JP2016160146A - Admixture for countermeasure against salt damage and method for countermeasure against salt damage of reinforced concrete - Google Patents

Admixture for countermeasure against salt damage and method for countermeasure against salt damage of reinforced concrete Download PDF

Info

Publication number
JP2016160146A
JP2016160146A JP2015041451A JP2015041451A JP2016160146A JP 2016160146 A JP2016160146 A JP 2016160146A JP 2015041451 A JP2015041451 A JP 2015041451A JP 2015041451 A JP2015041451 A JP 2015041451A JP 2016160146 A JP2016160146 A JP 2016160146A
Authority
JP
Japan
Prior art keywords
salt damage
raw material
admixture
countermeasure against
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015041451A
Other languages
Japanese (ja)
Other versions
JP6509586B2 (en
Inventor
樋口 隆行
Takayuki Higuchi
隆行 樋口
将貴 宇城
Masataka Ushiro
将貴 宇城
聖一 寺崎
Seiichi Terasaki
聖一 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd filed Critical Denka Co Ltd
Priority to JP2015041451A priority Critical patent/JP6509586B2/en
Publication of JP2016160146A publication Critical patent/JP2016160146A/en
Application granted granted Critical
Publication of JP6509586B2 publication Critical patent/JP6509586B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an admixture for countermeasure against salt damage and a method for countermeasure against salt damage of reinforced concrete, allowing for prevention of crack occurring in reinforced concrete caused by salt damage of the reinforced concrete even when freezing preventive material containing chloride is sprayed onto the reinforced concrete.SOLUTION: In one embodiment, the admixture for countermeasure against salt damage is provided that is obtained by pulverizing a heat treated article obtained by heat treating a mixture of a CaO raw material, an AlOraw material and an FeOraw material and containing calcium aluminoferrite and free lime at a specific ratio. In another embodiment, the admixture for countermeasure against salt damage is provided that is obtained by pulverizing a heat treated article obtained by heat treating a mixture of a CaO raw material, an AlOraw material and an FeOraw material and further CaSOraw material and containing calcium aluminoferrite, free lime and anhydrous gypsum at a specific ratio. The method for countermeasure against salt damage of the reinforced concrete is provided that comprises blending the admixture for countermeasure against salt damage with concrete.SELECTED DRAWING: None

Description

本発明は、土木・建築分野で使用される鉄筋コンクリートの塩害対策方法および塩害対策用混和材に関する。   The present invention relates to a salt damage countermeasure method for reinforced concrete used in the field of civil engineering and architecture and an admixture for salt damage countermeasures.

コンクリートのひび割れは、塩化物の浸透や中性化の進行を加速させ、鉄筋腐食に伴うコンクリート片の剥離や落下を誘発させる。特に沿岸部や道路関連のコンクリートでは、海からの飛来塩分や凍結防止剤の散布によって塩害が生じやすく、コンクリートのひび割れを低減する材料や技術の開発が進んでいる(特許文献1)。
また、塩害対策としてカルシウムフェロアルミネート化合物が有効であることが知られている(特許文献2)。
Cracks in concrete accelerate the progress of chloride penetration and neutralization, and induce the peeling and dropping of concrete pieces due to reinforcement corrosion. In particular, in coastal areas and road-related concrete, salt damage is likely to occur due to flying salt from the sea or spraying of an antifreezing agent, and development of materials and techniques for reducing cracks in the concrete is proceeding (Patent Document 1).
Moreover, it is known that a calcium ferroaluminate compound is effective as a countermeasure against salt damage (Patent Document 2).

特開2001−64054号公報JP 2001-64054 A WO2011/108159号パンフレットWO2011 / 108159 pamphlet

本発明は、塩化物浸透抑制効果とひび割れ抵抗性を有する塩害対策用混和材および鉄筋コンクリートの塩害対策方法を提供する。 The present invention provides a salt damage countermeasure admixture having a chloride penetration inhibiting effect and crack resistance and a salt damage countermeasure method for reinforced concrete.

すなわち、本発明は、(1)CaO原料、Al原料、およびFe原料を混合したものを熱処理して得られ、カルシウムアルミノフェライト、および遊離石灰の合計100質量部中、カルシウムアルミノフェライトを30〜90質量部、遊離石灰を10〜70質量部の割合で含有する熱処理物を粉砕してなる塩害対策用混和材、(2)CaO原料、Al原料、およびFe原料に、さらにCaSO原料を混合したものを熱処理または後添加して得られ、カルシウムアルミノフェライト、遊離石灰、および無水石膏の合計100質量部中、カルシウムアルミノフェライトを20〜60質量部、遊離石灰を20〜70質量部、無水石膏を10質量部以下の割合で含有する熱処理物を粉砕してなる(1)の塩害対策用混和材、(3)熱処理物を炭酸化処理してなる(1)または(2)の塩害対策用混和材、(4)(1)〜(3)のいずれかの塩害対策用混和材をコンクリートに配合してなる鉄筋コンクリートの塩害対策方法、(5)塩害対策用混和材をコンクリート中のセメントに対してカルシウムアルミノフェライト含有量が10〜20質量%となるようにコンクリートに配合してなる(4)の鉄筋コンクリートの塩害対策方法、である。 That is, the present invention is (1) obtained by heat-treating a mixture of a CaO raw material, an Al 2 O 3 raw material, and an Fe 2 O 3 raw material, and calcium in a total of 100 parts by mass of calcium aluminoferrite and free lime. Admixture for countermeasure against salt damage obtained by grinding a heat-treated product containing 30 to 90 parts by mass of aluminoferrite and 10 to 70 parts by mass of free lime, (2) CaO raw material, Al 2 O 3 raw material, and Fe 2 It is obtained by heat-treating or later adding a mixture of CaSO 4 raw material to O 3 raw material, and 20 to 60 parts by mass of calcium aluminoferrite in a total of 100 parts by mass of calcium aluminoferrite, free lime, and anhydrous gypsum, (1) Salt damage countermeasures obtained by pulverizing a heat-treated product containing 20 to 70 parts by mass of free lime and 10 parts by mass or less of anhydrous gypsum (3) The salt damage countermeasure admixture of (1) or (2) obtained by carbonizing a heat-treated product, or (4) the salt damage countermeasure admixture of any one of (1) to (3) (5) A salt damage countermeasure admixture is blended with concrete so that the calcium aluminoferrite content is 10 to 20% by mass with respect to the cement in the concrete ( 4) A countermeasure method for salt damage of reinforced concrete.

本発明により、塩化物を含む凍結防止材を散布しても鉄筋コンクリートの膨張率が高く、塩害によるひび割れ発生を防止することが可能となるなどの効果を奏する。   According to the present invention, even when spraying an antifreezing material containing chloride, the reinforced concrete has a high expansion rate, and it is possible to prevent the occurrence of cracking due to salt damage.

本発明で使用される、部、%は、特に規定しない限り質量基準である。
また、本発明で云うコンクリートとは、セメントペースト、セメントモルタル、およびセメントコンクリートを総称するものである。
Unless otherwise specified, parts and% used in the present invention are based on mass.
The concrete referred to in the present invention is a general term for cement paste, cement mortar, and cement concrete.

本発明の熱処理物とは、CaO原料、Al原料、およびFe原料、あるいは、これら原料に、さらにCaSO原料を混合したものを熱処理して得られる。 The heat-treated product of the present invention is obtained by heat-treating a CaO raw material, an Al 2 O 3 raw material, an Fe 2 O 3 raw material, or a mixture of these raw materials with a CaSO 4 raw material.

CaO原料としては、石灰石や消石灰などが挙げられる。Al原料としては、ボーキサイトやアルミ残灰などが挙げられる。Fe原料としては銅カラミや市販の酸化鉄などが挙げられる。CaSO原料としては二水石膏、半水石膏および無水石膏などが挙げられる。
これらの原料には不純物を含む場合があるが、本発明の効果を阻害しない範囲内では特に問題とはならない。不純物としては、SiO、MgO、TiO、ZrO、MnO、P、NaO、KO、LiO、硫黄、フッ素、塩素などが挙げられる。
Examples of the CaO raw material include limestone and slaked lime. Examples of the Al 2 O 3 raw material include bauxite and aluminum residual ash. Examples of the Fe 2 O 3 raw material include copper calami and commercially available iron oxide. Examples of the CaSO 4 raw material include dihydrate gypsum, hemihydrate gypsum, and anhydrous gypsum.
These raw materials may contain impurities, but are not particularly problematic as long as the effects of the present invention are not impaired. Examples of impurities include SiO 2 , MgO, TiO 2 , ZrO 2 , MnO, P 2 O 5 , Na 2 O, K 2 O, Li 2 O, sulfur, fluorine, and chlorine.

本発明において、CaO原料、Al原料、およびFe原料、あるいは、CaO原料、Al原料、およびFe原料に、さらにCaSO原料を混合したものを熱処理する方法は、特に限定されるものではない。
例えば、電気炉やキルンなどを用いて、1000〜1600℃の温度で焼成することが好ましく、1200〜1500℃がより好ましい。1000℃未満では、練り混ぜ直後のコンクリートの流動性の確保が難しい場合や初期強度の発現性が充分でない場合があり、1600℃を超えると無水石膏が分解する場合や初期強度の発現性が不十分になる場合がある。熱処理の時間は、その温度にもよるが、最高温度での保持時間は0〜2.0時間が好ましく、0.25〜1.75時間がより好ましい。
In the present invention, a CaO raw material, an Al 2 O 3 raw material, and an Fe 2 O 3 raw material, or a CaO raw material, an Al 2 O 3 raw material, and an Fe 2 O 3 raw material further mixed with a CaSO 4 raw material is heat-treated. The method is not particularly limited.
For example, it is preferable to bake at a temperature of 1000 to 1600 ° C using an electric furnace or a kiln, and more preferably 1200 to 1500 ° C. If the temperature is lower than 1000 ° C, it may be difficult to ensure the fluidity of the concrete immediately after mixing, or the initial strength may not be sufficiently developed. If the temperature exceeds 1600 ° C, anhydrous gypsum may decompose or the initial strength may not be sufficiently developed. It may be enough. Although the heat treatment time depends on the temperature, the holding time at the maximum temperature is preferably 0 to 2.0 hours, more preferably 0.25 to 1.75 hours.

本発明の熱処理物には、カルシウムアルミノフェライト、遊離石灰や無水石膏が含まれる。
本発明で云う遊離石灰とは、通常f−CaOと呼ばれるものである。
本発明で云うカルシウムアルミノフェライトとは、4CaO・Al・Fe(CAFと略記)や6CaO・2Al・Fe(CFと略記)や6CaO・Al・Fe(CAFと略記)で示されるものである。
The heat-treated product of the present invention includes calcium aluminoferrite, free lime and anhydrous gypsum.
The free lime referred to in the present invention is usually called f-CaO.
The calcium aluminoferrite referred to in the present invention is 4CaO.Al 2 O 3 .Fe 2 O 3 (abbreviated as C 4 AF), 6CaO.2Al 2 O 3 .Fe 2 O 3 (abbreviated as C 6 A 2 F), 6CaO.Al 2 O 3 .Fe 2 O 3 (abbreviated as C 6 AF).

本発明の熱処理物に含まれる各成分の含有量は、以下の範囲であることが好ましい。カルシウムアルミノフェライトの含有量は、CaO原料、Al原料、およびF
原料を混合したものを熱処理する場合、カルシウムアルミノフェライト遊離
石灰の合計100部中、カルシウムアルミノフェライトを30〜90部、遊離石灰を
10〜70部の割合で含有する熱処理物が好ましい。
また、CaO原料、Al原料、およびFe原料に、さらにCaSO原料
を配合する場合には、カルシウムアルミノフェライトの含有量は、カルシウムアルミノフェライト、遊離石灰、無水石膏の合計100部中、20〜60部が好ましく、30〜50部がより好ましい。遊離石灰の含有量は、20〜70部が好ましく、30〜60部がより好ましい。無水石膏の含有量は、遊離石灰、カルシウムアルミノフェライトおよび無水石膏の合計100部中、10部以下が好ましく、1〜9部がより好ましい。なお、無水石膏は、カルシウムアルミノフェライト、遊離石灰を含む熱処理物に混合しても良い。
The content of each component contained in the heat-treated product of the present invention is preferably in the following range. The content of calcium aluminoferrite is CaO raw material, Al 2 O 3 raw material, and F
For heating a mixture of e 2 O 3 raw material, a calcium aluminosilicate ferrite, in total 100 parts of free lime, 30 to 90 parts of calcium alumino ferrite, Cook containing free lime in a proportion of 10 to 70 parts of preferable.
In addition, when a CaSO 4 raw material is further added to the CaO raw material, the Al 2 O 3 raw material, and the Fe 2 O 3 raw material, the content of calcium aluminoferrite is a total of 100 of calcium aluminoferrite, free lime, and anhydrous gypsum. In the part, 20 to 60 parts are preferable, and 30 to 50 parts are more preferable. The content of free lime is preferably 20 to 70 parts, more preferably 30 to 60 parts. The content of anhydrous gypsum is preferably 10 parts or less, more preferably 1 to 9 parts, out of a total of 100 parts of free lime, calcium aluminoferrite, and anhydrous gypsum. The anhydrous gypsum may be mixed with a heat-treated product containing calcium aluminoferrite and free lime.

また、本発明の熱処理物を炭酸ガスで処理し、熱処理物中に炭酸カルシウムを生成させることは塩害対策用混和材の性能を確保する上で好ましい。炭酸ガスによる処理温度は400〜700℃が好ましい。
炭酸カルシウムの含有量は、炭酸カルシウム、カルシウムアルミノフェライト、遊離石灰、および無水石膏の合計100部中、0.5〜10部であることが好ましく、1〜6部がより好ましい。前記範囲外では、塩害抑制性能の向上が見られない場合がある。
In addition, it is preferable to treat the heat-treated product of the present invention with carbon dioxide gas to produce calcium carbonate in the heat-treated product in order to secure the performance of the salt damage countermeasure admixture. The treatment temperature with carbon dioxide gas is preferably 400 to 700 ° C.
The content of calcium carbonate is preferably 0.5 to 10 parts, more preferably 1 to 6 parts, in a total of 100 parts of calcium carbonate, calcium aluminoferrite, free lime, and anhydrous gypsum. Outside the above range, the salt damage suppression performance may not be improved.

上記各成分の含有量は、従来一般の分析方法で確認することができる。例えば、粉砕した試料を粉末X線回折装置にかけ、生成鉱物を確認するとともにデータをリートベルト法にて解析し、各成分を定量することができる。また、化学成分と粉末X線回折の同定結果に基づいて、各成分の量を計算によって求めることもできる。
炭酸カルシウムの含有量は、示差熱天秤(TG−DTA)や示差熱熱量測定(DSC)などによって、炭酸カルシウムの脱炭酸に伴う質量変化から定量することができる。
The content of each of the above components can be confirmed by a conventional analysis method. For example, the pulverized sample can be applied to a powder X-ray diffractometer to confirm the generated minerals and analyze the data by the Rietveld method to quantify each component. Moreover, the amount of each component can also be obtained by calculation based on the identification result of the chemical component and powder X-ray diffraction.
The content of calcium carbonate can be quantified from a mass change accompanying decarboxylation of calcium carbonate by a differential thermal balance (TG-DTA), differential thermal calorimetry (DSC), or the like.

本発明の塩害対策用混和材の粉末度は、ブレーン比表面積で2500〜9000cm/gが好ましく、3500〜9000cm/gがより好ましい。2500cm/g未満では、塩化物イオンの浸透抑制効果が不十分になる可能性や、初期強度の増進が不十分の場合や長期に亘って後膨張して強度が低下する場合がある。また、9000cm/gを超えるとコンクリートの流動性が低下するとともに、塩害抑制性能が不十分となる場合がある。
本発明の塩害対策用混和材の使用量は、コンクリート中のセメントと塩害対策用混和材の合計に対して、カルシウムアルミノフェライト量が10〜20%となるようにコンクリートに配合することが好ましい。
The fineness of the admixture for combating salt damage according to the present invention is preferably 2500 to 9000 cm 2 / g, more preferably 3500 to 9000 cm 2 / g in terms of Blaine specific surface area. If it is less than 2500 cm < 2 > / g, the chloride ion permeation suppressing effect may be insufficient, the initial strength may not be sufficiently increased, or the strength may be reduced by post-expansion over a long period of time. Moreover, when it exceeds 9000 cm < 2 > / g, while the fluidity | liquidity of concrete falls, salt damage suppression performance may become inadequate.
The amount of the salt damage countermeasure admixture of the present invention is preferably blended in the concrete so that the amount of calcium aluminoferrite is 10 to 20% with respect to the total amount of cement and salt damage countermeasure admixture in the concrete.

本発明で使用するセメントとしては、普通、早強、超早強、低熱、および中庸熱などの各種ポルトランドセメント、これらセメントに対して、高炉スラグ、フライアッシュ、およびシリカからなる群から選ばれる少なくとも1種を混合した各種混合セメント、ならびに石灰石粉末を混合したフィラーセメントなどが挙げられる。   The cement used in the present invention is usually at least selected from the group consisting of various Portland cements such as early strength, very early strength, low heat, and moderate heat, and these cements, blast furnace slag, fly ash, and silica. Examples include various mixed cements in which one type is mixed, and filler cements in which limestone powder is mixed.

本発明では、砂、砂利の他、減水剤、高性能減水剤、AE減水剤、高性能AE減水剤、流動化剤、消泡剤、増粘剤、防錆剤、防凍剤、収縮低減剤、高分子エマルジョン、凝結調整剤、セメント急硬材、ベントナイトなどの粘土鉱物、ゼオライトなどのイオン交換体、シリカ質微粉末、炭酸カルシウム、水酸化カルシウム、石膏、ケイ酸カルシウム、鋼繊維などを併用することが可能である。有機系材料としては、ビニロン繊維、アクリル繊維、炭素繊維などの繊維状物質などが挙げられる。   In the present invention, in addition to sand and gravel, water reducing agent, high performance water reducing agent, AE water reducing agent, high performance AE water reducing agent, fluidizing agent, antifoaming agent, thickener, rust preventive agent, antifreeze agent, shrinkage reducing agent , Polymer emulsions, setting modifiers, cement hardeners, clay minerals such as bentonite, ion exchangers such as zeolite, siliceous fine powder, calcium carbonate, calcium hydroxide, gypsum, calcium silicate, steel fibers, etc. Is possible. Examples of the organic material include fibrous substances such as vinylon fiber, acrylic fiber, and carbon fiber.

以下、実施例および比較例により本発明を具体的に説明するが、本発明はこれらに限定されないことはもちろんである。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, of course, this invention is not limited to these.

「実験例1」
CaO原料、Al原料、およびFe原料、あるいは、CaO原料、Al原料、Fe原料およびCaSO原料を表1、2に記載するような所定の鉱物組成となるように混合した。この混合物を、電気炉を用いて1350℃で0.5時間熱処理し、得られた熱処理物をボールミルでブレーン比表面積3,500cm/gに粉砕し、塩害対策用混和材とした。
なお、遊離石灰(f−CaO)50部、カルシウムアルミノフェライト(CAF)40部、無水石膏(CaSO)10部の熱処理物について、炭酸ガス雰囲気下、600℃で処理を行い、処理時間を変えて、炭酸カルシウム(CaCO)含有量の異なる塩害対策用混和材を調製した。
次に、セメント450g、標準砂1350g、水225gを基準配合とし、表1、2に示すように塩害対策用混和材の種類とセメントに対する使用量を変えて、モルタルの膨張率、圧縮強さ、塩分浸透深さ、および曲げひび割れ発生強度比を評価した。塩害対策用混和材は、セメントに内割で配合した。
なお、遊離石灰(f−CaO)とカルシウムアルミノフェライト(CAF)を含む熱処理物に無水石膏(ブレーン比表面積5000cm/g、市販品)を添加した場合や、遊離石灰(f−CaO)とカルシウムアルミノフェライト(CAF)をそれぞれ純合成して、ブレーン比表面積3,500cm/gに粉砕して混合したものや、市販膨張材に純合成したカルシウムアルミノフェライト(CAF)を添加したものも評価した。
"Experiment 1"
CaO raw material, Al 2 O 3 raw material, and Fe 2 O 3 raw material, or predetermined mineral composition as described in Tables 1 and 2 for CaO raw material, Al 2 O 3 raw material, Fe 2 O 3 raw material and CaSO 4 raw material It mixed so that it might become. This mixture was heat-treated at 1350 ° C. for 0.5 hours using an electric furnace, and the obtained heat-treated product was pulverized with a ball mill to a Blaine specific surface area of 3,500 cm 2 / g to obtain an admixture for preventing salt damage.
Incidentally, free lime (f-CaO) 50 parts, calcium alumino ferrite (C 4 AF) 40 parts of the anhydrous gypsum (CaSO 4) 10 parts of heat-treated product under a carbon dioxide atmosphere, a process at 600 ° C., the treatment time The salt damage countermeasure admixtures having different calcium carbonate (CaCO 3 ) contents were prepared.
Next, 450 g of cement, 1350 g of standard sand, and 225 g of water are used as a reference composition, and as shown in Tables 1 and 2, the type of admixture for preventing salt damage and the amount used for cement are changed, and the expansion rate, compressive strength of mortar, The salt penetration depth and bending cracking strength ratio were evaluated. The admixture for preventing salt damage was blended into the cement.
In addition, when anhydrous gypsum (Brain specific surface area of 5000 cm 2 / g, commercially available product) is added to a heat-treated product containing free lime (f-CaO) and calcium aluminoferrite (C 4 AF), free lime (f-CaO) And calcium aluminoferrite (C 4 AF) were purely synthesized and pulverized to a Blaine specific surface area of 3,500 cm 2 / g and mixed, or calcium aluminoferrite (C 4 AF) purely synthesized into a commercially available expansion material. The added ones were also evaluated.

(使用材料)
CaO原料:炭酸カルシウム(石灰石微粉末)、100メッシュ、市販品
Al原料:ボーキサイト、90μm篩通過率100%、市販品
Fe原料:酸化鉄粉末、ブレーン比表面積3000cm/g、市販品
CaSO原料:ニ水石膏、ブレーン比表面積5000cm/g、市販品
セメント:普通ポルトランドセメント、市販品、密度3.16g/cm
市販膨張材:f−CaO50部、3CaO・3Al、CaSO12部、CaSO30部、エトリンガイト・石灰複合型膨張材、電気化学工業社製
砂:JIS標準砂
水:水道水
(Materials used)
CaO raw material: Calcium carbonate (fine limestone powder), 100 mesh, commercially available Al 2 O 3 raw material: bauxite, 90 μm sieve passage rate 100%, commercially available Fe 2 O 3 raw material: iron oxide powder, Blaine specific surface area 3000 cm 2 / g Commercially available CaSO 4 raw material: dihydrate gypsum, Blaine specific surface area 5000 cm 2 / g, commercially available cement: ordinary Portland cement, commercially available, density 3.16 g / cm 3
Commercially available expandable material: f-CaO50 parts, 3CaO · 3Al 2 O 3, CaSO 4 12 parts, CaSO 4 30 parts of ettringite-lime composite expanding material, manufactured by Denki Kagaku Kogyo KK sand: JIS standard sand Water: Tap water

(試験方法)
膨張率および圧縮強さ:JIS A 6202付属書1に準拠した。
塩分浸透深さ:材齢1日で脱型した40mm×40mm×160mmのモルタル試験体を材齢28日まで20℃水中で養生し、その後、疑似海水にモルタルを20℃環境下で浸漬した。浸漬3か月後にモルタル試験体を取り出し、モルタル断面に硝酸銀水溶液を吹きかけて、塩分浸透深さを測定した。測定は8か所測定し、平均値を求めた。
曲げひび割れ発生強度比:膨張率測定で用いた一軸拘束試験体を材齢28日まで20℃水中で養生した後、その後、疑似海水にモルタルを20℃環境下で浸漬した。浸漬3か月後にモルタル試験体を取り出し、端板を取り外した後、曲げ試験を実施した。ひび割れ発生時の荷重を計測し、塩害対策混和材を混和しない試験体との強度比を算出した。
(Test method)
Expansion coefficient and compressive strength: compliant with JIS A 6202 Annex 1.
Salt penetration depth: A 40 mm × 40 mm × 160 mm mortar specimen demolded at 1 day of age was cured in water at 20 ° C. until the age of 28 days, and then the mortar was immersed in simulated seawater in a 20 ° C. environment. After 3 months of immersion, the mortar specimen was taken out and a silver nitrate aqueous solution was sprayed on the cross section of the mortar to measure the salt penetration depth. The measurement was performed at 8 locations and the average value was obtained.
Bending cracking strength ratio: The uniaxial restraint specimen used for the expansion coefficient measurement was cured in 20 ° C. water until the age of 28 days, and then the mortar was immersed in simulated sea water in a 20 ° C. environment. After 3 months of immersion, the mortar specimen was taken out, the end plate was removed, and then a bending test was performed. The load at the time of crack occurrence was measured, and the strength ratio with the test specimen not containing the salt damage countermeasure admixture was calculated.

Figure 2016160146
Figure 2016160146

Figure 2016160146
Figure 2016160146

表1、2より、本発明について以下のことが分かる。
(1)カルシウムアルミノフェライト含有量が高くなるにしたがって塩分浸透が抑制される。(2)熱処理物に無水石膏を共存させると膨張性能が向上するため、無水石膏の含有量を調整することによって、塩分浸透の抑制効果と膨張性能が両立することが可能となる。(3)熱処理物に炭酸カルシウムを生成させることによって、膨張率が向上する。(4)塩害対策混和材を混和しない試験体に比べて、曲げひび割れ発生強度比が高くなり、塩分が浸透してもひび割れ抵抗性に優れる。
From Tables 1 and 2, the following can be understood for the present invention.
(1) Salinity permeation is suppressed as the calcium aluminoferrite content increases. (2) When anhydrous gypsum is allowed to coexist with the heat-treated product, the expansion performance is improved. Therefore, by adjusting the content of anhydrous gypsum, it is possible to achieve both the salt penetration inhibiting effect and the expansion performance. (3) The expansion coefficient is improved by generating calcium carbonate in the heat-treated product. (4) Bending cracking strength ratio is higher than that of specimens that do not contain salt damage countermeasure admixtures, and excellent resistance to cracking even if salt penetrates.

本発明により、塩化物を含む凍結防止材を散布しても鉄筋コンクリートの膨張率が高く塩害によるひび割れ発生を防止することが可能となることから、土木分野などで広範に適用できる。   According to the present invention, even when spraying an antifreezing material containing chloride, the expansion rate of reinforced concrete is high and it is possible to prevent the occurrence of cracks due to salt damage.

Claims (5)

CaO原料、Al原料、およびFe原料を混合したものを熱処理して得られ、カルシウムアルミノフェライト、および遊離石灰の合計100質量部中、カルシウムアルミノフェライトを30〜90質量部、遊離石灰を10〜70質量部の割合で含有する熱処理物を粉砕してなる塩害対策用混和材。 It is obtained by heat-treating a mixture of CaO raw material, Al 2 O 3 raw material, and Fe 2 O 3 raw material, and in a total of 100 parts by mass of calcium aluminoferrite and free lime, 30 to 90 parts by mass of calcium aluminoferrite, An admixture for preventing salt damage, which is obtained by pulverizing a heat-treated product containing free lime in a proportion of 10 to 70 parts by mass. CaO原料、Al原料、およびFe原料に、さらにCaSO原料を混合したものを熱処理または混合して得られ、カルシウムアルミノフェライト、遊離石灰、および無水石膏の合計100質量部中、カルシウムアルミノフェライトを10〜90質量部、遊離石灰を20〜70質量部、無水石膏を10質量部以下の割合で含有する熱処理物を粉砕してなる塩害対策用混和材。 CaO raw material, Al 2 O 3 raw material, and Fe 2 O 3 raw material, further mixed with CaSO 4 raw material, heat-treated or mixed, obtained in a total of 100 parts by mass of calcium aluminoferrite, free lime, and anhydrous gypsum An admixture for combating salt damage obtained by pulverizing a heat-treated product containing calcium aluminoferrite in an amount of 10 to 90 parts by mass, free lime in an amount of 20 to 70 parts by mass, and anhydrous gypsum in an amount of 10 parts by mass or less. 熱処理物を炭酸化処理してなる請求項1または2記載の塩害対策用混和材。 The admixture for preventing salt damage according to claim 1 or 2, wherein the heat-treated product is carbonized. 請求項1〜3のいずれか1項記載の塩害対策用混和材をコンクリートに配合してなる鉄筋コンクリートの塩害対策方法。 The salt damage countermeasure method of the reinforced concrete formed by mix | blending the admixture for salt damage countermeasure of any one of Claims 1-3 with concrete. 塩害対策用混和材をコンクリート中のセメントに対してカルシウムアルミノフェライト含有量が10〜20質量%となるようにコンクリートに配合してなる請求項4に記載の鉄筋コンクリートの塩害対策方法。 The salt damage countermeasure method for reinforced concrete according to claim 4, wherein the salt damage countermeasure admixture is blended with concrete so that the calcium aluminoferrite content is 10 to 20 mass% with respect to the cement in the concrete.
JP2015041451A 2015-03-03 2015-03-03 Salt damage control admixture and reinforced concrete salt damage control method Active JP6509586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015041451A JP6509586B2 (en) 2015-03-03 2015-03-03 Salt damage control admixture and reinforced concrete salt damage control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015041451A JP6509586B2 (en) 2015-03-03 2015-03-03 Salt damage control admixture and reinforced concrete salt damage control method

Publications (2)

Publication Number Publication Date
JP2016160146A true JP2016160146A (en) 2016-09-05
JP6509586B2 JP6509586B2 (en) 2019-05-08

Family

ID=56846291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015041451A Active JP6509586B2 (en) 2015-03-03 2015-03-03 Salt damage control admixture and reinforced concrete salt damage control method

Country Status (1)

Country Link
JP (1) JP6509586B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05294693A (en) * 1992-04-10 1993-11-09 Denki Kagaku Kogyo Kk Salt damage-preventing cement additive and salt damage-preventing cement composition
JP2001064054A (en) * 1999-08-25 2001-03-13 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2001322848A (en) * 2000-05-08 2001-11-20 Denki Kagaku Kogyo Kk Cement admixture and cement composition
WO2010143506A1 (en) * 2009-06-12 2010-12-16 電気化学工業株式会社 Expansive admixture and method for producing same
WO2012077418A1 (en) * 2010-12-08 2012-06-14 電気化学工業株式会社 Cement admixture, cement composition, and hexavalent chromium reduction method using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05294693A (en) * 1992-04-10 1993-11-09 Denki Kagaku Kogyo Kk Salt damage-preventing cement additive and salt damage-preventing cement composition
JP2001064054A (en) * 1999-08-25 2001-03-13 Denki Kagaku Kogyo Kk Cement admixture and cement composition
JP2001322848A (en) * 2000-05-08 2001-11-20 Denki Kagaku Kogyo Kk Cement admixture and cement composition
WO2010143506A1 (en) * 2009-06-12 2010-12-16 電気化学工業株式会社 Expansive admixture and method for producing same
WO2012077418A1 (en) * 2010-12-08 2012-06-14 電気化学工業株式会社 Cement admixture, cement composition, and hexavalent chromium reduction method using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
荒井康夫, セメントの材料化学, vol. 改訂2版, JPN6018033635, 20 September 2006 (2006-09-20), JP, pages 88, ISSN: 0003868160 *

Also Published As

Publication number Publication date
JP6509586B2 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
JP5688073B2 (en) Calcium ferroaluminate compound, cement admixture and method for producing the same, cement composition
JP5923104B2 (en) Early mold release material and method for producing concrete product
JP2018172267A (en) Admixture for salt damage prevention and cement composition using the same
JP4382614B2 (en) Cement admixture and cement composition using the same
EP2650268B1 (en) Cement admixture, cement composition, and hexavalent chromium reduction method using same
JP2007153714A (en) Cement admixture and cement composition
WO2022044890A1 (en) Cement composition, production method, method for inhibiting carbonation of steel-reinforced concrete by adding said cement composition, and method for keeping beautiful appearance of surface of steel-reinforced concrete by adding said cement composition
JP5345821B2 (en) Cement admixture and cement composition
TWI734863B (en) Cement admixture, cement composition using the same, and salt damage suppression processing method of concrete structure
JP6735624B2 (en) Concrete surface modifier and method for improving surface quality of concrete using the same
JP6509586B2 (en) Salt damage control admixture and reinforced concrete salt damage control method
WO2015044381A1 (en) A binder based on activated ground granulated blast furnace slag useful for forming a concrete type material
JP2004051421A (en) Cement admixture and cement composition
JP2017036164A (en) Salt damage countermeasure concrete hardened body and method for producing the same
JP5313624B2 (en) Cement composition and cement concrete
JP2005082440A (en) Quick hardening cement admixture, cement composition, and mortar composition
JP7037878B2 (en) Early-strength admixture for secondary products and early-strength concrete for secondary products
JP2018020938A (en) Cement admixture for salt damage countermeasure and concrete using the same
JP6475579B2 (en) Expansion material for precast concrete, method for producing the same, and method for producing precast concrete
JP5851343B2 (en) Cement admixture, cement composition and method for producing the same
WO2023022172A1 (en) Cement admixture, method for producing cement admixture, and cement composition
JP5615661B2 (en) Cement admixture and cement composition
JP2023030485A (en) Rust inhibitor composition and rust-inhibiting method
JPWO2019026674A1 (en) Cement admixture, cement composition and method for producing the same
JP2014189423A (en) Blast furnace slag fine powder and cement composition blended with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190403

R150 Certificate of patent or registration of utility model

Ref document number: 6509586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250