JP2016162323A - Travelling section line recognition device - Google Patents

Travelling section line recognition device Download PDF

Info

Publication number
JP2016162323A
JP2016162323A JP2015041919A JP2015041919A JP2016162323A JP 2016162323 A JP2016162323 A JP 2016162323A JP 2015041919 A JP2015041919 A JP 2015041919A JP 2015041919 A JP2015041919 A JP 2015041919A JP 2016162323 A JP2016162323 A JP 2016162323A
Authority
JP
Japan
Prior art keywords
lane
line
learning value
curvature
certainty factor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015041919A
Other languages
Japanese (ja)
Other versions
JP6408935B2 (en
Inventor
悠介 赤峰
Yusuke Akamine
悠介 赤峰
直輝 川嵜
Naoteru Kawasaki
直輝 川嵜
俊輔 鈴木
Shunsuke Suzuki
俊輔 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2015041919A priority Critical patent/JP6408935B2/en
Publication of JP2016162323A publication Critical patent/JP2016162323A/en
Application granted granted Critical
Publication of JP6408935B2 publication Critical patent/JP6408935B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a travelling section line recognition device that can suppress wrong recognition of a travelling section line in a connection part between a straight part of a vehicle lane and a curve part thereof.SOLUTION: A travelling section line recognition device comprises: extraction means that extracts a section line candidate from a photograph image by an on-vehicle camera 10; degree-of-confidence calculation means that calculates a degree of confidence which is a travelling section line of the section line candidate on the basis of an amount of characteristic of the travelling section line including a vehicle lane width; selection means that selects the section line candidate serving as a recognition object from the section line candidates on the basis of the calculated degree of confidence; learning means that learns a width of the vehicle lane on the basis of the selected section line candidate to acquire a learning value, the learning value of the width of the vehicle lane is used by the degree-of-confidence calculation means for calculation of the degree of confidence; determination means that determines transition from a straight line part of the vehicle lane to a curve part thereof, and transition from the curve part to the straight line part; and change means that, when the transition from the straight line part to the curve part is determined, expands the learning value, and when the transition from the curve part to the straight line part is determined, narrows down the learning value of the vehicle lane width.SELECTED DRAWING: Figure 2

Description

本発明は、車載カメラにより撮影された画像から、道路の走行区画線を認識する走行区画線認識装置に関する。   The present invention relates to a travel lane marking recognition device that recognizes a road lane marking from an image taken by an in-vehicle camera.

特許文献1に記載の車載用画像処理装置は、過去に認識した左右の白線の距離に基づいて車線幅を学習するとともに、画像から抽出した複数の白線候補のうち、左右の白線候補の距離が学習した車線幅に最も近い左右の白線候補を選択して、左右の白線として認識している。   The in-vehicle image processing apparatus described in Patent Literature 1 learns the lane width based on the distance between the left and right white lines recognized in the past, and the distance between the left and right white line candidates among the plurality of white line candidates extracted from the image is The left and right white line candidates closest to the learned lane width are selected and recognized as the left and right white lines.

特開平9−33216号公報JP-A-9-33216

一般に、車線の曲線部においては、直線部よりも車線幅が設計されている。そのため、直線部から曲線部への接続部で、直線部における車線幅の学習値を用いて白線候補を選択すると、本来の白線よりも、直線部における車線幅の学習値に近い白線候補を白線と誤認識してしまうおそれがある。また、曲線部から直線部への接続部で、曲線部における車線幅の学習値を用いて白線候補を選択すると、本来の白線よりも、曲線部における車線幅の学習値に近い白線候補を白線と誤認識してしまうおそれがある。   Generally, the lane width is designed in the curved portion of the lane rather than the straight portion. Therefore, when a white line candidate is selected using the learned value of the lane width in the straight line part at the connecting part from the straight line part to the curved line part, the white line candidate closer to the learned value of the lane width in the straight line part than the original white line There is a risk of misunderstanding. In addition, when a white line candidate is selected using the learned value of the lane width in the curved part at the connecting part from the curved part to the straight line part, the white line candidate closer to the learned value of the lane width in the curved part is white line than the original white line. There is a risk of misunderstanding.

本発明は、上記実情に鑑み、車線の直線部と曲線部との接続部分において、走行区画線の誤認識を抑制可能な走行区画線認識装置を提供することを主たる目的とする。   In view of the above circumstances, it is a main object of the present invention to provide a travel lane marking recognition device that can suppress erroneous recognition of a travel lane marking at a connection portion between a straight line portion and a curved portion of a lane.

本発明は、上記課題を解決するため、車両に搭載されたカメラにより撮影された画像から、道路の車線を区画する走行区画線の候補である区画線候補を抽出する抽出手段と、前記車線の幅を含む前記走行区画線の特徴量に基づいて、前記抽出手段により抽出された前記区画線候補の前記走行区画線である確信度を算出する確信度算出手段と、前記確信度算出手段により算出された前記確信度に基づいて、前記抽出手段により抽出された前記区画線候補から、認識対象となる前記区画線候補を選択する選択手段と、前記選択手段により選択された前記区画線候補に基づいて、前記車線の幅を学習して学習値を取得する学習手段と、を備え、前記確信度算出手段は、前記学習値を用いて前記確信度を算出する走行区画線認識装置であって、前記車線の直線部から曲線部への移行及び前記車線の曲線部から直線部への移行を判定する判定手段と、前記判定手段により前記車線の直線部から曲線部への移行が判定された場合に、前記確信度算出手段により用いられる前記学習値を広げるとともに、前記判定手段により前記車線の曲線部から直線部への移行が判定された場合に、前記確信度算出手段により用いられる前記学習値を狭める変更手段と、を備える。   In order to solve the above problems, the present invention provides an extraction means for extracting a lane line candidate that is a candidate for a lane line that divides a road lane from an image taken by a camera mounted on the vehicle, Based on the feature amount of the travel lane line including the width, calculated by the confidence level calculation means for calculating the confidence level that is the travel lane line of the lane line candidate extracted by the extraction means, and calculated by the confidence level calculation means Based on the certainty factor, the selection means for selecting the lane line candidates to be recognized from the lane line candidates extracted by the extraction means, and the lane line candidates selected by the selection means Learning means for learning the width of the lane and acquiring a learning value, and the certainty factor calculating means is a travel lane marking recognition device that calculates the certainty factor using the learned value, The car Determining means for determining the transition from the straight line part to the curved part and the transition from the curved part to the straight line part of the lane, and when the judging means determines the transition from the straight line part to the curved part of the lane, The learning value used by the certainty factor calculating means is widened, and the learning value used by the certainty factor calculating means is narrowed when the determination means determines the transition from the curved portion to the straight line portion of the lane. Changing means.

本発明によれば、カメラにより撮影された画像から、走行区画線の候補である区画線候補が抽出される。そして、車線幅の学習値を用いて、車線幅を含む走行区画線の特徴量に基づき、抽出された区画線候補の走行区画線である確信度が算出される。そして、算出された確信度に基づいて、抽出された区画線候補から認識対象となる区画線候補が選択され、選択された区画線候補が走行区画線として認識される。また、選択された区画線候補に基づいて、車線幅が学習され学習値が取得される。   According to the present invention, a lane line candidate that is a candidate for a lane line for travel is extracted from an image captured by a camera. Then, using the learned value of the lane width, the certainty factor that is the travel lane line of the extracted lane line candidate is calculated based on the feature amount of the travel lane line including the lane width. Based on the calculated certainty factor, a lane line candidate to be recognized is selected from the extracted lane line candidates, and the selected lane line candidate is recognized as a travel lane line. Further, the lane width is learned based on the selected lane line candidate, and the learned value is acquired.

さらに、車線の直線部から曲線部への移行が判定された場合には、確信度の算出に用いられる学習値が広げられる。よって、直線部から一般的に直線部よりも車線幅が広い曲線部へ移行する際は、直線部よりも広げられた学習値を用いて、区画線候補の確信度が算出されるため、走行区画線の誤認識を抑制できる。また、車線の曲線部から直線部への移行が判定された場合には、確信度の算出に用いられる学習値が狭められる。よって、曲線部から一般的に曲線部よりも車線幅が狭い直線部へ移行する際は、曲線部よりも狭められた車線幅の学習値を用いて、区画線候補の確信度が算出されるため、走行区画線の誤認識を抑制できる。したがって、車線の直線部と曲線部との接続部分において、走行区画線の誤認識を抑制できる。ひいては、不要な逸脱警報や操舵制御を抑制することができる。   Furthermore, when the transition from the straight line portion to the curved portion of the lane is determined, the learning value used for calculating the certainty factor is widened. Therefore, when moving from a straight line part to a curved part with a lane width that is generally wider than the straight line part, the confidence value of the lane line candidate is calculated using a learning value that is wider than the straight line part. False recognition of lane markings can be suppressed. In addition, when it is determined that the lane is shifted from the curved portion to the straight portion, the learning value used for calculating the certainty factor is narrowed. Therefore, when transitioning from a curved portion to a straight portion having a lane width that is generally narrower than the curved portion, the certainty factor of the lane line candidate is calculated using the learned value of the lane width narrower than the curved portion. Therefore, misrecognition of the travel lane marking can be suppressed. Therefore, it is possible to suppress erroneous recognition of travel lane markings at the connection portion between the straight line portion and the curved portion of the lane. As a result, unnecessary departure warning and steering control can be suppressed.

車載カメラ及びセンサ類の搭載位置を示す図。The figure which shows the mounting position of a vehicle-mounted camera and sensors. 本実施形態に係る白線認識装置の機能を示すブロック図。The block diagram which shows the function of the white line recognition apparatus which concerns on this embodiment. 車線幅に関する白線確信度を示す図。The figure which shows the white line reliability regarding a lane width. カーブの出口で白線を誤認識する態様を示す図。The figure which shows the aspect which misrecognizes a white line at the exit of a curve. 白線を認識する処理手順を示すフローチャート。The flowchart which shows the process sequence which recognizes a white line.

以下、走行区画線認識装置を具現化した実施形態について図面を参照しつつ説明する。まず、図1及び2を参照して、本実施形態に係る走行区画線認識装置について説明する。本実施形態に係る走行区画線認識装置は、ECU20により構成され、車載カメラ10により撮影された前方画像に基づいて、道路の車線を区画する白線(走行区画線)を認識する車載装置である。なお、本実施形態では、道路上で車線の区切りを示すために描画されている白色や黄色等の線を全て白線と称する。   Hereinafter, an embodiment that embodies a lane marking recognition device will be described with reference to the drawings. First, with reference to FIG. 1 and 2, the traveling lane marking recognition apparatus according to the present embodiment will be described. The travel lane marking recognition device according to the present embodiment is an in-vehicle device that is configured by the ECU 20 and recognizes a white line (travel lane marking) that divides a road lane based on a front image taken by the in-vehicle camera 10. In the present embodiment, white lines, yellow lines, and the like drawn to indicate lane divisions on the road are all referred to as white lines.

車載カメラ10は、CCDイメージセンサ、CMOSセンサ等の少なくとも1つから構成されている。図1に示すように、車載カメラ10は、例えば車両50のフロントガラスの上端付近に設置されており、車両50の前方へ向けて所定角度範囲で広がる領域を撮影する。すなわち、車載カメラ10は、車両50の前方の道路を含む周辺環境を撮影する。   The in-vehicle camera 10 includes at least one such as a CCD image sensor or a CMOS sensor. As shown in FIG. 1, the in-vehicle camera 10 is installed, for example, in the vicinity of the upper end of the windshield of the vehicle 50, and photographs an area that spreads in a predetermined angle range toward the front of the vehicle 50. That is, the in-vehicle camera 10 captures the surrounding environment including the road ahead of the vehicle 50.

車速センサ11は、車両50に搭載されており、車両50の速度を検出するセンサである。ヨーレートセンサ12は、車両50に搭載されており、車両50のヨーレートを検出するセンサである。   The vehicle speed sensor 11 is mounted on the vehicle 50 and is a sensor that detects the speed of the vehicle 50. The yaw rate sensor 12 is mounted on the vehicle 50 and is a sensor that detects the yaw rate of the vehicle 50.

走行支援装置40は、ECU20により認識された白線の認識結果に基づいて、車線の逸脱を警告する逸脱警報装置や、運転支援を行う運転支援装置を含む装置である。逸脱警報装置は、ディスプレイ、スピーカ、バイブレータ等のヒューマンマシンインターフェースとして構成され、車両50が車線を逸脱する際に、運転者に警報を出力する。また、運転支援装置は、操舵アクチュエータや制動アクチュエーアとして構成され、車両50の操舵制御やブレーキ制御を行う。   The driving support device 40 is a device including a departure warning device that warns of a lane departure based on the recognition result of the white line recognized by the ECU 20 and a driving support device that performs driving support. The departure warning device is configured as a human machine interface such as a display, a speaker, and a vibrator, and outputs a warning to the driver when the vehicle 50 departs from the lane. Further, the driving support device is configured as a steering actuator or a braking actuator, and performs steering control and brake control of the vehicle 50.

ECU20は、CPU、RAM、ROM、I/O及び記憶装置等を備えたコンピュータである。CPUが、ROMに記憶されている各種プログラムを実行することにより、白線候補抽出部21、曲率算出部22、曲線部判定部23、学習値変更部24、車線幅学習部25、白線確信度算出部26、候補選択部27、及び認識部28の各機能を実現する。   The ECU 20 is a computer that includes a CPU, a RAM, a ROM, an I / O, a storage device, and the like. When the CPU executes various programs stored in the ROM, the white line candidate extraction unit 21, the curvature calculation unit 22, the curve portion determination unit 23, the learning value change unit 24, the lane width learning unit 25, and the white line certainty calculation The functions of the unit 26, the candidate selection unit 27, and the recognition unit 28 are realized.

白線候補抽出部21(抽出手段)は、車載カメラ10により撮影された前方画像にsobelフィルタ等を適用して、水平方向に輝度値が大きく上昇するアップエッジ点及び下降するダウンエッジ点を抽出する。そして、白線候補抽出部21は、抽出したエッジ点にハフ変換等を適用して、エッジ線を算出し、アップエッジ点からなるエッジ線及びダウエッジ点からなるエッジ線から特定される線を、白線候補(区画線候補)として抽出する。   The white line candidate extraction unit 21 (extraction means) applies a sobel filter or the like to the front image captured by the in-vehicle camera 10 to extract an up-edge point and a down-down point where the luminance value increases significantly in the horizontal direction. . Then, the white line candidate extraction unit 21 calculates an edge line by applying Hough transform or the like to the extracted edge point, and determines a line specified from the edge line including the up edge point and the edge line including the dow edge point as a white line Extracted as candidates (division line candidates).

白線確信度算出部26(確信度算出手段)は、白線の特徴量に基づいて、白線候補抽出部21により抽出された白線候補の白線である確信度(白線尤度)を算出する。白線の特徴量としては、車線幅の一貫性、認識距離、路面に対する白線のコントラスト等である。白線確信度算出部26は、各特徴量について、白線候補が特徴量を備えている度合が高いほど、白線である確信度を高く算出する。そして、白線確信度算出部26は、各特徴量について算出した確信度を統合して統合確信度を算出する。   The white line certainty calculation unit 26 (confidence calculation means) calculates a certainty factor (white line likelihood) that is a white line of the white line candidate extracted by the white line candidate extraction unit 21 based on the white line feature amount. The white line feature amounts include lane width consistency, recognition distance, white line contrast with the road surface, and the like. The white line certainty degree calculation unit 26 calculates the certainty degree that is a white line higher as the degree of white line candidates having the feature amount is higher for each feature amount. And the white line reliability calculation part 26 integrates the reliability calculated about each feature-value, and calculates an integrated reliability.

候補選択部27(選択手段)は、白線確信度算出部26により算出された確信度に基づいて、白線候補抽出部21により抽出された白線候補から、認識対象、すなわち走行支援装置40による制御対象となる白線候補を選択する。詳しくは、候補選択部27は、車両50の右側及び左側において、統合確信度が閾値よりも高い白線候補のうち、最も確信度が高い白線候補を選択する。   The candidate selecting unit 27 (selecting means) is a recognition target, that is, a control target by the driving support device 40, from the white line candidates extracted by the white line candidate extracting unit 21 based on the certainty factor calculated by the white line certainty factor calculating unit 26. Select white line candidates. Specifically, the candidate selection unit 27 selects the white line candidate having the highest certainty among the white line candidates having the integrated certainty level higher than the threshold on the right side and the left side of the vehicle 50.

認識部28は、候補選択部27により選択された白線候補を、白線として認識して白線パラメータを算出し、算出した白線パラメータを走行支援装置40へ出力する。白線パラメータは、車線位置、車線傾き、車線曲率、車線幅、ピッチ角等である。   The recognition unit 28 recognizes the white line candidate selected by the candidate selection unit 27 as a white line, calculates a white line parameter, and outputs the calculated white line parameter to the driving support device 40. The white line parameters are lane position, lane inclination, lane curvature, lane width, pitch angle, and the like.

車線幅学習部25(学習手段)は、候補選択部27により認識対象として選択された白線候補に基づいて、車線幅を学習して学習値を取得する。詳しくは、車線幅学習部25は、認識部28により認識された車線幅と、記憶装置に記憶されている車線幅の学習値とに所定の重み付けをして、新たな学習値を算出し、新たな学習値を記憶装置に記憶する。   The lane width learning unit 25 (learning means) learns the lane width based on the white line candidate selected as a recognition target by the candidate selection unit 27 and acquires a learning value. Specifically, the lane width learning unit 25 calculates a new learning value by performing predetermined weighting on the lane width recognized by the recognition unit 28 and the learning value of the lane width stored in the storage device, A new learning value is stored in the storage device.

上述した白線確信度算出部26は、車線幅学習部25により取得された車線幅の学習値を用いて、車線幅の一貫性を白線の特徴量とした確信度を算出する。白線確信度算出部26は、図3に示すように、車両50の右側と左側の白線候補の間隔が車線幅の学習値に近いほど高くなるように、車線幅の一貫性を白線の特徴量とした確信度を算出する。   The white line certainty calculation unit 26 described above uses the learned value of the lane width acquired by the lane width learning unit 25 to calculate the certainty factor using the consistency of the lane width as the feature amount of the white line. As shown in FIG. 3, the white line certainty calculation unit 26 sets the lane width consistency so that the distance between the white line candidates on the right and left sides of the vehicle 50 increases as the learning value of the lane width increases. The certainty factor is calculated.

ここで、図4に示すように、一般に、車線の曲線部(カーブ部分)の車線幅は、車線の直線部の車線幅よりも広く設計されている。例えば、日本では、道路構造令第17条に、「車道の曲線部においては、設計車両及び当該曲線部の曲線半径に応じ、車線を適切に拡幅するものとする。」という規定がある。   Here, as shown in FIG. 4, the lane width of the curved portion (curve portion) of the lane is generally designed to be wider than the lane width of the straight portion of the lane. For example, in Japan, Article 17 of the Road Structure Ordinance stipulates that “in the curved part of the roadway, the lane should be appropriately widened according to the design vehicle and the curved radius of the curved part”.

そのため、車線の直線部で学習した車線幅の学習値を用いて、車線の曲線部の白線候補の確信度を算出したり、車線の曲線部で学習した車線幅の学習値を用いて、車線の直線部の白線候補の確信度を算出したりすると、白線を誤認識するおそれがある。   Therefore, using the learned value of the lane width learned at the straight line part of the lane, the certainty of the white line candidate of the curved part of the lane is calculated, or the learned value of the lane width learned at the curved part of the lane is used to calculate the lane If the certainty factor of the white line candidate in the straight line portion is calculated, the white line may be erroneously recognized.

例えば、図4に示すように、曲線部の車線幅がW+α、直線部の車線幅がWに設計されており、曲線部の出口手前側、すなわち直線部と曲線部との接続部の手前側から車両50の進行方向に向かって、幅Wの車線と並列に幅αの自転車専用道が設けられていることがある。この場合、直線部の車線幅Wよりも、直線部の車線幅Wと自転車専用道の幅αとを合わせた幅W+αの方が、曲線部の車線幅の学習値に近くなる。そのため、曲線部で学習した車線幅の学習値を用いると、車線の右側の白線Lrに対応する白線候補よりも、自転車専用道の右側を区画する白線Lαに対応する白線候補の方が、統合確信度が高くなるおそれがある。その結果、車線の左右の白線として、車線の左側の白線Llと自転車専用道の右側の白線Lαが認識されるおそれがある。   For example, as shown in FIG. 4, the lane width of the curved portion is designed to be W + α and the lane width of the straight portion is W, and the exit side of the curved portion, that is, the front side of the connecting portion between the straight portion and the curved portion. In some cases, a bicycle-only road having a width α may be provided in parallel with the lane having a width W in the direction of travel of the vehicle 50. In this case, the width W + α obtained by adding the lane width W of the straight line portion and the width α of the bicycle exclusive road is closer to the learning value of the lane width of the curved portion than the lane width W of the straight line portion. Therefore, using the learned value of the lane width learned at the curve portion, the white line candidate corresponding to the white line Lα that defines the right side of the bicycle exclusive road is integrated rather than the white line candidate corresponding to the white line Lr on the right side of the lane. There is a risk of increased confidence. As a result, the white line Ll on the left side of the lane and the white line Lα on the right side of the bicycle exclusive road may be recognized as the white lines on the left and right sides of the lane.

そこで、車線の直線部と曲線部との接続部近傍、すなわち曲線部の出入り口近傍において、車線幅の学習値を変更することにした。以下、車線幅の学習値の変更について説明する。   Therefore, the learning value of the lane width is changed in the vicinity of the connecting portion between the straight line portion and the curved portion of the lane, that is, in the vicinity of the entrance / exit of the curved portion. Hereinafter, the change of the learning value of the lane width will be described.

曲率算出部22は、車速センサ11により検出された車速の変化、及びヨーレートセンサ12により検出された車両50のヨーレートから、車両50の前方における車線の曲率を算出する。一般的に、車両が曲線部分へ進入する前から、曲線部に合わせるように車両のハンドルが操作され、速度が落とされる。また、車両が曲線部分から脱出する前から、直線部に合わせるように車両のハンドルが操作され、速度が上げられる。よって、車両50のヨーレート、及び車速の変化から、車両50の前方における車線の曲率を算出することができる。さらに、曲率算出部22は、今回算出した車線の曲率、及び前回算出した車線の曲率から、曲率変化率を算出する。   The curvature calculation unit 22 calculates the curvature of the lane ahead of the vehicle 50 from the change in the vehicle speed detected by the vehicle speed sensor 11 and the yaw rate of the vehicle 50 detected by the yaw rate sensor 12. Generally, before the vehicle enters the curved portion, the steering wheel of the vehicle is operated so as to match the curved portion, and the speed is reduced. Further, before the vehicle escapes from the curved portion, the vehicle handle is operated so as to match the straight portion, and the speed is increased. Therefore, the curvature of the lane in front of the vehicle 50 can be calculated from the change in the yaw rate of the vehicle 50 and the vehicle speed. Further, the curvature calculation unit 22 calculates a curvature change rate from the curvature of the lane calculated this time and the curvature of the lane calculated last time.

曲線部判定部23は、車両50の前方において、曲率算出部22により算出された車線の曲率に基づいて、車線の直線部から曲線部への移行、及び車線の曲線部から直線部への移行を判定する。すなわち、曲線部判定部23は、車線の直線部と曲線部との接続部である曲線部の入り口近傍であること、及び曲線部の出口近傍であることを判定する。   Based on the curvature of the lane calculated by the curvature calculation unit 22, the curved line determination unit 23 shifts from the straight part of the lane to the curved part, and the transition from the curved part of the lane to the straight part. Determine. In other words, the curved line determination unit 23 determines that it is in the vicinity of the entrance of the curved part, which is a connection part between the straight line part and the curved part of the lane, and in the vicinity of the exit of the curved part.

詳しくは、曲線部判定部23は、曲率算出部22により算出された車線の曲率及び曲率変化率の少なくとも一方から、直線部から曲線部への移行、及び曲線部から直線部への移行を判定する。一般的に、曲線部の入り口近傍では、曲率が0近くの値から上昇して、曲率変化率の絶対値(曲率増加率)が大きくなる。また、曲線部の出口近傍では、曲率が0近くの値まで下降して、曲率変化率の絶対値(曲率減少率)が大きくなる。よって、曲線部判定部23は、曲率が曲率閾値よりも大きくなった場合、及び曲率増加率が変化量閾値よりも大きくなった場合、の少なくとも一方の場合に、直線部から曲線部への移行を判定する。また、曲線部判定部23は、曲率が曲率閾値よりも小さくなった場合、及び曲率減少率が変化量閾値よりも大きくなった場合、の少なくとも一方の場合に、曲線部から直線部への移行を判定する。なお、曲率算出部22及び曲線部判定部23から判定手段が構成される。   Specifically, the curve part determination unit 23 determines the transition from the straight line part to the curved part and the transition from the curved part to the straight line part from at least one of the curvature of the lane and the curvature change rate calculated by the curvature calculation part 22. To do. Generally, in the vicinity of the entrance of the curved portion, the curvature increases from a value close to 0, and the absolute value of the curvature change rate (curvature increase rate) increases. Further, in the vicinity of the exit of the curved portion, the curvature decreases to a value close to 0, and the absolute value (curvature decrease rate) of the curvature change rate increases. Therefore, the curve portion determination unit 23 shifts from the straight line portion to the curved portion in at least one of the case where the curvature is larger than the curvature threshold and the case where the curvature increase rate is larger than the change amount threshold. Determine. Further, the curve portion determination unit 23 shifts from the curve portion to the straight portion in at least one of the case where the curvature is smaller than the curvature threshold and the case where the curvature reduction rate is larger than the change amount threshold. Determine. The curvature calculating unit 22 and the curve part determining unit 23 constitute a determining unit.

学習値変更部24(変更手段)は、曲線部判定部23により、車線の直線部から曲線部への移行が判定された場合に、白線確信度算出部26により用いられる車線幅の学習値を広げる。また、学習値変更部24は、曲線部判定部23により、車線の曲線部から直線部への移行が判定された場合に、白線確信度算出部26により用いられる車線幅の学習値を狭める。   The learning value changing unit 24 (changing unit) sets the learning value of the lane width used by the white line certainty calculation unit 26 when the curve portion determining unit 23 determines the transition from the straight line portion to the curved portion of the lane. spread. Further, the learning value changing unit 24 narrows the learning value of the lane width used by the white line certainty calculating unit 26 when the curve determining unit 23 determines the transition from the curved line to the straight line.

詳しくは、学習値変更部24は、曲線部判定部23により、車線の直線部から曲線部への移行が判定された場合に、その判定がされるまでに車線幅学習部25により学習された車線幅の学習値を、広げるように補正する。また、学習値変更部24は、曲線部判定部23により、車線の曲線部から直線部への移行が判定された場合に、その判定がされるまでに車線幅学習部25により学習された車線幅の学習値を、狭めるように補正する。   Specifically, the learning value changing unit 24 has been learned by the lane width learning unit 25 until the determination is made when the curve portion determining unit 23 determines the transition from the straight line portion of the lane to the curved portion. Correct the lane width learning value to increase. In addition, the learning value changing unit 24, when the curve portion determining unit 23 determines that the lane is shifted from the curved portion to the straight portion, the lane learned by the lane width learning unit 25 until the determination is made. The learning value of the width is corrected so as to be narrowed.

一般に、曲率が大きな曲線部ほど、車線幅は広く設計されている。よって、学習値変更部24は、車線の曲率に基づいて、車線幅の学習値の変更量を変化させる。詳しくは、学習値変更部24は、車線の曲率及び曲率変化率の少なくとも一方から、車線幅の学習値の変更量を決める。学習値変更部24は、車線の直線部から曲線部への移行が判定された際の曲率が大きいほど、又は、移行が判定された際の曲率変化率の絶対値が大きいほど、変更量を大きくする。また、学習値変更部24は、車線の曲線部から直線部への移行が判定される前の曲率が大きいほど、又は、移行が判定された際の曲率変化率の絶対値が大きいほど、変更量を大きくする。1つの曲線部において、曲線部の入り口近傍における車線幅の学習値の変更量と、曲線部の出口近傍における車線幅の学習値の変更量とは、必ずしも同じ量でなくてもよい。   In general, the curve portion having a larger curvature is designed to have a wider lane width. Therefore, the learning value changing unit 24 changes the change amount of the learning value of the lane width based on the curvature of the lane. Specifically, the learning value changing unit 24 determines the amount of change in the learning value of the lane width from at least one of the curvature of the lane and the curvature change rate. The learning value changing unit 24 increases the amount of change as the curvature when the transition from the straight line portion to the curved portion of the lane is determined is large, or as the absolute value of the curvature change rate when the transition is determined is large. Enlarge. Further, the learning value changing unit 24 changes as the curvature before the transition from the curved portion to the straight portion of the lane is determined is large or as the absolute value of the curvature change rate when the transition is determined is large. Increase the amount. In one curved portion, the amount of change in the learned value of the lane width in the vicinity of the entrance of the curved portion and the amount of change in the learned value of the lane width in the vicinity of the exit of the curved portion are not necessarily the same amount.

次に、白線を認識する処理手順について、図5のフローチャートを参照して説明する。本処理手順は、車載カメラ10により1フレームの画像が取得された都度、ECU20が実施する。   Next, a processing procedure for recognizing a white line will be described with reference to the flowchart of FIG. This processing procedure is executed by the ECU 20 every time an image of one frame is acquired by the in-vehicle camera 10.

まず、車載カメラ10により撮影された画像の情報を取得する(S10)。続いて、S10で取得した画像情報から、白線候補を抽出する(S11)。   First, the information of the image image | photographed with the vehicle-mounted camera 10 is acquired (S10). Subsequently, white line candidates are extracted from the image information acquired in S10 (S11).

続いて、車速センサ11により検出された車速の変化、及びヨーレートセンサ12により検出された車両50のヨーレートから、車線の曲率及び曲率変化率を算出する(S12)。続いて、S12で算出した曲率及び曲率変化率の少なくとも一方から、車線の曲線部の出入り口近傍か否かを判定する(S13)。すなわち、車線の直線部から曲線部への移行、又は曲線部から直線部への移行があるか否か判定する。車線の曲線部の出入り口近傍と判定した場合は(S13:YES)、車線幅の学習値を変更する(S14)。   Subsequently, the curvature of the lane and the curvature change rate are calculated from the change in the vehicle speed detected by the vehicle speed sensor 11 and the yaw rate of the vehicle 50 detected by the yaw rate sensor 12 (S12). Subsequently, from at least one of the curvature and curvature change rate calculated in S12, it is determined whether or not the vehicle is near the entrance / exit of the curved portion of the lane (S13). That is, it is determined whether or not there is a transition from a straight line part to a curved line part or a transition from a curved part to a straight line part. When it is determined that it is near the entrance / exit of the curved portion of the lane (S13: YES), the learning value of the lane width is changed (S14).

詳しくは、曲線部の入り口近傍と判定した場合は、車線の曲率及び曲率変化率の少なくとも一方に応じた変更量の分、記憶装置に記憶されている車線幅の学習値を広げるように補正する。また、曲線部の出口近傍と判定した場合は、車線の曲率及び曲率変化率の少なくとも一方に応じた変更量の分、記憶装置に記憶されている車線幅の学習値を狭めるように補正する。そして、次の白線候補の絞り込みの処理に進む。一方、車線の曲線部の出入り口近傍でないと判定した場合は(S13:NO)、記憶装置に記憶されている車線幅の学習値を補正することなく、次の白線候補の絞り込みの処理に進む。   Specifically, when it is determined that it is in the vicinity of the entrance of the curved portion, correction is made so that the learning value of the lane width stored in the storage device is increased by an amount of change corresponding to at least one of the curvature of the lane and the curvature change rate. . Further, when it is determined that the vehicle is near the exit of the curved portion, correction is performed so that the learning value of the lane width stored in the storage device is narrowed by an amount of change corresponding to at least one of the curvature of the lane and the curvature change rate. Then, the process proceeds to processing for narrowing down the next white line candidate. On the other hand, when it is determined that it is not near the entrance / exit of the curved portion of the lane (S13: NO), the process proceeds to the next white line candidate narrowing-down process without correcting the learning value of the lane width stored in the storage device.

続いて、車両50の左右両側のそれぞれにおいて、S11で抽出した白線候補を、尤も白線らしい白線候補に絞り込む。詳しくは、白線の特徴量ごとに、白線候補が白線である確信度を算出し、白線の特徴量ごとに算出した確信度を統合して統合確信度を算出する。そして、車両50の左右両側のそれぞれにおいて、統合確信度が閾値よりも高く、且つ最も確信度が高い白線候補に絞り込む。ここで、白線の特徴量を車線幅の一貫性として確信度を算出する際、S13で曲線部の出入り口近傍でないと判定した場合は、補正していない車線幅の学習値を用いて確信度を算出し、S13で曲線部の出入り口近傍であると判定した場合は、S14で補正した車線幅の学習値を用いて確信度を算出する。   Subsequently, in each of the left and right sides of the vehicle 50, the white line candidates extracted in S11 are narrowed down to white line candidates that are likely white lines. Specifically, the certainty factor that the white line candidate is a white line is calculated for each feature amount of the white line, and the certainty factor calculated for each feature amount of the white line is integrated to calculate the integrated certainty factor. Then, in each of the left and right sides of the vehicle 50, the integrated line reliability is narrowed down to white line candidates that are higher than the threshold and have the highest reliability. Here, when the certainty factor is calculated using the white line feature amount as the lane width consistency, if it is determined in S13 that it is not near the entrance / exit of the curved portion, the certainty factor is calculated using the uncorrected learning value of the lane width. If it is calculated and it is determined in S13 that it is in the vicinity of the entrance / exit of the curved portion, the certainty factor is calculated using the learning value of the lane width corrected in S14.

続いて、S15で絞り込んだ白線候補を白線として認識し、白線パラメータを算出する(S16)。続いて、S16で算出した白線パラメータのうちの車線幅を学習する(S17)。S13で車線の曲線部の入り口近傍と判定した場合は、S14で広げられた学習値と、S16で算出した車線幅とから、新たな学習値を算出する。また、S13で車線の曲線部の出口近傍と判定した場合は、S14で狭められた学習値と、S16で算出した車線幅とから、新たな学習値を算出する。以上で本処理を終了する。   Subsequently, the white line candidates narrowed down in S15 are recognized as white lines, and white line parameters are calculated (S16). Subsequently, the lane width among the white line parameters calculated in S16 is learned (S17). If it is determined in S13 that it is in the vicinity of the entrance of the curved portion of the lane, a new learning value is calculated from the learning value widened in S14 and the lane width calculated in S16. When it is determined in S13 that the vehicle is near the exit of the curved portion of the lane, a new learning value is calculated from the learning value narrowed in S14 and the lane width calculated in S16. This process is complete | finished above.

以上説明した本実施形態によれば以下の効果を奏する。   According to this embodiment described above, the following effects are obtained.

・車線の直線部から曲線部への移行が判定された場合には、確信度の算出に用いられる車線幅の学習値が広げられる。これにより、車線の直線部から一般的に直線部よりも車線幅が広い曲線部へ移行する際は、直線部における学習値よりも広げられた学習値を用いて、白線候補の確信度が算出されるため、白線の誤認識を抑制できる。また、車線の曲線部から直線部への移行が判定された場合には、確信度の算出に用いられる車線幅の学習値が狭められる。これにより、車線の曲線部から一般的に曲線部よりも車線幅が狭い直線部へ移行する際は、曲線部における学習値よりも狭められた学習値を用いて、白線候補の確信度が算出されるため、走行区画線の誤認識を抑制できる。したがって、車線の曲線部の出入り口近傍において、白線の誤認識を抑制できる。ひいては、車線の曲線部の出入り口近傍において、不要な逸脱警報や操舵制御を抑制できる。   When the transition from the straight line portion to the curved portion of the lane is determined, the learning value of the lane width used for the certainty factor calculation is widened. As a result, when moving from a straight line part of a lane to a curved part that is generally wider than the straight line part, the confidence value of the white line candidate is calculated using a learning value that is wider than the learning value in the straight line part. Therefore, erroneous recognition of white lines can be suppressed. In addition, when it is determined that the lane is shifted from the curved line portion to the straight line portion, the learning value of the lane width used for calculating the certainty factor is narrowed. As a result, when transitioning from a curved part of a lane to a straight part where the lane width is generally narrower than the curved part, the certainty factor of the white line candidate is calculated using the learning value narrower than the learned value in the curved part. Therefore, the erroneous recognition of the travel lane marking can be suppressed. Therefore, erroneous recognition of the white line can be suppressed near the entrance / exit of the curved portion of the lane. As a result, unnecessary departure warning and steering control can be suppressed near the entrance / exit of the curved portion of the lane.

・一般に、車線幅は、車線の曲率に応じた値となっている。よって、車線の曲率及び曲率変化率の少なくとも一方に応じて、車線幅の学習値の変更量を変えることにより、直線部から曲線部へ移行する際、及び曲線部から直線部へ移行する際に、適切な車線幅の学習値にすることができる。ひいては、車線の曲線部の出入り口近傍において、白線の誤認識を適切に抑制できる。   ・ Generally, the lane width is a value corresponding to the curvature of the lane. Therefore, when changing from the straight line part to the curved part and changing from the curved part to the straight part by changing the amount of change of the learning value of the lane width according to at least one of the curvature of the lane and the curvature change rate It can be a learning value of an appropriate lane width. As a result, erroneous recognition of the white line can be appropriately suppressed near the entrance / exit of the curved portion of the lane.

・車線の曲線部の出入り口近傍において、車線幅の学習値を適切に補正することにより、車線の曲線部の出入り口近傍における走行区画線の誤認識を抑制できる。   -By appropriately correcting the learned value of the lane width in the vicinity of the entrance / exit of the curved portion of the lane, it is possible to suppress erroneous recognition of the travel lane line in the vicinity of the entrance / exit of the curved portion of the lane.

・車線の直線部と曲線部とでは、曲率が大きく異なる。よって、車線の曲率及び曲率変化率の少なくとも一方に基づいて、車線の直線部から曲線部への移行、及び車線の曲線部から直線部への移行を判定することができる。   -The curvature is greatly different between the straight part and the curved part of the lane. Therefore, based on at least one of the curvature of the lane and the curvature change rate, it is possible to determine the transition from the straight line portion of the lane to the curved portion and the transition from the curved portion of the lane to the straight line portion.

・一般的に、車両が車線の直線部から曲線部へ進入する前に、車両のハンドルが操作され速度が落とされる。また、車両が車線の曲線部から直線部へ進入する前に、車両のハンドルが操作され速度が上げられる。よって、車両50のヨーレート及び車速の変化から、車両50の前方の車線の曲率を算出することができる。   Generally, before the vehicle enters the curved portion from the straight line portion of the lane, the vehicle handle is operated to reduce the speed. Further, before the vehicle enters the straight line portion from the curved portion of the lane, the vehicle handle is operated to increase the speed. Therefore, the curvature of the lane ahead of the vehicle 50 can be calculated from changes in the yaw rate and vehicle speed of the vehicle 50.

(他の実施形態)
・曲率算出部22は、白線候補抽出部21により抽出された白線候補から、車両50の前方の車線の曲率を算出してもよい。白線候補から車線の曲率を算出する場合、ヨーレートや車速の変化から車速の曲率を算出する場合よりも、車両50から遠方の車線の曲率を算出できる。なお、この場合、車線幅の一貫性以外の白線の特徴量に基づいて算出した確信度が比較的高い白線候補を用いて、車線の曲率を算出するとよい。図4に示すように、曲線部の出口近傍から進行方向へ、車線に並列して自転車専用道が併設されている場合、白線Lr及びLαに対応する白線候補のどちらも、車線幅の一貫性以外の白線の特徴量に基づいて算出した確信度が比較的高くなるおそれがある。しかしながら、どちらの白線候補も直線になるので、どちらで車線の曲率を算出しても支障はない。
(Other embodiments)
The curvature calculating unit 22 may calculate the curvature of the lane ahead of the vehicle 50 from the white line candidates extracted by the white line candidate extracting unit 21. When calculating the curvature of the lane from the white line candidate, it is possible to calculate the curvature of the lane far from the vehicle 50 than when calculating the curvature of the vehicle speed from the change in the yaw rate or the vehicle speed. In this case, the curvature of the lane may be calculated using a white line candidate with a relatively high certainty factor calculated based on the feature amount of the white line other than the consistency of the lane width. As shown in FIG. 4, when a bicycle exclusive road is provided in parallel with the lane from the vicinity of the exit of the curved portion to the traveling direction, both of the white line candidates corresponding to the white lines Lr and Lα are consistent in the lane width. There is a possibility that the certainty calculated based on the feature amount of the white line other than is relatively high. However, since both white line candidates are straight, there is no problem in calculating the curvature of the lane with either one.

・直線部用の車線幅の学習値と、曲線部用の車線幅の学習値とを分け、直線部と曲線部とでそれぞれ個別に車線幅を学習するようにし、車線の直線部から曲線部への移行が判定された場合に、車線幅の学習値を補正しないで、直線部用の車線幅の学習値を曲線部用の学習値に切り替えるようにしてもよい。この場合、曲線部用の車線幅の学習値として、直線部用の学習値よりも広い値の学習値を、段階的に複数用意しておき、車線の曲率及び曲率変化率の少なくとも一方に応じて、曲線部用の車線幅の学習値を選択して、切り替えるようにするとよい。そして、車線の曲線部から直線部への移行が判定された場合には、車線幅の学習値を補正しないで、曲線部用の車線幅の学習値から曲線部用の車線幅の学習値に切り替える。このようにしても、車線の曲線部の出入り口近傍における白線の誤認識を抑制することができる。   ・ The learning value of the lane width for the straight line part and the learned value of the lane width for the curved part are separated, and the lane width is separately learned for each of the straight line part and the curved part. When the shift to is determined, the lane width learning value for the straight line portion may be switched to the learning value for the curve portion without correcting the lane width learning value. In this case, as the learning value for the lane width for the curved portion, a plurality of learning values that are wider than the learning value for the straight portion are prepared in stages, and according to at least one of the curvature of the lane and the curvature change rate. Thus, the learning value of the lane width for the curved portion may be selected and switched. Then, when the transition from the curved portion of the lane to the straight portion is determined, the learned value of the lane width is not corrected, but the learned value of the lane width for the curved portion is changed to the learned value of the lane width for the curved portion. Switch. Even if it does in this way, the erroneous recognition of the white line in the vicinity of the entrance / exit of the curve part of a lane can be suppressed.

10…車載カメラ、20…ECU、50…車両。   10: In-vehicle camera, 20: ECU, 50: Vehicle.

Claims (6)

車両(50)に搭載されたカメラ(10)により撮影された画像から、道路の車線を区画する走行区画線の候補である区画線候補を抽出する抽出手段と、
前記車線の幅を含む前記走行区画線の特徴量に基づいて、前記抽出手段により抽出された前記区画線候補の前記走行区画線である確信度を算出する確信度算出手段と、
前記確信度算出手段により算出された前記確信度に基づいて、前記抽出手段により抽出された前記区画線候補から、認識対象となる前記区画線候補を選択する選択手段と、
前記選択手段により選択された前記区画線候補に基づいて、前記車線の幅を学習して学習値を取得する学習手段と、
を備え、
前記確信度算出手段は、前記学習値を用いて前記確信度を算出する走行区画線認識装置(20)であって、
前記車線の直線部から曲線部への移行及び前記車線の曲線部から直線部への移行を判定する判定手段と、
前記判定手段により前記車線の直線部から曲線部への移行が判定された場合に、前記確信度算出手段により用いられる前記学習値を広げるとともに、前記判定手段により前記車線の曲線部から直線部への移行が判定された場合に、前記確信度算出手段により用いられる前記学習値を狭める変更手段と、
を備えることを特徴とする走行区画線認識装置。
Extraction means for extracting lane line candidates that are candidates for travel lane lines that divide road lanes from an image taken by a camera (10) mounted on the vehicle (50);
A certainty factor calculating means for calculating a certainty factor that is the traveling lane line of the lane line candidate extracted by the extracting means, based on the feature amount of the traveling lane line including the width of the lane;
A selection unit that selects the lane line candidate to be recognized from the lane line candidates extracted by the extraction unit based on the certainty factor calculated by the certainty factor calculation unit;
Learning means for learning a width of the lane and acquiring a learning value based on the lane marking candidates selected by the selection means;
With
The certainty factor calculating means is a travel lane marking recognition device (20) that calculates the certainty factor using the learned value,
Determination means for determining the transition from the straight line portion of the lane to the curved portion and the shift from the curved portion of the lane to the straight portion;
When the determination unit determines that the lane is shifted from the straight line part to the curved line part, the learning value used by the certainty factor calculating part is widened, and the determination part changes the lane from the curved line part to the straight line part. A changing means for narrowing the learning value used by the certainty factor calculating means when the transition is determined,
A travel lane marking recognition device comprising:
前記変更手段は、前記車線の曲率に基づいて、前記確信度算出手段により用いられる前記学習値の変更量を変化させる請求項1に記載の走行区画線認識装置。   The travel lane line recognition device according to claim 1, wherein the change unit changes a change amount of the learning value used by the certainty factor calculation unit based on a curvature of the lane. 前記変更手段は、前記判定手段により前記車線の直線部から曲線部への移行が判定された場合に、前記学習手段により学習された前記学習値を広げるように補正するとともに、前記判定手段により前記車線の曲線部から直線部への移行が判定された場合に、前記学習手段により学習された前記学習値を狭めるように補正する請求項1又は2に記載の走行区画線認識装置。   The changing means corrects the learning value learned by the learning means to be widened when the judging means judges the transition from the straight line portion to the curved portion of the lane, and the judging means The travel lane marking recognition device according to claim 1 or 2, wherein when the transition from the curved portion of the lane to the straight portion is determined, correction is performed so as to narrow the learned value learned by the learning means. 前記判定手段は、前記車線の曲率に基づいて、前記車線の直線部から曲線部への移行及び前記車線の曲線部から直線部への移行を判定する請求項1〜3のいずれか1項に記載の走行区画線認識装置。   4. The method according to claim 1, wherein the determination unit determines the transition from the straight line portion to the curved portion of the lane and the shift from the curved portion to the straight portion of the lane based on the curvature of the lane. The travel lane marking recognition device described. 前記判定手段は、前記抽出手段により抽出された前記区画線候補から前記車線の曲率を算出する請求項1〜4のいずれか1項に記載の走行区画線認識装置。   The travel lane line recognition device according to any one of claims 1 to 4, wherein the determination unit calculates a curvature of the lane from the lane line candidates extracted by the extraction unit. 前記判定手段は、前記車両のヨーレート、及び車速の変化から前記車線の曲率を算出する請求項1〜4のいずれか1項に記載の走行区画線認識装置。   5. The travel lane marking recognition device according to claim 1, wherein the determination unit calculates a curvature of the lane from a change in a yaw rate of the vehicle and a vehicle speed.
JP2015041919A 2015-03-04 2015-03-04 Traveling line recognition device Active JP6408935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015041919A JP6408935B2 (en) 2015-03-04 2015-03-04 Traveling line recognition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015041919A JP6408935B2 (en) 2015-03-04 2015-03-04 Traveling line recognition device

Publications (2)

Publication Number Publication Date
JP2016162323A true JP2016162323A (en) 2016-09-05
JP6408935B2 JP6408935B2 (en) 2018-10-17

Family

ID=56845329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015041919A Active JP6408935B2 (en) 2015-03-04 2015-03-04 Traveling line recognition device

Country Status (1)

Country Link
JP (1) JP6408935B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109271885A (en) * 2018-08-29 2019-01-25 广东工业大学 A kind of Bird's Nest recognition methods based on width study
JP2019212154A (en) * 2018-06-07 2019-12-12 株式会社Soken Road boundary detection device
JP2020135091A (en) * 2019-02-14 2020-08-31 株式会社Soken Recognition device and recognition method
US11068735B2 (en) 2017-12-05 2021-07-20 Denso Corporation Reliability calculation apparatus
DE102022202603A1 (en) 2022-03-16 2023-09-21 Volkswagen Aktiengesellschaft Method for increasing the availability of a cross-guiding assistance system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0935065A (en) * 1995-07-24 1997-02-07 Mitsubishi Electric Corp On-vehicle image processor
JP2005190375A (en) * 2003-12-26 2005-07-14 Toyota Motor Corp White line detector
JP2007283876A (en) * 2006-04-14 2007-11-01 Toyota Motor Corp Lane keeping device, and lane keeping system
US20080055114A1 (en) * 2006-07-06 2008-03-06 Samsung Electronics Co., Ltd. Apparatus and method for generating driver assistance information of traveling vehicle
JP2008232948A (en) * 2007-03-22 2008-10-02 Nissan Diesel Motor Co Ltd On-vehicle radar device
JP2010151691A (en) * 2008-12-25 2010-07-08 Aisin Aw Co Ltd Road shape estimation device, road shape estimation method, and road shape estimation program
JP2012058983A (en) * 2010-09-08 2012-03-22 Fuji Heavy Ind Ltd Lane estimating device
JP2016081361A (en) * 2014-10-20 2016-05-16 株式会社日本自動車部品総合研究所 Travel compartment line recognition apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0935065A (en) * 1995-07-24 1997-02-07 Mitsubishi Electric Corp On-vehicle image processor
JP2005190375A (en) * 2003-12-26 2005-07-14 Toyota Motor Corp White line detector
JP2007283876A (en) * 2006-04-14 2007-11-01 Toyota Motor Corp Lane keeping device, and lane keeping system
US20080055114A1 (en) * 2006-07-06 2008-03-06 Samsung Electronics Co., Ltd. Apparatus and method for generating driver assistance information of traveling vehicle
JP2008232948A (en) * 2007-03-22 2008-10-02 Nissan Diesel Motor Co Ltd On-vehicle radar device
JP2010151691A (en) * 2008-12-25 2010-07-08 Aisin Aw Co Ltd Road shape estimation device, road shape estimation method, and road shape estimation program
JP2012058983A (en) * 2010-09-08 2012-03-22 Fuji Heavy Ind Ltd Lane estimating device
JP2016081361A (en) * 2014-10-20 2016-05-16 株式会社日本自動車部品総合研究所 Travel compartment line recognition apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11068735B2 (en) 2017-12-05 2021-07-20 Denso Corporation Reliability calculation apparatus
JP2019212154A (en) * 2018-06-07 2019-12-12 株式会社Soken Road boundary detection device
JP7115910B2 (en) 2018-06-07 2022-08-09 株式会社Soken road boundary detector
CN109271885A (en) * 2018-08-29 2019-01-25 广东工业大学 A kind of Bird's Nest recognition methods based on width study
JP2020135091A (en) * 2019-02-14 2020-08-31 株式会社Soken Recognition device and recognition method
JP7252001B2 (en) 2019-02-14 2023-04-04 株式会社Soken Recognition device and recognition method
DE102022202603A1 (en) 2022-03-16 2023-09-21 Volkswagen Aktiengesellschaft Method for increasing the availability of a cross-guiding assistance system

Also Published As

Publication number Publication date
JP6408935B2 (en) 2018-10-17

Similar Documents

Publication Publication Date Title
US10685242B2 (en) Lane detection apparatus
US10147003B2 (en) Lane detection device and method thereof, curve starting point detection device and method thereof, and steering assistance device and method thereof
JP6096723B2 (en) Traveling lane marking recognition device and traveling lane marking recognition program
JP6132359B2 (en) Traveling line recognition device
JP5966965B2 (en) Lane boundary departure control device and lane boundary departure suppression method
JP6408935B2 (en) Traveling line recognition device
US9965691B2 (en) Apparatus for recognizing lane partition lines
JP6600995B2 (en) Vehicle control apparatus and program
JP2009237706A (en) Lane recognition device for vehicle, vehicle, and lane recognition program for vehicle
JP2015165368A (en) Traveling section line recognition device
US10339393B2 (en) Demarcation line recognition apparatus
JP6965739B2 (en) Vehicle control device
WO2014104183A1 (en) Boundary recognition device and branch assessment device
JP2018180663A (en) Road parameter estimation device
JP6189816B2 (en) Traveling line recognition device
US20150235090A1 (en) Lane-line recognition apparatus
JP5977275B2 (en) Branch recognition device
JP6165120B2 (en) Traveling line recognition device
JP2018005618A (en) Road recognition device
JP4913101B2 (en) Road shape detection device for vehicles
US20180005051A1 (en) Travel road shape recognition apparatus and travel road shape recognition method
JP6426512B2 (en) Driving lane recognition system
US11010618B2 (en) Apparatus for identifying line marking on road surface
JP5444130B2 (en) Vehicle white line recognition device
JP2017123009A (en) Section line recognition device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180921

R150 Certificate of patent or registration of utility model

Ref document number: 6408935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250