JP2016160143A - Refractory - Google Patents

Refractory Download PDF

Info

Publication number
JP2016160143A
JP2016160143A JP2015040983A JP2015040983A JP2016160143A JP 2016160143 A JP2016160143 A JP 2016160143A JP 2015040983 A JP2015040983 A JP 2015040983A JP 2015040983 A JP2015040983 A JP 2015040983A JP 2016160143 A JP2016160143 A JP 2016160143A
Authority
JP
Japan
Prior art keywords
mass
raw material
refractory
spinel
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015040983A
Other languages
Japanese (ja)
Inventor
陽介 今野
Yosuke Konno
陽介 今野
浩明 町田
Hiroaki Machida
浩明 町田
芳 佐竹
Kaoru Satake
芳 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2015040983A priority Critical patent/JP2016160143A/en
Publication of JP2016160143A publication Critical patent/JP2016160143A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refractory and a production method of the same, capable of suppressing a reaction between the refractory and Fe-based alloy raw materials, reducing generation of erosion and slag, and suppressing cracks on an inner wall of the refractory.SOLUTION: A spinel raw material excellent in corrosion resistance relative to an alumina raw material, is added to the alumina raw material by a predetermined amount, and a ratio of an AlOcomponent and a MgO component is adjusted for obtaining a raw material, then the obtained raw material is sintered for forming into a shaped article, and the shaped article has a minute tissue structure. Thereby the shaped refractory comprises improved corrosion resistance to molten metal.SELECTED DRAWING: None

Description

本発明は、例えばFe基非晶質合金、Fe基ナノ結晶合金、金属ガラスといった、Fe基合金原料を溶解する際の坩堝等に好適な定形の耐火物に関する。   The present invention relates to a regular refractory suitable for a crucible or the like for melting an Fe-based alloy raw material, such as an Fe-based amorphous alloy, an Fe-based nanocrystalline alloy, or metallic glass.

特許文献1には、アルミナ原料40〜93重量%、粒度1mm以下の仮焼スピネル5〜40重量%及びアルミナセメント2〜20重量%を含有し、緻密な組織の形成により、溶損、スラグ浸潤を抑制する、アルミナ・スピネル質不定形耐火物が記載されている。   Patent Document 1 contains 40 to 93% by weight of alumina raw material, 5 to 40% by weight of calcined spinel with a particle size of 1 mm or less, and 2 to 20% by weight of alumina cement. Alumina-spinel amorphous refractories are described.

なお、仮焼スピネルとして、Al、MgO、Fe、SiO、CaOを含む材料を用いることが例示されている。さらに、不定形耐火物であることから所定量の水を添加して金枠に流し込み成形、乾燥して用いることが記載されている。 As calcined spinel, Al 2 O 3, MgO, can be used a material containing Fe 2 O 3, SiO 2, CaO is illustrated. Furthermore, since it is an irregular refractory, it is described that a predetermined amount of water is added, poured into a metal frame, molded and dried.

特開平7−330449号公報Japanese Unexamined Patent Publication No. 7-330449

不定形耐火物は、特許文献1に例示されるように、耐火性のある原料を水と混合し、例えば坩堝形状に成形、乾燥して得られるものである。   As exemplified in Patent Document 1, the amorphous refractory is obtained by mixing a fire-resistant raw material with water, for example, forming into a crucible shape and drying.

不定形耐火物の表面は、比較的緻密な組織構造とはいえ、単に成形、乾燥したものであることから、例えば、溶解されたP、Si、B、Cu等の元素を含むFe基非晶質合金原料においては、これらの元素と不定形耐火物表面の原材料成分が反応して低融点化合物が形成される、溶湯が耐火物内に浸透して溶損やスラグが発生するといった課題がある。   Although the surface of the amorphous refractory has a relatively dense structure, it is simply formed and dried, so that, for example, an Fe-based amorphous material containing dissolved elements such as P, Si, B, and Cu. In the alloy material, these elements and raw material components on the surface of the amorphous refractory react to form a low melting point compound, and the molten metal permeates into the refractory and causes melting and slag. .

さらに、熱膨張により、不定形耐火物の表面に亀裂が発生しやすいという課題がある。   Furthermore, there is a problem that cracks are likely to occur on the surface of the irregular refractory due to thermal expansion.

本発明は、耐火物とFe基合金原料との反応を抑制し、溶損やスラグの発生を減少させ、かつ耐火物の内壁に亀裂が発生しにくい耐火物およびその製造方法を提供することを目的とする。   The present invention provides a refractory that suppresses the reaction between the refractory and the Fe-based alloy raw material, reduces the occurrence of erosion and slag, and is less prone to cracks on the inner wall of the refractory, and a method for producing the same. Objective.

上記の課題を解決するために、本発明による耐火物は、アルミナ原料よりも耐食性が優れたスピネル原料を、アルミナ原料に所定量添加し、すなわち、Al成分とMgO成分の割合を調整して得た原料を焼結して定形とし、より緻密な組織構造とすることにより、溶湯に対する耐食性を増した定形耐火物とする。 In order to solve the above problems, the refractory according to the present invention adds a predetermined amount of a spinel raw material, which has better corrosion resistance than the alumina raw material, to the alumina raw material, that is, adjusts the ratio of the Al 2 O 3 component and the MgO component. The raw material obtained in this manner is sintered into a regular shape, and a finer structure is obtained, thereby obtaining a regular refractory with increased corrosion resistance to the molten metal.

すなわち、焼結によって得られた定形耐火物とすることにより、耐火物を構成している粒子が脱粒して溶湯へ混入するのを抑制する。   That is, by using a regular refractory obtained by sintering, it is possible to prevent particles constituting the refractory from being separated and mixed into the molten metal.

さらに、残存膨張性を付与することにより、耐火物に亀裂が発生するのを抑制する。   Furthermore, by giving the residual expansibility, the occurrence of cracks in the refractory is suppressed.

本発明は、Al成分90質量%以上98質量%以下と、MgO成分2質量%以上8質量%以下を含む焼結体であることを特徴とする耐火物である。 The present invention is a refractory that is a sintered body containing 90% by mass to 98% by mass of an Al 2 O 3 component and 2% by mass to 8% by mass of an MgO component.

本発明は、Al成分92質量%以上95質量%以下と、MgO成分5質量%以上7質量%以下を含む焼結体であることを特徴とする耐火物である。 The present invention is a refractory that is a sintered body containing 92% by mass to 95% by mass of an Al 2 O 3 component and 5% by mass to 7% by mass of an MgO component.

本発明は、残存膨張率が0.3%以下(0を含まず)であることを特徴とする耐火物である。   The present invention is a refractory having a residual expansion coefficient of 0.3% or less (not including 0).

本発明は、アルミナ原料70質量%以上90質量%以下と、スピネル原料10質量%以上30質量%以下とを混合して、Al成分90質量%以上98質量%以下と、MgO成分2質量%以上8質量%以下を含む混合物を得る工程と、前記混合物を型枠に充填して成型体を得る工程と、前記成型体を前記型枠から取り出し乾燥する工程と、前記成型体を焼結する工程とを有することを特徴とする耐火物の製造方法である。 In the present invention, alumina raw material 70% by mass to 90% by mass and spinel raw material 10% by mass to 30% by mass are mixed, Al 2 O 3 component 90% by mass to 98% by mass, MgO component 2 A step of obtaining a mixture containing not less than 8% by mass and not more than 8% by mass; a step of filling the mixture into a mold to obtain a molded body; a step of removing the molded body from the mold and drying; and baking the molded body. A method for producing a refractory, characterized by comprising a step of tying.

本発明は、アルミナ原料70質量%以上85質量%以下と、スピネル原料15質量%以上30質量%以下とを混合して、Al成分92質量%以上95質量%以下と、MgO成分5質量%以上7質量%以下を含む混合物を得る工程と、前記混合物を型枠に充填して成型体を得る工程と、前記成型体を前記型枠から取り出し乾燥する工程と、前記成型体を焼結する工程とを有することを特徴とする耐火物の製造方法である。 In the present invention, alumina raw material 70% by mass to 85% by mass and spinel raw material 15% by mass to 30% by mass are mixed, Al 2 O 3 component 92% by mass to 95% by mass, MgO component 5 A step of obtaining a mixture containing not less than 7% by mass and not more than 7% by mass, a step of filling the mixture into a mold to obtain a molded body, a step of removing the molded body from the mold and drying it, and firing the molded body. A method for producing a refractory, characterized by comprising a step of tying.

本発明によれば、耐火物と溶融した合金原料との反応を抑制し、溶損やスラグの発生を減少させ、かつ耐火物の内壁に亀裂が発生しにくい、すなわち、耐食性、耐浸透性に優れ、比較的高寿命であり、特にFe基合金溶湯の保持容器や保持具として好適な耐火物およびその製造方法が得られる。   According to the present invention, the reaction between the refractory and the molten alloy raw material is suppressed, the occurrence of erosion and slag is reduced, and the inner wall of the refractory is less likely to crack, that is, corrosion resistance and penetration resistance. An excellent refractory material having a relatively long life and particularly suitable as a holding container or holding tool for molten Fe-based alloy and a method for producing the same can be obtained.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

所定の配合比および組成となるように配合したアルミナ原料およびスピネル原料を結合剤と混合したAlとMgOを所定量含む混合物を、溶解炉等の使用に適した坩堝形状や円筒形状といった所定形状の型枠に均一かつ高密度に充填した後に型枠を外して得た成型体を、乾燥・焼結して本発明の耐火物を得る。 A mixture containing a predetermined amount of Al 2 O 3 and MgO in which an alumina raw material and a spinel raw material mixed to have a predetermined mixing ratio and composition are mixed with a binder, such as a crucible shape or a cylindrical shape suitable for use in a melting furnace, etc. A molded body obtained by uniformly and densely filling a mold having a predetermined shape and then removing the mold is dried and sintered to obtain the refractory of the present invention.

アルミナ原料としては、主としてAl組成を有するものであればいずれでもよく、例えば電融アルミナ、焼結アルミナなどを単体もしくは組み合わせて使用するのが好ましい。アルミナ原料の配合比は、溶湯に対する耐食性が低下しない70質量%以上90質量%以下が好ましい。 Any alumina raw material may be used as long as it mainly has an Al 2 O 3 composition. For example, electrofused alumina or sintered alumina is preferably used alone or in combination. The mixing ratio of the alumina raw material is preferably 70% by mass or more and 90% by mass or less in which the corrosion resistance to the molten metal does not decrease.

また、耐火物は亀裂や破損が生じ難くするために、0.3%以下の残存膨張率を有するのが好ましい。この場合は、アルミナ原料の配合比は、70質量%以上85質量%以下とするのがより好ましい。   In addition, the refractory preferably has a residual expansion coefficient of 0.3% or less in order to make it difficult for cracks and breakage to occur. In this case, the mixing ratio of the alumina raw material is more preferably 70% by mass or more and 85% by mass or less.

スピネル原料としては、主としてMgAl組成を有するものであればいずれでもよく、例えば電融スピネル、焼結スピネルなどを単体もしくは組み合わせて使用するのが好ましい。スピネル原料の配合比は、10質量%未満だと耐火物表面に露出するスピネル面積が少なくなるため溶湯に対する耐食性が低下し、30質量%を超えるとスラグの浸透性が高くなり、同様に耐食性が低下する。したがって、配合比は、10質量%以上30質量%以下が好ましい。 The spinel raw material may be any material as long as it mainly has a MgAl 2 O 3 composition. For example, it is preferable to use a fused spinel, a sintered spinel or the like alone or in combination. If the blending ratio of the spinel raw material is less than 10% by mass, the spinel area exposed on the surface of the refractory is reduced, so the corrosion resistance to the molten metal is lowered. descend. Therefore, the blending ratio is preferably 10% by mass or more and 30% by mass or less.

スピネル原料に含まれるMgO成分を一定量増加することにより、残存膨張率を調整することができる。したがって、残存膨張率を考慮すれば、スピネル原料の配合比は、15質量%以上30質量%以下がより好ましい。   The residual expansion coefficient can be adjusted by increasing a certain amount of the MgO component contained in the spinel raw material. Therefore, considering the residual expansion rate, the blending ratio of the spinel raw material is more preferably 15% by mass or more and 30% by mass or less.

スピネルはスラグ中のFeO、MnO成分等と反応し、固溶することでスラグの浸透を抑制する効果があるが、CaO、SiO成分等を含んだスラグに対しては、浸透を抑制する効果は低いため、過剰に添加すると逆に耐食性は低下する。したがって、配合比は20質量%程度とするのがより好ましい。 Spinel reacts with the FeO and MnO components in the slag and has an effect of suppressing the penetration of the slag by solid solution, but the effect of suppressing the penetration of the slag containing the CaO and SiO 2 components. Therefore, if added excessively, the corrosion resistance decreases. Therefore, the blending ratio is more preferably about 20% by mass.

上述のようにアルミナ原料とスピネル原料の配合比を調整することにより、本発明の耐火物は、Alを90質量%以上98質量%未満、MgOを2.0質量%以上8.0質量%以下含む焼結体であることが好ましい。 By adjusting the mixing ratio of the alumina raw material and the spinel raw material as described above, the refractory according to the present invention has Al 2 O 3 of 90% by mass or more and less than 98% by mass, and MgO of 2.0% by mass or more and 8.0% by mass. A sintered body containing at most mass% is preferred.

さらに、残存膨張率を考慮すれば、本発明の耐火物は、Alを92質量%以上95質量%未満、MgOを5.0質量%以上7.0質量%以下含む焼結体であることがより好ましい。 Furthermore, considering the residual expansion coefficient, the refractory according to the present invention is a sintered body containing Al 2 O 3 in an amount of 92% by mass to less than 95% by mass and MgO in an amount of 5.0% by mass to 7.0% by mass. More preferably.

なお、スピネル材料として、スピネル組成がモル比でAl:MgO=90:10〜60:40のものを用いるのが好ましい。 In addition, as a spinel material, it is preferable to use a spinel composition having a molar ratio of Al 2 O 3 : MgO = 90: 10 to 60:40.

同様に、残存膨張率を考慮すれば、スピネル材料として、スピネル組成がモル比でAl:MgO=85:15〜60:40のものを用いるのがより好ましい。 Similarly, considering the residual expansion rate, it is more preferable to use a spinel material having a spinel composition of Al 2 O 3 : MgO = 85: 15 to 60:40 in a molar ratio.

アルミナ原料およびスピネル原料に不純物として含まれるSiOやFe等の成分はスラグが浸透してきた際に低融点化を引き起こす原因となり、浸透層を増加させることから、アルミナ原料またはスピネル原料は、不純物含有量が合計で3.0%以下のものを用いることがより好ましい。 Components such as SiO 2 and Fe 2 O 3 contained as impurities in the alumina raw material and the spinel raw material cause a low melting point when the slag penetrates and increase the permeation layer. Therefore, the alumina raw material or the spinel raw material is It is more preferable to use those having a total impurity content of 3.0% or less.

アルミナ原料およびスピネル原料の粒度はいずれでもよく、流動性や充填性を向上させるために、粒度配合を調整する、すなわち、各原料を粗粉、中粒粉、微粉とし、適宜、比率を調整するのが好ましい。   The particle size of the alumina raw material and the spinel raw material may be any, and in order to improve fluidity and fillability, the particle size blending is adjusted, that is, each raw material is coarse powder, medium powder, fine powder, and the ratio is adjusted appropriately. Is preferred.

型枠への充填性向上のためには、アルミナ原料とスピネル原料の混合物を型枠に流し込んだ後に、プレスやスタンプなどで圧縮応力を加える、振動を加える等の成形方法を採用するのが好ましい。   In order to improve the filling property to the mold, it is preferable to adopt a molding method such as applying a compressive stress or applying vibration with a press or stamp after pouring the mixture of the alumina raw material and the spinel raw material into the mold. .

アルミナ原料とスピネル原料に混合する結合剤はいずれでもよく、ケイ酸ソーダなどの無機化合物、フェノール樹脂、PVAなどの有機化合物が好ましい。   Any binder may be mixed with the alumina raw material and the spinel raw material, and an inorganic compound such as sodium silicate, and an organic compound such as phenol resin and PVA are preferable.

型枠の形状は一体構造または分割構造のいずれでもよいが、継ぎ目や脱粒により生じる空隙といった、溶湯またはスラグとの反応性が高い部分を減少させることが可能となることから、溶湯と接触する内壁部分を一体構造とするのがより好ましい。   The shape of the formwork may be either a unitary structure or a divided structure, but it is possible to reduce the portion that is highly reactive with the molten metal or slag, such as seams and voids caused by degranulation, so the inner wall that contacts the molten metal It is more preferable that the parts have an integral structure.

上述によって得た本発明の耐火物は焼結体であることから、P、Si、B元素などの耐火物との反応性が高い元素に対する耐食性が高く、特にFe基合金用の溶解や溶湯保持具、坩堝、精錬用容器などに好適である。   Since the refractory of the present invention obtained as described above is a sintered body, it has high corrosion resistance against elements having high reactivity with refractories such as P, Si, and B elements, and particularly for melting and holding molten metal for Fe-based alloys. Suitable for tools, crucibles, refining containers and the like.

さらに、耐火物の溶損により発生するスラグを低減し、高清浄な溶湯を得ることができ、例えば非晶質合金薄帯の製造時における、不純物の巻き込みによる品質劣化や、ノズル閉塞などを減少することができる。   In addition, slag generated due to refractory erosion can be reduced, and a highly clean molten metal can be obtained. For example, quality deterioration due to entrainment of impurities and nozzle clogging are reduced during the manufacture of amorphous alloy ribbons. can do.

以下、本発明の実施例を用いて具体的に説明する。   Hereafter, it demonstrates concretely using the Example of this invention.

(実施例1)
アルミナ原料と、Al対MgOの成分比が76対24であるスピネル原料を、アルミナ原料90質量%、スピネル原料10質量%の配合比となるように秤量し、ケイ酸ソーダからなるバインダーと混合した。得られた混合物を組成分析したところ、Alは96.4質量%、MgOは2.4質量%であった。
Example 1
A binder made of sodium silicate was weighed with an alumina raw material and a spinel raw material having a component ratio of Al 2 O 3 to MgO of 76:24 to a blending ratio of 90% by mass of the alumina raw material and 10% by mass of the spinel raw material. Mixed with. Composition analysis of the obtained mixture revealed that Al 2 O 3 was 96.4% by mass and MgO was 2.4% by mass.

この混合物を坩堝形状の型枠内に流し込みながら、スタンプにより突き固めて成型した後、型枠から取出し、オーブンにより450℃で乾燥後、1300℃まで昇温して焼成し、外径φ85mm×内径φ73mm×高さ160mmの坩堝形状の耐火物を得た。   The mixture is poured into a crucible-shaped mold, molded by stamping, taken out from the mold, dried in an oven at 450 ° C., heated to 1300 ° C. and fired, outer diameter φ85 mm × inner diameter A crucible-shaped refractory having a diameter of 73 mm and a height of 160 mm was obtained.

(実施例2)
アルミナ原料と、Al対MgOの成分比が76対24であるスピネル原料を、アルミナ原料80質量%、スピネル原料20質量%の配合比となるように秤量し、ケイ酸ソーダからなるバインダーと混合した。
(Example 2)
A binder made of sodium silicate, which weighs an alumina raw material and a spinel raw material having a component ratio of Al 2 O 3 to MgO of 76:24 so that the mixing ratio is 80% by mass of the alumina raw material and 20% by mass of the spinel raw material. Mixed with.

得られた混合物を組成分析したところ、Alは94.0質量%、MgOは4.8質量%であった。 Composition analysis of the obtained mixture revealed that Al 2 O 3 was 94.0% by mass and MgO was 4.8% by mass.

この混合物を坩堝形状の型枠内に流し込みながら、実施例1と同様の方法により、実施例1と同じ大きさの坩堝形状の耐火物を得た。   While pouring this mixture into a crucible-shaped mold, a crucible-shaped refractory having the same size as in Example 1 was obtained in the same manner as in Example 1.

(実施例3)
アルミナ原料と、Al対MgOの成分比が76対24であるスピネル原料を、アルミナ原料70質量%、スピネル原料30質量%の配合比となるように秤量し、ケイ酸ソーダからなるバインダーと混合した。
(Example 3)
A binder made of sodium silicate, which weighs an alumina raw material and a spinel raw material having a component ratio of Al 2 O 3 to MgO of 76:24 to a blending ratio of 70% by mass of the alumina raw material and 30% by mass of the spinel raw material. Mixed with.

得られた混合物を組成分析したところ、Alは91.6質量%、MgOは7.2質量%であった。 Composition analysis of the obtained mixture revealed that Al 2 O 3 was 91.6% by mass and MgO was 7.2% by mass.

この混合物を坩堝形状の型枠内に流し込みながら、実施例1と同様の方法により、実施例1と同じ大きさの坩堝形状の耐火物を得た。   While pouring this mixture into a crucible-shaped mold, a crucible-shaped refractory having the same size as in Example 1 was obtained in the same manner as in Example 1.

(比較例1)
アルミナ原料と、Al対MgOの成分比が76対24であるスピネル原料を、アルミナ原料80質量%、スピネル原料10質量%の配合比となるように秤量し、更にアルミナセメント10質量%と水を加えて混合してスラリー状の混合物を得た。
(Comparative Example 1)
An alumina raw material and a spinel raw material having a component ratio of Al 2 O 3 to MgO of 76:24 are weighed so that the mixing ratio is 80% by mass of the alumina raw material and 10% by mass of the spinel raw material, and further 10% by mass of the alumina cement. And water were added and mixed to obtain a slurry mixture.

得られた混合物を組成分析したところ、Alは96.4質量%、MgOは2.4質量%であった。 Composition analysis of the obtained mixture revealed that Al 2 O 3 was 96.4% by mass and MgO was 2.4% by mass.

この混合物を型枠内に流し込み、型枠に入れたまま100℃で乾燥させた後に型枠を外して1300℃で焼成し、外径φ85mm×内径φ73mm×高さ160mmの坩堝形状の耐火物を得た。   The mixture is poured into a mold, dried in a mold at 100 ° C., removed from the mold and fired at 1300 ° C., and a crucible-shaped refractory having an outer diameter φ85 mm × inner diameter φ73 mm × height 160 mm is obtained. Obtained.

(比較例2)
アルミナ原料のみを用いて、実施例1と同様の方法で、実施例1と同じ大きさの坩堝状定形耐火物を得た。
(Comparative Example 2)
A crucible shaped refractory having the same size as in Example 1 was obtained in the same manner as in Example 1 using only the alumina raw material.

(比較例3)
アルミナ原料と、Al対MgOの成分比が76対24であるスピネル原料を、アルミナ原料95質量%、スピネル原料5質量%の配合比となるように秤量し、ケイ酸ソーダからなるバインダーと混合した。
(Comparative Example 3)
Binder made of sodium silicate, weighed alumina raw material and spinel raw material having a component ratio of Al 2 O 3 to MgO of 76:24 to a blending ratio of 95% by weight of alumina raw material and 5% by weight of spinel raw material Mixed with.

得られた混合物を組成分析したところ、Alは97.6質量%、MgOは1.2質量%であった。 Composition analysis of the obtained mixture revealed that Al 2 O 3 was 97.6% by mass and MgO was 1.2% by mass.

この混合物を坩堝形状の型枠内に流し込みながら、実施例1と同様の方法により、実施例1と同じ大きさの坩堝形状の耐火物を得た。   While pouring this mixture into a crucible-shaped mold, a crucible-shaped refractory having the same size as in Example 1 was obtained in the same manner as in Example 1.

(比較例4)
アルミナ原料と、Al対MgOの成分比が76対24であるスピネル原料を、アルミナ原料60質量%、スピネル原料40質量%の配合比となるように秤量し、ケイ酸ソーダからなるバインダーと混合した。
(Comparative Example 4)
A binder made of sodium silicate was weighed with an alumina raw material and a spinel raw material having a component ratio of Al 2 O 3 to MgO of 76:24 to a mixing ratio of 60% by mass of the alumina raw material and 40% by mass of the spinel raw material. Mixed with.

得られた混合物を組成分析したところ、Alは89.2質量%、MgOは9.6質量%であった。 Composition analysis of the obtained mixture revealed that Al 2 O 3 was 89.2% by mass and MgO was 9.6% by mass.

この混合物を坩堝形状の型枠内に流し込みながら、実施例1と同様の方法により、実施例1と同じ大きさの坩堝形状の耐火物を得た。   While pouring this mixture into a crucible-shaped mold, a crucible-shaped refractory having the same size as in Example 1 was obtained in the same manner as in Example 1.

実施例1〜3および比較例1〜4の各耐火物中に鉄、フェロボロン、フェロ燐、金属シリコン、電解銅をそれぞれ所定の組成となるように、合計2000g秤量して投入後、高周波溶解炉内にて真空中で溶解し、Fe−Si−B−P−Cu合金溶湯を得た。   In each of the refractories of Examples 1 to 3 and Comparative Examples 1 to 4, iron, ferroboron, ferrophosphorus, metal silicon, and electrolytic copper were weighed and put in total so that each had a predetermined composition. It melt | dissolved in the vacuum in the inside, and the Fe-Si-B-P-Cu alloy molten metal was obtained.

これらの原料が溶落した後に、溶湯を各耐火物内において1350℃で2時間保持した後、溶湯を鋳型に取り出した。冷却後、溶解炉内から取り出した耐火物を切断し、内壁の観察および縦断面における溶湯浸透部分の計測を行った。その結果を表1に示す。表1には表面反応状態および浸透深さを示している。   After these raw materials were melted, the molten metal was held in each refractory at 1350 ° C. for 2 hours, and then the molten metal was taken out into a mold. After cooling, the refractory taken out from the melting furnace was cut, and the inner wall was observed and the molten metal permeation portion in the longitudinal section was measured. The results are shown in Table 1. Table 1 shows the surface reaction state and the penetration depth.

Figure 2016160143
Figure 2016160143

実施例1〜3の耐火物は、Fe−Si−B−P−Cu合金溶湯との表面反応が抑制されると共に、溶湯浸透深さも2mm以下に抑えられており、焼結により耐火物全体が緻密化されるとともに、MgOの適切な添加によって溶湯との反応が抑えられていることがわかる。   In the refractories of Examples 1 to 3, the surface reaction with the Fe—Si—B—P—Cu alloy molten metal is suppressed, and the penetration depth of the molten metal is also suppressed to 2 mm or less. It can be seen that the reaction with the molten metal is suppressed by densification and appropriate addition of MgO.

一方、焼結を行っていない、すなわち、不定形耐火物である比較例1は、溶湯との表面反応が顕著であり、更に耐火物内部を観察すると深部まで溶湯が浸透していることがわかる。   On the other hand, in Comparative Example 1 that is not sintered, that is, an amorphous refractory, the surface reaction with the molten metal is remarkable, and further, when the inside of the refractory is observed, it can be seen that the molten metal penetrates deeply. .

さらに、比較例2〜4の耐火物は、焼結体ではあるものの、Fe−Si−B−P−Cu合金溶湯との表面反応が発生しており、特に比較例2および比較例3では溶湯浸透部が耐火物の外壁付近まで到達している。すなわち、比較例2および比較例3ではスピネル添加量が不足し、耐食性が不十分であることがわかる。   Furthermore, although the refractories of Comparative Examples 2 to 4 are sintered bodies, a surface reaction with the molten Fe—Si—B—P—Cu alloy occurs, and in Comparative Examples 2 and 3 in particular, the molten metal The infiltration part reaches the vicinity of the outer wall of the refractory. That is, it can be seen that Comparative Example 2 and Comparative Example 3 have insufficient spinel addition and insufficient corrosion resistance.

工業鉄、Fe−B、Fe−P、電気銅をFe83.3at%、B7at%、P9at%、Cu0.7at%になるように秤量し、実施例1〜3、比較例1〜4で得た各耐火物に入れて、高周波溶解炉において溶解し、1350℃で2時間保持した後、鋳型に流し込んで得た各母合金を、各々2cm×2cm×2cmの立方体形状に切り出して溶解し、各々の組成を分析した。その結果を表2に示す。   Industrial iron, Fe-B, Fe-P, and electrolytic copper were weighed to be Fe 83.3 at%, B 7 at%, P 9 at%, Cu 0.7 at%, and obtained in Examples 1 to 3 and Comparative Examples 1 to 4. Put in each refractory, melt in a high-frequency melting furnace, hold at 1350 ° C. for 2 hours, then pour each mother alloy obtained by casting into a mold, cut into a cube shape of 2 cm × 2 cm × 2 cm, respectively, The composition of was analyzed. The results are shown in Table 2.

Figure 2016160143
Figure 2016160143

さらに、上述の各母合金を用いて単ロール液体急冷法により得た、幅1mm、厚さ25μm、8.0g の非晶質合金連続薄帯を長さ方向に6cm切断し、赤外線加熱装置において熱処理した後に、直流B−Hトレーサーを用いて各々の保磁力Hcを測定した。その結果を、表3に示す。   Furthermore, the amorphous alloy continuous thin ribbon having a width of 1 mm, a thickness of 25 μm, and 8.0 g obtained by the single-roll liquid quenching method using each of the mother alloys described above was cut in a length direction by 6 cm, and the infrared heating apparatus After the heat treatment, each coercive force Hc was measured using a direct current BH tracer. The results are shown in Table 3.

Figure 2016160143
Figure 2016160143

表2によれば、実施例1〜3の耐火物を用いて製造したFe−B−P-Cu合金において、目標とする合金組成からの相対誤差を合金元素ごとに計算すると、Feは0.08%〜0.24%、Bは0.71%〜1.4%、Pは0.89%〜2.56%、Cuは4.2%から7.1%である。   According to Table 2, when the relative error from the target alloy composition is calculated for each alloy element in the Fe—B—P—Cu alloy manufactured using the refractories of Examples 1 to 3, the Fe is 0. 08% to 0.24%, B is 0.71% to 1.4%, P is 0.89% to 2.56%, and Cu is 4.2% to 7.1%.

また、耐火物の主成分であるMgやAlの検出量は、Mgは検出限界以下、Alは0.01%〜0.02%である。   The detected amount of Mg or Al, which is the main component of the refractory, is below the detection limit for Mg and 0.01% to 0.02% for Al.

比較例1〜4の耐火物を使用して製造したFe−B−P-Cu合金において、目標とする合金組成からの相対誤差を合金元素ごとに計算すると、Feは0.32%〜1.6%、Bは2.4%〜5.7%、Pは2.7%〜9.0%、Cuは8.6%から17.0%であり、実施例1〜3と比較するとすべての元素において、目標とする合金組成からのずれが大きいことがわかる。   In the Fe—B—P—Cu alloy manufactured using the refractories of Comparative Examples 1 to 4, when the relative error from the target alloy composition was calculated for each alloy element, Fe was 0.32% to 1. 6%, B is 2.4% to 5.7%, P is 2.7% to 9.0%, Cu is 8.6% to 17.0%, all compared with Examples 1 to 3 It can be seen that there is a large deviation from the target alloy composition for these elements.

また、耐火物の主成分であるMgやAlの検出量は、Mgは0.02%〜0.20%、Alは0.06%〜0.25%であり、耐火物成分からの混入量も実施例1〜3と比較すると、Mg、Al共に多いことがわかる。   The detected amounts of Mg and Al, which are the main components of the refractory, are 0.02% to 0.20% for Mg and 0.06% to 0.25% for Al. As compared with Examples 1 to 3, it can be seen that both Mg and Al are large.

上記結果より、本発明の耐火物は、合金溶湯との反応が抑制されていることが明確である。   From the above results, it is clear that the refractory of the present invention has a suppressed reaction with the molten alloy.

さらに、表3によれば、実施例1〜3の耐火物を用いて製造したFe−B−P-Cu合金において保磁力Hcはいずれの場合も10A/mを下回っている。一方、比較例1〜4の耐火物を使用して製造した合金においては、保磁力Hcは、いずれも10A/mを上回っている。   Furthermore, according to Table 3, the coercive force Hc is less than 10 A / m in any case in the Fe—B—P—Cu alloys manufactured using the refractories of Examples 1 to 3. On the other hand, in the alloys manufactured using the refractories of Comparative Examples 1 to 4, the coercive force Hc exceeds 10 A / m.

各比較例における保磁力の悪化は、MgやAlの検出量が多いことからも耐火物成分の混入によるものと考えられることから、本発明の耐火物は、焼結による緻密な表面構造によって、主成分元素の流出を防いでいることは明白である。   The deterioration of the coercive force in each comparative example is considered to be due to the inclusion of refractory components because of the large amount of Mg and Al detected, so the refractory of the present invention has a dense surface structure by sintering, It is clear that the main component elements are prevented from flowing out.

(実施例4)
アルミナ原料と、Al対MgOの成分比が66対34であるスピネル原料を、アルミナ原料90質量%、スピネル原料10質量%の配合比となるように秤量し、ケイ酸ソーダからなるバインダーと混合した。得られた混合物を組成分析したところ、Alは93.7質量%、MgOは5.1質量%であった。
Example 4
A binder made of sodium silicate was weighed with an alumina raw material and a spinel raw material having a component ratio of Al 2 O 3 to MgO of 66:34 to a blending ratio of 90% by mass of the alumina raw material and 10% by mass of the spinel raw material. Mixed with. Composition analysis of the obtained mixture revealed that Al 2 O 3 was 93.7% by mass and MgO was 5.1% by mass.

この混合物を箱型の型枠内に流し込みながら、スタンプにより突き固めて成型した後、型枠から取出し、オーブンにより450℃で乾燥後、1300℃まで昇温して焼成し、40mm×40mm×長さ250mmの棒状の耐火物を得た。   The mixture is poured into a box-shaped formwork, squeezed with a stamp, molded, taken out from the formwork, dried in an oven at 450 ° C, heated to 1300 ° C, fired, 40 mm x 40 mm x long A rod-like refractory having a thickness of 250 mm was obtained.

(実施例5)
アルミナ原料と、Al対MgOの成分比が71対29であるスピネル原料を、アルミナ原料80質量%、スピネル原料20質量%の配合比となるように秤量し、ケイ酸ソーダからなるバインダーと混合した。得られた混合物を組成分析したところ、Alは93.0質量%、MgOは5.8質量%であった。
(Example 5)
A binder made of sodium silicate, which weighs an alumina raw material and a spinel raw material having a component ratio of Al 2 O 3 to MgO of 71:29 so that the mixing ratio is 80% by mass of the alumina raw material and 20% by mass of the spinel raw material. Mixed with. Composition analysis of the obtained mixture revealed that Al 2 O 3 was 93.0% by mass and MgO was 5.8% by mass.

この混合物を箱型の型枠内に流し込みながら、スタンプにより突き固めて成型した後、型枠から取出し、オーブンにより450℃で乾燥後、1300℃まで昇温して焼成し、40mm×40mm×長さ250mmの棒状の耐火物を得た。   The mixture is poured into a box-shaped formwork, squeezed with a stamp, molded, taken out from the formwork, dried in an oven at 450 ° C, heated to 1300 ° C, fired, 40 mm x 40 mm x long A rod-like refractory having a thickness of 250 mm was obtained.

(実施例6)
アルミナ原料と、Al対MgOの成分比が66対34であるスピネル原料を、アルミナ原料80質量%、スピネル原料20質量%の配合比となるように秤量し、ケイ酸ソーダからなるバインダーと混合した。得られた混合物を組成分析したところ、Alは92.1質量%、MgOは6.8質量%であった。
(Example 6)
A binder made of sodium silicate, which weighs an alumina raw material and a spinel raw material having a component ratio of Al 2 O 3 to MgO of 66:34 such that the mixing ratio of the alumina raw material is 80% by mass and the spinel raw material is 20% by mass. Mixed with. Composition analysis of the obtained mixture revealed that Al 2 O 3 was 92.1% by mass and MgO was 6.8% by mass.

この混合物を箱型の型枠内に流し込みながら、スタンプにより突き固めて成型した後、型枠から取出し、オーブンにより450℃で乾燥後、1300℃まで昇温して焼成し、40mm×40mm×長さ250mmの棒状の耐火物を得た。   The mixture is poured into a box-shaped formwork, squeezed with a stamp, molded, taken out from the formwork, dried in an oven at 450 ° C, heated to 1300 ° C, fired, 40 mm x 40 mm x long A rod-like refractory having a thickness of 250 mm was obtained.

(実施例7)
アルミナ原料と、Al対MgOの成分比が78対22であるスピネル原料を、アルミナ原料80質量%、スピネル原料20質量%の配合比となるように秤量し、ケイ酸ソーダからなるバインダーと混合した。得られた混合物を組成分析したところ、Alは92.2質量%、MgOは6.6質量%であった。
(Example 7)
A binder made of sodium silicate, which weighs an alumina raw material and a spinel raw material having a component ratio of Al 2 O 3 to MgO of 78:22 so that the mixing ratio is 80% by mass of the alumina raw material and 20% by mass of the spinel raw material. Mixed with. Composition analysis of the obtained mixture revealed that Al 2 O 3 was 92.2% by mass and MgO was 6.6% by mass.

この混合物を箱型の型枠内に流し込みながら、スタンプにより突き固めて成型した後、型枠から取出し、オーブンにより450℃で乾燥後、1300℃まで昇温して焼成し、40mm×40mm×長さ250mmの棒状の耐火物を得た。   The mixture is poured into a box-shaped formwork, squeezed with a stamp, molded, taken out from the formwork, dried in an oven at 450 ° C, heated to 1300 ° C, fired, 40 mm x 40 mm x long A rod-like refractory having a thickness of 250 mm was obtained.

(比較例5)
アルミナ原料と、Al対MgOの成分比が76対24であるスピネル原料を、アルミナ原料80質量%、スピネル原料10質量%の配合比となるように秤量し、更にアルミナセメント10質量%と水を加えて混合してスラリー状の混合物を得た。
(Comparative Example 5)
An alumina raw material and a spinel raw material having a component ratio of Al 2 O 3 to MgO of 76:24 are weighed so that the mixing ratio is 80% by mass of the alumina raw material and 10% by mass of the spinel raw material, and further 10% by mass of the alumina cement. And water were added and mixed to obtain a slurry mixture.

得られた混合物を組成分析したところ、Alは96.4質量%、MgOは2.4質量%であった。 Composition analysis of the obtained mixture revealed that Al 2 O 3 was 96.4% by mass and MgO was 2.4% by mass.

この混合物を箱型の型枠内に流し込み、型枠に入れたまま100℃で乾燥させた後に型枠を外して1300℃で焼成し、40mm×40mm×長さ250mmの棒状の耐火物を得た。   This mixture is poured into a box-shaped mold, dried at 100 ° C. while being placed in the mold, and then removed from the mold and baked at 1300 ° C. to obtain a rod-like refractory having a size of 40 mm × 40 mm × length 250 mm. It was.

(比較例6)
アルミナ原料と、Al対MgOの成分比が78対22であるスピネル原料を、アルミナ原料80質量%、スピネル原料20質量%の配合比となるように秤量し、ケイ酸ソーダからなるバインダーと混合した。
(Comparative Example 6)
A binder made of sodium silicate, which weighs an alumina raw material and a spinel raw material having a component ratio of Al 2 O 3 to MgO of 78:22 so that the mixing ratio is 80% by mass of the alumina raw material and 20% by mass of the spinel raw material. Mixed with.

得られた混合物を組成分析したところ、Alは94.5質量%、MgOは4.4質量%であった。 Composition analysis of the obtained mixture revealed that Al 2 O 3 was 94.5% by mass and MgO was 4.4% by mass.

この混合物を箱型の型枠内に流し込みながら、実施例1と同様の方法により、実施例4と同じ大きさの棒状の耐火物を得た。   A rod-like refractory having the same size as in Example 4 was obtained by the same method as in Example 1 while pouring this mixture into a box-shaped formwork.

(比較例7)
アルミナ原料と、Al対MgOの成分比が78対22であるスピネル原料を、アルミナ原料90質量%、スピネル原料10質量%の配合比となるように秤量し、ケイ酸ソーダからなるバインダーと混合した。
(Comparative Example 7)
A binder made of sodium silicate was weighed with an alumina raw material and a spinel raw material having an Al 2 O 3 to MgO component ratio of 78:22 so that the mixing ratio was 90% by mass of the alumina raw material and 10% by mass of the spinel raw material. Mixed with.

得られた混合物を組成分析したところ、Alは96.5質量%、MgOは2.2質量%であった。 Composition analysis of the obtained mixture revealed that Al 2 O 3 was 96.5% by mass and MgO was 2.2% by mass.

この混合物を箱型の型枠内に流し込みながら、実施例1と同様の方法により、実施例4と同じ大きさの棒状の耐火物を得た。   A rod-like refractory having the same size as in Example 4 was obtained by the same method as in Example 1 while pouring this mixture into a box-shaped formwork.

(比較例8)
アルミナ原料と、Al対MgOの成分比が78対22であるスピネル原料を、アルミナ原料60質量%、スピネル原料40質量%の配合比となるように秤量し、ケイ酸ソーダからなるバインダーと混合した。
(Comparative Example 8)
A binder made of sodium silicate, which weighs an alumina raw material and a spinel raw material having a component ratio of Al 2 O 3 to MgO of 78:22 so that the mixing ratio is 60% by mass of the alumina raw material and 40% by mass of the spinel raw material. Mixed with.

得られた混合物を組成分析したところ、Alは90.0質量%、MgOは8.8質量%であった。 Composition analysis of the obtained mixture revealed that Al 2 O 3 was 90.0% by mass and MgO was 8.8% by mass.

この混合物を箱型の型枠内に流し込みながら、実施例1と同様の方法により、実施例4と同じ大きさの棒状の耐火物を得た。   A rod-like refractory having the same size as in Example 4 was obtained by the same method as in Example 1 while pouring this mixture into a box-shaped formwork.

実施例4〜7および比較例5〜8の耐火物を溶解用坩堝の内側に設置した後、純鉄、フェロボロン、フェロ燐、金属シリコン、電解銅をそれぞれ目標の組成となるように合計10Kg秤量して坩堝内に投入し、高周波溶解炉により窒素雰囲気中でこれらの原料を溶解し、Fe−Si−B−P−Cu合金溶湯を得た後、溶湯を1400℃まで昇温した後、6時間保持した。   After placing the refractories of Examples 4 to 7 and Comparative Examples 5 to 8 inside the melting crucible, weigh 10 kg in total so that pure iron, ferroboron, ferrophosphorus, metal silicon, and electrolytic copper each have a target composition. Then, these raw materials were melted in a nitrogen atmosphere by a high-frequency melting furnace to obtain a Fe—Si—B—P—Cu alloy melt, and the temperature of the melt was raised to 1400 ° C. Held for hours.

上記処理を3回繰り返し行い、各耐火物を冷却した後、発生した亀裂の深さ、スラグライン(以下、SLと記す)における溶損およびメタルライン(以下、MLと記す)における溶湯浸透状態を評価し、耐食性試験とした。   After the above treatment was repeated three times and each refractory was cooled, the depth of the cracks that occurred, the slag line (hereinafter referred to as SL) melting and the molten metal penetration state (hereinafter referred to as ML) Evaluation was made as a corrosion resistance test.

各耐火物の気孔率、見掛比重、嵩比重、熱膨張率の測定結果と共に、耐食性試験結果を表4に示す。   Table 4 shows the corrosion resistance test results together with the measurement results of the porosity, apparent specific gravity, bulk specific gravity, and thermal expansion coefficient of each refractory.

なお、残存膨張率は、実施例4〜7、比較例5〜8と同様の組成配合および成型方法で、寸法:5mm×5mm×10mmの耐火物を作製し、熱機械分析装置(TMA)を使用して測定温度1400℃において測定した結果である。また、SL溶損およびML溶損の○は溶損量2mm以下を、×は溶損量2mm以上の場合を示す。   The residual expansion coefficient was the same as in Examples 4 to 7 and Comparative Examples 5 to 8, and a refractory with dimensions of 5 mm × 5 mm × 10 mm was prepared, and a thermomechanical analyzer (TMA) was used. It is the result of using and measuring at a measurement temperature of 1400 ° C. Moreover, ○ of SL melting loss and ML melting loss indicates a case where the melting amount is 2 mm or less, and × indicates a case where the melting amount is 2 mm or more.

Figure 2016160143
Figure 2016160143

表4より、実施例4〜7の耐火物は、比較例5〜8と比較すると、1500℃における残存膨張率が0.05%〜0.25%まで改善していると共に、Fe−Si−B−P−Cu合金溶湯への浸漬試験後において発生した亀裂深さが15.2mm〜18.1mmまで減少している。さらに、SLにおける溶損やMLにおける溶湯浸透も生じていない。   From Table 4, when compared with Comparative Examples 5-8, the refractories of Examples 4-7 improved the residual expansion coefficient at 1500 ° C. to 0.05% to 0.25%, and Fe—Si—. The crack depth generated after the immersion test in the BP-Cu alloy molten metal is reduced to 15.2 mm to 18.1 mm. Furthermore, no melt damage in SL or molten metal penetration in ML occurs.

一方、比較例5〜8の耐火物は、1400℃における残存膨張率が負の値を示している、すなわち、残存膨張が生じない上に、Fe−Si−B−P−Cu合金溶湯への浸漬試験後の耐火物において、深さ26.9mm〜30.5mmの亀裂発生が生じている。さらに、明らかなSLの溶損やMLの溶湯浸透が生じている。   On the other hand, in the refractories of Comparative Examples 5 to 8, the residual expansion coefficient at 1400 ° C. shows a negative value, that is, the residual expansion does not occur and the molten Fe—Si—B—P—Cu alloy is melted. In the refractory after the immersion test, cracks having a depth of 26.9 mm to 30.5 mm are generated. Furthermore, obvious SL melting and ML infiltration have occurred.

以上より、本発明によれば、耐食性の向上が著しいことは明白である。したがって、使用する溶解炉の形状に合わせた坩堝状もしくは円筒状等の本発明による耐火物を炉内に設置することにより、耐火物からのスラグ発生が減少し、スラグによる耐火物の溶損進行が抑えられると共に、溶湯中へのスラグの混入を抑制することが可能となり、製品中への不純物の混入および不純物に起因した特性劣化を防止することができる。   As described above, according to the present invention, it is obvious that the corrosion resistance is remarkably improved. Therefore, by installing the refractory according to the present invention, such as a crucible shape or a cylindrical shape, in accordance with the shape of the melting furnace to be used in the furnace, the generation of slag from the refractory is reduced, and the refractory progresses due to the slag. In addition, it is possible to suppress the mixing of slag into the molten metal, and to prevent mixing of impurities into the product and deterioration of characteristics due to the impurities.

詳述したように、本発明はP、Si、Bなどの耐火物との反応性が高い元素を含む鉄系合金の溶解、溶湯保持、精錬用耐火物に使用することができる。また、その他の元素を含む鉄系軟磁性材料や構造材料、機械部品材料などの合金溶解などにも使用することができる。   As described in detail, the present invention can be used for a refractory for melting, holding a molten metal, and refining an iron-based alloy containing an element having high reactivity with a refractory such as P, Si, and B. It can also be used for melting alloys such as iron-based soft magnetic materials, structural materials, and machine part materials containing other elements.

以上、本発明の実施例を説明したが、本発明は、上記に限定されるものではなく、本発明の要旨を逸脱しない範囲で、構成の変更や修正が可能である。すなわち、当業者であれば成し得る各種変形、修正もまた本発明に含まれる。   As mentioned above, although the Example of this invention was described, this invention is not limited above, The change and correction of a structure are possible in the range which does not deviate from the summary of this invention. That is, various changes and modifications that can be made by those skilled in the art are also included in the present invention.

Claims (5)

Al成分90質量%以上98質量%以下と、MgO成分2質量%以上8質量%以下を含む焼結体であることを特徴とする耐火物。 A refractory material comprising a sintered body containing 90% by mass to 98% by mass of an Al 2 O 3 component and 2% by mass to 8% by mass of an MgO component. Al成分92質量%以上95質量%以下と、MgO成分5質量%以上7質量%以下を含む焼結体であることを特徴とする耐火物。 A refractory material comprising a sintered body containing 92% by mass to 95% by mass of an Al 2 O 3 component and 5% by mass to 7% by mass of an MgO component. 残存膨張率が0.3%以下(0を含まず)であることを特徴とする請求項2記載の耐火物。   The refractory according to claim 2, wherein the residual expansion coefficient is 0.3% or less (excluding 0). アルミナ原料70質量%以上90質量%以下と、スピネル原料10質量%以上30質量%以下とを混合して、Al成分90質量%以上98質量%以下と、MgO成分2質量%以上8質量%以下を含む混合物を得る工程と、前記混合物を型枠に充填して成型体を得る工程と、前記成型体を前記型枠から取り出し乾燥する工程と、前記成型体を焼結する工程とを有することを特徴とする耐火物の製造方法。 And alumina raw material 70% by mass to 90% by mass, by mixing the spinel material 10% by mass or more and 30% or less, Al 2 O 3 component 90 mass% and 98 mass% or more, MgO component 2 wt% or more 8 A step of obtaining a mixture containing less than mass%, a step of filling the mixture into a mold to obtain a molded body, a step of removing the molded body from the mold and drying, and a step of sintering the molded body. A method for producing a refractory, comprising: アルミナ原料70質量%以上85質量%以下と、スピネル原料15質量%以上30質量%以下とを混合して、Al成分92質量%以上95質量%以下と、MgO成分5質量%以上7質量%以下を含む混合物を得る工程と、前記混合物を型枠に充填して成型体を得る工程と、前記成型体を前記型枠から取り出し乾燥する工程と、前記成型体を焼結する工程とを有することを特徴とする耐火物の製造方法。 And alumina raw material 70 mass% or more and 85 mass% or less, by mixing the spinel material 15% by mass or more and 30% or less, Al 2 O 3 and component 92 mass% to 95 mass%, MgO component 5 wt% or more 7 A step of obtaining a mixture containing less than mass%, a step of filling the mixture into a mold to obtain a molded body, a step of removing the molded body from the mold and drying, and a step of sintering the molded body. A method for producing a refractory, comprising:
JP2015040983A 2015-03-03 2015-03-03 Refractory Pending JP2016160143A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015040983A JP2016160143A (en) 2015-03-03 2015-03-03 Refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015040983A JP2016160143A (en) 2015-03-03 2015-03-03 Refractory

Publications (1)

Publication Number Publication Date
JP2016160143A true JP2016160143A (en) 2016-09-05

Family

ID=56846162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015040983A Pending JP2016160143A (en) 2015-03-03 2015-03-03 Refractory

Country Status (1)

Country Link
JP (1) JP2016160143A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108546091A (en) * 2018-05-09 2018-09-18 肃北镁弘科技有限公司 A kind of preparation method of surface coated magnesia crucible
CN110668834A (en) * 2019-10-31 2020-01-10 段亚斌 Preparation method of high-temperature-resistant material for slag fishing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04160068A (en) * 1990-10-23 1992-06-03 Kawasaki Refract Co Ltd Castable monolithic refractory
JPH10218659A (en) * 1997-01-31 1998-08-18 Kyocera Corp Protecting tube with thermal resistance and corrosion resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04160068A (en) * 1990-10-23 1992-06-03 Kawasaki Refract Co Ltd Castable monolithic refractory
JPH10218659A (en) * 1997-01-31 1998-08-18 Kyocera Corp Protecting tube with thermal resistance and corrosion resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108546091A (en) * 2018-05-09 2018-09-18 肃北镁弘科技有限公司 A kind of preparation method of surface coated magnesia crucible
CN110668834A (en) * 2019-10-31 2020-01-10 段亚斌 Preparation method of high-temperature-resistant material for slag fishing

Similar Documents

Publication Publication Date Title
JP5255574B2 (en) Zirconium lite refractory raw material and plate brick
CN105174974B (en) Alumina fused cast refractory and method for producing same
JP5774135B2 (en) Sintered materials based on doped chromium oxide
EP2749542B1 (en) High zirconia fused cast refractory
JP4917235B2 (en) Porous high alumina fusion cast refractory and method for producing the same
JP2007269605A (en) Molten siliceous refractory and method for manufacturing the same
EP2565615A1 (en) Container for thermal analysis of cast iron
CN108137412B (en) Fused zirconia-spinel particles and refractory products obtained from said particles
JP2016160143A (en) Refractory
US20040102308A1 (en) Crucible material and crucible
KR101047911B1 (en) Silicon nitride ceramic composite material for temperature sensor protection tube for temperature measurement of molten steel and protection tube for temperature sensor using the same
CN115583830A (en) Method for preparing alkaline forming crucible of ultra-low-sulfur high-temperature alloy
CN111868005B (en) High alumina fused cast refractory and method for producing same
JP4399579B2 (en) Castable molded product and method for producing the same
RU2410349C1 (en) Method of producing molten-cast comsilite ctc material for lining non-ferrous metallurgy thermal units
JP2015096266A (en) Immersion nozzle
JP7099898B2 (en) High zirconia electroformed refractory and its manufacturing method
JP7130903B2 (en) Refractory materials for low-melting non-ferrous metals
KR101370369B1 (en) The sliding nozzle opening filler of ladle
JP4838592B2 (en) Refractory for molten silicon and method for producing the same
JPH03170367A (en) Refractory for continuous casting and its production
JP2014514998A (en) ATZ fused particles
JP4907094B2 (en) Method for producing fused siliceous refractories
SU1614883A1 (en) Ceramic sand for cores
JP2022184504A (en) Shaped refractory for lining induction furnace and construction method of induction furnace using lining shaped refractory

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181010

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181126

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190424