JP2016160148A - Production method of vanadium dioxide - Google Patents

Production method of vanadium dioxide Download PDF

Info

Publication number
JP2016160148A
JP2016160148A JP2015041623A JP2015041623A JP2016160148A JP 2016160148 A JP2016160148 A JP 2016160148A JP 2015041623 A JP2015041623 A JP 2015041623A JP 2015041623 A JP2015041623 A JP 2015041623A JP 2016160148 A JP2016160148 A JP 2016160148A
Authority
JP
Japan
Prior art keywords
vanadium
vanadium dioxide
reaction
temperature
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015041623A
Other languages
Japanese (ja)
Other versions
JP6351523B2 (en
Inventor
稔 福知
Minoru Fukuchi
稔 福知
智真 成橋
Tomomasa Naruhashi
智真 成橋
誠司 新▲高▼
Seiji Niitaka
誠司 新▲高▼
公俊 河野
Kimitoshi Kono
公俊 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
RIKEN Institute of Physical and Chemical Research
Original Assignee
Nippon Chemical Industrial Co Ltd
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd, RIKEN Institute of Physical and Chemical Research filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2015041623A priority Critical patent/JP6351523B2/en
Publication of JP2016160148A publication Critical patent/JP2016160148A/en
Application granted granted Critical
Publication of JP6351523B2 publication Critical patent/JP6351523B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide vanadium dioxide excellent in heat storage property by an industrially advantageous method.SOLUTION: There is provided a production method of vanadium dioxide represented by following general formula (1) VMO(1), where M represents one or more kind selected from a group of Cr, W, Mo, Nb, Ta, Os, Ir, Ru and Re and x represents 0≤x≤0.5. The production method comprises a first step of adding alkali to a solution containing a vanadium source and performing a reaction to prepare a slurry containing deposited precipitate, a second step of applying a hydrothermal reaction to the slurry to obtain a reaction precursor, a third step of firing the reaction precursor in an inactive gas atmosphere to obtain a fired product and a fourth step of anneal-treating the fired product and if needed, adding an M source to a solution containing the vanadium source and/or a slurry containing the precipitate.SELECTED DRAWING: Figure 6

Description

本発明は、特に蓄熱材として有用な二酸化バナジウムの製造方法に関するものである。   The present invention relates to a method for producing vanadium dioxide particularly useful as a heat storage material.

蓄熱材は、物質に熱を蓄え、また、必要に応じてその熱を取り出すことができる材料である。蓄熱によって、蓄熱材自身や、蓄熱材が置かれた空間内等の温度を一定に保つことができる。   The heat storage material is a material that can store heat in a substance and take out the heat as necessary. By heat storage, the temperature of the heat storage material itself or the space where the heat storage material is placed can be kept constant.

蓄熱方式には、顕熱蓄熱、潜熱蓄熱、化学蓄熱があり、蓄熱時に使用される物理化学現象によって分類される。   Thermal storage methods include sensible heat storage, latent heat storage, and chemical heat storage, and are classified according to the physicochemical phenomenon used during heat storage.

潜熱蓄熱は、物質の相変化、転移に伴う転移熱を利用したもので転移熱を熱エネルギーとして蓄え、利用するものであり、潜熱蓄熱は、顕熱蓄熱に比べて、蓄熱密度が高く、相転移温度の一定温度で熱供給が可能で、また、化学蓄熱に比べて、相転移を繰り返すだけなので耐久性に優れている。   Latent heat storage uses the transition heat associated with the phase change and transition of materials, and stores and uses the transition heat as thermal energy.Latent heat storage has a higher heat storage density than phase sensible heat storage, Heat can be supplied at a constant transition temperature, and it has excellent durability because it only repeats phase transitions compared to chemical heat storage.

下記特許文献1及び下記特許文献2には、電子相転移熱を利用した新しいタイプの潜熱蓄熱材として、二酸化バナジウム系の強相関電子系遷移金属化合物を用いることが提案されている。このタイプの蓄熱材は、電子の持つ内部自由度であるスピンの自由度と、軌道の自由度とを含む複自由度の相転移を利用するものであり、固相状態で生じる相転移であるため、蓄熱材が容器から漏れる心配がない。また、無機塩水和物などの固体―液体相転移と異なり、相転移時の相分離や分解が生じる虞れがない、相転移時の体積変化が固体―液体相転移と比べて小さい、高い熱伝導率を有する等の利点もある。   Patent Document 1 and Patent Document 2 below propose using a vanadium dioxide-based strongly correlated electron transition metal compound as a new type of latent heat storage material using electronic phase transition heat. This type of heat storage material uses a phase transition of multiple degrees of freedom including the degree of freedom of spin, which is the internal degree of freedom of electrons, and the degree of freedom of orbit, and is a phase transition that occurs in the solid state. Therefore, there is no worry that the heat storage material leaks from the container. In addition, unlike solid-liquid phase transitions such as inorganic salt hydrates, there is no risk of phase separation or decomposition during phase transitions, and volume changes during phase transitions are small compared to solid-liquid phase transitions. There are also advantages such as having conductivity.

二酸化バナジウム系の強相関電子系遷移金属化合物を製造する方法として、特許文献1及び特許文献2には、各原料を所定量混合して得られる混合物を真空封入して昇温する方法が提案されているが、工業的に有利な方法とは言い難い。   As a method for producing a vanadium dioxide-based strongly correlated electron transition metal compound, Patent Document 1 and Patent Document 2 propose a method in which a mixture obtained by mixing a predetermined amount of each raw material is vacuum sealed and heated. However, this is not an industrially advantageous method.

また、二酸化バナジウム系の強相関電子系遷移金属化合物を製造する方法として、下記特許文献3には、可溶解性バナジウム化合物を含む溶液に、アルカリを添加して得られる沈殿物を水熱反応する方法が提案されている。また、下記特許文献4には、四価のバナジウム化合物を含む溶液と、該バナジウム化合物と錯形成する物質及びドーパント元素の溶液を反応させて得られる反応物を不活性ガス中で焼成する方法が提案されている。   In addition, as a method for producing a vanadium dioxide-based strongly correlated electron transition metal compound, Patent Document 3 listed below hydrothermally reacts a precipitate obtained by adding an alkali to a solution containing a soluble vanadium compound. A method has been proposed. Patent Document 4 below discloses a method of firing a reaction product obtained by reacting a solution containing a tetravalent vanadium compound with a solution of a substance complexing with the vanadium compound and a dopant element in an inert gas. Proposed.

特開2014−210835号公報JP, 2014-210835, A 特開2010−163510号公報JP 2010-163510 A 特表2014−505651号公報Special table 2014-505651 gazette 特開2014−198645号公報JP 2014-198645 A

しかしながら、特許文献3の方法によれば、工業的に有利な方法で二酸化バナジウムが得られるが、蓄熱特性に優れたものが得られ難い。
従って、本発明の目的は、蓄熱特性に優れた二酸化バナジウムを工業的に有利な方法で提供することにある。
However, according to the method of Patent Document 3, vanadium dioxide can be obtained by an industrially advantageous method, but it is difficult to obtain a material having excellent heat storage characteristics.
Accordingly, an object of the present invention is to provide vanadium dioxide having excellent heat storage characteristics in an industrially advantageous manner.

潜熱蓄熱に用いられる材料の特性として、転移熱量が大きいことに加えて、昇温時と降温時で蓄熱特性の温度ムラが生じないように昇温過程と降温過程の両方の相転移温度差が出来るだけ小さいことが要求される。   As a characteristic of the material used for latent heat storage, in addition to the large amount of transition heat, there is a difference in the phase transition temperature between the temperature rising process and the temperature decreasing process so that temperature unevenness of the heat storage characteristics does not occur during temperature rising and cooling. It is required to be as small as possible.

本発明者らは、上記実情に鑑み鋭意研究を重ねた結果、下記一般式(1)
1-xx2 (1)
(式中、Mは、Cr、W、Mo、Nb、Ta、Os、Ir、Ru及びReの群から選ばれる1種又は2種以上の元素を示す。xは0≦x≦0.5を示す。)で表わされる二酸化バナジウムの製造方法であって、
バナジウム源を含む溶液にアルカリを添加し反応を行って沈殿物を析出させ、次いで得られる沈殿物を水熱反応に付して得られる反応前駆体には、吸発熱に伴う相転移が見られないが、該反応前駆体を不活性ガス雰囲気中で焼成して得られる焼成品には、吸発熱に伴う相転移が見られること。更に該焼成品をアニール処理することにより、吸熱開始温度と発熱開始温度の差が小さいものになることを見出し本発明を完成するに到った。
As a result of intensive studies in view of the above circumstances, the present inventors have found that the following general formula (1)
V 1-x M x O 2 (1)
(In the formula, M represents one or more elements selected from the group consisting of Cr, W, Mo, Nb, Ta, Os, Ir, Ru, and Re. X represents 0 ≦ x ≦ 0.5. A method for producing vanadium dioxide represented by:
In the reaction precursor obtained by adding an alkali to the solution containing the vanadium source and reacting to precipitate a precipitate, and then subjecting the resulting precipitate to a hydrothermal reaction, a phase transition accompanying endothermic generation is observed. Although there is no, a phase transition associated with endothermic heat generation is observed in the fired product obtained by firing the reaction precursor in an inert gas atmosphere. Further, it was found that the difference between the endothermic start temperature and the exothermic start temperature is reduced by annealing the fired product, and the present invention has been completed.

即ち、本発明が提供しようとする二酸化バナジウムの製造方法は、下記一般式(1)
1-xx2 (1)
(式中、Mは、Cr、W、Mo、Nb、Ta、Os、Ir、Ru及びReの群から選ばれる1種又は2種以上の元素を示す。xは0≦x≦0.5を示す。)で表わされる二酸化バナジウムの製造方法であって、
バナジウム源を含む溶液にアルカリを添加し反応を行って析出した沈殿物を含むスラリーを調製する第一工程、次いで該スラリーを水熱反応に付して反応前駆体を得る第二工程、次いで該反応前駆体を不活性ガス雰囲気中で焼成して焼成品を得る第三工程、次いで該焼成品をアニール処理する第四工程とを有し、必要により前記バナジウム源を含む溶液及び/又は前記沈殿物を含むスラリーにM源を添加することを特徴とするものである。
That is, the method for producing vanadium dioxide to be provided by the present invention comprises the following general formula (1):
V 1-x M x O 2 (1)
(In the formula, M represents one or more elements selected from the group consisting of Cr, W, Mo, Nb, Ta, Os, Ir, Ru, and Re. X represents 0 ≦ x ≦ 0.5. A method for producing vanadium dioxide represented by:
A first step of preparing a slurry containing a precipitate formed by adding an alkali to a solution containing a vanadium source and performing a reaction, then a second step of subjecting the slurry to a hydrothermal reaction to obtain a reaction precursor, A third step of firing the reaction precursor in an inert gas atmosphere to obtain a fired product, and then a fourth step of annealing the fired product, and optionally a solution containing the vanadium source and / or the precipitation The M source is added to the slurry containing the product.

本発明の製造方法によれば、工業的に有利な方法で、蓄熱材として有用な二酸化バナジウムを提供することが出来る。   According to the production method of the present invention, vanadium dioxide useful as a heat storage material can be provided by an industrially advantageous method.

実施例1の第二工程で得られた反応前駆体試料のX線回折図。2 is an X-ray diffraction diagram of a reaction precursor sample obtained in the second step of Example 1. FIG. 実施例1の第二工程で得られた反応前駆体試料の示差走査熱量測定結果を示す図。The figure which shows the differential scanning calorimetry result of the reaction precursor sample obtained at the 2nd process of Example 1. FIG. 実施例1の第三工程で得られた焼成品試料のX線回折図。3 is an X-ray diffraction pattern of a fired product sample obtained in the third step of Example 1. FIG. 実施例1の第三工程で得られた焼成品試料の示差走査熱量測定結果を示す図。The figure which shows the differential scanning calorimetry result of the baked product sample obtained at the 3rd process of Example 1. FIG. 実施例1の第四工程で得られたアニール処理品試料のX線回折図。FIG. 4 is an X-ray diffraction pattern of an annealed product sample obtained in the fourth step of Example 1. 実施例1の第四工程で得られたアニール処理品試料の示差走査熱量測定結果を示す図。The figure which shows the differential scanning calorimetry result of the annealed product sample obtained at the 4th process of Example 1. FIG. 実施例1の第四工程で得られたアニール処理品試料のSEM写真。4 is an SEM photograph of an annealed product sample obtained in the fourth step of Example 1. FIG.

以下、本発明をその好ましい実施形態に基づいて説明する。
本発明の製造方法により得られる二酸化バナジウムは下記一般式(1)で表わされる化合物である。
1-xx2 (1)
(式中、Mは、Cr、W、Mo、Nb、Ta、Os、Ir、Ru及びReの群から選ばれる1種又は2種以上の元素を示す。xは0≦x≦0.5を示す。)
Hereinafter, the present invention will be described based on preferred embodiments thereof.
Vanadium dioxide obtained by the production method of the present invention is a compound represented by the following general formula (1).
V 1-x M x O 2 (1)
(In the formula, M represents one or more elements selected from the group consisting of Cr, W, Mo, Nb, Ta, Os, Ir, Ru, and Re. X represents 0 ≦ x ≦ 0.5. Show.)

潜熱蓄熱において、蓄熱は相転移温度付近で行われる。一般式(1)の式中のMは、本発明において必要により添加する元素である。   In latent heat storage, heat storage is performed near the phase transition temperature. M in the formula of the general formula (1) is an element added as necessary in the present invention.

本発明の製造方法で得られる二酸化バナジウムは、例えば、蓄熱材として使用する場合に、一般式(1)の式中のM及びxの値を調製することにより、相転移温度を所望の温度に調製することが出来る。例えば、二酸化バナジウムのバナジウムの一部をW、Ta、Nb、Ru、Mo、Re等の元素で置換することで、相転移温度を無置換の二酸化バナジウムに比べて低下させることが出来る。また、その置換量が多くなるほど相転移温度が低くなることが知られている(特開2010−163510号公報)。また、二酸化バナジウムのバナジウムの一部をCrで置換することで、相転移温度を無置換の二酸化バナジウムに比べて高くすることが出来る。また、その置換量が多くなるほど相転移温度が高くなることが知られている(特開2014−210835号公報)。   For example, when the vanadium dioxide obtained by the production method of the present invention is used as a heat storage material, the phase transition temperature is adjusted to a desired temperature by adjusting the values of M and x in the formula of the general formula (1). Can be prepared. For example, by substituting a part of vanadium vanadium with an element such as W, Ta, Nb, Ru, Mo, Re or the like, the phase transition temperature can be lowered as compared with unsubstituted vanadium dioxide. Further, it is known that the phase transition temperature decreases as the substitution amount increases (Japanese Patent Laid-Open No. 2010-163510). In addition, by replacing a part of vanadium of vanadium dioxide with Cr, the phase transition temperature can be made higher than that of unsubstituted vanadium dioxide. Further, it is known that the phase transition temperature increases as the substitution amount increases (Japanese Patent Laid-Open No. 2014-210835).

本製造方法に係る第一工程は、バナジウム源を含む溶液にアルカリを添加し反応を行って沈殿物を析出させ、沈殿物を含むスラリーを調製する工程である。   The first step according to this production method is a step of preparing a slurry containing a precipitate by adding an alkali to a solution containing a vanadium source and performing a reaction to precipitate the precipitate.

第一工程に係るバナジウム源を含む溶液は、バナジウム源を水溶媒に溶解した溶液である。   The solution containing the vanadium source according to the first step is a solution in which the vanadium source is dissolved in an aqueous solvent.

第一工程に係るバナジウム源は四価のバナジウム化合物が好ましく用いられる。四価のバナジウム化合物としては、例えば、硫酸バナジル(VOSO4)、二塩化バナジル(VOCl2)、シュウ酸バナジル(VOC24)等が挙げられる。これらのバナジウム化合物は含水物であっても無水物であってもよい。 As the vanadium source according to the first step, a tetravalent vanadium compound is preferably used. Examples of the tetravalent vanadium compound include vanadyl sulfate (VOSO 4 ), vanadyl dichloride (VOCl 2 ), vanadyl oxalate (VOC 2 O 4 ), and the like. These vanadium compounds may be hydrated or anhydrous.

バナジウム源を溶解する水溶媒は、水に限らず、水と親水性溶媒との混合溶媒であってもよい。   The aqueous solvent for dissolving the vanadium source is not limited to water, and may be a mixed solvent of water and a hydrophilic solvent.

バナジウム源を含む溶液におけるバナジウム源の濃度は無水物換算で0.5〜5質量%、好ましくは1〜3質量%とすることが好ましい。   The concentration of the vanadium source in the solution containing the vanadium source is preferably 0.5 to 5% by mass, more preferably 1 to 3% by mass in terms of anhydride.

第一工程に係るアルカリとしては、例えば、アンモニア水、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム等が挙げられる。これらのアルカリは、水に溶解させた水溶液として用いることが好ましい。   As an alkali which concerns on a 1st process, ammonia water, sodium hydroxide, potassium hydroxide, sodium carbonate, sodium hydrogencarbonate, potassium carbonate, potassium hydrogencarbonate etc. are mentioned, for example. These alkalis are preferably used as an aqueous solution dissolved in water.

アルカリの添加量は、アルカリに対する、バナジウム源を含む溶液中のバナジウムイオンのモル比(バナジウムイオン/アルカリ)で0.1〜3、好ましくは0.4〜0.6 とすることが収率よく沈殿物を析出させる観点から好ましい。   The amount of alkali added is 0.1 to 3, preferably 0.4 to 0.6, in terms of the molar ratio of vanadium ions in the solution containing the vanadium source to the alkali (vanadium ions / alkali). This is preferable from the viewpoint of depositing a precipitate.

第一工程に係る反応は基本的に中和反応なので、アルカリの添加は反応液のpHが5〜9、好ましくは6〜8となるように添加すればよい。   Since the reaction according to the first step is basically a neutralization reaction, the alkali may be added so that the reaction solution has a pH of 5 to 9, preferably 6 to 8.

アルカリの添加は、安定した品質のものが得られるように一定速度で添加することが好ましい。   The alkali is preferably added at a constant rate so that a stable quality can be obtained.

アルカリの添加温度は5〜50℃、好ましくは10〜35℃であることが収率よく沈殿物を析出させる観点から好ましい。   The addition temperature of the alkali is preferably 5 to 50 ° C., preferably 10 to 35 ° C., from the viewpoint of depositing the precipitate with high yield.

また、第一工程において、必要によりアルカリ添加後に、収率の向上を目的として熟成反応を行うことができる。
熟成反応の温度は5〜50℃、好ましくは10〜35℃であり、熟成反応の時間は15分以上、好ましくは0.5〜3時間である。
In the first step, an aging reaction can be performed for the purpose of improving the yield after adding an alkali, if necessary.
The temperature of the aging reaction is 5 to 50 ° C., preferably 10 to 35 ° C., and the time of the aging reaction is 15 minutes or more, preferably 0.5 to 3 hours.

以上の操作を行うことにより、反応により析出した沈殿物を含むスラリーが得られ、該スラリーをそのまま第二工程の水熱反応に付することが出来るが、本製造方法では必要によりスラリー濃度が0.1〜5質量%、好ましくは0.5〜3質量%となるように濃度調製を行って第二工程を行うことが出来る。   By performing the above operation, a slurry containing precipitates precipitated by the reaction can be obtained, and the slurry can be subjected to the hydrothermal reaction in the second step as it is. However, in this production method, the slurry concentration is 0 if necessary. The concentration can be adjusted to 1 to 5% by mass, preferably 0.5 to 3% by mass, and the second step can be performed.

また、本製造方法では、必要により前記バナジウム源を含む溶液及び/又は前記沈殿物を含むスラリーに、M源を添加して、後述する第二工程を行うことができる。   Moreover, in this manufacturing method, M source can be added to the solution containing the said vanadium source and / or the slurry containing the said precipitate as needed, and the 2nd process mentioned later can be performed.

必要に添加するM源としては、M元素自体であってもよく、また、M元素を含む化合物であってもよい。M元素を含む化合物としては、M元素の酸化物、モリブデン酸、タングステン酸のような金属酸又はその金属酸塩、M元素のアルコラート或いはM元素の有機酸塩等が挙げられる。   The M source to be added may be the M element itself or a compound containing the M element. Examples of the compound containing M element include an oxide of M element, a metal acid such as molybdic acid or tungstic acid or a metal acid salt thereof, an alcoholate of M element, or an organic acid salt of M element.

M源の添加量は、得られる二酸化バナジウムの組成に合わせて適宜添加量を調製して添加することが好ましい。   The addition amount of the M source is preferably adjusted according to the composition of the obtained vanadium dioxide and added.

第二工程は、第一工程で得られる下記の(a)〜(d)の何れかの沈殿物を含むスラリーを水熱反応に付して反応前駆体を得る工程である。
(a)沈殿物を含むスラリー(M元素を含まない)。
(b)前記バナジウム源を含む溶液にM源を添加して得られるM元素と沈殿物を含むスラリー。
(c)前記沈殿物を含むスラリーに、M源を添加して得られるM元素と沈殿物を含むスラリー。
(d)前記バナジウム源を含む溶液にM源を添加しM元素と沈殿物を含むスラリーを調製し、このM元素と沈殿物を含むスラリーに、更にM源を添加したM元素と沈殿物を含むスラリー。
The second step is a step of obtaining a reaction precursor by subjecting a slurry containing any one of the following deposits (a) to (d) obtained in the first step to a hydrothermal reaction.
(A) Slurry containing a precipitate (not including M element).
(B) A slurry containing an M element and a precipitate obtained by adding an M source to a solution containing the vanadium source.
(C) A slurry containing M element and a precipitate obtained by adding an M source to the slurry containing the precipitate.
(D) An M source is added to the solution containing the vanadium source to prepare a slurry containing M element and a precipitate, and the M element and the precipitate further added with the M source are added to the slurry containing the M element and the precipitate. Containing slurry.

該反応前駆体自体は、X線回折分析的に単層の前記一般式(1)で表わされる二酸化バナジウムであるが、該反応前駆体自体は、示差走査熱量測定において、昇温過程と降温過程の両方で明確な相転移が観察されないものである。   The reaction precursor itself is vanadium dioxide represented by the general formula (1) in a single layer by X-ray diffraction analysis, but the reaction precursor itself is a temperature increasing process and a temperature decreasing process in differential scanning calorimetry. In both cases, no clear phase transition is observed.

水熱反応の反応条件は、反応温度が150〜400℃、好ましくは200〜300℃であることが、結晶性の高い二酸化バナジウムが得られやすい観点から好ましい。また、反応時間は1時間以上、好ましくは3〜15時間である。   The reaction conditions for the hydrothermal reaction are preferably a reaction temperature of 150 to 400 ° C., preferably 200 to 300 ° C., from the viewpoint of easily obtaining highly crystalline vanadium dioxide. The reaction time is 1 hour or longer, preferably 3 to 15 hours.

水熱反応終了後、反応終了後のスラリーを常法により固液分離し、必要により洗浄、乾燥、粉砕、解砕等を行って反応前駆体を得ることができる。   After completion of the hydrothermal reaction, the slurry after completion of the reaction is subjected to solid-liquid separation by a conventional method, and a reaction precursor can be obtained by washing, drying, pulverization, pulverization and the like as necessary.

第三工程は、第二工程で得られた反応前駆体を焼成して焼成品を得る工程である。該焼成品自体は、X線回折分析的に単層の前記一般式(1)で表わされる二酸化バナジウムであるが、該焼成品は、前述した反応前駆体とは異なり示差走査熱量測定において、昇温過程と降温過程の両方で明確な相転移が観察され、吸熱開始温度と発熱開始温度の差が3℃以上存在するものである。   The third step is a step in which the reaction precursor obtained in the second step is fired to obtain a fired product. The calcined product itself is vanadium dioxide represented by the general formula (1) in a single layer by X-ray diffraction analysis, but the calcined product is different from the above-described reaction precursor in the differential scanning calorimetry. A clear phase transition is observed in both the temperature process and the temperature decrease process, and the difference between the endothermic start temperature and the exothermic start temperature is 3 ° C. or more.

第三工程に係る焼成条件は、焼成温度が800〜1050℃、好ましくは900〜1000℃とすることが、結晶性の高い二酸化バナジウムが得られやすい観点から好ましい。   The firing conditions in the third step are preferably a firing temperature of 800 to 1050 ° C., preferably 900 to 1000 ° C., from the viewpoint of easily obtaining highly crystalline vanadium dioxide.

また、焼成雰囲気は、バナジウムの酸化防止のため、不活性ガス雰囲気とする。使用できる不活性ガスとしては、窒素ガス、アルゴンガス、ヘリウムガス等が挙げられる。   The firing atmosphere is an inert gas atmosphere to prevent oxidation of vanadium. Examples of the inert gas that can be used include nitrogen gas, argon gas, and helium gas.

焼成時間は、1時間以上、好ましくは3〜10時間である。   The firing time is 1 hour or longer, preferably 3 to 10 hours.

焼成は所望により何度行ってもよい。或いは、粉体特性を均一にする目的で、一度焼成したものを粉砕し、次いで再焼成を行ってもよい。   Firing may be performed as many times as desired. Alternatively, for the purpose of making the powder characteristics uniform, the fired material may be pulverized and then refired.

得られた焼成品は、必要に応じて所望の粒径まで粉砕又は解砕し、粉体の状態で次の第四工程のアニール処理に付す。   The obtained fired product is pulverized or crushed to a desired particle size as necessary, and is subjected to an annealing treatment in the next fourth step in a powder state.

第四工程は、第三工程で得られた焼成品をアニール処理して目的とする二酸化バナジウムを得る工程である。   The fourth step is a step of obtaining the target vanadium dioxide by annealing the fired product obtained in the third step.

第三工程で得られた焼成品は、前述したようにX線回折分析的に単層の前記一般式(1)で表わされる二酸化バナジウムであり、示差走査熱量測定において、昇温過程と降温過程の両方で明確な相転移が観察され、吸熱開始温度と発熱開始温度の差が3℃以上存在する。
本製造方法では、この第四工程で該焼成品をアニール処理することで、吸熱開始温度と発熱開始温度の差が好ましくは2℃以下の二酸化バナジウムに転換することが出来る。この理由は明確ではないが、第三工程で得られる焼成品には、酸素の欠損があり、アニール処理することで、構造中の酸素欠損の構造が補修されるためと本発明者らは推測している。
The fired product obtained in the third step is vanadium dioxide represented by the general formula (1) in a single layer by X-ray diffraction analysis as described above, and in the differential scanning calorimetry, the temperature raising process and the temperature lowering process. A clear phase transition is observed in both cases, and there is a difference of 3 ° C. or more between the endothermic onset temperature and the exothermic onset temperature.
In this production method, the burned product is annealed in the fourth step, whereby the difference between the endothermic start temperature and the exothermic start temperature can be converted to vanadium dioxide, preferably 2 ° C. or less. Although the reason for this is not clear, the present inventors speculate that the fired product obtained in the third step has oxygen deficiency, and the annealing process repairs the structure of oxygen deficiency in the structure. doing.

アニール処理の条件は、処理温度が高すぎると5価のバナジウムに変化し所望の二酸化バナジウムを得ることが難しくなる傾向があることから、アニール処理温度は100〜550℃、特に200〜400℃であることが、バナジウムの酸化を防止しながら酸素欠損部位の補修を行うことができる観点から好ましい。   The annealing treatment condition is that if the treatment temperature is too high, it changes to pentavalent vanadium and it is difficult to obtain the desired vanadium dioxide, so the annealing treatment temperature is 100 to 550 ° C., particularly 200 to 400 ° C. It is preferable from the viewpoint that the oxygen deficiency site can be repaired while preventing vanadium oxidation.

アニール処理時間は1時間以上、特に3〜10時間とすることが好ましい。アニール処理の雰囲気は、酸素、大気等の酸化性雰囲気中で行う。なお、必要により、アニール処理は何度でも行うことができる。   The annealing time is preferably 1 hour or longer, particularly 3 to 10 hours. The annealing treatment is performed in an oxidizing atmosphere such as oxygen or air. Note that the annealing treatment can be performed as many times as necessary.

また、アニール処理後、必要により粉砕、解砕、分級等を行い製品とする。   In addition, after annealing, the product is crushed, crushed, classified, etc. as necessary.

かくして得られる本発明の二酸化バナジウムは、X線回折分析的に下記一般式(1)
1-xx2 (1)
(式中、Mは、Cr、W、Mo、Nb、Ta、Os、Ir、Ru及びReの群から選ばれる1種又は2種以上の元素を示す。xは0≦x≦0.5を示す。)で表わされる二酸化バナジウム単層であり、示差走査熱量測定において、昇温過程と降温過程の両方で明確な相転移が観察され、吸熱開始温度と発熱開始温度の差が好ましくは2℃以下の二酸化バナジウムである。
The vanadium dioxide of the present invention thus obtained has the following general formula (1) as determined by X-ray diffraction analysis.
V 1-x M x O 2 (1)
(In the formula, M represents one or more elements selected from the group consisting of Cr, W, Mo, Nb, Ta, Os, Ir, Ru, and Re. X represents 0 ≦ x ≦ 0.5. In the differential scanning calorimetry, a clear phase transition is observed in both the temperature rising process and the temperature lowering process, and the difference between the endothermic start temperature and the exothermic start temperature is preferably 2 ° C. The following vanadium dioxide.

本製造方法で得られる二酸化バナジウムは、温度によって透過率や反射率等の光学的特性が可逆的に変化するサーモクロミック現象を示す材料としての利用の他、特に蓄熱材としての利用が期待できる。   Vanadium dioxide obtained by this production method is expected to be used as a heat storage material, in addition to being used as a material exhibiting a thermochromic phenomenon in which optical properties such as transmittance and reflectance change reversibly depending on temperature.

以下、本発明を実施例により詳細に説明するが本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.

(相転移温度、熱量の測定)
各実施例において、相転移温度、熱量の測定は下記のように行った。
試料を示差走査熱量測定(DSC)用密閉式セル(SUSセル)に封入し、示差走査熱量測定装置(SIIエポリードサービス社製、形式DSC6200)にて昇温速度1℃/minにて100℃まで昇温し、その後20℃まで降温した.昇温過程で生じる吸熱ピーク、及び降温過程で生じる発熱ピークの開始温度、熱量を測定した.
(Measurement of phase transition temperature and heat quantity)
In each Example, the phase transition temperature and the calorific value were measured as follows.
The sample is enclosed in a closed cell (SUS cell) for differential scanning calorimetry (DSC), and 100 ° C. at a temperature rising rate of 1 ° C./min with a differential scanning calorimeter (model DSC6200, manufactured by SII Eporide Service) The temperature was raised to 20 ° C. and then lowered to 20 ° C. The endothermic peak generated during the temperature rising process and the starting temperature and calorific value of the exothermic peak generated during the temperature falling process were measured.

{実施例1}
第一工程;
硫酸バナジル(VOSO4)含水塩15.63gをイオン交換水500mlに溶解した(A液)。これとは別に1モル/Lの濃度の水酸化ナトリウム水溶液125mlを調製した(B液)。
A液に、B液を20℃で30分かけて一定速度で撹拌下に添加した(バナジウムイオン/アルカリのモル比0.49)。添加終了後の反応液のpHは7.3であった。次いで、20℃で30分間撹拌下に熟成反応を行い、沈殿物を含む0.9質量%スラリーを得た。
第二工程;
第一工程で得られた沈殿物を含むスラリー620gを1Lのオートクレーブに投入して250℃で6時間水熱反応を行った。
次いで、反応終了後のスラリーを固液分離し、120℃で真空乾燥して反応前駆体試料を得た。
得られた反応前駆体試料のレーザー回折・散乱法で求められる平均粒子径は36.6μmであった。また、SEM観察から求めた一次粒子径は10nmであった。また、XRD分析の結果、回折ピークのパターンがVO2と一致し、単層のVO2であることを確認した。反応前駆体試料のX線回折図を図1に示す。
また、示差走査熱量計を用いた示差走査熱量測定により、昇温及び降温過程での相転移の開始温度、及び、相転移に伴う熱量を測定した。その結果、相転移は確認できなかった。その結果を図2に示す。
第三工程;
次いで、第二工程で得られた反応前駆体試料をアルミナるつぼに投入し、窒素雰囲気中で1000℃で5時間焼成を行って焼成品試料を得た。
焼成品試料をXRD分析した結果、回折ピークのパターンがVO2と一致し、単層のVO2であることを確認した。焼成品試料のX線回折図を図3に示す。
また、反応前駆体試料と同様にして、示差走査熱量計を用いた示差走査熱量測定により、昇温及び降温過程での相転移の開始温度、及び、相転移に伴う熱量を測定した。示差走査熱量測定の結果を図4に示す。
第四工程;
次いで、第三工程で得られた焼成品をアルミナるつぼに投入し、大気中で300℃で5時間アリール処理を行いアニール処理品試料を得た。
アニール処理品試料をXRD分析した結果、回折ピークのパターンがVO2と一致し、単層のVO2であることを確認した。アニール処理品試料のX線回折図を図5に示す。
また、反応前駆体試料と同様にして、示差走査熱量計を用いた示差走査熱量測定により、昇温及び降温過程での相転移の開始温度、及び、相転移に伴う熱量を測定した。示差走査熱量測定の結果を図6に示す。
{Example 1}
First step;
15.63 g of vanadyl sulfate (VOSO 4 ) hydrate salt was dissolved in 500 ml of ion-exchanged water (solution A). Separately, 125 ml of a 1 mol / L sodium hydroxide aqueous solution was prepared (solution B).
Liquid B was added to liquid A with stirring at a constant rate over 30 minutes at 20 ° C. (vanadium ion / alkali molar ratio 0.49). The pH of the reaction solution after the addition was 7.3. Next, an aging reaction was performed with stirring at 20 ° C. for 30 minutes to obtain a 0.9 mass% slurry containing a precipitate.
Second step;
620 g of the slurry containing the precipitate obtained in the first step was put into a 1 L autoclave and subjected to a hydrothermal reaction at 250 ° C. for 6 hours.
Next, the slurry after the reaction was solid-liquid separated and vacuum dried at 120 ° C. to obtain a reaction precursor sample.
The average particle diameter obtained by the laser diffraction / scattering method of the obtained reaction precursor sample was 36.6 μm. Moreover, the primary particle diameter calculated | required from SEM observation was 10 nm. As a result of XRD analysis, it was confirmed that the pattern of the diffraction peak coincided with VO 2 and was a single-layer VO 2 . An X-ray diffraction pattern of the reaction precursor sample is shown in FIG.
In addition, by differential scanning calorimetry using a differential scanning calorimeter, the starting temperature of the phase transition in the temperature rising and cooling processes and the amount of heat accompanying the phase transition were measured. As a result, phase transition could not be confirmed. The result is shown in FIG.
Third step;
Next, the reaction precursor sample obtained in the second step was put into an alumina crucible and fired at 1000 ° C. for 5 hours in a nitrogen atmosphere to obtain a fired product sample.
As a result of XRD analysis of the fired product sample, it was confirmed that the pattern of the diffraction peak coincided with VO 2 and was a single layer VO 2 . An X-ray diffraction pattern of the fired product sample is shown in FIG.
In the same manner as the reaction precursor sample, the starting temperature of the phase transition in the temperature rising and cooling process and the amount of heat accompanying the phase transition were measured by differential scanning calorimetry using a differential scanning calorimeter. The results of differential scanning calorimetry are shown in FIG.
The fourth step;
Next, the fired product obtained in the third step was put into an alumina crucible and subjected to an aryl treatment at 300 ° C. for 5 hours in the air to obtain an annealed product sample.
As a result of XRD analysis of the annealed product sample, it was confirmed that the pattern of the diffraction peak coincided with VO 2 and was a single layer VO 2 . The X-ray diffraction pattern of the annealed product sample is shown in FIG.
In the same manner as the reaction precursor sample, the starting temperature of the phase transition in the temperature rising and cooling process and the amount of heat accompanying the phase transition were measured by differential scanning calorimetry using a differential scanning calorimeter. The results of differential scanning calorimetry are shown in FIG.

{実施例2}
第三工程の焼成温度を950℃とした以外は、実施例1と同様な条件で反応を行いアニール処理品試料を得た。
第三工程で得られた焼成品試料について、XRD分析した結果、回折ピークのパターンがVO2と一致し、単層のVO2であることを確認した。また、焼成品試料について昇温及び降温過程での相転移の開始温度、及び、相転移に伴う熱量を測定した。
第四工程で得られたアニール処理品試料について、XRD分析した結果、回折ピークのパターンがVO2と一致し、単層のVO2であることを確認した。また、アニール処理品試料について昇温及び降温過程での相転移の開始温度、及び、相転移に伴う熱量を測定した。
{Example 2}
An annealed product sample was obtained by reacting under the same conditions as in Example 1 except that the firing temperature in the third step was 950 ° C.
As a result of XRD analysis of the fired product sample obtained in the third step, it was confirmed that the pattern of the diffraction peak coincided with VO 2 and was a single-layer VO 2 . Further, the firing temperature of the fired product sample was measured for the start temperature of the phase transition in the process of temperature increase and decrease, and the amount of heat accompanying the phase transition.
As a result of XRD analysis on the annealed product sample obtained in the fourth step, it was confirmed that the pattern of the diffraction peak coincided with VO 2 and was a single-layer VO 2 . In addition, the annealing treatment product samples were measured for the phase transition start temperature during the temperature rising and cooling process and the amount of heat accompanying the phase transition.

{実施例3}
第三工程の焼成温度を900℃とした以外は、実施例1と同様な条件で反応を行いアニール処理品試料を得た。
第三工程で得られた焼成品について、XRD分析した結果、回折ピークのパターンがVO2と一致し、単層のVO2であることを確認した。また、焼成品について昇温及び降温過程での相転移の開始温度、及び、相転移に伴う熱量を測定した。
第四工程で得られたアニール処理品試料について、XRD分析した結果、回折ピークのパターンがVO2と一致し、単層のVO2であることを確認した。また、アニール処理品試料について昇温及び降温過程での相転移の開始温度、及び、相転移に伴う熱量を測定した。
{Example 3}
An annealed product sample was obtained by performing the reaction under the same conditions as in Example 1 except that the firing temperature in the third step was 900 ° C.
As a result of XRD analysis of the fired product obtained in the third step, it was confirmed that the pattern of the diffraction peak coincided with VO 2 and was a single layer VO 2 . In addition, the firing temperature was measured for the phase transition start temperature during the temperature rise and fall processes, and the amount of heat accompanying the phase transition.
As a result of XRD analysis on the annealed product sample obtained in the fourth step, it was confirmed that the pattern of the diffraction peak coincided with VO 2 and was a single-layer VO 2 . In addition, the annealing treatment product samples were measured for the phase transition start temperature during the temperature rising and cooling process and the amount of heat accompanying the phase transition.

注)「−」は、相転移が観察されなかったことを示す。 Note) "-" indicates that no phase transition was observed.

表2の結果から、明らかなように、第三工程で得られる焼成品試料を第四工程でアニール処理を行うことにより、吸熱開始温度と発熱開始温度の差が小さくなることが分かる。  As can be seen from the results in Table 2, the difference between the endothermic start temperature and the exothermic start temperature is reduced by annealing the fired product sample obtained in the third step in the fourth step.

Claims (6)

下記一般式(1)
1-xx2 (1)
(式中、Mは、Cr、W、Mo、Nb、Ta、Os、Ir、Ru及びReの群から選ばれる1種又は2種以上の元素を示す。xは0≦x≦0.5を示す。)で表わされる二酸化バナジウムの製造方法であって、
バナジウム源を含む溶液にアルカリを添加し反応を行って析出した沈殿物を含むスラリーを調製する第一工程、次いで該スラリーを水熱反応に付して反応前駆体を得る第二工程、次いで該反応前駆体を不活性ガス雰囲気中で焼成して焼成品を得る第三工程、次いで該焼成品をアニール処理する第四工程とを有し、必要により前記バナジウム源を含む溶液及び/又は前記沈殿物を含むスラリーにM源を添加することを特徴とする二酸化バナジウムの製造方法。
The following general formula (1)
V 1-x M x O 2 (1)
(In the formula, M represents one or more elements selected from the group consisting of Cr, W, Mo, Nb, Ta, Os, Ir, Ru, and Re. X represents 0 ≦ x ≦ 0.5. A method for producing vanadium dioxide represented by:
A first step of preparing a slurry containing a precipitate formed by adding an alkali to a solution containing a vanadium source and performing a reaction, then a second step of subjecting the slurry to a hydrothermal reaction to obtain a reaction precursor, A third step of firing the reaction precursor in an inert gas atmosphere to obtain a fired product, and then a fourth step of annealing the fired product, and optionally a solution containing the vanadium source and / or the precipitation The manufacturing method of vanadium dioxide characterized by adding M source to the slurry containing a thing.
バナジウム源が、四価のバナジウム化合物であることを特徴とする請求項1記載の二酸化バナジウムの製造方法。   The method for producing vanadium dioxide according to claim 1, wherein the vanadium source is a tetravalent vanadium compound. バナジウム源が、硫酸バナジルであることを特徴とする請求項1記載の二酸化バナジウムの製造方法。   The method for producing vanadium dioxide according to claim 1, wherein the vanadium source is vanadyl sulfate. 第三工程の焼成温度が800〜1050℃であることを特徴とする請求項1乃至3の何れか一項に記載の二酸化バナジウムの製造方法。   The method for producing vanadium dioxide according to any one of claims 1 to 3, wherein the firing temperature in the third step is 800 to 1050 ° C. 第四工程のアニール処理は100〜550℃の温度範囲で行うことを特徴とする請求項1乃至4の何れか一項に記載の二酸化バナジウムの製造方法。   The method for producing vanadium dioxide according to any one of claims 1 to 4, wherein the annealing process in the fourth step is performed in a temperature range of 100 to 550 ° C. 蓄熱材として用いられることを特徴とする請求項1乃至5の何れか一項に記載の二酸化バナジウムの製造方法。   It is used as a heat storage material, The manufacturing method of vanadium dioxide as described in any one of Claims 1 thru | or 5 characterized by the above-mentioned.
JP2015041623A 2015-03-03 2015-03-03 Method for producing vanadium dioxide Active JP6351523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015041623A JP6351523B2 (en) 2015-03-03 2015-03-03 Method for producing vanadium dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015041623A JP6351523B2 (en) 2015-03-03 2015-03-03 Method for producing vanadium dioxide

Publications (2)

Publication Number Publication Date
JP2016160148A true JP2016160148A (en) 2016-09-05
JP6351523B2 JP6351523B2 (en) 2018-07-04

Family

ID=56846165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015041623A Active JP6351523B2 (en) 2015-03-03 2015-03-03 Method for producing vanadium dioxide

Country Status (1)

Country Link
JP (1) JP6351523B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017132677A (en) * 2016-01-30 2017-08-03 日本化学工業株式会社 Manufacturing method of vanadium dioxide
CN107579211A (en) * 2017-07-25 2018-01-12 中南大学 Lithium ion battery negative material VO2The preparation method of/CNTs microballoons
JP2018064445A (en) * 2016-10-12 2018-04-19 ツィンファ ユニバーシティ Actuator and method of producing the same
KR101931673B1 (en) * 2017-10-12 2018-12-21 한국세라믹기술원 METHOD FOR PREPARING WxNbyVO₂­(x+y) BASED LOW-TEMPERATURE TYPE PHASE TRANSITION MATERIALS
US10431408B2 (en) 2016-10-12 2019-10-01 Tsinghua University Temperature sensitive system
US10641252B2 (en) 2016-10-12 2020-05-05 Tsinghua University Actuator based on carbon nanotubes and actuating system using the same
US10661448B2 (en) 2016-10-12 2020-05-26 Tsinghua University Biomimetic limb and robot using the same
WO2020144982A1 (en) * 2019-01-09 2020-07-16 国立研究開発法人産業技術総合研究所 Powder material for sintering and solid latent heat storage member using same
US10807713B2 (en) 2016-10-12 2020-10-20 Tsinghua University Biomimetic insect
CN112266018A (en) * 2020-10-16 2021-01-26 成都先进金属材料产业技术研究院有限公司 Method for preparing nano vanadium dioxide by reverse hydrolysis precipitation
WO2021028991A1 (en) * 2019-08-09 2021-02-18 昭和電工マテリアルズ株式会社 Resin composition, heat storage material, and article

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928355B1 (en) * 1968-06-06 1974-07-25
JP2014073955A (en) * 2012-09-12 2014-04-24 Sekisui Chem Co Ltd Vanadium oxide composition, vanadium oxide particle, dispersion containing vanadium oxide particle, interlayer for laminated glass and laminated glass
JP2014198645A (en) * 2013-03-29 2014-10-23 積水化学工業株式会社 Production method of composite vanadium oxide particle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4928355B1 (en) * 1968-06-06 1974-07-25
JP2014073955A (en) * 2012-09-12 2014-04-24 Sekisui Chem Co Ltd Vanadium oxide composition, vanadium oxide particle, dispersion containing vanadium oxide particle, interlayer for laminated glass and laminated glass
JP2014198645A (en) * 2013-03-29 2014-10-23 積水化学工業株式会社 Production method of composite vanadium oxide particle

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017132677A (en) * 2016-01-30 2017-08-03 日本化学工業株式会社 Manufacturing method of vanadium dioxide
US10661448B2 (en) 2016-10-12 2020-05-26 Tsinghua University Biomimetic limb and robot using the same
US10807713B2 (en) 2016-10-12 2020-10-20 Tsinghua University Biomimetic insect
JP2018064445A (en) * 2016-10-12 2018-04-19 ツィンファ ユニバーシティ Actuator and method of producing the same
US10431408B2 (en) 2016-10-12 2019-10-01 Tsinghua University Temperature sensitive system
US10641252B2 (en) 2016-10-12 2020-05-05 Tsinghua University Actuator based on carbon nanotubes and actuating system using the same
CN107579211B (en) * 2017-07-25 2020-07-17 中南大学 Negative electrode material VO of lithium ion battery2Preparation method of/CNTs microspheres
CN107579211A (en) * 2017-07-25 2018-01-12 中南大学 Lithium ion battery negative material VO2The preparation method of/CNTs microballoons
KR101931673B1 (en) * 2017-10-12 2018-12-21 한국세라믹기술원 METHOD FOR PREPARING WxNbyVO₂­(x+y) BASED LOW-TEMPERATURE TYPE PHASE TRANSITION MATERIALS
WO2020144982A1 (en) * 2019-01-09 2020-07-16 国立研究開発法人産業技術総合研究所 Powder material for sintering and solid latent heat storage member using same
CN113260690A (en) * 2019-01-09 2021-08-13 国立研究开发法人产业技术综合研究所 Powder material for sintering and latent heat type solid heat storage member using the same
JPWO2020144982A1 (en) * 2019-01-09 2021-10-21 国立研究開発法人産業技術総合研究所 Powder material for sintering and latent heat type solid heat storage member using it
JP7120665B2 (en) 2019-01-09 2022-08-17 国立研究開発法人産業技術総合研究所 Powder material for sintering and latent heat type solid heat storage material using the same
WO2021028991A1 (en) * 2019-08-09 2021-02-18 昭和電工マテリアルズ株式会社 Resin composition, heat storage material, and article
JPWO2021028991A1 (en) * 2019-08-09 2021-02-18
CN114207020A (en) * 2019-08-09 2022-03-18 昭和电工材料株式会社 Resin composition, heat storage material, and article
JP7375819B2 (en) 2019-08-09 2023-11-08 株式会社レゾナック Resin compositions, heat storage materials, and articles
CN112266018A (en) * 2020-10-16 2021-01-26 成都先进金属材料产业技术研究院有限公司 Method for preparing nano vanadium dioxide by reverse hydrolysis precipitation

Also Published As

Publication number Publication date
JP6351523B2 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
JP6351523B2 (en) Method for producing vanadium dioxide
JP6596347B2 (en) Method for producing vanadium dioxide
Chance et al. Crystal growth of new hexahydroxometallates using a hydroflux
JP3894614B2 (en) Method for producing lithium titanate
Mulinari et al. Microwave-hydrothermal synthesis of single-crystalline Co 3 O 4 spinel nanocubes
JP2013503102A (en) Method for preparing lithium metal oxides using fluidized bed technology
JPH11302020A (en) Lithium manganese compound oxide, its production and its use
JP2012101949A (en) Lithium silicate compound and method for producing same
JP5365488B2 (en) Method for producing nickel cobalt aluminum composite oxide
JPH09309728A (en) Lithium titanate, its production and lithium battery using the same
JP2001220145A (en) Method for manufacturing lithium manganese oxide powder for lithium secondary battery
Teichert et al. Tin and lead alkoxides of ethylene glycol and glycerol and their decomposition to oxide materials
JP7471829B2 (en) Method for producing vanadium dioxide
JP5016935B2 (en) Cubic magnesium oxide powder and process for producing the same
Roof et al. Crystal growth of a new series of complex niobates, LnKNaNbO5 (Ln= La, Pr, Nd, Sm, Eu, Gd, and Tb): structural properties and photoluminescence
JP5410124B2 (en) Method for manufacturing dielectric material
Srisombat et al. Chemical synthesis of magnesium niobate powders
Piątkowska et al. New vacancied and Gd3+-doped lead molybdato-tungstates and tungstates prepared via solid state and citrate-nitrate combustion method
JP6632455B2 (en) Method for producing vanadium dioxide based heat storage material
JP4565160B2 (en) New titanium dioxide and method for producing the same
JP5801622B2 (en) Plate-like titanic acid compound and method for producing the same
JP6352210B2 (en) Method for producing perovskite oxynitride fine particles, perovskite oxynitride fine particles
JP2012232886A (en) Process for producing fluorine-containing combined salt
Deivamani et al. SYNTHESIS AND CHARACTERIZATION OF Zn DOPED Li Ni0. 3Mn0. 3Co0. 3 O2 AS CATHODE MATERIALS FOR Li-ION BATTERY
JP4487194B2 (en) Lithium secondary battery positive electrode active material, method for producing the same, and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180605

R150 Certificate of patent or registration of utility model

Ref document number: 6351523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250