JP2016160778A - Exhaust heat recovery equipment - Google Patents

Exhaust heat recovery equipment Download PDF

Info

Publication number
JP2016160778A
JP2016160778A JP2015037804A JP2015037804A JP2016160778A JP 2016160778 A JP2016160778 A JP 2016160778A JP 2015037804 A JP2015037804 A JP 2015037804A JP 2015037804 A JP2015037804 A JP 2015037804A JP 2016160778 A JP2016160778 A JP 2016160778A
Authority
JP
Japan
Prior art keywords
exhaust
bypass
valve
heat exchange
recovery device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015037804A
Other languages
Japanese (ja)
Other versions
JP6522986B2 (en
Inventor
史朗 中嶋
Shiro Nakajima
史朗 中嶋
宏章 鱒渕
Hiroaki Masubuchi
宏章 鱒渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli Corp
Original Assignee
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei Corp filed Critical Calsonic Kansei Corp
Priority to JP2015037804A priority Critical patent/JP6522986B2/en
Publication of JP2016160778A publication Critical patent/JP2016160778A/en
Application granted granted Critical
Publication of JP6522986B2 publication Critical patent/JP6522986B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Silencers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide exhaust heat recovery equipment for suppressing the internal leakage of exhaust gas to flow behind a valve.SOLUTION: Exhaust heat recovery equipment 1 for allowing a variation in the flow amount of exhaust gas to be heat-exchanged according to an operation mode includes a valve 70 for setting the direction of the exhaust gas to flow into a heat exchange part 2 or a bypass part 3. The valve 70 has a valve shaft 75, an upstream side valve plate part 72 extending from the valve shaft 75 to the upstream side, and a downstream side valve plate part 73 extending from the valve shaft 75 to the downstream side. A boundary part 45 isolating the heat exchange part 2 and the bypass part 3 from each other has a first seat part 46 and a second seat part 47 opposing each other across the downstream side valve plate part 73.SELECTED DRAWING: Figure 3

Description

本発明は、作動モードに応じて熱交換をする排気の流量が変えられる排気熱回収器に関する。   The present invention relates to an exhaust heat recovery device in which the flow rate of exhaust for exchanging heat according to an operation mode can be changed.

特許文献1には、感温式バルブの作動によって、排気の流れ方向を熱回収室側に向ける作動モードと、排気の流れ方向を迂回路側に向ける作動モードと、に切り換えられる排熱回収器(排気熱回収器)が開示されている。   Patent Document 1 discloses an exhaust heat recovery device that can be switched between an operation mode in which the flow direction of exhaust gas is directed toward the heat recovery chamber and an operation mode in which the flow direction of exhaust gas is directed toward the detour by the operation of the temperature sensitive valve. An exhaust heat recovery device) is disclosed.

感温式バルブは、温度に応じて作動するサーモワックス部と、サーモワックス部によって回転駆動される回転軸と、回転軸に結合された板状の流路切替ダンパと、を備える。   The temperature-sensitive valve includes a thermowax unit that operates according to temperature, a rotating shaft that is rotationally driven by the thermowax unit, and a plate-like flow path switching damper that is coupled to the rotating shaft.

熱回収室と迂回路との間には仕切り壁が設けられ、仕切り壁の近傍に感温式バルブの回転軸が配置される。   A partition wall is provided between the heat recovery chamber and the bypass, and the rotation shaft of the temperature-sensitive valve is disposed in the vicinity of the partition wall.

排気の流れ方向を熱回収室側に向ける作動モードでは、感温式バルブの流路切替ダンパが迂回路の入口を閉じる位置にあり、排気が感温式バルブ及び仕切り壁によって熱回収室へと導かれる。一方、排気の流れ方向を迂回路側に向ける作動モードでは、流路切替ダンパが回動して熱回収室の入口を閉じる位置に切り換えられることで、排気が感温式バルブ及び仕切り壁によって迂回路へと導かれる。   In the operation mode in which the flow direction of the exhaust is directed to the heat recovery chamber side, the flow path switching damper of the temperature-sensitive valve is in a position to close the detour entrance, and the exhaust is transferred to the heat recovery chamber by the temperature-sensitive valve and the partition wall. Led. On the other hand, in the operation mode in which the flow direction of the exhaust is directed to the detour side, the flow path switching damper rotates and is switched to a position to close the inlet of the heat recovery chamber, so that the exhaust is detoured by the temperature sensitive valve and the partition wall. Led to.

特開2010−229847号公報JP 2010-229847 A

しかしながら、特許文献1に記載の排熱回収器にあっては、仕切り壁の近傍に感温式バルブの回転軸が配置されるため、感温式バルブの回転軸の外周と仕切り壁の上流端の間に間隙がある。このため、上記各作動モードにおいて排気の一部が間隙を通って感温式バルブの背後へと流れる内部洩れが生じるという問題がある。   However, in the exhaust heat recovery device described in Patent Document 1, since the rotation shaft of the temperature-sensitive valve is disposed in the vicinity of the partition wall, the outer periphery of the rotation shaft of the temperature-sensitive valve and the upstream end of the partition wall are arranged. There is a gap between them. For this reason, in each of the above operation modes, there is a problem that an internal leak occurs in which part of the exhaust flows through the gap to the back of the temperature-sensitive valve.

本発明は、上記の問題点に鑑みてなされたものであり、排気がバルブの背後へと流れる内部洩れが抑えられる排気熱回収器を提供することを目的とする。   The present invention has been made in view of the above problems, and an object of the present invention is to provide an exhaust heat recovery device in which internal leakage of exhaust gas flowing behind the valve can be suppressed.

本発明のある態様によれば、作動モードに応じて熱交換をする排気の流量が変えられる排気熱回収器であって、排気が導入される分流部と、分流部から導かれる排気が熱交換をする熱交換部と、分流部から導かれる排気が熱交換部を迂回して流れるバイパス部と、分流部を通過する排気の流れ方向を熱交換部又はバイパス部に向けるバルブと、熱交換部とバイパス部とを隔てる境界部と、熱交換部又はバイパス部を通過した排気を導く集合部と、を備え、バルブは、作動モードに応じて回転するバルブ軸と、バルブ軸から排気の流れ方向について上流側に延びる上流側バルブ板部と、バルブ軸から排気の流れ方向について下流側に延びる下流側バルブ板部と、を有し、境界部は、下流側バルブ板部を挟んで対向する第1シート部及び第2シート部を有することを特徴とする排気熱回収器が提供される。   According to an aspect of the present invention, there is provided an exhaust heat recovery device in which the flow rate of exhaust gas for exchanging heat is changed according to an operation mode, wherein the exhaust gas introduced into the exhaust gas flow and the exhaust gas introduced from the diverter gas are heat exchanged. A heat exchanging part that bypasses the heat exchanging part, a valve that directs the flow direction of the exhaust gas that passes through the diverting part to the heat exchanging part or the bypass part, and a heat exchanging part And a collecting portion for guiding exhaust gas that has passed through the heat exchanging portion or the bypass portion, and the valve is configured to rotate in accordance with an operation mode, and a flow direction of the exhaust gas from the valve shaft. And an upstream valve plate portion extending upstream from the valve shaft and a downstream valve plate portion extending downstream from the valve shaft in the exhaust flow direction, and the boundary portion is opposed to the downstream valve plate portion. 1 seat and 2nd seat Exhaust heat recovery device is provided, characterized in that it comprises a part.

上記態様によれば、バルブが回動することにより排気の流れ方向が熱交換部又はバイパス部に向かうように切り換えられる。このときに、バルブ軸を中心に回動する下流側バルブ板部が第1シート部又は第2シート部に対峙することにより、バルブと境界部との間に生じる隙間が小さく抑えられ、排気がバルブの背後へと流れる内部洩れが抑えられる。   According to the above aspect, the flow direction of the exhaust gas is switched to the heat exchange part or the bypass part by rotating the valve. At this time, the downstream valve plate portion that rotates about the valve shaft faces the first seat portion or the second seat portion, so that a gap generated between the valve and the boundary portion is suppressed to be small, and exhaust is reduced. Internal leakage that flows behind the valve is suppressed.

本発明の第1実施形態に係る排気熱回収器を示す斜視図である。It is a perspective view showing an exhaust heat recovery device concerning a 1st embodiment of the present invention. 排気熱回収器の分解斜視図である。It is a disassembled perspective view of an exhaust heat recovery device. 図1のIII−III線に沿う排気熱回収器の断面図である。FIG. 3 is a cross-sectional view of the exhaust heat recovery unit along the line III-III in FIG. 1. 排気熱回収器の作動モードが切り換えられた状態を示す断面図である。It is sectional drawing which shows the state in which the operation mode of the exhaust heat recovery device was switched. 本発明の第2実施形態に係る排気熱回収器を示す断面図である。It is sectional drawing which shows the exhaust heat recovery device which concerns on 2nd Embodiment of this invention.

以下、添付図面を参照しながら本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

<第1実施形態>
図1に示す排気熱回収器1は、車両に搭載されるエンジン(図示省略)の暖機運転時などに、排気(流体)の熱によって媒体を加熱するものである。
<First Embodiment>
An exhaust heat recovery device 1 shown in FIG. 1 heats a medium by the heat of exhaust (fluid) during a warm-up operation of an engine (not shown) mounted on a vehicle.

媒体は、エンジンを循環する冷却液が用いられる。暖機運転時に、排気の熱によって媒体が加熱されることにより、起動後のエンジンやオイルクーラ、又は他の機器などが暖められる。例えば、媒体が空調装置(図示省略)を循環し、車両の暖房が行われるようにしてもよい。   The medium is a coolant that circulates through the engine. During the warm-up operation, the engine is heated by the heat of the exhaust, so that the engine, the oil cooler, or other equipment after startup is warmed. For example, the medium may circulate through an air conditioner (not shown) and the vehicle may be heated.

排気熱回収器1は、排気が導入される分流部4と、分流部4から導かれる排気が媒体と熱交換をする熱交換部2と、分流部4から導かれる排気が熱交換部2を迂回して流れるバイパス部3と、熱交換部2又はバイパス部3を通過した排気を導く集合部5と、を備える。   The exhaust heat recovery device 1 includes a flow dividing section 4 into which exhaust gas is introduced, a heat exchange section 2 in which exhaust gas guided from the flow distribution section 4 exchanges heat with a medium, and exhaust gas guided from the flow distribution section 4 passes through the heat exchange section 2. The bypass part 3 which flows by detouring and the gathering part 5 which guides the exhaust gas that has passed through the heat exchange part 2 or the bypass part 3 are provided.

エンジンから排出される排気は、図1に矢印Aで示すように分流部4に流入し、分流部4を介して熱交換部2又はバイパス部3を通過した後に、矢印Bで示すように集合部5から流出する。図中のOは、排気熱回収器1の中心線である。   Exhaust gas discharged from the engine flows into the flow dividing section 4 as shown by an arrow A in FIG. 1, passes through the heat exchange section 2 or the bypass section 3 via the flow dividing section 4, and then gathers as shown by an arrow B It flows out from the part 5. O in the figure is the center line of the exhaust heat recovery device 1.

図2に示すように、熱交換部2は、扁平な筒状をした複数のチューブ32と、各チューブ32を収容する箱状をしたシェル36と、を備える。   As shown in FIG. 2, the heat exchanging unit 2 includes a plurality of flat tubes 32 and a box-shaped shell 36 that accommodates the tubes 32.

図3に示すように、チューブ32の内部には、中心線O方向に延びる熱交換流路31が形成される。各チューブ32は、中心線Oに直交する方向に並び、それぞれの一端が熱交換部2の入口33(上流端)に並んで開口し、それぞれの他端が熱交換部2の出口34(下流端)に並んで開口している。排気は、各チューブ32内の熱交換流路31を通って中心線O方向に流れる。   As shown in FIG. 3, a heat exchange channel 31 extending in the direction of the center line O is formed inside the tube 32. Each tube 32 is arranged in a direction orthogonal to the center line O, and one end of each tube 32 is opened along with the inlet 33 (upstream end) of the heat exchange unit 2, and the other end is the outlet 34 (downstream) of the heat exchange unit 2. Open side by side. Exhaust gas flows in the direction of the center line O through the heat exchange flow path 31 in each tube 32.

シェル36の内部には、媒体(冷却液)が流れる媒体流路35が形成される。シェル36の外側には、管状の媒体導入部16及び媒体排出部17が突出している。媒体導入部16及び媒体排出部17には、それぞれ媒体を導く配管(図示省略)が接続される。   Inside the shell 36, a medium flow path 35 through which a medium (coolant) flows is formed. A tubular medium introduction portion 16 and a medium discharge portion 17 protrude outside the shell 36. Pipes (not shown) for guiding the medium are respectively connected to the medium introduction unit 16 and the medium discharge unit 17.

エンジンから冷却通路(図示省略)を通じて導かれる媒体は、図1に矢印Cで示すように媒体導入部16を通って媒体流路35に流入し、媒体流路35にて各チューブ32のまわりを流れる過程で排気との間で熱交換をする。媒体流路35にて温度が高くなった媒体は、矢印Dで示すように媒体排出部17から流出し、冷却通路を通じてエンジンへと導かれる。   The medium guided from the engine through a cooling passage (not shown) flows into the medium flow path 35 through the medium introducing portion 16 as indicated by an arrow C in FIG. Heat is exchanged with the exhaust in the flow process. The medium whose temperature has increased in the medium flow path 35 flows out of the medium discharge portion 17 as indicated by an arrow D, and is guided to the engine through the cooling passage.

シェル36は、略矩形の断面形状をした箱状に形成される。シェル36は、中心線O方向に平板状に延びる4つの外壁部を有する。4つの外壁部のうちでバイパス部3に対向して延びる部位が、後述するように境界部45の熱交換部境界壁36aを構成する。   The shell 36 is formed in a box shape having a substantially rectangular cross-sectional shape. The shell 36 has four outer wall portions extending in a flat plate shape in the direction of the center line O. Of the four outer wall portions, a portion extending facing the bypass portion 3 constitutes a heat exchange portion boundary wall 36a of the boundary portion 45 as described later.

バイパス部3は、バイパス流路39を形成する筒状のバイパス管30を備える。バイパス管30は、中心線O方向に延び、排気の流れ方向に対して熱交換部2のチューブ32と並列に配置される。   The bypass unit 3 includes a cylindrical bypass pipe 30 that forms a bypass flow path 39. The bypass pipe 30 extends in the direction of the center line O, and is arranged in parallel with the tube 32 of the heat exchange unit 2 with respect to the exhaust flow direction.

バイパス部3(バイパス管30)の入口37(上流端)は、熱交換部2(シェル36)の入口33に対して中心線Oと直交する左右方向に並んで開口する。同様に、バイパス部3の出口38(下流端)は、熱交換部2の出口34に対して中心線Oと直交する左右方向に並んで開口する。排気は、バイパス流路39を通って中心線O方向に流れる。   The inlet 37 (upstream end) of the bypass part 3 (bypass pipe 30) opens side by side in the left-right direction perpendicular to the center line O with respect to the inlet 33 of the heat exchange part 2 (shell 36). Similarly, the outlet 38 (downstream end) of the bypass unit 3 opens side by side in the left-right direction orthogonal to the center line O with respect to the outlet 34 of the heat exchange unit 2. The exhaust gas flows through the bypass channel 39 in the direction of the center line O.

バイパス管30は、D字形の断面形状を有する筒状に形成される。勿論、バイパス管30は、他の断面形状、例えば三角形などの形状を成しても良い。バイパス管30は、シェル36の熱交換部境界壁36aに対向して延びる平板状のバイパス部境界壁30bと、バイパス部境界壁30bの両側から直交して延びる対の側壁部30aと、各側壁部30aから湾曲して延びる湾曲壁部30cと、を有する。   The bypass pipe 30 is formed in a cylindrical shape having a D-shaped cross section. Of course, the bypass pipe 30 may have other cross-sectional shapes such as a triangle. The bypass pipe 30 includes a flat plate-like bypass part boundary wall 30b extending opposite to the heat exchange part boundary wall 36a of the shell 36, a pair of side wall parts 30a extending orthogonally from both sides of the bypass part boundary wall 30b, and each side wall. And a curved wall portion 30c extending curvedly from the portion 30a.

分流部4は、排気を導入する分流路29を形成する分流管6(入口側ディフューザ)と、分流管6の内部に収容されるバルブ70と、を備える。バルブ70が分流管6内で回動することにより、分流部4を通過する排気の流れ方向が熱交換部2又はバイパス部3に向けられる。分流部4では、バルブ70が分流管6内で回動する角度に応じて、熱交換部2とバイパス部3とに分流する排気の流量割合が変えられる。   The diversion unit 4 includes a diversion pipe 6 (inlet side diffuser) that forms a diversion passage 29 for introducing exhaust gas, and a valve 70 that is accommodated in the diversion pipe 6. By rotating the valve 70 in the flow dividing pipe 6, the flow direction of the exhaust gas passing through the flow dividing section 4 is directed to the heat exchange section 2 or the bypass section 3. In the diversion unit 4, the flow rate ratio of the exhaust gas diverted to the heat exchange unit 2 and the bypass unit 3 is changed according to the angle at which the valve 70 rotates in the diversion pipe 6.

図2に示すように、テーパ筒状の分流管6は、半筒状の上側分流管部6aと、半筒状の下側分流管部6bと、が互いに接合されることによって形成される。分流路29は、その流路面積が排気の流れ方向について次第に大きくなるように形成される。   As shown in FIG. 2, the tapered cylindrical branch pipe 6 is formed by joining a semi-tubular upper branch pipe section 6a and a semi-tubular lower branch pipe section 6b to each other. The branch channel 29 is formed so that its channel area gradually increases in the exhaust flow direction.

分流管6の入口24(上流端)は、フランジ8を介してエンジンから延びる排気管(図示省略)に接続される。エンジンから排出される排気は、矢印Aで示すように、排気管から分流管6内に流入する。   The inlet 24 (upstream end) of the branch pipe 6 is connected to an exhaust pipe (not shown) extending from the engine via the flange 8. Exhaust gas discharged from the engine flows into the branch pipe 6 from the exhaust pipe as indicated by an arrow A.

分流管6の出口26(下流端)には、熱交換部2の入口33とバイパス部3の入口37とが並んで接続される。   An inlet 33 of the heat exchange unit 2 and an inlet 37 of the bypass unit 3 are connected side by side to the outlet 26 (downstream end) of the branch pipe 6.

バルブ70は、分流管6に回転自在に支持されるバルブ軸75と、バルブ軸75に結合されるバルブ板71と、を有する。   The valve 70 includes a valve shaft 75 that is rotatably supported by the flow dividing pipe 6, and a valve plate 71 that is coupled to the valve shaft 75.

バルブ板71は、複数のネジ(図示省略)を介してバルブ軸75に結合される。なお、これに限らず、バルブ板71は、バルブ軸75と一体に形成される構成としてもよい。   The valve plate 71 is coupled to the valve shaft 75 via a plurality of screws (not shown). However, the present invention is not limited thereto, and the valve plate 71 may be formed integrally with the valve shaft 75.

バルブ軸75は、分流管6の孔12に挿入されることにより、分流管6に回転自在に支持される。バルブ軸75は、中心線Oと直交する上下方向に延びるように配置される。   The valve shaft 75 is rotatably supported by the flow dividing pipe 6 by being inserted into the hole 12 of the flow dividing pipe 6. The valve shaft 75 is disposed so as to extend in the vertical direction perpendicular to the center line O.

バルブ軸75には、モータなどのアクチュエータ(図示省略)が連結される。アクチュエータは、コントローラ(図示省略)からの指令に応じてバルブ軸75を回転駆動する。バルブ70の回動位置は、図3に示すように排気を熱交換部2へ導く熱交換位置と、図4に示すように排気をバイパス部3へ導くバイパス位置と、の間で任意に切り換えられる。   An actuator (not shown) such as a motor is connected to the valve shaft 75. The actuator rotationally drives the valve shaft 75 in response to a command from a controller (not shown). The rotation position of the valve 70 is arbitrarily switched between a heat exchange position for guiding exhaust gas to the heat exchanging unit 2 as shown in FIG. 3 and a bypass position for guiding exhaust gas to the bypass unit 3 as shown in FIG. It is done.

なお、アクチュエータは、上述した構成に限らず、媒体の温度に応じて作動する感温材を用いるものであってもよい。   The actuator is not limited to the above-described configuration, and a temperature sensitive material that operates according to the temperature of the medium may be used.

図3、図4に示すように、集合部5は、排気を導く合流路60を形成するテーパ筒状の集合管23(出口側ディフューザ)を備える。図2に示すように、集合管23は、半筒状の上側集合管部23aと、半筒状の下側集合管部23bと、が互いに接合されることによって形成される。合流路60は、その流路面積が排気の流れ方向について次第に減少するように形成される。   As shown in FIGS. 3 and 4, the collecting portion 5 includes a tapered tubular collecting pipe 23 (outlet side diffuser) that forms a combined flow path 60 that guides exhaust gas. As shown in FIG. 2, the collecting tube 23 is formed by joining a semi-cylindrical upper collecting tube portion 23a and a semi-cylindrical lower collecting tube portion 23b to each other. The combined channel 60 is formed such that the channel area gradually decreases in the exhaust flow direction.

集合管23の入口52(上流端)には、熱交換部2の出口34とバイパス部3の出口38とが左右方向に並んで接続される。   An outlet 34 of the heat exchange part 2 and an outlet 38 of the bypass part 3 are connected to the inlet 52 (upstream end) of the collecting pipe 23 side by side in the left-right direction.

集合管23の出口51(下流端)は、フランジ25を介して排気管(図示省略)に接続される。集合管23を通って導かれる排気は、矢印Bで示すように排気管に流出し、排気管を通って外部へと排出される。   An outlet 51 (downstream end) of the collecting pipe 23 is connected to an exhaust pipe (not shown) via the flange 25. Exhaust gas guided through the collecting pipe 23 flows into the exhaust pipe as indicated by an arrow B, and is discharged to the outside through the exhaust pipe.

排気熱回収器1は、熱交換部2とバイパス部3とを隔てる境界部45を備える。境界部45は、熱交換部境界壁36a、バイパス部境界壁30b、上流側断熱体41、及び下流側断熱体42を備える。   The exhaust heat recovery device 1 includes a boundary part 45 that separates the heat exchange part 2 and the bypass part 3. The boundary portion 45 includes a heat exchange portion boundary wall 36 a, a bypass portion boundary wall 30 b, an upstream heat insulator 41, and a downstream heat insulator 42.

バイパス部3のバイパス部境界壁30bと熱交換部2の熱交換部境界壁36aとは、互いに対向し、かつ中心線Oと平行に延びる平面状に形成される。   The bypass part boundary wall 30b of the bypass part 3 and the heat exchange part boundary wall 36a of the heat exchange part 2 are formed in a planar shape facing each other and extending parallel to the center line O.

上流側断熱体41、下流側断熱体42は、熱交換部境界壁36aとバイパス部境界壁30bとの間に間隔を設ける隔離部として設けられる。   The upstream-side heat insulator 41 and the downstream-side heat insulator 42 are provided as isolation portions that provide a gap between the heat exchange portion boundary wall 36a and the bypass portion boundary wall 30b.

上流側断熱体41、下流側断熱体42は、熱交換部境界壁36a及びバイパス部境界壁30bより熱伝導率が低い断熱材によって形成される。断熱材は、例えば、多孔質素材を金属層で包囲し、内部を真空にしたものが用いられる。   The upstream heat insulator 41 and the downstream heat insulator 42 are formed of a heat insulating material having a lower thermal conductivity than the heat exchange section boundary wall 36a and the bypass section boundary wall 30b. As the heat insulating material, for example, a porous material surrounded by a metal layer and evacuated is used.

なお、上述した構成に限らず、熱交換部境界壁36aとバイパス部境界壁30bとの間に間隔を設ける隔離部として、熱交換部境界壁36a及びバイパス部境界壁30bと同等の熱伝導率を有する部材が設けられる構成としてしてもよい。   In addition, it is not restricted to the structure mentioned above, As a separation part which provides a space | interval between the heat exchange part boundary wall 36a and the bypass part boundary wall 30b, heat conductivity equivalent to the heat exchange part boundary wall 36a and the bypass part boundary wall 30b It may be configured to be provided with a member having

熱交換部境界壁36a、バイパス部境界壁30b、上流側断熱体41、及び下流側断熱体42の間には、空気層9が形成される。上流側断熱体41、下流側断熱体42、及び空気層9は、バイパス部3と熱交換部2との間で熱伝達を抑制する断熱層を構成する。   An air layer 9 is formed between the heat exchange section boundary wall 36 a, the bypass section boundary wall 30 b, the upstream heat insulator 41, and the downstream heat insulator 42. The upstream heat insulator 41, the downstream heat insulator 42, and the air layer 9 constitute a heat insulating layer that suppresses heat transfer between the bypass unit 3 and the heat exchange unit 2.

排気熱回収器1は、空気層9を覆うケース15を備える。空気層9は、ケース15によって覆われることにより、外部から遮断された空間として形成される。   The exhaust heat recovery device 1 includes a case 15 that covers the air layer 9. The air layer 9 is formed as a space blocked from the outside by being covered by the case 15.

半筒状のケース15は、熱交換部2及び境界部45の外形に沿った断面形状をしており、バイパス部3を挟むように延びる両端部18を有する。ケース15の両端部18は、バイパス管30の側壁部30aに接合される。   The semi-cylindrical case 15 has a cross-sectional shape along the outer shape of the heat exchange part 2 and the boundary part 45, and has both end parts 18 extending so as to sandwich the bypass part 3. Both end portions 18 of the case 15 are joined to the side wall portion 30 a of the bypass pipe 30.

バルブ70は、バルブ軸75が境界部45の端部から排気の流れ方向について上流側に所定の距離を持つように配置される。   The valve 70 is arranged such that the valve shaft 75 has a predetermined distance upstream from the end of the boundary 45 in the exhaust flow direction.

バルブ板71は、バルブ軸75に結合される結合部74と、結合部74から上流側に延びる上流側バルブ板部72と、結合部74から下流側に延びる下流側バルブ板部73と、を有する。上流側バルブ板部72の先端は、分流管6の内壁に沿って湾曲するように形成される。下流側バルブ板部73の先端は、バルブ軸75と平行に延びる直線状に形成される。   The valve plate 71 includes a coupling portion 74 coupled to the valve shaft 75, an upstream valve plate portion 72 extending upstream from the coupling portion 74, and a downstream valve plate portion 73 extending downstream from the coupling portion 74. Have. The distal end of the upstream side valve plate portion 72 is formed to be curved along the inner wall of the flow dividing pipe 6. The distal end of the downstream valve plate portion 73 is formed in a straight line extending in parallel with the valve shaft 75.

境界部45の端部には、バルブ軸75を中心に回動する下流側バルブ板部73を挟んで対向する第1シート部46及び第2シート部47が設けられる。   A first seat portion 46 and a second seat portion 47 that are opposed to each other with a downstream side valve plate portion 73 that rotates about the valve shaft 75 being provided are provided at the end portion of the boundary portion 45.

第1シート部46は、分流路29に臨む熱交換部境界壁36aの端部に形成される。第1シート部46は、バルブ軸75と平行に延び、下流側バルブ板部73の先端を当接させるように配置される。   The first sheet portion 46 is formed at the end portion of the heat exchange portion boundary wall 36 a that faces the branch channel 29. The first seat portion 46 extends in parallel with the valve shaft 75 and is disposed so as to abut the tip of the downstream side valve plate portion 73.

第2シート部47は、分流路29に臨むバイパス部境界壁30bの端部に形成される。第2シート部47は、バルブ軸75と平行に延び、下流側バルブ板部73の先端を当接させるように配置される。   The second sheet portion 47 is formed at an end portion of the bypass portion boundary wall 30 b that faces the branch channel 29. The second seat portion 47 extends in parallel with the valve shaft 75 and is disposed so as to abut the tip of the downstream side valve plate portion 73.

境界部45の端部には、分流路29に臨むバルブ収容凹部48が設けられる。バルブ収容凹部48には、回動する下流側バルブ板部73を収容される。   At the end of the boundary portion 45, a valve housing recess 48 facing the branch channel 29 is provided. The valve accommodating recess 48 accommodates the rotating downstream valve plate 73.

バルブ収容凹部48は、第1シート部46を含む熱交換部境界壁36aと、第2シート部47を含むバイパス部境界壁30bと、上流側断熱体41の端面と、によって形成される。   The valve housing recess 48 is formed by the heat exchange portion boundary wall 36 a including the first seat portion 46, the bypass portion boundary wall 30 b including the second seat portion 47, and the end surface of the upstream heat insulator 41.

上流側断熱体41の端面は、バルブ収容凹部48の底壁部を形成する。上流側断熱体41は、第1シート部46及び第2シート部47に対してバルブ軸75から離れる方向(図3において右方向)にオフセットされる。これにより、バルブ70が回動する作動時に、下流側バルブ板部73が上流側断熱体41に干渉しないようになっている。   The end surface of the upstream heat insulating body 41 forms a bottom wall portion of the valve accommodating recess 48. The upstream heat insulator 41 is offset with respect to the first seat portion 46 and the second seat portion 47 in a direction away from the valve shaft 75 (rightward in FIG. 3). Thus, the downstream valve plate 73 does not interfere with the upstream heat insulator 41 during the operation of rotating the valve 70.

次に、排気熱回収器1の作用について説明する。   Next, the operation of the exhaust heat recovery device 1 will be described.

エンジンから排出された排気は、バルブ70が回動することにより熱交換部2又はバイパス部3に流通する。   Exhaust gas discharged from the engine flows to the heat exchanging unit 2 or the bypass unit 3 as the valve 70 rotates.

エンジンの冷間時にて、排気熱回収器1が排気によって媒体を暖める熱回収作動モードでは、コントローラからの指令に応じてアクチュエータがバルブ70を図3に示す回動位置(熱交換位置)に保持する。これにより、分流路29に対してバイパス流路39が閉じられる一方、熱交換流路31が開かれる。排気は、図3に矢印E、F、Gで示すように分流路29、熱交換流路31、合流路60を通過するように導かれ、熱交換部2にて媒体と熱交換を行う。こうして、排気熱回収器1では媒体が排気の熱を吸収することで、媒体の温度が上昇する。   In the heat recovery operation mode in which the exhaust heat recovery device 1 warms the medium by exhaust when the engine is cold, the actuator holds the valve 70 in the rotation position (heat exchange position) shown in FIG. 3 in response to a command from the controller. To do. Thereby, the bypass flow path 39 is closed with respect to the branch flow path 29, while the heat exchange flow path 31 is opened. As shown by arrows E, F, and G in FIG. 3, the exhaust gas is guided to pass through the branch channel 29, the heat exchange channel 31, and the combined channel 60, and performs heat exchange with the medium in the heat exchange unit 2. Thus, in the exhaust heat recovery device 1, the temperature of the medium rises as the medium absorbs the heat of the exhaust.

上記熱回収作動モードでは、図3に示すようにバルブ70が分流管6内で傾斜し、上流側バルブ板部72の先端が分流管6の内壁に当接するとともに、下流側バルブ板部73の先端が境界部45の第1シート部46に当接する。これにより、バルブ70と分流管6の内壁又は境界部45との間に生じる隙間が小さく抑えられる。このため、排気の一部がバルブ70と境界部45の間を通ってバイパス流路39へと流れる内部洩れが抑えられる。この結果、排気熱回収器1では熱交換部2にて媒体が吸収する排気の熱量を高められ、エンジンなどの暖機が促される。   In the heat recovery operation mode, as shown in FIG. 3, the valve 70 is inclined in the diverter pipe 6, the tip of the upstream valve plate portion 72 is in contact with the inner wall of the diverter tube 6, and the downstream valve plate portion 73 The front end abuts on the first sheet portion 46 of the boundary portion 45. Thereby, the clearance gap produced between the valve | bulb 70 and the inner wall or boundary part 45 of the shunt pipe 6 is restrained small. For this reason, internal leakage in which part of the exhaust gas flows between the valve 70 and the boundary portion 45 to the bypass flow path 39 is suppressed. As a result, in the exhaust heat recovery device 1, the heat quantity of the exhaust absorbed by the medium in the heat exchanging unit 2 is increased, and warming up of the engine or the like is promoted.

エンジンの暖機が進み、排気熱回収器1が排気を熱交換部2に流通させる必要がなくなる場合には、非回収作動モードに切り換えられる。非回収作動モードでは、コントローラからの指令に応じてアクチュエータがバルブ70を回動させて図4に示す回動位置(バイパス位置)に切り換える。これにより、バルブ70によって分流路29に対して熱交換流路31が閉じられる一方、バイパス流路39が開かれる。排気は、図4に矢印I、J、Kで示すように分流路29、バイパス流路39、合流路60を通過するように導かれる。こうして、排気が熱交換部2を迂回することにより、排気によって媒体が加熱されることが抑えられる。   When the engine is warmed up and the exhaust heat recovery device 1 does not need to circulate the exhaust gas to the heat exchanging section 2, it is switched to the non-recovery operation mode. In the non-recovery operation mode, the actuator rotates the valve 70 in accordance with a command from the controller to switch to the rotation position (bypass position) shown in FIG. Thereby, the heat exchange flow path 31 is closed with respect to the branch flow path 29 by the valve 70, while the bypass flow path 39 is opened. The exhaust gas is guided so as to pass through the diversion channel 29, the bypass channel 39, and the combined channel 60 as indicated by arrows I, J, and K in FIG. In this way, the exhaust gas bypasses the heat exchanging unit 2 to suppress the medium from being heated by the exhaust gas.

上記非回収作動モードでは、図4に示すようにバルブ70が分流管6内で傾斜し、上流側バルブ板部72の先端が分流管6の内壁に当接するとともに、下流側バルブ板部73の先端が境界部45の第2シート部47に当接する。これにより、バルブ70と分流管6の内壁又は境界部45との間に生じる隙間が小さく抑えられる。このため、排気の一部がバルブ70と境界部45の間を通って熱交換流路31へと流れる内部洩れが抑えられる。この結果、排気熱回収器1では排気によって媒体が加熱されることが十分に抑えられ、媒体によって暖機後のエンジンなどが加熱されることが防止される。   In the non-recovery operation mode, as shown in FIG. 4, the valve 70 is inclined in the flow dividing pipe 6, the tip of the upstream valve plate portion 72 is in contact with the inner wall of the flow dividing pipe 6, and the downstream valve plate portion 73 The front end abuts on the second sheet portion 47 of the boundary portion 45. Thereby, the clearance gap produced between the valve | bulb 70 and the inner wall or boundary part 45 of the shunt pipe 6 is restrained small. For this reason, internal leakage in which part of the exhaust gas flows between the valve 70 and the boundary portion 45 to the heat exchange flow path 31 is suppressed. As a result, in the exhaust heat recovery device 1, the medium is sufficiently suppressed from being heated by the exhaust, and the warmed-up engine and the like are prevented from being heated by the medium.

次に、第1実施形態の効果について説明する。   Next, effects of the first embodiment will be described.

本実施形態によれば、バルブ70はバルブ軸75から下流側に延びる下流側バルブ板部73を有し、境界部45は回動する下流側バルブ板部73を挟むように対向する第1シート部46及び第2シート部47を有する排気熱回収器1が提供される。   According to the present embodiment, the valve 70 has the downstream valve plate portion 73 extending downstream from the valve shaft 75, and the boundary portion 45 is opposed to the first valve seat so as to sandwich the rotating downstream valve plate portion 73. An exhaust heat recovery device 1 having a portion 46 and a second sheet portion 47 is provided.

上記構成に基づき、バルブ70がバルブ軸75を中心に回動するのに伴って、下流側バルブ板部73が第1シート部46又は第2シート部47に対峙することにより、バルブ70と境界部45の間に生じる隙間が小さく抑えられる。これにより、排気がバルブ70と境界部45の間を通ってバルブ70の背後へと流れる内部洩れが抑えられる。この結果、排気熱回収器1では、バルブ70の作動に応じて熱交換部2とバイパス部3とに分流する排気の流量割合が的確に変えられ、媒体の温度調整が精度よく行われる。   Based on the above configuration, as the valve 70 rotates about the valve shaft 75, the downstream valve plate portion 73 faces the first seat portion 46 or the second seat portion 47, thereby causing a boundary with the valve 70. A gap generated between the portions 45 is suppressed to be small. Thereby, the internal leakage through which the exhaust gas passes between the valve 70 and the boundary portion 45 and flows behind the valve 70 is suppressed. As a result, in the exhaust heat recovery device 1, the flow rate ratio of the exhaust gas divided into the heat exchange unit 2 and the bypass unit 3 is accurately changed according to the operation of the valve 70, and the temperature of the medium is adjusted with high accuracy.

また、本実施形態によれば、バルブ70が排気の流れ方向を熱交換部2に向ける作動モードにおいて下流側バルブ板部73が第1シート部46に当接し、バルブ70が排気の流れ方向をバイパス部3に向ける作動モードにおいて下流側バルブ板部73が第2シート部47に当接する排気熱回収器1が提供される。   Further, according to the present embodiment, in the operation mode in which the valve 70 directs the flow direction of the exhaust toward the heat exchanging unit 2, the downstream side valve plate portion 73 contacts the first seat portion 46, and the valve 70 changes the flow direction of the exhaust. The exhaust heat recovery device 1 is provided in which the downstream valve plate portion 73 abuts against the second seat portion 47 in the operation mode directed to the bypass portion 3.

上記構成に基づき、作動モードに応じてバルブ軸75を中心に回動する下流側バルブ板部73が第1シート部46又は第2シート部47に当接する状態に切り換えられる。これにより、バルブ70と境界部45の間に生じる隙間が小さく抑えられ、排気の内部洩れが十分に抑えられる。   Based on the above configuration, the downstream valve plate portion 73 that rotates around the valve shaft 75 is switched to a state in which the first seat portion 46 or the second seat portion 47 abuts according to the operation mode. Thereby, the clearance gap produced between the valve 70 and the boundary part 45 is suppressed small, and the internal leak of exhaust gas is fully suppressed.

なお、排気熱回収器1は、上述した構成に限らず、作動モードに応じて第1シート部46又は第2シート部47が予め設定された小さい隙間を持って下流側バルブ板部73を対峙させることにより、排気の内部洩れが十分に抑えられる構成としてもよい。   The exhaust heat recovery device 1 is not limited to the above-described configuration, and the first seat portion 46 or the second seat portion 47 faces the downstream side valve plate portion 73 with a preset small gap according to the operation mode. By doing so, the internal leakage of the exhaust gas may be sufficiently suppressed.

また、本実施形態によれば、第1シート部46が熱交換部2の外壁を構成する熱交換部境界壁36aに形成され、第2シート部47がバイパス部3の外壁を構成するバイパス部境界壁30bに形成される排気熱回収器1が提供される。   Moreover, according to this embodiment, the 1st sheet | seat part 46 is formed in the heat exchange part boundary wall 36a which comprises the outer wall of the heat exchange part 2, and the 2nd sheet | seat part 47 comprises the bypass part which comprises the outer wall of the bypass part 3. An exhaust heat recovery device 1 formed on the boundary wall 30b is provided.

上記構成に基づき、第1シート部46、第2シート部47を形成するのに、熱交換部2、バイパス部3と別の部材を設ける必要がなく、排気熱回収器1の構造が複雑化することが抑えられる。   Based on the above configuration, it is not necessary to provide a separate member from the heat exchanging unit 2 and the bypass unit 3 to form the first sheet unit 46 and the second sheet unit 47, and the structure of the exhaust heat recovery device 1 is complicated. Is suppressed.

また、本実施形態によれば、境界部45は、熱交換部境界壁36aとバイパス部境界壁30bとの間に介装され、両者間を断熱する上流側断熱体41を有する排気熱回収器1が提供される。   Moreover, according to this embodiment, the boundary part 45 is interposed between the heat exchange part boundary wall 36a and the bypass part boundary wall 30b, and the exhaust heat recovery device which has the upstream heat insulating body 41 which insulates between both. 1 is provided.

上記構成に基づき、熱交換部境界壁36aとバイパス部境界壁30bとの間に介装される上流側断熱体41によって、熱交換部2とバイパス部3との間が断熱される。熱回収作動モードでは、上流側断熱体41によって熱交換部2の熱交換効率を高められ、エンジンなどの暖機が促される。一方、非回収作動モードでは、バイパス部3から熱交換部2への熱伝達が上流側断熱体41によって抑えられる。これにより、排気によって媒体が加熱されることが十分に抑えられ、暖機後のエンジンなどが加熱されることが防止される。   Based on the above configuration, the heat exchanger 2 and the bypass 3 are insulated from each other by the upstream heat insulator 41 interposed between the heat exchanger boundary wall 36a and the bypass boundary wall 30b. In the heat recovery operation mode, the heat exchanging efficiency of the heat exchanging unit 2 is increased by the upstream heat insulator 41, and warming up of the engine or the like is promoted. On the other hand, in the non-recovery operation mode, heat transfer from the bypass unit 3 to the heat exchange unit 2 is suppressed by the upstream heat insulator 41. As a result, the medium is sufficiently prevented from being heated by the exhaust, and the engine after the warm-up is prevented from being heated.

また、本実施形態によれば、上流側断熱体41と熱交換部境界壁36aとバイパス部境界壁30bとの間に下流側バルブ板部73を収容するバルブ収容凹部48が形成される排気熱回収器1が提供される。   Further, according to the present embodiment, the exhaust heat in which the valve housing recess 48 for housing the downstream valve plate portion 73 is formed between the upstream heat insulator 41, the heat exchange portion boundary wall 36a, and the bypass portion boundary wall 30b. A collector 1 is provided.

上記構成に基づき、下流側バルブ板部73がバルブ収容凹部48で回動することにより、下流側バルブ板部73が上流側断熱体41などに干渉することが防止される。   Based on the above configuration, the downstream valve plate portion 73 is rotated by the valve housing recess 48 to prevent the downstream valve plate portion 73 from interfering with the upstream heat insulator 41 and the like.

また、本実施形態によれば、境界部45は、上流側断熱体41と熱交換部境界壁36aとバイパス部境界壁30bとの間に形成される空気層9と、空気層9を外部と遮断するように覆うケース15と、を有する排気熱回収器1が提供される。   In addition, according to the present embodiment, the boundary portion 45 includes the air layer 9 formed between the upstream heat insulator 41, the heat exchange portion boundary wall 36a, and the bypass portion boundary wall 30b, and the air layer 9 as the outside. There is provided an exhaust heat recovery device 1 having a case 15 that covers it so as to block it.

上記構成に基づき、ケース15と熱交換部2とバイパス部3との間に外部に対して密閉された空気層9が形成されるため、バルブ70が排気の流れ方向を熱交換部2に向ける作動モードにおいて、熱交換部2から外部への放熱が抑えられ、熱交換部2における排気と媒体との温度が熱交換効率を高められる。   Based on the above configuration, the air layer 9 sealed to the outside is formed between the case 15, the heat exchange unit 2, and the bypass unit 3, so that the valve 70 directs the flow direction of the exhaust toward the heat exchange unit 2. In the operation mode, heat radiation from the heat exchanging unit 2 to the outside is suppressed, and the temperature of the exhaust gas and the medium in the heat exchanging unit 2 can increase the heat exchange efficiency.

<第2実施形態>
次に、図5を参照して、本発明の第2実施形態について説明する。以下では、上記第1実施形態と異なる点を中心に説明し、上記第1実施形態の排気熱回収器1と同一の構成には同一の符号を付して説明を省略する。
Second Embodiment
Next, a second embodiment of the present invention will be described with reference to FIG. Below, it demonstrates centering on a different point from the said 1st Embodiment, the same code | symbol is attached | subjected to the structure same as the exhaust heat recovery device 1 of the said 1st Embodiment, and description is abbreviate | omitted.

上記第1実施形態に係る排気熱回収器1は、境界部45の空気層9を外部と遮断するように覆うケース15を備える。これに対して、第2実施形態に係る排気熱回収器100は、ケース15を備えず、境界部145の空気層109が外部と連通するように構成される。   The exhaust heat recovery device 1 according to the first embodiment includes a case 15 that covers the air layer 9 of the boundary portion 45 so as to be blocked from the outside. On the other hand, the exhaust heat recovery device 100 according to the second embodiment does not include the case 15 and is configured such that the air layer 109 of the boundary portion 145 communicates with the outside.

空気層109は、熱交換部境界壁36a、バイパス部境界壁30b、上流側断熱体41、及び下流側断熱体42の間に形成される。   The air layer 109 is formed between the heat exchange part boundary wall 36 a, the bypass part boundary wall 30 b, the upstream heat insulator 41, and the downstream heat insulator 42.

本実施形態によれば、熱交換部2とバイパス部3との間に外部に通じる空気層109が形成され、空気層109には外気が取り込まれる。これにより、非回収作動モードでは、バイパス部3から空気層109の外気への放熱が促されるとともに、バイパス部3から熱交換部2への熱伝達が空気層109によって抑えられる。これにより、排気によって媒体が加熱されることが十分に抑えられ、暖機後のエンジンなどが加熱されることが防止される。   According to this embodiment, the air layer 109 communicating with the outside is formed between the heat exchange unit 2 and the bypass unit 3, and outside air is taken into the air layer 109. Thus, in the non-recovery operation mode, heat release from the bypass unit 3 to the outside air of the air layer 109 is promoted, and heat transfer from the bypass unit 3 to the heat exchange unit 2 is suppressed by the air layer 109. As a result, the medium is sufficiently prevented from being heated by the exhaust, and the engine after the warm-up is prevented from being heated.

以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。   The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.

本発明は、車両に搭載される排気熱回収器として好適であるが、車両以外に使用される熱交換器にも適用できる。   The present invention is suitable as an exhaust heat recovery device mounted on a vehicle, but can also be applied to a heat exchanger used other than the vehicle.

1、100 排気熱回収器
2 熱交換部
3 バイパス部
4 分流部
5 集合部
9、109 空気層
15 ケース
30b バイパス部境界壁
36a 熱交換部境界壁
41 上流側断熱体
45、145 境界部
46 第1シート部
47 第2シート部
48 バルブ収容凹部
70 バルブ
72 上流側バルブ板部
73 下流側バルブ板部
75 バルブ軸
DESCRIPTION OF SYMBOLS 1,100 Exhaust heat recovery device 2 Heat exchange part 3 Bypass part 4 Dividing part 5 Collecting part 9,109 Air layer 15 Case 30b Bypass part boundary wall 36a Heat exchange part boundary wall 41 Upstream heat insulator 45, 145 Boundary part 46th 1 seat portion 47 second seat portion 48 valve housing recess 70 valve 72 upstream valve plate portion 73 downstream valve plate portion 75 valve shaft

Claims (6)

作動モードに応じて熱交換をする排気の流量が変えられる排気熱回収器であって、
排気が導入される分流部と、
前記分流部から導かれる排気が熱交換をする熱交換部と、
前記分流部から導かれる排気が前記熱交換部を迂回して流れるバイパス部と、
前記分流部を通過する排気の流れ方向を前記熱交換部又は前記バイパス部に向けるバルブと、
前記熱交換部と前記バイパス部とを隔てる境界部と、
前記熱交換部又は前記バイパス部を通過した排気を導く集合部と、を備え、
前記バルブは、
作動モードに応じて回転するバルブ軸と、
前記バルブ軸から排気の流れ方向について上流側に延びる上流側バルブ板部と、
前記バルブ軸から排気の流れ方向について下流側に延びる下流側バルブ板部と、を有し、
前記境界部は、前記下流側バルブ板部を挟んで対向する第1シート部及び第2シート部を有することを特徴とする排気熱回収器。
An exhaust heat recovery device in which the flow rate of the exhaust gas that exchanges heat according to the operation mode can be changed,
A diversion part into which exhaust is introduced;
A heat exchanging unit for exchanging heat with the exhaust led from the flow dividing unit;
A bypass section in which exhaust gas guided from the branch section flows around the heat exchange section;
A valve for directing the flow direction of the exhaust gas passing through the diversion part to the heat exchange part or the bypass part;
A boundary part separating the heat exchange part and the bypass part;
An assembly that guides the exhaust gas that has passed through the heat exchange unit or the bypass unit,
The valve is
A valve shaft that rotates according to the operating mode;
An upstream valve plate extending upstream from the valve shaft in the exhaust flow direction;
A downstream valve plate extending downstream from the valve shaft in the exhaust flow direction,
The exhaust heat recovery device according to claim 1, wherein the boundary portion includes a first seat portion and a second seat portion facing each other with the downstream valve plate portion interposed therebetween.
請求項1に記載の排気熱回収器であって、
前記第1シート部は、前記バルブが排気の流れ方向を前記熱交換部に向ける作動モードにおいて前記下流側バルブ板部を当接させ、
前記第2シート部は、前記バルブが排気の流れ方向を前記バイパス部に向ける作動モードにおいて前記下流側バルブ板部を当接させることを特徴とする排気熱回収器。
The exhaust heat recovery device according to claim 1,
The first seat portion contacts the downstream valve plate portion in an operation mode in which the valve directs the flow direction of exhaust toward the heat exchange portion,
The exhaust heat recovery device according to claim 2, wherein the second seat portion contacts the downstream valve plate portion in an operation mode in which the valve directs the flow direction of exhaust toward the bypass portion.
請求項1又は2に記載の排気熱回収器であって、
前記境界部は、
前記熱交換部の外壁を形成する熱交換部境界壁と、
前記バイパス部の外壁を形成するバイパス部境界壁と、を備え、
前記第1シート部は、前記分流部に臨む前記熱交換部境界壁の端部に形成され、
前記第2シート部は、前記分流部に臨む前記バイパス部境界壁の端部に形成されることを特徴とする排気熱回収器。
The exhaust heat recovery device according to claim 1 or 2,
The boundary is
A heat exchange section boundary wall forming an outer wall of the heat exchange section;
A bypass portion boundary wall that forms an outer wall of the bypass portion, and
The first sheet portion is formed at an end portion of the heat exchange portion boundary wall facing the flow dividing portion,
The exhaust heat recovery device according to claim 2, wherein the second sheet portion is formed at an end portion of the bypass portion boundary wall facing the flow dividing portion.
請求項3に記載の排気熱回収器であって、
前記境界部は、前記熱交換部境界壁と前記バイパス部境界壁との間に介装される断熱体をさらに備えることを特徴とする排気熱回収器。
The exhaust heat recovery device according to claim 3,
The exhaust heat recovery device according to claim 1, wherein the boundary portion further includes a heat insulator interposed between the heat exchange portion boundary wall and the bypass portion boundary wall.
請求項4に記載の排気熱回収器であって、
前記境界部は、
前記熱交換部境界壁と前記バイパス部境界壁との間に形成される空気層と、
前記空気層を外部と遮断するように覆うケースと、をさらに備えることを特徴とする排気熱回収器。
An exhaust heat recovery device according to claim 4,
The boundary is
An air layer formed between the heat exchange section boundary wall and the bypass section boundary wall;
An exhaust heat recovery device further comprising: a case that covers the air layer so as to be blocked from the outside.
請求項4に記載の排気熱回収器であって、
前記境界部は、前記熱交換部境界壁と前記バイパス部境界壁との間に形成される空気層をさらに備え、前記空気層が外部に連通することを特徴とする排気熱回収器。
An exhaust heat recovery device according to claim 4,
The exhaust heat recovery device according to claim 1, wherein the boundary portion further includes an air layer formed between the heat exchange portion boundary wall and the bypass portion boundary wall, and the air layer communicates with the outside.
JP2015037804A 2015-02-27 2015-02-27 Exhaust heat recovery unit Expired - Fee Related JP6522986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015037804A JP6522986B2 (en) 2015-02-27 2015-02-27 Exhaust heat recovery unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015037804A JP6522986B2 (en) 2015-02-27 2015-02-27 Exhaust heat recovery unit

Publications (2)

Publication Number Publication Date
JP2016160778A true JP2016160778A (en) 2016-09-05
JP6522986B2 JP6522986B2 (en) 2019-05-29

Family

ID=56844451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015037804A Expired - Fee Related JP6522986B2 (en) 2015-02-27 2015-02-27 Exhaust heat recovery unit

Country Status (1)

Country Link
JP (1) JP6522986B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138584A (en) * 2006-12-01 2008-06-19 Hino Motors Ltd Exhaust emission control device
JP2008157211A (en) * 2006-12-22 2008-07-10 Sango Co Ltd Exhaust heat recovery device
JP2009209906A (en) * 2008-03-06 2009-09-17 Denso Corp Exhaust heat recovery device
JP2012137040A (en) * 2010-12-27 2012-07-19 Calsonic Kansei Corp Heat exchanging unit and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138584A (en) * 2006-12-01 2008-06-19 Hino Motors Ltd Exhaust emission control device
JP2008157211A (en) * 2006-12-22 2008-07-10 Sango Co Ltd Exhaust heat recovery device
JP2009209906A (en) * 2008-03-06 2009-09-17 Denso Corp Exhaust heat recovery device
JP2012137040A (en) * 2010-12-27 2012-07-19 Calsonic Kansei Corp Heat exchanging unit and method for manufacturing the same

Also Published As

Publication number Publication date
JP6522986B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
JP6474429B2 (en) Heat exchanger and exhaust heat recovery apparatus equipped with the heat exchanger
JP5108462B2 (en) Heat recovery equipment
KR101317373B1 (en) Heat exchanger
JP2018071622A (en) Control valve
US20090056909A1 (en) Heat exchanger having an internal bypass
JP5222977B2 (en) Waste heat recovery device
JP2009002239A (en) Egr cooler
JP2008157211A (en) Exhaust heat recovery device
JP6838825B2 (en) Exhaust heat recovery device
JP2010031671A (en) Exhaust heat recovery apparatus
JP2017008868A (en) Exhaust heat recovery device structure
WO2016088489A1 (en) Exhaust heat recovery device
JP2002022315A (en) Four-way selector valve of high efficiency
JP2016186254A (en) Exhaust heat recovery device and method for manufacturing the same
JP2007239595A (en) Arrangement structure of exhaust system heat exchanger
JP2016160778A (en) Exhaust heat recovery equipment
JP2017166403A (en) Exhaust heat recovery device
JP2017203420A (en) Exhaust heat recovery device
JP2018105535A (en) Intercooler
JP2016156324A (en) Exhaust heat recovery unit
JP5707123B2 (en) Heat exchange unit and manufacturing method thereof
JP6192569B2 (en) Exhaust heat recovery device
JP2016108970A (en) Exhaust heat recovery device
JP6296939B2 (en) Exhaust heat recovery device
JP2015148160A (en) Exhaust heat recovery device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20161221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190425

R150 Certificate of patent or registration of utility model

Ref document number: 6522986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S343 Written request for registration of root pledge or change of root pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316354

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R316Z02

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees