JP2016162963A - Measuring method and measuring apparatus of concentration of metal ion in liquid and cleaning system of electronic device - Google Patents

Measuring method and measuring apparatus of concentration of metal ion in liquid and cleaning system of electronic device Download PDF

Info

Publication number
JP2016162963A
JP2016162963A JP2015042521A JP2015042521A JP2016162963A JP 2016162963 A JP2016162963 A JP 2016162963A JP 2015042521 A JP2015042521 A JP 2015042521A JP 2015042521 A JP2015042521 A JP 2015042521A JP 2016162963 A JP2016162963 A JP 2016162963A
Authority
JP
Japan
Prior art keywords
liquid
cleaning
sulfuric acid
measuring
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015042521A
Other languages
Japanese (ja)
Inventor
晴義 山川
Haruyoshi Yamakawa
晴義 山川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2015042521A priority Critical patent/JP2016162963A/en
Publication of JP2016162963A publication Critical patent/JP2016162963A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measuring method and a measuring apparatus of the concentration of metal ions in a liquid, such as a sulphuric acid-based chemical, used for cleaning an electronic device capable of measuring the concentration in a process in real time, and to provide a cleaning method and a cleaning system of an electronic device using the same.SOLUTION: In a method of measuring the concentration of metal ions in a sample liquid, containing one kind or more of ions of metal elements in the third through sixth periods of a periodic table and having an electric conductivity exceeding 0.33 S/cm, by plasma emission spectrometry, preprocessing for preparing an adjustment liquid, where the electric conductivity of the sample liquid has been adjusted to 0.33 S/cm or less, is performed before the concentration of metal ions in the liquid is measured for the adjustment liquid. A cleaning method of an electronic device for measuring the concentration of metal ions in the cleaning liquid for cleaning the electronic device is also provided.SELECTED DRAWING: Figure 1

Description

本発明は、液中の金属イオン濃度の測定方法および測定装置に関する。本発明の液中の金属イオン濃度の測定方法および測定装置は、電子デバイス製造プロセスにおいて、シリコンウエハ等の電子デバイスから残渣金属などの不要物を洗浄除去するための硫酸系洗浄薬液に不純物として含まれる金属イオン濃度を洗浄工程内で測定し、この結果に基づいて、洗浄液の回収再利用を行う電子デバイスの洗浄システムにおいて有用である。   The present invention relates to a method and an apparatus for measuring a metal ion concentration in a liquid. The method and apparatus for measuring the concentration of metal ions in the liquid of the present invention are contained as impurities in a sulfuric acid-based cleaning chemical for cleaning and removing unnecessary materials such as residual metals from an electronic device such as a silicon wafer in an electronic device manufacturing process. This is useful in an electronic device cleaning system that measures the concentration of metal ions to be collected in the cleaning process and collects and reuses the cleaning liquid based on the result.

半導体製造プロセスにおいては、レジスト残渣、微粒子、金属および自然酸化膜などを剥離洗浄する複数の洗浄工程において、濃硫酸と過酸化水素の混合溶液(SPM)あるいは、濃硫酸にオゾンガスを吹き込んだ溶液(SOM)が洗浄液として多用されている。これらの硫酸系洗浄薬液は、硫酸濃度の高い状態で薬液としての活性を失うことから、半導体工場での硫酸の使用量と廃液量は非常に多い。   In a semiconductor manufacturing process, concentrated sulfuric acid and hydrogen peroxide mixed solution (SPM) or a solution in which ozone gas is blown into concentrated sulfuric acid (SPM) in a plurality of cleaning steps for stripping and cleaning resist residues, fine particles, metals, natural oxide films, etc. SOM) is frequently used as a cleaning liquid. Since these sulfuric acid-based cleaning chemicals lose their activity as chemicals in a high sulfuric acid concentration state, the amount of sulfuric acid used and the amount of waste liquid in semiconductor factories are very large.

この状況を改善するために、廃硫酸をオンサイトで回収し、精製ないしは成分調整することにより再生して再利用する技術が検討されている。例えば、特許文献1,2には、二段蒸留法を用いて、また、特許文献3には、減圧蒸留法を用いて、硫酸と不純物とを分離回収する方法が提案されている。また、特許文献4には、電気透析を利用して硫酸を回収し、さらに電気分解により酸化性物質を含有させて再利用する方法が提案されている。   In order to improve this situation, a technique for recovering and reusing waste sulfuric acid on-site and regenerating it by refining or adjusting components is being studied. For example, Patent Documents 1 and 2 propose a method of separating and recovering sulfuric acid and impurities using a two-stage distillation method and Patent Document 3 using a vacuum distillation method. Patent Document 4 proposes a method of recovering sulfuric acid by using electrodialysis and further reusing it by adding an oxidizing substance by electrolysis.

これらの技術を適用する場合、回収・再生した硫酸が再利用可能か否かを判断するためには、硫酸中の不純物濃度を計測して管理する必要があるが、特許文献1〜4には、不純物の測定方法や管理方法に関する記載はない。   When these techniques are applied, it is necessary to measure and manage the impurity concentration in sulfuric acid in order to determine whether or not the recovered and regenerated sulfuric acid can be reused. There is no description of impurity measurement and management methods.

一方、硫酸廃液量を削減するために、硫酸を電気分解して得られる過硫酸などの酸化性物質を含有した電解硫酸を洗浄液とし、使用後の硫酸を再び電解して循環使用する洗浄方法および洗浄システムが、例えば特許文献5,6に提案されている。この電解硫酸システムは、薬液使用量、廃液量を削減すると同時に高い洗浄効果を得ることができる。しかし、無機系の不純物を除去する機構は無く、処理対象に無機系不純物を含有する場合はこれが経時的に液中に蓄積することとなる。このため、どの程度循環利用が可能かを判断するには、ウエハ処理枚数から計算される不純物蓄積量で予測するしか方法がなかった。   On the other hand, in order to reduce the amount of sulfuric acid waste solution, a washing method in which electrolytic sulfuric acid containing an oxidizing substance such as persulfuric acid obtained by electrolysis of sulfuric acid is used as a washing solution, and the used sulfuric acid is electrolyzed again and circulated For example, Patent Documents 5 and 6 propose a cleaning system. This electrolytic sulfuric acid system can obtain a high cleaning effect while reducing the amount of chemical solution used and the amount of waste liquid. However, there is no mechanism for removing inorganic impurities, and when inorganic impurities are contained in the object to be treated, this accumulates in the liquid over time. For this reason, the only way to determine how much recycling is possible is to make a prediction based on the amount of accumulated impurities calculated from the number of wafers processed.

硫酸中の不純物濃度の計測方法としては、JIS K8951に記載されるような分析手法や、原子吸光分析装置、誘導結合プラズマ発光分析装置、誘導結合プラズマ質量(ICP−MS)分析装置などの元素分析装置を用いて分析する方法がある。しかし、これらの方法はいずれも再利用する硫酸をサンプリングし、濃縮や希釈などの前処理を行った後、分析装置で各種不純物濃度を測定するものであるため、操作が煩雑であり、分析結果が得られるまでの所定時間が長いという問題がある。
そのため、回収装置のトラブルなどで異常な濃度まで回収硫酸中に不純物が混入していることを即時的に把握できずに再使用してしまう場合があり、この場合には、洗浄液由来の不純物によるウエハ汚染によって製品不良が発生する恐れがある。
As an impurity concentration measurement method in sulfuric acid, elemental analysis such as an analysis method described in JIS K8951, atomic absorption spectrometer, inductively coupled plasma emission spectrometer, inductively coupled plasma mass (ICP-MS) analyzer, etc. There is a method of analyzing using an apparatus. However, all of these methods sample the sulfuric acid to be reused, perform pretreatment such as concentration and dilution, and then measure various impurity concentrations with an analyzer. There is a problem in that the predetermined time until obtaining is long.
Therefore, it may be reused without being able to immediately grasp that impurities are mixed in the recovered sulfuric acid to an abnormal concentration due to a trouble with the recovery device. Product defects may occur due to wafer contamination.

電子デバイス製造分野における金属不純物の分析技術については、特許文献7に半導体製造プロセスにおけるシリコンウエハ表面の金属汚染濃度をプラズマ発光分析などで測定する技術が、特許文献8には、レジスト洗浄剤中の金属をプラズマ発光分析などで定量する技術が提案されている。しかし、電子デバイス製造分野における硫酸系洗浄薬液や洗浄廃液中の金属不純物の分析方法は知られていない。   Regarding the technique for analyzing metal impurities in the field of electronic device manufacturing, Patent Document 7 discloses a technique for measuring the metal contamination concentration on the surface of a silicon wafer in a semiconductor manufacturing process by plasma emission analysis. A technique for quantifying metals by plasma emission analysis has been proposed. However, there are no known methods for analyzing metal impurities in sulfuric acid-based cleaning chemicals or cleaning waste liquids in the field of electronic device manufacturing.

なお、本発明で用いる液体電極プラズマ発光分析(LEP−AES分析;Liquid Electrode Plasma−Atomic Emission Spectrometry)は、適度な電圧下で試料液に発生するプラズマを利用して、各元素特有のスペクトルを定量的に検出することで、含有される物質の濃度を計測する手法であり、設置スペースをほとんど必要としないハンディタイプの分析装置(MH−5000、(株)マイクロエミッション)が実用化されている(非特許文献1)。また、この分析装置を用いて、溶液中の重金属を計測可能であることも報告されているが(非特許文献2)、電子デバイスの洗浄に用いられる硫酸系薬液等の液中の金属イオン濃度の定量に適用するとの報告はなされていない。   The liquid electrode plasma emission analysis (LEP-AES analysis) used in the present invention quantifies the spectrum unique to each element using plasma generated in a sample solution under an appropriate voltage. This is a technique for measuring the concentration of contained substances by detecting them manually, and a handy type analyzer (MH-5000, Microemission Co., Ltd.) that requires little installation space has been put into practical use ( Non-patent document 1). In addition, although it has been reported that heavy metals in a solution can be measured using this analyzer (Non-patent Document 2), the metal ion concentration in a liquid such as a sulfuric acid chemical solution used for cleaning an electronic device is also reported. There is no report that it is applied to the quantification.

また、本分析装置はプラズマ発光するあらゆる元素について定量分析することが可能であるが、純水のような電気伝導率の低い液の場合は電流が流れずにプラズマ発光を起こさず、一方で、高濃度に電解質を含む溶液の場合も電気分解が容易に起こるためプラズマ発光が抑えられる。従って、この場合には電解質の添加や、純水希釈などの前処理が必要となる。このようなことから、プラズマ発光分析を電子デバイスの洗浄に用いた硫酸系薬液等の液中の金属イオン濃度の定量に適用しようとしても、そのままでは金属イオン濃度を測定し得ない場合がある。   In addition, this analyzer can quantitatively analyze any element that emits plasma, but in the case of a liquid with low electrical conductivity such as pure water, current does not flow and plasma emission does not occur. In the case of a solution containing an electrolyte at a high concentration, electrolysis easily occurs, so that plasma emission can be suppressed. Therefore, in this case, pretreatment such as addition of electrolyte or dilution with pure water is required. For this reason, even if the plasma emission analysis is applied to the determination of the metal ion concentration in a liquid such as a sulfuric acid chemical solution used for cleaning an electronic device, the metal ion concentration may not be measured as it is.

特開平9−48603号公報JP-A-9-48603 特開平9−278424号公報JP-A-9-278424 特許第3507317号公報Japanese Patent No. 3507317 特許第3383334号公報Japanese Patent No. 3383334 特開2006−114880号公報JP 2006-114880 A 特開2006−278687号公報JP 2006-278687A 特開平6−230002号公報JP-A-6-230002 特開2010−54423号公報JP 2010-54423 A

山本ら、ぶんせき、1,pp.32−36,(2009)Yamamoto et al. 32-36, (2009) 熊井ら、分析化学、Vol.58,No.6,pp.561−567,(2009)Kumai et al., Analytical Chemistry, Vol. 58, no. 6, pp. 561-567, (2009)

本発明は、電子デバイスの洗浄に用いられる硫酸系薬液等の液中の金属イオンを、プロセス内で即時的に測定することが可能な液中の金属イオン濃度の測定方法および測定装置と、これを利用した電子デバイスの洗浄方法および電子デバイスの洗浄システムを提供することを課題とする。   The present invention relates to a method and an apparatus for measuring a metal ion concentration in a liquid capable of instantaneously measuring a metal ion in a liquid such as a sulfuric acid chemical solution used for cleaning an electronic device in a process, It is an object of the present invention to provide an electronic device cleaning method and an electronic device cleaning system using the above.

本発明者は、上記課題を解決すべく鋭意検討を重ねた結果、プラズマ発光分析による測定が可能なように前処理を行い、この前処理を行った液についてプラズマ発光分析を行うことにより、電子デバイスの洗浄工程で用いられる硫酸系薬液等の洗浄液に不純物として含まれる金属イオン濃度を、洗浄プロセス内において即時的に測定することができることを見出した。
本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。
As a result of intensive studies to solve the above problems, the present inventor performed pretreatment so that measurement by plasma emission analysis is possible, and by performing plasma emission analysis on the liquid subjected to this pretreatment, It has been found that the concentration of metal ions contained as an impurity in a cleaning solution such as a sulfuric acid chemical solution used in a device cleaning process can be measured immediately in the cleaning process.
The present invention has been achieved based on such findings, and the gist thereof is as follows.

[1] 周期表第3周期〜第6周期の金属元素のイオンの1種以上を含む、電気伝導度0.33S/cm超の試料液の該金属イオン濃度をプラズマ発光分析で測定する方法であって、該試料液の電気伝導度を0.33S/cm以下に調整した調整液を調製する前処理を行い、該調整液についてプラズマ発光分析による測定を行うことを特徴とする液中の金属イオン濃度の測定方法。 [1] A method in which the concentration of metal ions in a sample solution having an electrical conductivity of more than 0.33 S / cm, including one or more types of metal element ions in the third to sixth periods of the periodic table, is measured by plasma emission analysis. A metal in the liquid, characterized in that a pretreatment for preparing an adjustment liquid in which the electric conductivity of the sample liquid is adjusted to 0.33 S / cm or less is prepared, and the adjustment liquid is measured by plasma emission analysis. Ion concentration measurement method.

[2] [1]において、前記試料液が、硫酸濃度80重量%以上、液温度80℃超の硫酸系薬液であり、前記前処理が、前記試料液の液温度を80℃以下に冷却する処理であることを特徴とする液中の金属イオン濃度の測定方法。 [2] In [1], the sample solution is a sulfuric acid chemical solution having a sulfuric acid concentration of 80 wt% or more and a solution temperature of more than 80 ° C., and the pretreatment cools the solution temperature of the sample solution to 80 ° C. or less. A method for measuring a metal ion concentration in a liquid, characterized by being a treatment.

[3] [1]において、前記試料液が、硫酸濃度70重量%以上80重量%未満、液温度35℃超の硫酸系薬液であり、前記前処理が、予め硫酸濃度と関連づけられて記憶された液温度の下限設定値に基づいて前記試料液の液温度を前記下限設定値以下に冷却する処理であることを特徴とする液中の金属イオン濃度の測定方法。 [3] In [1], the sample solution is a sulfuric acid chemical solution having a sulfuric acid concentration of 70% by weight to less than 80% by weight and a liquid temperature of more than 35 ° C., and the pretreatment is previously stored in association with the sulfuric acid concentration. A method for measuring a metal ion concentration in a liquid, characterized in that the liquid temperature of the sample liquid is cooled to the lower limit set value or less based on a lower limit set value of the liquid temperature.

[4] [2]又は[3]において、前記硫酸系薬液が電解硫酸、硫酸と過酸化水素水の混合液、又は硫酸にオゾンを吹き込んだ液であることを特徴とする液中の金属イオン濃度の測定方法。 [4] In [2] or [3], the sulfuric acid chemical solution is electrolytic sulfuric acid, a mixed solution of sulfuric acid and hydrogen peroxide, or a solution obtained by blowing ozone into sulfuric acid. Concentration measurement method.

[5] [1]ないし[4]のいずれかにおいて、前記試料液が、電子デバイス製造工程において電子デバイスの洗浄に用いられる洗浄液であることを特徴とする液中の金属イオン濃度の測定方法。 [5] The method for measuring a metal ion concentration in a liquid according to any one of [1] to [4], wherein the sample liquid is a cleaning liquid used for cleaning an electronic device in an electronic device manufacturing process.

[6] [5]において、前記洗浄が前記電子デバイス上の残渣金属を前記洗浄液により除去するものであることを特徴とする液中の金属イオン濃度の測定方法。 [6] The method for measuring a metal ion concentration in a liquid according to [5], wherein the cleaning removes residual metal on the electronic device with the cleaning liquid.

[7] [5]又は[6]において、前記洗浄後の洗浄廃液を、そのまま或いは再生処理した後、洗浄液として循環再利用することを特徴とする液中の金属イオン濃度の測定方法。 [7] The method for measuring the concentration of metal ions in the liquid according to [5] or [6], wherein the cleaning waste liquid after the cleaning is reused as it is or after being recycled.

[8] [7]において、前記循環系から分取した洗浄液を前記試料液として金属イオン濃度を測定することを特徴とする液中の金属イオン濃度の測定方法。 [8] A method for measuring a metal ion concentration in a liquid according to [7], wherein the metal ion concentration is measured using the cleaning liquid separated from the circulation system as the sample liquid.

[9] [8]において、前記測定後の試料液を前記循環系に戻すことを特徴とする液中の金属イオン濃度の測定方法。 [9] The method for measuring a metal ion concentration in a liquid according to [8], wherein the sample liquid after the measurement is returned to the circulation system.

[10] 電子デバイスを洗浄液で洗浄する方法において、該洗浄液中の金属イオン濃度を[1]ないし[9]のいずれかに記載の方法に従って測定することを特徴とする電子デバイスの洗浄方法。 [10] A method for cleaning an electronic device, wherein the concentration of metal ions in the cleaning liquid is measured according to the method according to any one of [1] to [9].

[11] 周期表第3周期〜第6周期の金属元素のイオンの1種以上を含む、電気伝導度0.33S/cm超の試料液の該金属イオン濃度をプラズマ発光分析で測定する装置であって、該試料液の電気伝導度を0.33S/cm以下に調整した調整液を調製する前処理手段と、該調整液が試料液として供給されるプラズマ発光分析装置とを備えることを特徴とする液中の金属イオン濃度の測定装置。 [11] An apparatus for measuring the concentration of metal ions in a sample liquid having an electrical conductivity of more than 0.33 S / cm by plasma emission analysis, including one or more kinds of ions of metal elements in the third to sixth periods of the periodic table. A pretreatment means for preparing an adjustment liquid in which the electric conductivity of the sample liquid is adjusted to 0.33 S / cm or less, and a plasma emission analyzer for supplying the adjustment liquid as the sample liquid. An apparatus for measuring the concentration of metal ions in a liquid.

[12] [11]において、前記試料液が、硫酸濃度80重量%以上、液温度80℃超の硫酸系薬液であり、前記前処理手段が、前記試料液の液温度を80℃以下に冷却する冷却手段であることを特徴とする液中の金属イオン濃度の測定装置。 [12] In [11], the sample solution is a sulfuric acid chemical solution having a sulfuric acid concentration of 80% by weight or more and a solution temperature of more than 80 ° C., and the pretreatment means cools the solution temperature of the sample solution to 80 ° C. or less. An apparatus for measuring the concentration of metal ions in a liquid, characterized by being a cooling means.

[13] [11]において、前記試料液が、硫酸濃度70重量%以上80重量%未満、液温度35℃超の硫酸系薬液であり、前記前処理手段が、予め硫酸濃度と関連づけられて記憶された液温度の下限設定値に基づいて前記試料液の液温度を前記下限設定値以下に冷却する冷却手段であることを特徴とする液中の金属イオン濃度の測定装置。 [13] In [11], the sample solution is a sulfuric acid chemical solution having a sulfuric acid concentration of 70% by weight or more and less than 80% by weight and a liquid temperature of more than 35 ° C., and the pretreatment unit stores the pretreatment means in association with the sulfuric acid concentration in advance. An apparatus for measuring the concentration of metal ions in a liquid, which is cooling means for cooling the liquid temperature of the sample liquid below the lower limit set value based on the lower limit set value of the liquid temperature.

[14] [12]又は[13]において、前記硫酸系薬液が電解硫酸、硫酸と過酸化水素水の混合液、又は硫酸にオゾンを吹き込んだ液であることを特徴とする液中の金属イオン濃度の測定装置。 [14] The metal ion in the liquid according to [12] or [13], wherein the sulfuric acid chemical liquid is electrolytic sulfuric acid, a mixed liquid of sulfuric acid and hydrogen peroxide solution, or a liquid obtained by blowing ozone into sulfuric acid. Concentration measuring device.

[15] [11]ないし[14]のいずれかにおいて、前記試料液が、電子デバイス製造工程において電子デバイスの洗浄に用いられる洗浄液であることを特徴とする液中の金属イオン濃度の測定装置。 [15] The apparatus for measuring a metal ion concentration in a liquid according to any one of [11] to [14], wherein the sample liquid is a cleaning liquid used for cleaning an electronic device in an electronic device manufacturing process.

[16] 電子デバイスを洗浄液で洗浄する洗浄手段と、該洗浄手段からの洗浄廃液を回収する回収手段と、該回収手段で回収された洗浄廃液を洗浄液として前記洗浄手段に循環する循環手段と、該循環手段による循環系内から循環液の一部を抜き出して該循環液の金属イオン濃度を測定する金属イオン濃度測定手段とを有する電子デバイスの洗浄システムであって、該金属イオン濃度測定手段が、プラズマ発光分析装置を含むことを特徴とする電子デバイスの洗浄システム。 [16] Cleaning means for cleaning the electronic device with the cleaning liquid, recovery means for recovering the cleaning waste liquid from the cleaning means, circulation means for circulating the cleaning waste liquid recovered by the recovery means as the cleaning liquid to the cleaning means, A cleaning system for an electronic device having a metal ion concentration measuring means for extracting a part of the circulating liquid from the circulation system by the circulation means and measuring a metal ion concentration of the circulating liquid, the metal ion concentration measuring means comprising: An electronic device cleaning system comprising a plasma emission analyzer.

[17] [16]において、前記金属イオン濃度測定手段が前記循環液の冷却手段を有し、該冷却手段で冷却された循環液について前記プラズマ発光分析装置による測定が行われることを特徴とする電子デバイスの洗浄システム。 [17] In [16], the metal ion concentration measuring unit includes a circulating liquid cooling unit, and the circulating liquid cooled by the cooling unit is measured by the plasma emission analyzer. Electronic device cleaning system.

[18] [17]において、前記洗浄液が、硫酸濃度80重量%以上、液温度80℃超の硫酸系薬液であり、前記冷却手段が、前記洗浄液の液温度を80℃以下に冷却する手段であることを特徴とする電子デバイスの洗浄システム。 [18] In [17], the cleaning liquid is a sulfuric acid chemical solution having a sulfuric acid concentration of 80% by weight or more and a liquid temperature of over 80 ° C., and the cooling means is means for cooling the liquid temperature of the cleaning liquid to 80 ° C. or lower. An electronic device cleaning system, comprising:

[19] [17]において、前記洗浄液が、硫酸濃度70重量%以上80重量%未満、液温度35℃超の硫酸系薬液であり、前記冷却手段が、予め硫酸濃度と関連づけられて記憶された液温度の下限設定値に基づいて前記洗浄液の液温度を前記下限設定値以下に冷却する手段であることを特徴とする電子デバイスの洗浄システム。 [19] In [17], the cleaning liquid is a sulfuric acid chemical solution having a sulfuric acid concentration of 70 wt% or more and less than 80 wt% and a liquid temperature of more than 35 ° C., and the cooling means is stored in advance in association with the sulfuric acid concentration. An electronic device cleaning system, characterized in that it is means for cooling the liquid temperature of the cleaning liquid below the lower limit set value based on a lower limit set value of the liquid temperature.

[20] [18]又は[17]において、前記硫酸系薬液が電解硫酸、硫酸と過酸化水素水の混合液、又は硫酸にオゾンを吹き込んだ液であることを特徴とする電子デバイスの洗浄システム。 [20] The electronic device cleaning system according to [18] or [17], wherein the sulfuric acid chemical solution is electrolytic sulfuric acid, a mixed solution of sulfuric acid and hydrogen peroxide solution, or a solution obtained by blowing ozone into sulfuric acid. .

[21] 電子デバイスを洗浄液で洗浄する洗浄手段と、該洗浄手段からの洗浄廃液を回収する回収手段と、該回収手段で回収された洗浄廃液を洗浄液として前記洗浄手段に循環する循環手段と、該循環手段による循環系内から循環液の一部を抜き出して該循環液の金属イオン濃度を測定する金属イオン濃度測定手段とを有する電子デバイスの洗浄システムであって、該金属イオン濃度測定手段が[11]ないし[15]のいずれかに記載の液中の金属イオン濃度の測定装置を含むことを特徴とする電子デバイスの洗浄システム。 [21] Cleaning means for cleaning the electronic device with the cleaning liquid, recovery means for recovering the cleaning waste liquid from the cleaning means, circulation means for circulating the cleaning waste liquid recovered by the recovery means as the cleaning liquid to the cleaning means, A cleaning system for an electronic device having a metal ion concentration measuring means for extracting a part of the circulating liquid from the circulation system by the circulation means and measuring a metal ion concentration of the circulating liquid, the metal ion concentration measuring means comprising: [11] A cleaning system for an electronic device comprising the apparatus for measuring a metal ion concentration in a liquid according to any one of [15] to [15].

[22] [16]ないし[21]のいずれかにおいて、前記洗浄手段は、前記電子デバイス上の残渣金属を前記洗浄液により洗浄除去する手段であることを特徴とする電子デバイスの洗浄システム。 [22] The electronic device cleaning system according to any one of [16] to [21], wherein the cleaning means is means for cleaning and removing residual metal on the electronic device with the cleaning liquid.

[23] [16]ないし[22]のいずれかにおいて、前記循環系内に前記洗浄廃液を精製ないしは成分調整する再生手段を有し、該再生手段で再生された再生液の一部が抜き出されて前記金属イオン濃度測定手段により金属イオン濃度の測定が行われることを特徴とする電子デバイスの洗浄システム。 [23] In any one of [16] to [22], the circulation system has a regenerating means for purifying or adjusting the components of the cleaning waste liquid, and a part of the regenerated liquid regenerated by the regenerating means is extracted. The electronic device cleaning system is characterized in that the metal ion concentration is measured by the metal ion concentration measuring means.

[24] [16]ないし[23]のいずれかにおいて、前記金属イオン濃度測定手段による金属イオン濃度測定後の液を、前記循環系内に戻す液返送手段を有することを特徴とする電子デバイスの洗浄システム。 [24] The electronic device according to any one of [16] to [23], further comprising a liquid return means for returning the liquid after the metal ion concentration measurement by the metal ion concentration measurement means to the circulation system. Cleaning system.

[25] [16]ないし[24]のいずれかにおいて、前記洗浄液が硫酸系洗浄薬液であり、前記循環液の硫酸濃度の測定装置を更に備えることを特徴とする電子デバイスの洗浄システム。 [25] The electronic device cleaning system according to any one of [16] to [24], wherein the cleaning liquid is a sulfuric acid-based cleaning chemical and further includes a measuring device for the sulfuric acid concentration of the circulating liquid.

プラズマ発光分析によれば、液中の周期表第3周期〜第6周期の金属元素のイオンの濃度を測定することが可能であるが、試料液の電気伝導度が0.33S/cm超であると、プラズマが発生せずに測定不可能である。本発明では、この試料液の電気伝導度を0.33S/cm以下に調整する前処理を行うことで、プラズマ発光分析による金属イオン濃度の測定を可能とする。   According to the plasma emission analysis, it is possible to measure the concentration of ions of the metal elements in the third to sixth periods of the periodic table in the liquid, but the electrical conductivity of the sample liquid exceeds 0.33 S / cm. If so, plasma is not generated and measurement is impossible. In the present invention, the metal ion concentration can be measured by plasma emission analysis by performing a pretreatment for adjusting the electric conductivity of the sample solution to 0.33 S / cm or less.

本発明による液中の金属イオン濃度の測定技術は、例えば、電子デバイスの製造工程にて用いられる硫酸系薬液を洗浄液等として利用した後、そのまま、或いは再生して循環再利用する場合において、薬液中に不純物として含まれる金属イオン濃度を測定する手段として有用であり、プラズマ発光分析により、洗浄薬液の不純物濃度を工程内で即時的に測定することで、薬液の再利用の可否を短時間で判断することが可能となる。また、薬液中の不純物濃度を検出して、不純物濃度が設定値を超える場合には系外へ排出したり、再生条件を変更したりすることにより、この薬液中の不純物に起因するウエハなどの電子デバイスの汚染を抑制し、製品不良の発生を未然に防ぐことができる。   The technique for measuring the concentration of metal ions in a liquid according to the present invention is, for example, a chemical liquid in the case where a sulfuric acid chemical liquid used in a manufacturing process of an electronic device is used as a cleaning liquid or the like and then recycled or recycled for reuse. It is useful as a means of measuring the concentration of metal ions contained as impurities in the process. By measuring the impurity concentration of cleaning chemicals immediately in the process by plasma emission analysis, the possibility of reuse of chemicals can be determined in a short time. It becomes possible to judge. Also, by detecting the impurity concentration in the chemical solution, if the impurity concentration exceeds the set value, it is discharged out of the system, or the regeneration conditions are changed, so that the wafer etc. caused by the impurity in the chemical solution can be changed. Contamination of electronic devices can be suppressed, and product defects can be prevented.

本発明の電子デバイスの洗浄システムの実施の形態の一例を示す系統図である。It is a systematic diagram which shows an example of embodiment of the washing | cleaning system of the electronic device of this invention. 本発明の電子デバイスの洗浄システムの実施の形態の他の例を示す系統図である。It is a systematic diagram which shows the other example of embodiment of the washing | cleaning system of the electronic device of this invention. 本発明の電子デバイスの洗浄システムの実施の形態の別の例を示す系統図である。It is a systematic diagram which shows another example of embodiment of the washing | cleaning system of the electronic device of this invention. 硫酸濃度85重量%、液温度30℃の硫酸水溶液のLEP−AESスペクトルを示すチャートである。It is a chart which shows the LEP-AES spectrum of sulfuric acid aqueous solution with a sulfuric acid concentration of 85 weight% and a liquid temperature of 30 degreeC. 砒素含有硫酸溶液のLEP−AESスペクトルを示すチャートである。It is a chart which shows the LEP-AES spectrum of an arsenic containing sulfuric acid solution. 砒素含有硫酸溶液のEP−AESスペクトルの発光強度と砒素濃度との関係を示すグラフである。It is a graph which shows the relationship between the emitted light intensity of an EP-AES spectrum of an arsenic containing sulfuric acid solution, and an arsenic density | concentration.

以下に本発明の実施の形態を詳細に説明する。   Embodiments of the present invention are described in detail below.

<試料液>
本発明の液中の金属イオン濃度の測定方法および測定装置において測定対象となる試料液は、周期表第3周期〜第6周期の金属元素のイオンの1種以上を含み、電気伝導度が0.33S/cmを超えるものである。プラズマ発光分析では、周期表第3周期〜第6周期の金属元素のイオンを分析することができるため、本発明では、このような金属イオンを含む液を試料液とする。
なお、試料液中には、周期表第3周期〜第6周期の金属元素のイオンの1種のみが含まれていてもよく、2種以上が含まれていてもよい。即ち、プラズマ発光分析であれば、金属イオンの種類によりLEP−AESスペクトルの発光ピーク波長が異なるため、2種以上の金属イオンを含む試料液であっても各々の金属イオンについて定量分析可能である。
<Sample solution>
The sample liquid to be measured in the method and apparatus for measuring the concentration of metal ions in the liquid of the present invention contains one or more kinds of ions of metal elements in the third to sixth periods of the periodic table, and has an electric conductivity of 0. More than 33 S / cm. In plasma emission analysis, ions of metal elements in the third to sixth periods of the periodic table can be analyzed. Therefore, in the present invention, a liquid containing such metal ions is used as a sample liquid.
Note that the sample solution may contain only one kind of metal element ions in the third to sixth periods of the periodic table, or two or more kinds. That is, in the case of plasma emission analysis, since the emission peak wavelength of the LEP-AES spectrum differs depending on the type of metal ions, even a sample solution containing two or more types of metal ions can be quantitatively analyzed for each metal ion. .

また、電気伝導度が0.33S/cm以下の液であれば、前処理を行うことなくプラズマ発光分析による分析が可能であることから、本発明では、電気伝導度が0.33S/cm超の液を試料液とする。   In addition, if the liquid has an electric conductivity of 0.33 S / cm or less, it can be analyzed by plasma emission analysis without performing pretreatment. Therefore, in the present invention, the electric conductivity exceeds 0.33 S / cm. This solution is used as a sample solution.

本発明において、測定対象とする試料液は、上記の条件を満たすものであればよく、特に制限はないが、本発明は、特に電子デバイスの製造工程において、電子デバイスの洗浄液等として用いられる、硫酸濃度が80重量%以上で、液温度が80℃を超える硫酸系薬液や、硫酸濃度70重量%以上80重量%未満で液温度35℃超の硫酸系薬液中に不純物として含まれる金属イオン濃度の分析に好適に適用することができる。
このような硫酸系薬液としては、前述の電解により過硫酸などの酸化性物質を発生させた電解硫酸、硫酸と過酸化水素水の混合液、又は硫酸にオゾンを吹き込んだ液などが挙げられる。
In the present invention, the sample liquid to be measured is not particularly limited as long as it satisfies the above-mentioned conditions, but the present invention is used as a cleaning liquid for an electronic device, particularly in the manufacturing process of the electronic device. Concentration of metal ions contained as impurities in sulfuric acid chemicals with a sulfuric acid concentration of 80% by weight or more and a liquid temperature exceeding 80 ° C, or sulfuric acid concentrations with a sulfuric acid concentration of 70% to less than 80% by weight and a liquid temperature of over 35 ° C It can be suitably applied to the analysis.
Examples of such a sulfuric acid-based chemical solution include electrolytic sulfuric acid in which an oxidizing substance such as persulfuric acid is generated by the above-described electrolysis, a mixed solution of sulfuric acid and hydrogen peroxide, or a solution in which ozone is blown into sulfuric acid.

これらの硫酸系薬液の硫酸濃度は通常70〜96重量%程度で、液温度は35〜80℃程度、電気伝導度は0.1〜2S/cm程度であり、電子デバイスの洗浄に用いられた硫酸系薬液には、洗浄対象の電子デバイスの素材に由来して不純物として、As、Ti,Fe,Coなどの遷移金属、Na、Kなどのアルカリ金属、Ca,Baなどのアルカリ土類金属、Ptなどの貴金属等の金属イオンが含まれている。   The sulfuric acid concentration of these sulfuric acid chemical solutions is usually about 70 to 96% by weight, the solution temperature is about 35 to 80 ° C., and the electric conductivity is about 0.1 to 2 S / cm. In the sulfuric acid chemical solution, impurities derived from the material of the electronic device to be cleaned include impurities such as transition metals such as As, Ti, Fe and Co, alkali metals such as Na and K, alkaline earth metals such as Ca and Ba, Metal ions such as noble metals such as Pt are included.

なお、硫酸濃度が70重量%未満であると、後述の実験例1に示されるように、液温度を下げてもプラズマが発生せずプラズマ発光分析による金属イオン濃度の測定は困難である。このため、後述の図1,2に示す電子デバイスの洗浄システムのように、硫酸溶液に過酸化水素水を混合して洗浄を行う場合は、硫酸濃度の低下に注意する必要がある。   If the sulfuric acid concentration is less than 70% by weight, as shown in Experimental Example 1 described later, no plasma is generated even when the liquid temperature is lowered, and it is difficult to measure the metal ion concentration by plasma emission analysis. For this reason, when cleaning is performed by mixing hydrogen peroxide with sulfuric acid solution as in the electronic device cleaning system shown in FIGS.

<前処理>
本発明においては、上述のような試料液の電気伝導度を0.33S/cm以下に調整する前処理を行う。
この前処理手段としては、試料液の電気伝導度を0.33S/cm以下にすることができるものであればよく、特に制限はなく、純水による希釈なども採用可能であるが、冷却によるものが、液組成を変える必要がないために、測定後の液をそのまま使用可能であり、また、一般的な熱交換器等の冷却手段を用いて簡便に行うことができる点において好ましい。
<Pretreatment>
In the present invention, pretreatment is performed to adjust the electrical conductivity of the sample solution as described above to 0.33 S / cm or less.
The pretreatment means is not particularly limited as long as the electrical conductivity of the sample solution can be 0.33 S / cm or less, and dilution with pure water can be adopted. Since the liquid composition does not need to be changed, the liquid after measurement can be used as it is, and it is preferable in that it can be easily performed using a cooling means such as a general heat exchanger.

例えば、前述の硫酸系薬液の場合、後述の実験例1に示されるように、硫酸濃度が70〜96重量%の範囲では、硫酸濃度が高い程電気伝導度が低下する傾向にあり、プラズマ発光は起こりやすくなる。
ただし、液温度が低い程電気伝導度が下がるため、電気伝導度が0.33S/cm以下、例えば0.03〜0.33mS/m程度に低減するまで試料液を冷却することで、安定したプラズマ発光を得ることができる。
For example, in the case of the above-described sulfuric acid chemical solution, as shown in Experimental Example 1 described later, when the sulfuric acid concentration is in the range of 70 to 96% by weight, the higher the sulfuric acid concentration, the lower the electric conductivity, and the plasma emission. Is more likely to occur.
However, the lower the liquid temperature, the lower the electric conductivity. Therefore, the sample liquid is cooled until the electric conductivity is reduced to 0.33 S / cm or less, for example, about 0.03 to 0.33 mS / m. Plasma emission can be obtained.

なお、試料液の冷却手段としては特に制限はなく、冷却水や空気を冷却媒体とする一般的な熱交換器を用いることができる。   The sample liquid cooling means is not particularly limited, and a general heat exchanger using cooling water or air as a cooling medium can be used.

<電子デバイス製造工程への適用>
本発明の液中の金属イオン濃度の測定方法および測定装置は、特に、電子デバイス製造工程において電子デバイスの洗浄に用いられる洗浄液を試料液として、この洗浄液中に不純物として含まれる金属イオンの濃度を測定する方法および装置として有用である。
<Application to electronic device manufacturing process>
The method and apparatus for measuring the concentration of metal ions in a liquid according to the present invention is particularly applicable to a cleaning liquid used for cleaning an electronic device in an electronic device manufacturing process as a sample liquid, and the concentration of metal ions contained as impurities in the cleaning liquid. It is useful as a measuring method and apparatus.

例えば、電子デバイスである半導体基板上の残渣金属を洗浄液で洗浄除去し、洗浄に用いた洗浄廃液をそのまま或いは精製ないしは成分調整などの再生処理を施した後、洗浄液として再利用する場合において、本発明に従って、洗浄廃液や再生液中の不純物金属イオン濃度を測定し、この測定結果に基づいて、洗浄廃液や再生液が洗浄液として再利用可能か否かを判定し、再利用可能と判断された場合には洗浄工程へ送給し、再利用不可能と判断された場合には系外へ排出するか、再生条件を変更するなどの対策を講じることで、洗浄液の汚染を早期に検知し、洗浄液の汚染に起因する半導体基板の二次汚染を未然に防ぐことが可能となる。
即ち、電子デバイスの洗浄に用いられる硫酸系薬液等の洗浄液は、硫酸濃度70〜96重量%程度で、かつ液温度100〜180℃という高濃度かつ高温度の薬液であり、その電気伝導度は通常0.4〜1.5S/cmで、そのままではプラズマ発光分析による金属イオン濃度の測定を行えない。
本発明によれば、このような電子デバイスの洗浄液に含まれる金属イオン濃度を的確に測定することができる。
For example, when residual metal on a semiconductor substrate, which is an electronic device, is removed by washing with a cleaning solution, and the cleaning waste solution used for cleaning is reused as a cleaning solution as it is or after reprocessing such as purification or component adjustment. According to the invention, the impurity metal ion concentration in the cleaning waste liquid and the reclaimed liquid is measured, and based on the measurement result, it is determined whether or not the cleaning waste liquid and the regenerated liquid can be reused as the cleaning liquid. In such a case, it is sent to the cleaning process, and when it is judged that it cannot be reused, it is discharged out of the system or by taking measures such as changing the regeneration conditions, the contamination of the cleaning liquid is detected at an early stage. It is possible to prevent secondary contamination of the semiconductor substrate due to contamination of the cleaning liquid.
That is, a cleaning solution such as a sulfuric acid chemical solution used for cleaning an electronic device is a high concentration and high temperature chemical solution having a sulfuric acid concentration of about 70 to 96% by weight and a liquid temperature of 100 to 180 ° C., and its electric conductivity is Usually, the metal ion concentration cannot be measured by plasma emission analysis at 0.4 to 1.5 S / cm.
According to the present invention, it is possible to accurately measure the metal ion concentration contained in the cleaning liquid for such an electronic device.

以下に、図面を参照して本発明の液中の金属イオン濃度の測定方法及び測定装置を適用した電子デバイスの洗浄システムの実施の形態を説明する。ただし、本発明の電子デバイスの洗浄システムは以下の図1〜3に示すものに何ら限定されず、また、本発明の液中の金属イオン濃度の測定方法および測定装置は、電子デバイスの洗浄システムに適用するものに何ら限定されない。   Embodiments of an electronic device cleaning system to which a method and apparatus for measuring a metal ion concentration in a liquid according to the present invention are applied will be described below with reference to the drawings. However, the electronic device cleaning system of the present invention is not limited to the one shown in FIGS. 1 to 3 below, and the method and apparatus for measuring the metal ion concentration in the liquid of the present invention is an electronic device cleaning system. It is not limited to what is applied to.

<実施形態I>
図1は、電子デバイス(シリコンウエハ等の半導体基板)を硫酸系薬液を用いて洗浄し、洗浄廃液を回収して再生し、再生液を循環再利用する電子デバイスの洗浄システムを示す系統図である。
<Embodiment I>
FIG. 1 is a system diagram showing an electronic device cleaning system that cleans an electronic device (semiconductor substrate such as a silicon wafer) with a sulfuric acid chemical solution, collects and recovers the cleaning waste liquid, and recycles the recycled liquid. is there.

1は枚葉式の電子デバイスの洗浄装置であり、高濃度硫酸貯槽2内の硫酸溶液と、過酸化水素水貯槽3内の過酸化水素水が、それぞれポンプPを備える配管11およびポンプPを備える配管12と配管13を経て供給され、硫酸と過酸化水素との混合液により電子デバイスの洗浄が行われる。洗浄後の洗浄廃液は配管14より硫酸廃液回収槽4に送給され、ポンプPを備える配管15を経て硫酸精製再生装置5に送給される。 Reference numeral 1 denotes a single-wafer type electronic device cleaning apparatus, in which a sulfuric acid solution in a high-concentration sulfuric acid storage tank 2 and a hydrogen peroxide solution in a hydrogen peroxide storage tank 3 are respectively connected to a pipe 11 and a pump P having a pump P 1. 2 is supplied via a pipe 12 and a pipe 13 provided with 2 , and the electronic device is cleaned with a mixed solution of sulfuric acid and hydrogen peroxide. Washing waste liquid after washing is fed from the pipe 14 to the sulfuric acid waste liquid collecting tank 4 is fed to a sulfuric acid refining playback device 5 via a pipe 15 with a pump P 3.

硫酸精製再生装置5としては、従来法による一般的なものを用いることができ、例えば、前述の特許文献1〜4に記載の二段蒸留法や減圧蒸留法、電気透析法などによるものを採用することができる。   As the sulfuric acid refining and regenerating apparatus 5, a conventional one by a conventional method can be used, for example, a two-stage distillation method, a vacuum distillation method, an electrodialysis method or the like described in Patent Documents 1 to 4 described above is adopted. can do.

硫酸精製再生装置5で再生された再生液は、装置5内の再生硫酸槽6からポンプPを備える配管16を経て高濃度硫酸貯槽2に送給され、洗浄液として循環再利用される。 Regeneration liquid regenerated with sulfuric acid refining reproducing apparatus 5 is fed to a high concentration sulfuric acid storage tank 2 via a pipe 16 from the reproduction sulfate bath 6 in the device 5 comprises a pump P 4, it is circulated and reused as washing liquid.

図1の電子デバイスの洗浄システムでは、この再生硫酸槽6内の液をポンプPを備える配管17より抜き出し、冷却装置である熱交換器7で冷却した後、配管18より不純物モニタである液体電極プラズマ発光分析装置(以下「LEP−AES分析装置」と称す。)8に導入し、LEP−AES分析装置8でプラズマ発光分析により金属イオン濃度を測定した後、配管18より再生硫酸槽6に戻す。 In the electronic device cleaning system of FIG. 1, the liquid in the regenerated sulfuric acid tank 6 is extracted from a pipe 17 provided with a pump P 5 , cooled by a heat exchanger 7 that is a cooling device, and then liquid that is an impurity monitor from a pipe 18. The sample was introduced into an electrode plasma emission analyzer (hereinafter referred to as “LEP-AES analyzer”) 8 and the metal ion concentration was measured by plasma emission analysis with the LEP-AES analyzer 8. return.

LEP−AES分析装置8では、後掲の実施例1,2に示されるように、予めプラズマ発光分析により求めた測定対象の金属イオンの発光ピーク波長に基づいて、試料液中の金属イオン濃度を求めることができる。従って、この発光ピーク波長の発光強度が設定値より低い場合には、不純物である金属イオン濃度が低く、洗浄に再利用できると判断し、再生硫酸槽6から高濃度硫酸貯槽2への液循環を行うが、設定値以上の場合には、この再生硫酸槽6内の再生液は不純物汚染が進み、洗浄液として循環再利用できないと判断し、図示しない排出配管より再生硫酸槽6内の液を系外へ排出し、高濃度硫酸貯槽2には系外から新品の硫酸溶液を導入する。   In the LEP-AES analyzer 8, as shown in Examples 1 and 2 to be described later, the metal ion concentration in the sample liquid is determined based on the emission peak wavelength of the metal ion to be measured that has been obtained in advance by plasma emission analysis. Can be sought. Therefore, when the emission intensity at the emission peak wavelength is lower than the set value, it is determined that the metal ion concentration as an impurity is low and can be reused for cleaning, and the liquid circulation from the regenerated sulfuric acid tank 6 to the high concentration sulfuric acid storage tank 2 is performed. However, if it is above the set value, it is determined that the regenerated liquid in the regenerated sulfuric acid tank 6 is contaminated with impurities and cannot be recycled and reused as a cleaning liquid, and the liquid in the regenerated sulfuric acid tank 6 is discharged from a discharge pipe (not shown). A new sulfuric acid solution is introduced into the high-concentration sulfuric acid storage tank 2 from outside the system.

このようにオンライン分析することで、洗浄液を循環再利用することによる洗浄液の系内汚染、それによる電子デバイスの二次汚染を防止することができる。
また、その際の不純物濃度の測定に要する時間は、オフライン分析の場合に比べて大幅に短縮され、再生硫酸槽での滞留時間を短縮できるため、この再生硫酸槽の保有液量や容量の削減も可能となる。
By performing on-line analysis in this way, it is possible to prevent in-system contamination of the cleaning liquid due to circulation and reuse of the cleaning liquid, and secondary contamination of the electronic device due thereto.
In addition, the time required to measure the impurity concentration at that time is significantly shortened compared to the offline analysis, and the residence time in the regenerated sulfuric acid tank can be shortened. Is also possible.

なお、図1の電子デバイスの洗浄システムにおいても、後述の図2,3に示すように、硫酸濃度を測定する硫酸濃度計を更に設けて再生液の硫酸濃度を測定してもよい。硫酸濃度計としては、例えば、超音波を利用したもの、電気伝導度を利用したもの、吸光度を利用したもの、比重を利用したものなど、再生液の硫酸濃度がプラズマ発光分析可能な所定濃度以上、例えば70重量%以上であることをオンラインで確認できれるものであればよい。   Also in the electronic device cleaning system of FIG. 1, as shown in FIGS. 2 and 3, which will be described later, a sulfuric acid concentration meter for measuring the sulfuric acid concentration may be further provided to measure the sulfuric acid concentration of the regenerated solution. Examples of the sulfuric acid concentration meter include those that use ultrasonic waves, those that use electrical conductivity, those that use absorbance, and those that use specific gravity. For example, what can be confirmed online is 70% by weight or more.

また、LEP−AES分析装置の試料液の電気伝導度を計測する電気伝導度計を設けることもできるが、硫酸溶液の電気伝導度は、硫酸濃度と液温度で決定されるため、予め液温度と硫酸濃度から電気伝導度を求めておけばよく、電子デバイスの洗浄システム内での電気伝導度の計測は不要とすることができる。   In addition, an electric conductivity meter for measuring the electric conductivity of the sample liquid of the LEP-AES analyzer can be provided. However, since the electric conductivity of the sulfuric acid solution is determined by the sulfuric acid concentration and the liquid temperature, the liquid temperature is determined in advance. The electrical conductivity can be obtained from the sulfuric acid concentration and the measurement of the electrical conductivity in the electronic device cleaning system can be made unnecessary.

<実施形態II>
図1の電子デバイスの洗浄システムは、洗浄に用いた硫酸廃液の精製再生装置を備えるものであるが、精製再生装置がなく、硫酸廃液を再生処理することなく、洗浄薬液としての処理効果が失われるまでそのまま循環再利用する電子デバイスの洗浄システムであってもよい。
図2は、このような電子デバイスの洗浄システムの実施の形態を示すものである。図2において、図1の電子デバイスの洗浄システムと同一機能を奏する部分には同一符号を付してある。
<Embodiment II>
The electronic device cleaning system shown in FIG. 1 includes a purification / regeneration device for sulfuric acid waste solution used for cleaning, but there is no purification / regeneration device, and the treatment effect as a cleaning chemical solution is lost without regenerating the sulfuric acid waste solution. It may be a cleaning system for electronic devices that is circulated and reused as it is.
FIG. 2 shows an embodiment of such an electronic device cleaning system. 2, parts having the same functions as those of the electronic device cleaning system of FIG.

図2の電子デバイスの洗浄システムでは、硫酸廃液回収槽4内の硫酸廃液をポンプPにより配管17を経て抜き出し、熱交換器7で冷却した後、配管18aを経て硫酸濃度計9にて硫酸濃度を測定し、配管18bを経てLEP−AES分析装置8で不純物である金属イオン濃度を測定し、配管19を経て硫酸廃液回収槽4に戻す。
硫酸濃度計9及びLEP−AES分析装置8の測定結果が予め設定した条件値を満たす場合は、硫酸廃液回収槽4より槽内液をポンプPにより抜き出して配管16を経て高濃度硫酸貯槽2に戻して洗浄液として循環再利用し、硫酸濃度が設定値よりも低い場合、或いは不純物濃度が設定値よりも高い場合には、配管20より系外へ排出する。
In the electronic device cleaning system 2 extracts through a pipe 17 by the pump P 5 sulfuric acid waste liquid of the sulfuric acid waste liquid collection tank 4, after cooling in the heat exchanger 7, sulfuric acid in a sulfuric acid concentration meter 9 via a pipe 18a The concentration is measured, the metal ion concentration as an impurity is measured by the LEP-AES analyzer 8 through the pipe 18 b, and returned to the sulfuric acid waste liquid recovery tank 4 through the pipe 19.
When the measurement results of the sulfuric acid concentration meter 9 and the LEP-AES analyzer 8 satisfy the preset condition values, the liquid in the tank is extracted from the sulfuric acid waste liquid recovery tank 4 by the pump P 6 and the high concentration sulfuric acid storage tank 2 through the pipe 16. Then, when the sulfuric acid concentration is lower than the set value or when the impurity concentration is higher than the set value, it is discharged out of the system from the pipe 20.

この硫酸廃液回収槽4内の液の移送先は、配管16と配管20の分岐点に設けた図示しない切替バルブを、硫酸濃度計9の測定値とLEP−AES分析装置8の測定値が入力され、これらの測定値を分析する演算手段が組み込まれた制御装置で切替制御することにより自動的に行うことができる。   The destination of the liquid in the sulfuric acid waste liquid recovery tank 4 is a switching valve (not shown) provided at the branch point of the pipe 16 and the pipe 20, and the measurement value of the sulfuric acid concentration meter 9 and the measurement value of the LEP-AES analyzer 8 are input. It can be automatically performed by performing switching control with a control device incorporating a calculation means for analyzing these measured values.

<実施形態III>
図3は、硫酸溶液を電気分解して過硫酸(ペルオキソ二硫酸)を生成させた電解硫酸により電子デバイスを洗浄する電子デバイスの洗浄システムに、本発明の液中の金属イオン濃度の測定方法および測定装置を適用した例を示す系統図である。
<Embodiment III>
FIG. 3 shows a method for measuring the concentration of metal ions in a liquid according to the present invention, in a cleaning system for an electronic device in which the sulfuric acid solution is electrolyzed to generate persulfuric acid (peroxodisulfuric acid). It is a systematic diagram which shows the example which applied the measuring apparatus.

図3において、30は枚葉式の電子デバイスの洗浄装置、31は硫酸廃液貯槽、32は硫酸溶液貯槽、33は電解装置である。   In FIG. 3, 30 is a single-wafer electronic device cleaning apparatus, 31 is a sulfuric acid waste liquid storage tank, 32 is a sulfuric acid solution storage tank, and 33 is an electrolytic apparatus.

貯槽32内の硫酸溶液は、ポンプP、冷却器34を備える配管41を経て電解装置33に送給され、電解装置33における電気分解で過硫酸を生成し、過硫酸を含む電解硫酸は気液分離器35が設けられた配管42を経て硫酸溶液貯槽32に循環される。この硫酸溶液貯槽32には純水供給配管43と濃硫酸供給配管44が設けられている。 The sulfuric acid solution in the storage tank 32 is supplied to the electrolysis device 33 through the pipe 41 provided with the pump P 7 and the cooler 34, and persulfuric acid is generated by electrolysis in the electrolysis device 33. It is circulated to the sulfuric acid solution storage tank 32 through a pipe 42 provided with a liquid separator 35. The sulfuric acid solution storage tank 32 is provided with a pure water supply pipe 43 and a concentrated sulfuric acid supply pipe 44.

貯留槽32内の電解硫酸は、ポンプPを備える配管45より抜き出され、フィルタ36、配管46、加熱器37、配管47を経て洗浄装置30に送給される。洗浄装置30で電子デバイスの洗浄に用いられた硫酸廃液は、硫酸廃液貯槽31に戻され、ポンプPにより、フィルタ38、冷却器39を有する配管49を経て硫酸廃液貯槽32に循環される。 Electrolytic sulfuric acid storage tank 32 is withdrawn from the pipe 45 with a pump P 8, the filter 36, pipe 46, heater 37, is fed to the cleaning device 30 through the pipe 47. Sulfuric acid waste liquid used in the cleaning device 30 for cleaning electronic device is returned to the sulfuric acid waste liquid tank 31 by the pump P 9, filter 38, it is recycled to the sulfuric acid waste liquid tank 32 via a pipe 49 having a cooler 39.

硫酸廃液貯槽31内の硫酸廃液の一部が、ポンプPにより配管17を経て抜き出され、熱交換器7で冷却された後、配管18aを経て硫酸濃度計9にて硫酸濃度が測定され、配管18bを経てLEP−AES分析装置8で不純物の金属イオン濃度が測定され、配管19を経て硫酸廃液貯槽31に戻される。 Some of the sulfuric acid waste in sulfuric acid waste liquid tank 31 is withdrawn through a pipe 17 by the pump P 5, after being cooled in the heat exchanger 7, the sulfuric acid concentration is measured via a pipe 18a at a sulfuric acid concentration meter 9 The impurity metal ion concentration is measured by the LEP-AES analyzer 8 through the pipe 18b and returned to the sulfuric acid waste liquid storage tank 31 through the pipe 19.

硫酸濃度計9及びLEP−AES分析装置8の測定結果が予め設定した条件値を満たす場合は、硫酸廃液貯槽31よりポンプPにより抜き出して槽内液をフィルタ38、冷却器39を経て硫酸溶液貯槽32に戻して循環使用し、硫酸濃度が設定値よりも低い場合、或いは不純物濃度が設定値よりも高い場合には、配管50より系外へ排出する。 When the measurement results of the sulfuric acid concentration meter 9 and the LEP-AES analyzer 8 satisfy the condition values set in advance, the sulfuric acid solution is extracted from the sulfuric acid waste liquid storage tank 31 by the pump P 9 and the liquid in the tank passes through the filter 38 and the cooler 39. When the sulfuric acid concentration is lower than the set value or when the impurity concentration is higher than the set value, it is discharged out of the system through the pipe 50.

この硫酸廃液貯槽31内の液の移送先は、配管49と配管50の分岐点に設けた図示しない切替バルブを、硫酸濃度計9の測定値とLEP−AES分析装置8の測定値が入力され、これらの測定値を分析する手段が組み込まれた制御装置で切替制御することにより自動的に行うことができる。   The destination of the liquid in the sulfuric acid waste liquid storage tank 31 is a switching valve (not shown) provided at the branch point of the pipe 49 and the pipe 50, and the measurement value of the sulfuric acid concentration meter 9 and the measurement value of the LEP-AES analyzer 8 are input. These can be automatically performed by switching control with a control device incorporating means for analyzing the measured values.

図1〜3の電子デバイスの洗浄システムによれば、洗浄液を循環再使用する場合において、再利用される洗浄液中の不純物濃度を短時間で的確に把握し、不純物濃度が管理値を超えていないか否かを即時的に判断したり、循環を停止して汚染された洗浄液を系外へ排出することで、洗浄対象の電子デバイスへの汚染を抑制し、製品不良の発生を未然に防ぐことができる。   According to the electronic device cleaning system of FIGS. 1 to 3, when the cleaning liquid is circulated and reused, the impurity concentration in the reused cleaning liquid is accurately grasped in a short time, and the impurity concentration does not exceed the control value. To prevent the occurrence of product defects in advance by controlling the contamination of electronic devices to be cleaned by stopping the circulation and discharging the contaminated cleaning liquid out of the system. Can do.

以下に実施例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

[実施例1]
液体電極プラズマ発光分析を測定原理とする分析装置「MH−5000」((株)マイクロエミッション)(以下、「MH−5000」と記載する。)を用いて測定した、硫酸濃度85重量%、液温度30℃の硫酸水溶液のLEP−AESスペクトルを図4に示す。図4に示されるように、プラズマが起こるとLEP−AESスペクトルから硫酸に含まれるO,H,S元素由来の発光ピークが検出される。
[Example 1]
A sulfuric acid concentration of 85% by weight, a liquid measured using an analyzer “MH-5000” (Micro Emission Co., Ltd.) (hereinafter referred to as “MH-5000”) based on liquid electrode plasma emission analysis. The LEP-AES spectrum of the sulfuric acid aqueous solution of temperature 30 degreeC is shown in FIG. As shown in FIG. 4, when plasma is generated, emission peaks derived from O, H, and S elements contained in sulfuric acid are detected from the LEP-AES spectrum.

このMH-5000により、硫酸水溶液の硫酸濃度と液温度を種々変更してプラズマ発生の有無を試験した結果を表1に示す。   Table 1 shows the results of testing the presence or absence of plasma generation by variously changing the sulfuric acid concentration and the liquid temperature of the sulfuric acid aqueous solution by using MH-5000.

Figure 2016162963
Figure 2016162963

表1より次のことが分かる。
硫酸濃度が50〜60重量%では液温度を室温まで下げても電気伝導度が高く、プラズマが発生しないか、発生したりしなかったりといった不安定な状態となった。一方、硫酸濃度が80重量%以上の場合は、液温度を80℃以下にすることでプラズマが安定して発生した。70重量%では40℃以下、75重量%では50℃以下にすることで、プラズマが安定して発生した。
Table 1 shows the following.
When the sulfuric acid concentration was 50 to 60% by weight, the electric conductivity was high even when the liquid temperature was lowered to room temperature, and the plasma was not generated or was not generated. On the other hand, when the sulfuric acid concentration was 80% by weight or more, plasma was stably generated by setting the liquid temperature to 80 ° C. or lower. Plasma was generated stably by adjusting the temperature to 40 ° C. or less at 70 wt% and 50 ° C. or less at 75 wt%.

[実施例2]
図1に示す洗浄システムにおいて、本発明の液中の金属イオン濃度の測定装置が不純物濃度の管理用モニタの役割を担うことができるか、Asによる模擬汚染試験を行った。
ここでは、硫酸廃液回収槽4と硫酸精製再生装置5は設置せず、再生硫酸槽6に相当する硫酸貯槽を設置し、この貯槽内で電子工業用の95重量%硫酸水溶液30Lを90℃に加温した。
90℃の95重量%硫酸水溶液の電気伝導度は0.35S/cmである。
[Example 2]
In the cleaning system shown in FIG. 1, a simulated contamination test using As was performed to determine whether the apparatus for measuring the concentration of metal ions in the liquid of the present invention can serve as a monitor for managing the impurity concentration.
Here, the sulfuric acid waste liquid recovery tank 4 and the sulfuric acid refining and regenerating apparatus 5 are not installed, but a sulfuric acid storage tank corresponding to the regenerated sulfuric acid tank 6 is installed, and in this storage tank, 30 L of 95% by weight sulfuric acid aqueous solution for electronic industry is heated to 90 ° C. Warmed up.
The electrical conductivity of a 95% by weight aqueous sulfuric acid solution at 90 ° C. is 0.35 S / cm.

不純物濃度の管理モニタのLEP−AES分析装置8としてMH−5000を使用し、硫酸貯槽内の硫酸水溶液を流速10mL/minで液温40℃になるように熱交換器7で冷却してMH−5000へ通液して測定を行った後、硫酸貯槽に戻した。
ここで、40℃の95重量%硫酸水溶液の電気伝導度は0.16S/cmである。
MH-5000 is used as the LEP-AES analyzer 8 of the impurity concentration management monitor, and the sulfuric acid aqueous solution in the sulfuric acid storage tank is cooled by the heat exchanger 7 so that the liquid temperature becomes 40 ° C. at a flow rate of 10 mL / min. The solution was passed through 5000 and measured, and then returned to the sulfuric acid storage tank.
Here, the electrical conductivity of the 95 wt% sulfuric acid aqueous solution at 40 ° C. is 0.16 S / cm.

模擬汚染物質にはシリコンウエハへのイオン注入物質として使用される砒素イオンを選定し、五酸化二砒素(As)を約10,000mg/Lの濃度となるように添加した砒素含有水溶液を、硫酸貯槽に200mL/minで添加した。
なお、事前に既知濃度で砒素を含有させた硫酸溶液を用いて、図5に示すLEP−AESスペクトルを得、測定対象とする砒素のピーク波長を確認し、図6の通り、発光強度と砒素濃度の関係を把握した。
An arsenic-containing aqueous solution in which arsenic ions used as an ion implantation material for silicon wafers are selected as simulated contaminants and diarsenic pentoxide (As 2 O 5 ) is added to a concentration of about 10,000 mg / L Was added to the sulfuric acid storage tank at 200 mL / min.
In addition, using a sulfuric acid solution containing arsenic at a known concentration in advance, the LEP-AES spectrum shown in FIG. 5 was obtained, and the peak wavelength of arsenic to be measured was confirmed. As shown in FIG. The relationship of concentration was grasped.

これを基に砒素のピーク波長を228.8nmと選定し、波長228.8nmの発光強度が2000未満(As濃度として約120mg/L以下)の場合は再生硫酸槽に見立てた硫酸貯槽から高濃度硫酸貯槽2に500mL/minで槽内の硫酸溶液を移送し、発光強度が2000以上の場合はこの移送を停止する制御プログラムを組んだ。   Based on this, the peak wavelength of arsenic is selected to be 228.8 nm, and when the emission intensity at the wavelength of 228.8 nm is less than 2000 (As concentration is about 120 mg / L or less), a high concentration is obtained from the sulfuric acid storage tank assumed to be a regenerated sulfuric acid tank. A sulfuric acid solution in the tank was transferred to the sulfuric acid storage tank 2 at 500 mL / min, and when the emission intensity was 2000 or more, a control program for stopping this transfer was set up.

その結果、本システムの稼働開始と同時に砒素含有水溶液を硫酸貯槽に2分間添加したところで、228.8nmの発光ピークが2000を超えたため移送ポンプが停止した。この時点での、硫酸貯槽から高濃度硫酸貯槽2への硫酸溶液の移送量は1L、硫酸濃度は94.2重量%であった。また、硫酸貯槽内の硫酸溶液をサンプリングしてICP−MS分析装置でAs濃度を測定した結果、As濃度は120mg/Lであった。
このように、本発明の液中の金属イオン濃度の測定装置を用いることでオンタイムで再生硫酸槽内の硫酸溶液がAsで汚染されていることを検出することができ、汚染の拡散を最小限に抑えることができる。
As a result, when the arsenic-containing aqueous solution was added to the sulfuric acid storage tank for 2 minutes simultaneously with the start of the operation of the system, the transfer pump stopped because the emission peak at 228.8 nm exceeded 2000. At this time, the transfer amount of the sulfuric acid solution from the sulfuric acid storage tank to the high concentration sulfuric acid storage tank 2 was 1 L, and the sulfuric acid concentration was 94.2% by weight. Moreover, as a result of sampling the sulfuric acid solution in a sulfuric acid storage tank and measuring As concentration with an ICP-MS analyzer, As concentration was 120 mg / L.
Thus, by using the apparatus for measuring the concentration of metal ions in the liquid of the present invention, it is possible to detect on-time that the sulfuric acid solution in the regenerated sulfuric acid tank is contaminated with As, and minimize the diffusion of contamination. To the limit.

[実施例3]
図3に示す電解硫酸装置を用いた洗浄システムにおいて、Naによる模擬汚染試験を行った。
硫酸濃度を85重量%に調整して電気分解し、酸化剤(過硫酸)を20〜30mM含有させた電解硫酸を140℃まで加熱して洗浄装置30に供給した。この電解硫酸の電気伝導度は0.60S/cmである。洗浄装置30では、シリコン酸化膜が表面に形成された300mmφのシリコンウエハを設置し、電解硫酸液を1L/minでウエハ表面に供給した。洗浄時の電解硫酸液供給時間は5分とし、その後2分間の純水によるリンス洗浄を行った。この操作を10分毎に繰返し、2時間後には8枚のウエハを洗浄処理した。ウエハ洗浄に使用された電解硫酸液は硫酸廃液貯槽31に回収して硫酸溶液貯留槽32に戻し、電解処理して酸化剤を所定濃度まで含有させた。
[Example 3]
In the cleaning system using the electrolytic sulfuric acid apparatus shown in FIG. 3, a simulated contamination test with Na was performed.
Electrolysis was performed by adjusting the sulfuric acid concentration to 85 wt%, and electrolytic sulfuric acid containing 20 to 30 mM of an oxidizing agent (persulfuric acid) was heated to 140 ° C. and supplied to the cleaning device 30. The electric conductivity of this electrolytic sulfuric acid is 0.60 S / cm. In the cleaning apparatus 30, a 300 mmφ silicon wafer having a silicon oxide film formed on the surface thereof was installed, and an electrolytic sulfuric acid solution was supplied to the wafer surface at 1 L / min. The electrolytic sulfuric acid solution supply time at the time of washing was 5 minutes, and then rinse washing with pure water for 2 minutes was performed. This operation was repeated every 10 minutes, and after 2 hours, 8 wafers were cleaned. The electrolytic sulfuric acid solution used for wafer cleaning was recovered in the sulfuric acid waste liquid storage tank 31 and returned to the sulfuric acid solution storage tank 32, and subjected to electrolytic treatment to contain an oxidizing agent to a predetermined concentration.

硫酸廃液の不純物濃度を計測するモニタのLEP-AES分析装置8としてMH−5000を設置し、硫酸廃液貯槽31内の液を流速10mL/minで液温40℃になるように熱交換器7で冷却して通液後、測定後の溶液は硫酸廃液貯槽31に戻した。40℃に冷却した硫酸廃液の電気伝導度は0.15S/cmである。   MH-5000 is installed as a LEP-AES analyzer 8 for monitoring the impurity concentration of sulfuric acid waste liquid, and the heat in the sulfuric acid waste liquid storage tank 31 is adjusted to a liquid temperature of 40 ° C. at a flow rate of 10 mL / min. After cooling and passing through the solution, the solution after measurement was returned to the sulfuric acid waste liquid storage tank 31. The electrical conductivity of the sulfuric acid waste liquid cooled to 40 ° C. is 0.15 S / cm.

ここでは、模擬汚染物質としてNaイオンを選定し、硫酸ナトリウム(NaSO)でNa濃度を約1,000mg/LとしたNa含有水溶液を汚染溶液として用いた。
なお、事前に硫酸ナトリウムを添加した高濃度硫酸溶液によるLEP−AESスペクトルから、Naが波長498.3nmに強い発光ピークを持つことを確認し、発光強度が1000以上のときは硫酸溶液貯槽32への移送ポンプPを稼働しないように制御プログラムを組んだ。
Here, Na ions were selected as a simulated contaminant, and an aqueous solution containing Na having a sodium concentration of about 1,000 mg / L with sodium sulfate (Na 2 SO 4 ) was used as the contaminated solution.
In addition, it confirmed from the LEP-AES spectrum by the high concentration sulfuric acid solution to which sodium sulfate was added beforehand that Na had a strong luminescence peak at a wavelength of 498.3 nm, and when the luminescence intensity was 1000 or more, to the sulfuric acid solution storage tank 32. It partnered the control program of the transfer pump P 9 so as not to run.

試験装置の稼働を開始して2時間後に、Na含有水溶液を硫酸廃液貯槽31へ100mL添加した。その1分後には498.3nmの発光ピークが1000を超えたため、移送を行わずに硫酸廃液貯槽31内の液を系外へ排出し、洗浄が完了したところで本システムを再稼働した。
その後、1時間稼働してウエハを4枚洗浄した。処理後のウエハについて、シリコン酸化膜面上のNa付着量をVPD/ICP−MS分析装置で測定したところ、いずれも管理基準値としていた1×1010atoms/cm以下であった。
Two hours after starting the operation of the test apparatus, 100 mL of the Na-containing aqueous solution was added to the sulfuric acid waste liquid storage tank 31. One minute later, since the emission peak at 498.3 nm exceeded 1000, the liquid in the sulfuric acid waste liquid storage tank 31 was discharged out of the system without transfer, and the system was restarted when cleaning was completed.
Thereafter, it was operated for 1 hour to clean four wafers. When the amount of Na deposited on the silicon oxide film surface was measured with a VPD / ICP-MS analyzer on the processed wafer, it was 1 × 10 10 atoms / cm 2 or less, which was the management reference value.

[比較例1]
実施例1と同様の条件でAsによる模擬汚染試験を行った。なお、ここでは不純物濃度モニタは使用せず、高濃度硫酸貯槽から硫酸溶液をサンプリングして、ICP−MS分析装置でAs濃度を測定した。その結果、硫酸回収槽から送液開始直後の溶液にはAs濃度は検出されなかったが、移送が完全に完了した1時間後はAs濃度は3.8g/Lであった。このように、サンプリングして分析装置にかける管理方法では測定結果を得るまでに数時間かかるため、装置全体が不純物に高濃度で汚染されてしまうことが分かる。
[Comparative Example 1]
A simulated contamination test with As was performed under the same conditions as in Example 1. Here, the impurity concentration monitor was not used, the sulfuric acid solution was sampled from the high concentration sulfuric acid storage tank, and the As concentration was measured with an ICP-MS analyzer. As a result, the As concentration was not detected in the solution immediately after the start of liquid feeding from the sulfuric acid recovery tank, but the As concentration was 3.8 g / L 1 hour after the transfer was completely completed. Thus, in the management method of sampling and applying to the analyzer, it takes several hours to obtain the measurement result, so that it is understood that the entire apparatus is contaminated with impurities at a high concentration.

[比較例2]
実施例2と同様の条件でNaによる模擬汚染試験を行った。Na含有水溶液の添加は装置稼働2時間後から行った。本装置を3時間連続稼働して洗浄ウエハを12枚得た。処理後のウエハについて、シリコン酸化膜面上のNa付着量をVPD/ICP−MS分析装置で測定したところ、装置稼働から2時間までのウエハは管理基準値としていた1×1010atoms/cm以下であったが、Na含有水溶液を添加した2時間後から処理を開始したウエハ4枚はNa付着量が1×1011〜1×1012atoms/cmまで増加していた。
このように、洗浄液を循環再利用する洗浄システムにおいて、洗浄液の不純物汚染をオンラインで計測しない場合には、洗浄対象物を汚染してしまう可能性があることが分かる。
[Comparative Example 2]
A simulated contamination test with Na was performed under the same conditions as in Example 2. The Na-containing aqueous solution was added 2 hours after the operation of the apparatus. This apparatus was continuously operated for 3 hours to obtain 12 cleaning wafers. When the Na adhesion amount on the silicon oxide film surface was measured with the VPD / ICP-MS analyzer for the processed wafer, the wafer from the operation of the apparatus to 2 hours was set as a management reference value of 1 × 10 10 atoms / cm 2. As described below, the amount of Na deposited on the four wafers that started processing two hours after the addition of the Na-containing aqueous solution increased to 1 × 10 11 to 1 × 10 12 atoms / cm 2 .
As described above, in the cleaning system that circulates and reuses the cleaning liquid, it is understood that there is a possibility that the cleaning target object may be contaminated when the impurity contamination of the cleaning liquid is not measured online.

1 洗浄装置
2 高濃度硫酸貯槽
3 過酸化水素水貯槽
4 硫酸廃液回収槽
5 硫酸精製再生装置
6 再生硫酸槽
7 熱交換器
8 LEP-AES分析装置
9 硫酸濃度計
30 洗浄装置
31 硫酸廃液貯槽
32 硫酸溶液貯槽
33 電解装置
34,39 冷却器
35 気泡分離器
37 加熱器
DESCRIPTION OF SYMBOLS 1 Cleaning apparatus 2 High concentration sulfuric acid storage tank 3 Hydrogen peroxide water storage tank 4 Sulfuric acid waste liquid recovery tank 5 Sulfuric acid refinement | purification reproduction apparatus 6 Regenerated sulfuric acid tank 7 Heat exchanger 8 LEP-AES analyzer 9 Sulfuric acid concentration meter 30 Cleaning apparatus 31 Sulfuric acid waste liquid storage tank 32 Sulfuric acid solution storage tank 33 Electrolyzer 34, 39 Cooler 35 Bubble separator 37 Heater

Claims (25)

周期表第3周期〜第6周期の金属元素のイオンの1種以上を含む、電気伝導度0.33S/cm超の試料液の該金属イオン濃度をプラズマ発光分析で測定する方法であって、
該試料液の電気伝導度を0.33S/cm以下に調整した調整液を調製する前処理を行い、該調整液についてプラズマ発光分析による測定を行うことを特徴とする液中の金属イオン濃度の測定方法。
A method for measuring the concentration of metal ions in a sample liquid having an electrical conductivity of more than 0.33 S / cm by plasma emission analysis, which includes one or more kinds of ions of metal elements in the third to sixth periods of the periodic table,
A pretreatment for preparing an adjustment liquid in which the electrical conductivity of the sample liquid is adjusted to 0.33 S / cm or less is performed, and the adjustment liquid is subjected to measurement by plasma emission analysis. Measuring method.
請求項1において、前記試料液が、硫酸濃度80重量%以上、液温度80℃超の硫酸系薬液であり、
前記前処理が、前記試料液の液温度を80℃以下に冷却する処理であることを特徴とする液中の金属イオン濃度の測定方法。
In Claim 1, the sample solution is a sulfuric acid chemical solution having a sulfuric acid concentration of 80% by weight or more and a liquid temperature of more than 80 ° C.
The method for measuring a metal ion concentration in a liquid, wherein the pretreatment is a process of cooling the liquid temperature of the sample liquid to 80 ° C. or lower.
請求項1において、前記試料液が、硫酸濃度70重量%以上80重量%未満、液温度35℃超の硫酸系薬液であり、
前記前処理が、予め硫酸濃度と関連づけられて記憶された液温度の下限設定値に基づいて前記試料液の液温度を前記下限設定値以下に冷却する処理であることを特徴とする液中の金属イオン濃度の測定方法。
The sample solution according to claim 1, wherein the sample solution is a sulfuric acid chemical solution having a sulfuric acid concentration of 70% by weight or more and less than 80% by weight and a liquid temperature of more than 35 ° C.
In the liquid, the pretreatment is a process of cooling the liquid temperature of the sample liquid to the lower limit set value or less based on the lower limit set value of the liquid temperature stored in advance associated with the sulfuric acid concentration. Method for measuring metal ion concentration.
請求項2又は3において、前記硫酸系薬液が電解硫酸、硫酸と過酸化水素水の混合液、又は硫酸にオゾンを吹き込んだ液であることを特徴とする液中の金属イオン濃度の測定方法。   4. The method for measuring a metal ion concentration in a liquid according to claim 2, wherein the sulfuric acid chemical solution is electrolytic sulfuric acid, a mixed solution of sulfuric acid and hydrogen peroxide solution, or a solution obtained by blowing ozone into sulfuric acid. 請求項1ないし4のいずれか1項において、前記試料液が、電子デバイス製造工程において電子デバイスの洗浄に用いられる洗浄液であることを特徴とする液中の金属イオン濃度の測定方法。   5. The method for measuring a metal ion concentration in a liquid according to claim 1, wherein the sample liquid is a cleaning liquid used for cleaning an electronic device in an electronic device manufacturing process. 請求項5において、前記洗浄が前記電子デバイス上の残渣金属を前記洗浄液により除去するものであることを特徴とする液中の金属イオン濃度の測定方法。   6. The method for measuring a concentration of metal ions in a liquid according to claim 5, wherein the cleaning removes residual metal on the electronic device with the cleaning liquid. 請求項5又は6において、前記洗浄後の洗浄廃液を、そのまま或いは再生処理した後、洗浄液として循環再利用することを特徴とする液中の金属イオン濃度の測定方法。   7. The method for measuring a metal ion concentration in a liquid according to claim 5, wherein the cleaning waste liquid after the cleaning is reused as it is or after being recycled. 請求項7において、前記循環系から分取した洗浄液を前記試料液として金属イオン濃度を測定することを特徴とする液中の金属イオン濃度の測定方法。   8. The method for measuring a metal ion concentration in a liquid according to claim 7, wherein the metal ion concentration is measured using the cleaning liquid separated from the circulation system as the sample liquid. 請求項8において、前記測定後の試料液を前記循環系に戻すことを特徴とする液中の金属イオン濃度の測定方法。   9. The method for measuring a metal ion concentration in a liquid according to claim 8, wherein the sample liquid after the measurement is returned to the circulation system. 電子デバイスを洗浄液で洗浄する方法において、該洗浄液中の金属イオン濃度を請求項1ないし9のいずれか1項に記載の方法に従って測定することを特徴とする電子デバイスの洗浄方法。   A method for cleaning an electronic device with a cleaning liquid, wherein the metal ion concentration in the cleaning liquid is measured according to the method according to any one of claims 1 to 9. 周期表第3周期〜第6周期の金属元素のイオンの1種以上を含む、電気伝導度0.33S/cm超の試料液の該金属イオン濃度をプラズマ発光分析で測定する装置であって、
該試料液の電気伝導度を0.33S/cm以下に調整した調整液を調製する前処理手段と、
該調整液が試料液として供給されるプラズマ発光分析装置とを備えることを特徴とする液中の金属イオン濃度の測定装置。
An apparatus for measuring the metal ion concentration of a sample liquid having an electric conductivity of more than 0.33 S / cm by plasma emission analysis, including one or more kinds of ions of metal elements in the third to sixth periods of the periodic table,
Pretreatment means for preparing an adjustment liquid in which the electric conductivity of the sample liquid is adjusted to 0.33 S / cm or less;
An apparatus for measuring the concentration of metal ions in a liquid, comprising: a plasma emission analyzer to which the adjustment liquid is supplied as a sample liquid.
請求項11において、前記試料液が、硫酸濃度80重量%以上、液温度80℃超の硫酸系薬液であり、
前記前処理手段が、前記試料液の液温度を80℃以下に冷却する冷却手段であることを特徴とする液中の金属イオン濃度の測定装置。
In Claim 11, the sample solution is a sulfuric acid chemical solution having a sulfuric acid concentration of 80 wt% or more and a liquid temperature of more than 80 ° C.
The apparatus for measuring a metal ion concentration in a liquid, wherein the pretreatment means is a cooling means for cooling the liquid temperature of the sample liquid to 80 ° C. or lower.
請求項11において、前記試料液が、硫酸濃度70重量%以上80重量%未満、液温度35℃超の硫酸系薬液であり、
前記前処理手段が、予め硫酸濃度と関連づけられて記憶された液温度の下限設定値に基づいて前記試料液の液温度を前記下限設定値以下に冷却する冷却手段であることを特徴とする液中の金属イオン濃度の測定装置。
In Claim 11, the sample solution is a sulfuric acid chemical solution having a sulfuric acid concentration of 70% by weight or more and less than 80% by weight and a liquid temperature of more than 35 ° C.
A liquid characterized in that the pretreatment means is a cooling means for cooling the liquid temperature of the sample liquid below the lower limit set value based on a lower limit set value of the liquid temperature stored in advance associated with the sulfuric acid concentration. Measuring device for metal ion concentration inside.
請求項12又は13において、前記硫酸系薬液が電解硫酸、硫酸と過酸化水素水の混合液、又は硫酸にオゾンを吹き込んだ液であることを特徴とする液中の金属イオン濃度の測定装置。   14. The apparatus for measuring a metal ion concentration in a liquid according to claim 12, wherein the sulfuric acid chemical liquid is electrolytic sulfuric acid, a mixed liquid of sulfuric acid and hydrogen peroxide solution, or a liquid in which ozone is blown into sulfuric acid. 請求項11ないし14のいずれか1項において、前記試料液が、電子デバイス製造工程において電子デバイスの洗浄に用いられる洗浄液であることを特徴とする液中の金属イオン濃度の測定装置。   The apparatus for measuring a metal ion concentration in a liquid according to any one of claims 11 to 14, wherein the sample liquid is a cleaning liquid used for cleaning an electronic device in an electronic device manufacturing process. 電子デバイスを洗浄液で洗浄する洗浄手段と、
該洗浄手段からの洗浄廃液を回収する回収手段と、
該回収手段で回収された洗浄廃液を洗浄液として前記洗浄手段に循環する循環手段と、
該循環手段による循環系内から循環液の一部を抜き出して該循環液の金属イオン濃度を測定する金属イオン濃度測定手段と
を有する電子デバイスの洗浄システムであって、
該金属イオン濃度測定手段が、プラズマ発光分析装置を含むことを特徴とする電子デバイスの洗浄システム。
Cleaning means for cleaning the electronic device with a cleaning liquid;
A recovery means for recovering cleaning waste liquid from the cleaning means;
A circulation means for circulating the cleaning waste liquid recovered by the recovery means to the cleaning means as a cleaning liquid;
An electronic device cleaning system comprising metal ion concentration measuring means for extracting a part of the circulating fluid from the circulation system by the circulating means and measuring the metal ion concentration of the circulating fluid,
The electronic device cleaning system, wherein the metal ion concentration measuring means includes a plasma emission analyzer.
請求項16において、前記金属イオン濃度測定手段が前記循環液の冷却手段を有し、該冷却手段で冷却された循環液について前記プラズマ発光分析装置による測定が行われることを特徴とする電子デバイスの洗浄システム。   17. The electronic device according to claim 16, wherein the metal ion concentration measuring unit includes a circulating liquid cooling unit, and the circulating liquid cooled by the cooling unit is measured by the plasma emission spectrometer. Cleaning system. 請求項17において、前記洗浄液が、硫酸濃度80重量%以上、液温度80℃超の硫酸系薬液であり、
前記冷却手段が、前記洗浄液の液温度を80℃以下に冷却する手段であることを特徴とする電子デバイスの洗浄システム。
The cleaning liquid according to claim 17, wherein the cleaning liquid is a sulfuric acid chemical solution having a sulfuric acid concentration of 80% by weight or more and a liquid temperature exceeding 80 ° C.
The electronic device cleaning system, wherein the cooling means is means for cooling the liquid temperature of the cleaning liquid to 80 ° C. or lower.
請求項17において、前記洗浄液が、硫酸濃度70重量%以上80重量%未満、液温度35℃超の硫酸系薬液であり、
前記冷却手段が、予め硫酸濃度と関連づけられて記憶された液温度の下限設定値に基づいて前記洗浄液の液温度を前記下限設定値以下に冷却する手段であることを特徴とする電子デバイスの洗浄システム。
The cleaning liquid according to claim 17, wherein the cleaning liquid is a sulfuric acid chemical solution having a sulfuric acid concentration of 70 wt% or more and less than 80 wt%, and a liquid temperature exceeding 35 ° C.
Cleaning the electronic device, wherein the cooling means is means for cooling the liquid temperature of the cleaning liquid below the lower limit set value based on a lower limit set value of the liquid temperature stored in advance associated with the sulfuric acid concentration. system.
請求項18又は17において、前記硫酸系薬液が電解硫酸、硫酸と過酸化水素水の混合液、又は硫酸にオゾンを吹き込んだ液であることを特徴とする電子デバイスの洗浄システム。   18. The electronic device cleaning system according to claim 18 or 17, wherein the sulfuric acid chemical solution is electrolytic sulfuric acid, a mixed solution of sulfuric acid and hydrogen peroxide solution, or a solution obtained by blowing ozone into sulfuric acid. 電子デバイスを洗浄液で洗浄する洗浄手段と、
該洗浄手段からの洗浄廃液を回収する回収手段と、
該回収手段で回収された洗浄廃液を洗浄液として前記洗浄手段に循環する循環手段と、
該循環手段による循環系内から循環液の一部を抜き出して該循環液の金属イオン濃度を測定する金属イオン濃度測定手段と
を有する電子デバイスの洗浄システムであって、
該金属イオン濃度測定手段が請求項11ないし15のいずれか1項に記載の液中の金属イオン濃度の測定装置を含むことを特徴とする電子デバイスの洗浄システム。
Cleaning means for cleaning the electronic device with a cleaning liquid;
A recovery means for recovering cleaning waste liquid from the cleaning means;
A circulation means for circulating the cleaning waste liquid recovered by the recovery means to the cleaning means as a cleaning liquid;
An electronic device cleaning system comprising metal ion concentration measuring means for extracting a part of the circulating fluid from the circulation system by the circulating means and measuring the metal ion concentration of the circulating fluid,
An electronic device cleaning system, wherein the metal ion concentration measuring means includes the apparatus for measuring a metal ion concentration in a liquid according to any one of claims 11 to 15.
請求項16ないし21のいずれか1項において、前記洗浄手段は、前記電子デバイス上の残渣金属を前記洗浄液により洗浄除去する手段であることを特徴とする液中の電子デバイスの洗浄システム。   22. The cleaning system for electronic devices in liquid according to claim 16, wherein the cleaning means is means for cleaning and removing residual metal on the electronic device with the cleaning liquid. 請求項16ないし22のいずれか1項において、前記循環系内に前記洗浄廃液を精製ないしは成分調整する再生手段を有し、該再生手段で再生された再生液の一部が抜き出されて前記金属イオン濃度測定手段により金属イオン濃度の測定が行われることを特徴とする電子デバイスの洗浄システム。   23. The method according to any one of claims 16 to 22, further comprising a regenerating unit for purifying or adjusting a component of the cleaning waste liquid in the circulation system, wherein a part of the regenerated liquid regenerated by the regenerating unit is extracted. An electronic device cleaning system, wherein a metal ion concentration is measured by a metal ion concentration measuring means. 請求項16ないし23のいずれか1項において、前記金属イオン濃度測定手段による金属イオン濃度測定後の液を、前記循環系内に戻す液返送手段を有することを特徴とする電子デバイスの洗浄システム。   24. The electronic device cleaning system according to any one of claims 16 to 23, further comprising liquid returning means for returning the liquid after the metal ion concentration measurement by the metal ion concentration measuring means to the circulation system. 請求項16ないし24のいずれか1項において、前記洗浄液が硫酸系洗浄薬液であり、前記循環液の硫酸濃度の測定装置を更に備えることを特徴とする電子デバイスの洗浄システム。   25. The electronic device cleaning system according to any one of claims 16 to 24, wherein the cleaning liquid is a sulfuric acid-based cleaning chemical, and further includes a measuring device for the sulfuric acid concentration of the circulating liquid.
JP2015042521A 2015-03-04 2015-03-04 Measuring method and measuring apparatus of concentration of metal ion in liquid and cleaning system of electronic device Pending JP2016162963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015042521A JP2016162963A (en) 2015-03-04 2015-03-04 Measuring method and measuring apparatus of concentration of metal ion in liquid and cleaning system of electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015042521A JP2016162963A (en) 2015-03-04 2015-03-04 Measuring method and measuring apparatus of concentration of metal ion in liquid and cleaning system of electronic device

Publications (1)

Publication Number Publication Date
JP2016162963A true JP2016162963A (en) 2016-09-05

Family

ID=56847492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015042521A Pending JP2016162963A (en) 2015-03-04 2015-03-04 Measuring method and measuring apparatus of concentration of metal ion in liquid and cleaning system of electronic device

Country Status (1)

Country Link
JP (1) JP2016162963A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186211A1 (en) * 2017-04-06 2018-10-11 東京エレクトロン株式会社 Liquid supply device and liquid supply method
CN108793095A (en) * 2018-09-26 2018-11-13 高频美特利环境科技(北京)有限公司 Solution impurity-removing method and solution impurity removed system
WO2019230275A1 (en) 2018-06-01 2019-12-05 富士フイルム株式会社 Image processing device, image processing method, image processing program, and recording medium storing image processing program
CN112229955A (en) * 2020-09-30 2021-01-15 宝武水务科技有限公司 Online ion concentration analysis device and analysis equipment
CN113008788A (en) * 2019-12-20 2021-06-22 恩德莱斯和豪瑟尔分析仪表两合公司 Method of operating an analyzer for determining permanganate index and analyzer
US11107705B2 (en) 2018-07-30 2021-08-31 Samsung Electronics Co., Ltd. Cleaning solution production systems and methods, and plasma reaction tanks

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186211A1 (en) * 2017-04-06 2018-10-11 東京エレクトロン株式会社 Liquid supply device and liquid supply method
KR20190137836A (en) * 2017-04-06 2019-12-11 도쿄엘렉트론가부시키가이샤 Liquid supply device and liquid supply method
JPWO2018186211A1 (en) * 2017-04-06 2020-01-23 東京エレクトロン株式会社 Liquid supply device and liquid supply method
TWI761478B (en) * 2017-04-06 2022-04-21 日商東京威力科創股份有限公司 Liquid supply device and liquid supply method
KR102478777B1 (en) 2017-04-06 2022-12-21 도쿄엘렉트론가부시키가이샤 Liquid supply device and liquid supply method
WO2019230275A1 (en) 2018-06-01 2019-12-05 富士フイルム株式会社 Image processing device, image processing method, image processing program, and recording medium storing image processing program
US11107705B2 (en) 2018-07-30 2021-08-31 Samsung Electronics Co., Ltd. Cleaning solution production systems and methods, and plasma reaction tanks
US11664242B2 (en) 2018-07-30 2023-05-30 Samsung Electronics Co., Ltd. Cleaning solution production systems and methods, and plasma reaction tanks
CN108793095A (en) * 2018-09-26 2018-11-13 高频美特利环境科技(北京)有限公司 Solution impurity-removing method and solution impurity removed system
CN113008788A (en) * 2019-12-20 2021-06-22 恩德莱斯和豪瑟尔分析仪表两合公司 Method of operating an analyzer for determining permanganate index and analyzer
CN112229955A (en) * 2020-09-30 2021-01-15 宝武水务科技有限公司 Online ion concentration analysis device and analysis equipment

Similar Documents

Publication Publication Date Title
JP2016162963A (en) Measuring method and measuring apparatus of concentration of metal ion in liquid and cleaning system of electronic device
US4828660A (en) Method and apparatus for the continuous on-site chemical reprocessing of ultrapure liquids
US4855023A (en) Method and apparatus for the continuous on-site chemical reprocessing of ultrapure liquids used in semiconductor wafer cleaning
US20120228144A1 (en) High-purity fluorine gas, the production and use thereof, and a method for monitoring impurities in a fluorine gas
JP6024936B2 (en) Method for measuring total oxidizing substance concentration, substrate cleaning method and substrate cleaning system
EP2733724B1 (en) Method for cleaning metal gate semiconductor
WO2011155335A1 (en) Washing system and washing method
US9165801B2 (en) Partial solution replacement in recyclable persulfuric acid cleaning systems
JP4573043B2 (en) Sulfuric acid recycling cleaning system
JP2007266477A (en) Semiconductor substrate cleaning system
JP4743404B2 (en) Sulfuric acid recycling type cleaning system and sulfuric acid recycling type cleaning method
JP4600667B2 (en) Sulfuric acid recycling type cleaning system and sulfuric acid recycling type cleaning method
JP2743822B2 (en) Electrolytic activated water treatment equipment
JP4407557B2 (en) Sulfuric acid recycling cleaning method and sulfuric acid recycling cleaning system
JP2002005799A (en) Analytical method for trace metal impurities
JP5446160B2 (en) Manufacturing method of recycled silicon wafer
US7387720B2 (en) Electrolytic method and apparatus for trace metal analysis
JP2002270568A (en) Method of manufacturing semiconductor wafer and metal monitoring device
JP5979328B2 (en) Method and apparatus for measuring oxidant concentration, and electronic material cleaning apparatus
JP2008053484A (en) Persulfuric acid cleaning system
JP4771049B2 (en) Sulfuric acid recycling cleaning system
JP4877897B2 (en) Method for removing impurities from silicon wafer and analysis method
JP2007103429A (en) Cleaning equipment and method
JP4816888B2 (en) Sulfuric acid recycling cleaning system
JP2017173218A (en) Method and apparatus for measuring concentration of oxidizer, and electronic material cleaning device