は、pH7になるまで塩酸中和したポリビニルアミンの塩酸塩単位である。同様に、本発明におけるポリビニルアミンの油中水型エマルジョンの範囲外の試料群Yを調製した。それぞれの試料の物性を表1に示す。又、市販凝集処理剤として水溶性高分子試料群Zを用意した。それぞれの試料の物性を表2に示す。   A water-in-oil emulsion sample group X of polyvinylamine in the present invention was prepared based on the method disclosed in JP2012-153747A. The physical property value is a hydrochloride unit of polyvinylamine neutralized with hydrochloric acid until pH 7 is reached. Similarly, a sample group Y outside the range of the water-in-oil emulsion of polyvinylamine in the present invention was prepared. Table 1 shows the physical properties of each sample. In addition, a water-soluble polymer sample group Z was prepared as a commercially available aggregating agent. Table 2 shows the physical properties of each sample.

(表1)
アミノ化度;仕込みN−ビニルホルムアミドに対するモル分率(モル%)。
固有粘度;1mol/L濃度のNaCl水溶液中での25℃における固有粘度。
0.2質量%水溶液粘度;0.2質量%高分子水溶液をB型粘度計により測定(25℃)。
(Table 1)
Degree of amination: mole fraction (mol%) relative to the charged N-vinylformamide.
Intrinsic viscosity: Intrinsic viscosity at 25 ° C. in a 1 mol / L NaCl aqueous solution.
0.2 mass% aqueous solution viscosity; 0.2 mass% polymer aqueous solution was measured with a B-type viscometer (25 ° C.).

(表2)
0.5質量%塩水溶液粘度;0.5質量%高分子水溶液に4質量%塩化ナトリウムを添加、完全溶解後にB型粘度計により測定(25℃)。
0.2質量%水溶液粘度;0.2質量%高分子水溶液をB型粘度計により測定(25℃)。
試料−A:ポリアミジン系水溶性高分子、カチオン当量5.2meq/g(pH7)。
試料−E;ポリビニルアミン系水溶性高分子、カチオン当量4.3meq/g(pH7)。
(Table 2)
0.5 mass% salt aqueous solution viscosity: 4 mass% sodium chloride was added to a 0.5 mass% polymer aqueous solution, and after complete dissolution, measured with a B-type viscometer (25 ° C.)
0.2 mass% aqueous solution viscosity; 0.2 mass% polymer aqueous solution was measured with a B-type viscometer (25 ° C.).
Sample-A: polyamidine-based water-soluble polymer, cation equivalent 5.2 meq / g (pH 7).
Sample-E: polyvinylamine-based water-soluble polymer, cation equivalent of 4.3 meq / g (pH 7).

(実施例1)
下水混合生汚泥(pH5.7、SS分14250mg/L、有機物量73.7質量%/SS、粗浮遊物量955mg/L、電気伝導度435mS/m)について汚泥脱水試験を実施した。汚泥200mLをポリビーカーに採取し、前記表1の試料群Xの0.2質量%溶解液をそれぞれ対汚泥SS分125ppmあるいは150ppm加え、ビーカー移し替え撹拌20回実施後、ナイロン製濾布(#202)により濾過し、60秒後の濾液量、フロック径を測定した。測定後、60秒間濾過した汚泥をプレス圧3Kg/cm2で60秒間脱水し、ケーキ含水率(105℃で20hr乾燥)を測定した。結果を表3に示す。
Example 1
A sludge dewatering test was carried out on sewage mixed raw sludge (pH 5.7, SS content 14250 mg / L, organic matter amount 73.7% by mass / SS, crude suspended matter amount 955 mg / L, electrical conductivity 435 mS / m). 200 mL of sludge was collected in a poly beaker, 0.2% by mass of the sample group X in Table 1 was added at 125 ppm or 150 ppm for the sludge SS, and the beaker was transferred and stirred 20 times, and then a nylon filter cloth (# 202), and the filtrate amount and floc diameter after 60 seconds were measured. After the measurement, the sludge filtered for 60 seconds was dehydrated at a press pressure of 3 kg / cm 2 for 60 seconds, and the moisture content of the cake (dried at 105 ° C. for 20 hours) was measured. The results are shown in Table 3.

(比較例1)実施例1と同じ汚泥を対象に同様な試験を表1の試料群Y、表2の試料群Zを用いて行なった。これらの結果を表3に示す。 (Comparative Example 1) A similar test was performed on the same sludge as in Example 1, using Sample Group Y in Table 1 and Sample Group Z in Table 2. These results are shown in Table 3.

(表3)
(Table 3)

本発明におけるポリビニルアミンの油中水型エマルジョンを添加時、範囲外の組成、物性を有するポリビニルアミンの油中水型エマルジョン添加時あるいはポリアミジン系水溶性高分子やアクリル系水溶性高分子添加時に比べて含水率低減効果が優れることが分かる。市販品のポリビニルアミン系水溶性高分子は、凝集不良でフロックを形成しなかった。分子量が不足しているためと考えられる。 Compared with addition of water-in-oil emulsion of polyvinylamine in the present invention, composition outside of range, addition of water-in-oil emulsion of polyvinylamine having physical properties, or addition of polyamidine water-soluble polymer or acrylic water-soluble polymer It can be seen that the water content reduction effect is excellent. The commercially available polyvinylamine-based water-soluble polymer did not form flocs due to poor aggregation. This is probably because the molecular weight is insufficient.

(実施例2)
下水消化汚泥(pH7.7、SS分11000mg/L、有機物量70.5質量%/SS、粗浮遊物量594mg/L、電気伝導度732mS/m)について汚泥脱水試験を実施した。汚泥200mLをポリビーカーに採取し、前記表1の試料群Xの0.2質量%溶解液をそれぞれ対汚泥SS分200ppm加え、ビーカー移し替え撹拌20回実施後、ナイロン製濾布(#202)により濾過し、60秒後の濾液量、フロック径を測定した。測定後、60秒間濾過した汚泥をプレス圧3Kg/cm2で60秒間脱水し、ケーキ含水率(105℃で20hr乾燥)を測定した。結果を表4に示す。
(Example 2)
A sludge dewatering test was carried out on sewage digested sludge (pH 7.7, SS content 11000 mg / L, organic matter amount 70.5% by mass / SS, crude suspended matter amount 594 mg / L, electrical conductivity 732 mS / m). 200 mL of sludge was collected in a poly beaker, and 0.2 ppm by mass of the sample group X in Table 1 was added to each sludge SS content of 200 ppm, transferred to the beaker and stirred 20 times, and then a nylon filter cloth (# 202) The amount of filtrate and the floc diameter after 60 seconds were measured. After the measurement, the sludge filtered for 60 seconds was dehydrated at a press pressure of 3 kg / cm 2 for 60 seconds, and the moisture content of the cake (dried at 105 ° C. for 20 hours) was measured. The results are shown in Table 4.

(比較例2)実施例2と同じ汚泥を対象に同様な試験を表1の試料群Y、表2の試料群Zを用いて行なった。これらの結果を表4に示す。 (Comparative Example 2) A similar test was performed on the same sludge as in Example 2, using the sample group Y in Table 1 and the sample group Z in Table 2. These results are shown in Table 4.

(表4)
(Table 4)

本発明におけるポリビニルアミンの油中水型エマルジョンを添加時、範囲外の組成、物性を有するポリビニルアミンの油中水型エマルジョン添加時あるいはアクリル系水溶性高分子添加時に比べて凝集性、含水率低減効果が優れることが分かる。ポリアミジン系水溶性高分子は、凝集不良でフロックを形成しなかった。 Addition of water-in-oil emulsion of polyvinylamine in the present invention, composition out of range, reduced cohesiveness and water content compared to addition of water-in-oil emulsion of polyvinylamine having physical properties or addition of acrylic water-soluble polymer It turns out that an effect is excellent. The polyamidine-based water-soluble polymer did not form flocs due to poor aggregation.

(実施例3)
下水混合生汚泥(pH5.3、SS分18500mg/L、有機物量89.2質量%/SS、粗浮遊物量6802mg/L、電気伝導度200mS/m)について汚泥脱水試験を実施した。汚泥200mLをポリビーカーに採取し、前記表1の試料群Xの0.2質量%溶解液をそれぞれ対汚泥SS分100ppm加え、ビーカー移し替え撹拌20回実施後、ナイロン製濾布(#202)により濾過し、60秒後の濾液量、フロック径を測定した。測定後、60秒間濾過した汚泥をプレス圧3Kg/cm2で60秒間脱水し、ケーキ含水率(105℃で20hr乾燥)を測定した。結果を表5に示す。
(Example 3)
A sludge dewatering test was carried out on sewage mixed raw sludge (pH 5.3, SS content 18500 mg / L, organic matter amount 89.2% by mass / SS, crude suspended matter amount 6802 mg / L, electric conductivity 200 mS / m). 200 mL of sludge was collected in a poly beaker, 0.2 mass% solution of sample group X in Table 1 was added to each sludge SS content of 100 ppm, transferred to the beaker and stirred 20 times, and then a nylon filter cloth (# 202) The amount of filtrate and the floc diameter after 60 seconds were measured. After the measurement, the sludge filtered for 60 seconds was dehydrated at a press pressure of 3 kg / cm 2 for 60 seconds, and the moisture content of the cake (dried at 105 ° C. for 20 hours) was measured. The results are shown in Table 5.

(比較例3)実施例3と同じ汚泥を対象に同様な試験を表1の試料群Y、表2の試料群Zを用いて行なった。これらの結果を表5に示す。 (Comparative Example 3) A similar test was performed on the same sludge as in Example 3, using the sample group Y in Table 1 and the sample group Z in Table 2. These results are shown in Table 5.

(表5)
(Table 5)

本発明におけるポリビニルアミンの油中水型エマルジョンを添加時、範囲外の組成、物性を有するポリビニルアミンの油中水型エマルジョン添加時あるいはポリアミジン系水溶性高分子添加時に比べて含水率低減効果が優れることが分かる。 When adding a water-in-oil emulsion of polyvinylamine in the present invention, the composition is out of range, and the water content reduction effect is superior compared to when adding a water-in-oil emulsion of polyvinylamine having physical properties or when adding a polyamidine-based water-soluble polymer. I understand that.

(実施例4)
下水混合生汚泥(pH5.3、SS分22250mg/L、有機物量83.1質量%/SS、粗浮遊物量3066mg/L、電気伝導度453mS/m)について汚泥脱水試験を実施した。汚泥200mLをポリビーカーに採取し、前記表1の試料群Xの0.2質量%溶解液をそれぞれ対汚泥SS分250ppm加え、ビーカー移し替え撹拌20回実施後、ナイロン製濾布(#202)により濾過し、60秒後の濾液量、フロック径を測定した。測定後、60秒間濾過した汚泥をプレス圧3Kg/cm2で60秒間脱水し、ケーキ含水率(105℃で20hr乾燥)を測定した。結果を表6に示す。
Example 4
A sludge dewatering test was carried out on sewage mixed raw sludge (pH 5.3, SS content 22250 mg / L, organic matter amount 83.1% by mass / SS, coarse suspended matter amount 3066 mg / L, electrical conductivity 453 mS / m). 200 mL of sludge was collected in a poly beaker, 0.2 mass% dissolved solution of sample group X in Table 1 was added to each sludge SS content of 250 ppm, transferred to the beaker and stirred 20 times, and then a nylon filter cloth (# 202) The amount of filtrate and the floc diameter after 60 seconds were measured. After the measurement, the sludge filtered for 60 seconds was dehydrated at a press pressure of 3 kg / cm 2 for 60 seconds, and the moisture content of the cake (dried at 105 ° C. for 20 hours) was measured. The results are shown in Table 6.

(比較例4)実施例4と同じ汚泥を対象に同様な試験を表1の試料群Y、表2の試料群Zを用いて行なった。これらの結果を表6に示す。 (Comparative Example 4) A similar test was performed on the same sludge as in Example 4 using the sample group Y in Table 1 and the sample group Z in Table 2. These results are shown in Table 6.

(表6)
(Table 6)

本発明におけるポリビニルアミンの油中水型エマルジョンを添加時、アクリル系水溶性高分子添加時に比べて含水率低減効果が優れることが分かる。当該汚泥はポリアミジン系水溶性高分子が有効な汚泥であるが、本発明におけるポリビニルアミンの油中水型エマルジョンは、ポリアミジン系水溶性高分子と同等以上の濾水効果、含水率低減効果を示した。 It can be seen that when the water-in-oil emulsion of polyvinylamine in the present invention is added, the water content reduction effect is superior compared to when the acrylic water-soluble polymer is added. The sludge is a sludge in which a polyamidine-based water-soluble polymer is effective, but the water-in-oil emulsion of polyvinylamine in the present invention exhibits a drainage effect and water content reduction effect equivalent to or better than those of a polyamidine-based water-soluble polymer. It was.

(実施例5)
生ごみのバイオマス消化汚泥(pH7.7、SS分32750mg/L、有機物量60.3質量%/SS、粗浮遊物量2485mg/L、電気伝導度2230mS/m)について汚泥脱水試験を実施した。汚泥200mLをポリビーカーに採取し、前記表1の試料群Xの0.2質量%溶解液をそれぞれ対汚泥SS分650ppmあるいは750ppm加え、ビーカー移し替え撹拌20回実施後、ナイロン製濾布(#202)により濾過し、60秒後の濾液量、フロック径を測定した。測定後、60秒間濾過した汚泥をプレス圧3Kg/cm2で60秒間脱水し、ケーキ含水率(105℃で20hr乾燥)を測定した。結果を表7に示す。
(Example 5)
A sludge dewatering test was carried out on biomass digested sludge (pH 7.7, SS content 32750 mg / L, organic matter amount 60.3% by mass / SS, crude suspended matter amount 2485 mg / L, electrical conductivity 2230 mS / m). 200 mL of sludge was collected in a poly beaker, 0.2% by mass solution of sample group X in Table 1 was added to the sludge SS content of 650 ppm or 750 ppm, respectively, the beaker was transferred and stirred 20 times, and then a nylon filter cloth (# 202), and the filtrate amount and floc diameter after 60 seconds were measured. After the measurement, the sludge filtered for 60 seconds was dehydrated at a press pressure of 3 kg / cm 2 for 60 seconds, and the moisture content of the cake (dried at 105 ° C. for 20 hours) was measured. The results are shown in Table 7.

(比較例5)実施例5と同じ汚泥を対象に同様な試験を表1の試料群Y、表2の試料群Zを用いて行なった。これらの結果を表7に示す。 (Comparative Example 5) A similar test was performed on the same sludge as in Example 5, using the sample group Y in Table 1 and the sample group Z in Table 2. These results are shown in Table 7.

(表7)
(Table 7)

本発明におけるポリビニルアミンの油中水型エマルジョンを添加時、範囲外の組成、物性を有するポリビニルアミンの油中水型エマルジョン添加時あるいはアクリル系水溶性高分子添加時に比べて含水率低減効果が優れることが分かる。又、ポリアミジン系水溶性高分子と同等以上の濾水効果、含水率低減効果を示した。 When adding a water-in-oil emulsion of polyvinylamine in the present invention, the composition is out of range, and the water content reduction effect is superior compared to when adding water-in-oil emulsion of polyvinylamine having physical properties or when adding an acrylic water-soluble polymer. I understand that. In addition, it showed a drainage effect and water content reduction effect equivalent to or better than those of polyamidine water-soluble polymers.

(実施例6)
下水余剰汚泥(pH6.1、SS分12500mg/L、有機物量86.0質量%/SS、粗浮遊物量409mg/L、電気伝導度78mS/m)について汚泥脱水試験を実施した。汚泥200mLをポリビーカーに採取し、前記表1の試料群Xの0.2質量%溶解液を対汚泥SS分140ppm加え、CST測定装置において撹拌回転数500rpmで60秒撹拌後、ナイロン製濾布(#202)により濾過し、60秒後の濾液量、フロック径を測定した。測定後、60秒間濾過した汚泥をプレス圧4Kg/cm2で60秒間脱水し、ケーキ含水率(105℃で20hr乾燥)を測定した。結果を表8に示す。
(Example 6)
A sludge dewatering test was conducted on sewage surplus sludge (pH 6.1, SS content 12500 mg / L, organic matter amount 86.0% by mass / SS, coarse suspended matter amount 409 mg / L, electrical conductivity 78 mS / m). 200 mL of sludge was collected in a poly beaker, 0.2 mass% solution of sample group X in Table 1 above was added to the sludge SS content 140 ppm, and after stirring for 60 seconds at a stirring rotation speed of 500 rpm in a CST measuring device, a nylon filter cloth (# 202), and the filtrate amount and floc diameter after 60 seconds were measured. After the measurement, the sludge filtered for 60 seconds was dehydrated at a press pressure of 4 kg / cm 2 for 60 seconds, and the moisture content of the cake (dried at 105 ° C. for 20 hours) was measured. The results are shown in Table 8.

(比較例6)実施例6と同じ汚泥を対象に同様な試験を表2の試料群Zを用いて行なった。これらの結果を表8に示す。 (Comparative Example 6) A similar test was performed on the same sludge as in Example 6 using the sample group Z in Table 2. These results are shown in Table 8.

(表8)
(Table 8)

本発明におけるポリビニルアミンの油中水型エマルジョンを添加時、アクリル系水溶性高分子やポリアミジン系水溶性高分子添加時に比べて良好な濾水効果、含水率低減効果を示した。






































When the water-in-oil emulsion of polyvinylamine in the present invention was added, a better drainage effect and a water content reduction effect were shown than when an acrylic water-soluble polymer or a polyamidine water-soluble polymer was added.






































Claims (3)

1mol/L濃度のNaCl水溶液中での25℃における固有粘度が4.0〜10.0dL/g、0.2質量%水溶液粘度が10〜200mPa・sであり、アミノ化度が30〜80モル%の範囲である、ポリビニルアミンの油中水型エマルジョンを有機汚泥に添加、混合し凝集させた後、脱水機により脱水することを特徴とする汚泥の脱水方法。 The intrinsic viscosity at 25 ° C. in a 1 mol / L NaCl aqueous solution is 4.0 to 10.0 dL / g, the 0.2 mass% aqueous solution viscosity is 10 to 200 mPa · s, and the amination degree is 30 to 80 mol. %, A water-in-oil emulsion of polyvinylamine is added to organic sludge, mixed and agglomerated, and then dehydrated by a dehydrator. 前記ポリビニルアミンの油中水型エマルジョンの、アミノ化度が40〜80モル%の範囲であることを特徴とする請求項1に記載の汚泥の脱水方法。 The sludge dewatering method according to claim 1, wherein the water-in-oil emulsion of polyvinylamine has a degree of amination in the range of 40 to 80 mol%. 前記ポリビニルアミンの油中水型エマルジョンの、0.2質量%水溶液粘度が10〜100mPa・sの範囲であることを特徴とする請求項1あるいは2に記載の汚泥の脱水方法。

























The method for dewatering sludge according to claim 1 or 2, wherein the water-in-oil emulsion of polyvinylamine has a 0.2 mass% aqueous solution viscosity of 10 to 100 mPa · s.

























JP2015044132A 2015-03-06 2015-03-06 Sludge dewatering method using water-in-oil emulsion Active JP6391501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015044132A JP6391501B2 (en) 2015-03-06 2015-03-06 Sludge dewatering method using water-in-oil emulsion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015044132A JP6391501B2 (en) 2015-03-06 2015-03-06 Sludge dewatering method using water-in-oil emulsion

Publications (2)

Publication Number Publication Date
JP2016163849A true JP2016163849A (en) 2016-09-08
JP6391501B2 JP6391501B2 (en) 2018-09-19

Family

ID=56875880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015044132A Active JP6391501B2 (en) 2015-03-06 2015-03-06 Sludge dewatering method using water-in-oil emulsion

Country Status (1)

Country Link
JP (1) JP6391501B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108359064A (en) * 2018-02-28 2018-08-03 湖北工业大学 A kind of preparation method of polycarboxylate water-reducer suitable for gap gradation coarse sand

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04298300A (en) * 1991-03-27 1992-10-22 Kurita Water Ind Ltd Sludge dehydrating agent and method for dehydrating sludge by using this agent
JPH10500714A (en) * 1994-05-25 1998-01-20 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing stable water-in-oil emulsion of hydrolyzed polymer of N-vinylamide and use thereof
JP2004059747A (en) * 2002-07-30 2004-02-26 Hymo Corp Water-soluble polymer emulsion and method for using the same
JP2012153747A (en) * 2011-01-24 2012-08-16 Hymo Corp Method for producing stable water-in-oil type emulsion of polyvinylamine
JP2013049050A (en) * 2011-07-29 2013-03-14 Sanyo Chem Ind Ltd Polymer flocculant
JP2013252476A (en) * 2012-06-06 2013-12-19 Hymo Corp Flocculation treatment agent

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04298300A (en) * 1991-03-27 1992-10-22 Kurita Water Ind Ltd Sludge dehydrating agent and method for dehydrating sludge by using this agent
JPH10500714A (en) * 1994-05-25 1998-01-20 ビーエーエスエフ アクチェンゲゼルシャフト Method for producing stable water-in-oil emulsion of hydrolyzed polymer of N-vinylamide and use thereof
US5739190A (en) * 1994-05-25 1998-04-14 Basf Aktiengesellschaft Process for the preparation of stable water-in-oil emulsions of hydrolyzed polymers of N-vinyl amides and the use thereof
JP2004059747A (en) * 2002-07-30 2004-02-26 Hymo Corp Water-soluble polymer emulsion and method for using the same
JP2012153747A (en) * 2011-01-24 2012-08-16 Hymo Corp Method for producing stable water-in-oil type emulsion of polyvinylamine
JP2013049050A (en) * 2011-07-29 2013-03-14 Sanyo Chem Ind Ltd Polymer flocculant
JP2013252476A (en) * 2012-06-06 2013-12-19 Hymo Corp Flocculation treatment agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108359064A (en) * 2018-02-28 2018-08-03 湖北工业大学 A kind of preparation method of polycarboxylate water-reducer suitable for gap gradation coarse sand
CN108359064B (en) * 2018-02-28 2020-01-07 湖北工业大学 Preparation method of polycarboxylate superplasticizer suitable for coarse sand with graded fracture

Also Published As

Publication number Publication date
JP6391501B2 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
JP6465435B2 (en) Sludge dewatering method using water-in-oil type emulsion coagulant
JP2005144346A (en) Coagulating agent and its usage
JP2009280649A (en) Ionic water-soluble polymer comprising powder, process for producing it, and its usage
JP6257079B2 (en) Coagulation treatment agent and sludge dewatering method using the same
JP2010222505A (en) Water-soluble polymer composition
JP3712946B2 (en) Amphoteric water-soluble polymer dispersion
US20210230039A1 (en) Sludge dehydration agent and sludge dehydration method
JP6486006B2 (en) Polymer flocculant and sludge dewatering method using the same
JP6391501B2 (en) Sludge dewatering method using water-in-oil emulsion
JP2008080256A (en) Stable emulsion composition and method for dehydrating sludge
JP5729717B2 (en) Concentration method of sludge
JP2009154081A (en) Sludge dehydration method
JP2009072754A (en) Method for dehydrating sludge
JP5305443B2 (en) Water-soluble polymer composition
JP6815607B2 (en) Oil-containing wastewater treatment method
JP5967705B2 (en) Coagulation treatment agent and sludge dewatering method using the same
JP5995534B2 (en) Aggregation treatment agent and waste water treatment method
JP5601704B2 (en) Sludge dewatering agent and sludge dewatering method
JP6590731B2 (en) Activated sludge settling method
JP2010215867A (en) Water-soluble polymer composition
JP5709257B2 (en) Sludge treatment agent and sludge dewatering method
JP3651669B2 (en) Amphoteric water-soluble polymer dispersion
JP2019209321A (en) Sludge dehydrating agent, and sludge dewatering method
JP6388329B2 (en) Water-soluble polymer dispersion containing low inorganic salt and process for producing the same
JP2015057272A (en) Polymer flocculant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180821

R150 Certificate of patent or registration of utility model

Ref document number: 6391501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250