JP2016159292A - Deoxygenation device - Google Patents

Deoxygenation device Download PDF

Info

Publication number
JP2016159292A
JP2016159292A JP2015043944A JP2015043944A JP2016159292A JP 2016159292 A JP2016159292 A JP 2016159292A JP 2015043944 A JP2015043944 A JP 2015043944A JP 2015043944 A JP2015043944 A JP 2015043944A JP 2016159292 A JP2016159292 A JP 2016159292A
Authority
JP
Japan
Prior art keywords
flow path
deoxygenation
treated water
nitrogen gas
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015043944A
Other languages
Japanese (ja)
Inventor
正哉 香川
Masaya Kagawa
正哉 香川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAMSON CO Ltd
Original Assignee
SAMSON CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAMSON CO Ltd filed Critical SAMSON CO Ltd
Priority to JP2015043944A priority Critical patent/JP2016159292A/en
Publication of JP2016159292A publication Critical patent/JP2016159292A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a deoxygenation device 1 which removes dissolved oxygen in treatment water by injecting nitrogen gas into the treatment water and has improved deoxygenation efficiency.SOLUTION: In a deoxygenation device 1, raw water containing dissolved oxygen is supplied from a raw water inlet 2 provided at one end of a passage and deoxygenated water from which dissolved oxygen has been removed is taken out from a deoxygenated water taking out port 3 at the other end of the passage. Nitrogen gas injection nozzles 5 for injecting nitrogen gas are installed in the middle of the passage of treatment water connecting the raw water inlet 2 and the deoxygenated water taking out port 3 to each other. The nitrogen gas is injected into the treatment water flowing through the deoxygenation device to remove dissolved oxygen in the treatment water. A plurality of passage expansion parts 7 having a large cross sectional area and a plurality of passage narrowing parts 8 having a small cross sectional area are alternately installed in a deoxygenation part 6 of the treatment water passage on the downstream side of the nitrogen gas injection nozzle.SELECTED DRAWING: Figure 1

Description

本発明は、酸素が溶存している原水中に窒素ガスを注入し、原水中の酸素を窒素に置き換えることで溶存酸素を除去するようにしている窒素置換式の脱酸素装置に関するものである。   The present invention relates to a nitrogen substitution type deoxygenation apparatus in which nitrogen gas is injected into raw water in which oxygen is dissolved and dissolved oxygen is removed by replacing oxygen in the raw water with nitrogen.

特開2001−129304号公報に記載があるように、ボイラの給水等において酸素が溶存している原水をそのまま供給すると、配管など水に接する金属材料での腐食が促進されるため、あらかじめ水中の溶存酸素を除去してから給水する脱酸素処理が広く行われている。 As described in Japanese Patent Laid-Open No. 2001-129304, when raw water in which oxygen is dissolved is supplied as it is in boiler feed water or the like, corrosion with a metal material that comes into contact with water such as piping is promoted. A deoxygenation process in which water is supplied after removing dissolved oxygen is widely performed.

脱酸素処理の方法の一つとして、窒素置換式の脱酸素装置によるものがある。原水中に溶け込んでいる気体の分圧は、原水に接している気体の分圧によって変化する。窒素と酸素が溶け込んでいる水に窒素ガスを注入して窒素ガスによる無数の気泡を発生させると、窒素ガスによる気泡部と、窒素と酸素が一定の割合で溶け込んでいる液体部が接し合うことになる。この場合、窒素の気泡から処理水内への窒素の溶け込みと、処理水から気泡内への窒素と酸素の放出が行われ、最終的にはそれぞれでの窒素と酸素の分圧が同じになる。つまり、酸素を含んでいた原水中から、酸素分圧の低い窒素ガスの気泡内へ酸素が放出されることによって水中の溶存酸素量は減少する。 As one of the methods for deoxygenation, there is a method using a nitrogen substitution type deoxygenator. The partial pressure of the gas dissolved in the raw water varies depending on the partial pressure of the gas in contact with the raw water. When nitrogen gas is injected into water in which nitrogen and oxygen are dissolved to generate countless bubbles by nitrogen gas, the bubble portion by nitrogen gas and the liquid portion in which nitrogen and oxygen are dissolved at a certain ratio come into contact with each other. become. In this case, nitrogen is dissolved from the nitrogen bubbles into the treated water, and nitrogen and oxygen are released from the treated water into the bubbles, and finally the partial pressures of nitrogen and oxygen are the same. . That is, the amount of dissolved oxygen in the water is reduced by releasing oxygen from the raw water containing oxygen into the bubbles of nitrogen gas having a low oxygen partial pressure.

窒素置換式の脱酸素装置では、窒素と酸素をいかにして交換するか、つまり窒素を処理水中に溶け込ませて、酸素を処理水中から放出するかが重要である。窒素ガスを注入しても、窒素ガスの処理水中への溶け込み量が少なければ、処理水中の酸素は残ったままとなってしまう。特開2001−129304号公報に記載の発明では、窒素ガスが注入された処理水を乱流混合するスタティックミキサーによって混合を行うようにしている。スタティックミキサーは流路内に設けたミキサーによって処理水の水流を分割することを繰り返して処理水を乱流混合させるものであり、流体の流れを利用するために駆動部が不要で省エネルギーなものとなる。窒素ガスと処理水を混合することによって、窒素ガスの処理水への溶け込みを促進することができるのであるが、スタティックミキサーを設置しただけでは十分な脱酸素効果が得られないということで、特開2001−129304号公報の発明では、複数基のスタティックミキサーを直列に配置し、更に気液分離手段を設けることを行っている。 In a nitrogen substitution type deoxygenation device, it is important how nitrogen and oxygen are exchanged, that is, whether nitrogen is dissolved in the treated water and oxygen is released from the treated water. Even if nitrogen gas is injected, oxygen in the treated water remains if the amount of nitrogen gas dissolved in the treated water is small. In the invention described in Japanese Patent Laid-Open No. 2001-129304, mixing is performed by a static mixer that turbulently mixes treated water into which nitrogen gas has been injected. A static mixer is one that repeats dividing the water flow of the treated water by a mixer provided in the flow path and turbulently mixes the treated water. Become. By mixing nitrogen gas and treated water, the dissolution of nitrogen gas into the treated water can be promoted, but a sufficient deoxygenation effect cannot be obtained simply by installing a static mixer. In the invention of Kaikai 2001-129304, a plurality of static mixers are arranged in series, and gas-liquid separation means is further provided.

特開2001−129304号公報JP 2001-129304 A

本発明が解決しようとする課題は、処理水中に窒素ガスを注入して処理水内の溶存酸素を除去する脱酸素装置において、脱酸素の効率を向上させた脱酸素装置を提供することにある。   The problem to be solved by the present invention is to provide a deoxygenation device that improves the efficiency of deoxygenation in a deoxygenation device that removes dissolved oxygen in the treated water by injecting nitrogen gas into the treated water. .

請求項1に記載の発明は、溶存酸素を含んだ原水を流路の一端に設けた原水入口から供給し、溶存酸素を除去した脱酸素水を流路他端の脱酸素水取り出し口から取り出すようにしている脱酸素装置であって、原水入口と脱酸素水取り出し口の間をつなぐ処理水流路の途中に窒素ガスを注入する窒素ガス噴射ノズルを設置しておき、脱酸素装置内を流れる処理水中に窒素ガスを注入して処理水中の溶存酸素を除去するようにしている脱酸素装置において、処理水流路の窒素ガス噴射ノズルより下流側である脱酸素部では、処理水流路の流路断面積が大きな流路拡大部と流路面積の小さな流路縮小部を交互に複数個設置していることを特徴とする。 According to the first aspect of the present invention, raw water containing dissolved oxygen is supplied from a raw water inlet provided at one end of the flow path, and deoxygenated water from which dissolved oxygen has been removed is taken out from a deoxygenated water outlet at the other end of the flow path. The deoxygenation device is configured to have a nitrogen gas injection nozzle for injecting nitrogen gas in the middle of the treated water flow path connecting between the raw water inlet and the deoxygenated water outlet, and flows in the deoxygenation device. In the deoxygenation apparatus in which nitrogen gas is injected into the treated water and the dissolved oxygen in the treated water is removed, in the deoxygenated portion downstream of the nitrogen gas injection nozzle of the treated water flow path, the flow path of the treated water flow path The present invention is characterized in that a plurality of channel expansion portions having a large cross-sectional area and a channel reduction portion having a small channel area are alternately provided.

請求項2に記載の発明は、前記の脱酸素装置において、窒素ガス噴射ノズルは脱酸素部の上方に設置し、脱酸素部では処理水は下向きに流す構成としていることを特徴とする。 The invention described in claim 2 is characterized in that, in the deoxygenation apparatus, the nitrogen gas injection nozzle is installed above the deoxygenation part, and the treated water flows downward in the deoxygenation part.

請求項3に記載の発明は、前記の脱酸素装置において、窒素ガス噴射ノズルは脱酸素部の下方に設置し、脱酸素部では処理水は上向きに流す構成とした場合、流路縮小部の下部を流路拡大部の上部に突出させる形状とすることで、流路拡大部の上部に気泡たまりを設けていることを特徴とする。   According to a third aspect of the present invention, in the deoxygenation device, when the nitrogen gas injection nozzle is installed below the deoxygenation part and the treated water flows upward in the deoxygenation part, By forming the lower part into a shape projecting from the upper part of the flow path expanding part, a bubble pool is provided in the upper part of the flow path expanding part.

本発明を実施することによって、窒素ガスと処理水の撹拌混合効果に加えて、水圧の変化による気体溶解度の増減によって気体の溶解と分離を繰り返し行うことになるため、窒素ガスの処理水への溶け込みと処理水からの酸素分の分離が促進され、処理水からの溶存酸素の放出効率が向上する。 By carrying out the present invention, in addition to the stirring and mixing effect of nitrogen gas and treated water, the dissolution and separation of the gas are repeatedly performed by increasing and decreasing the gas solubility due to the change in water pressure. Dissolution and separation of the oxygen content from the treated water are promoted, and the release efficiency of dissolved oxygen from the treated water is improved.

本発明の第一の実施例における断面図Sectional drawing in the first embodiment of the present invention 図1の一部を拡大した断面拡大図1 is an enlarged cross-sectional view of a part of FIG. 本発明の第二の実施例における断面図Sectional drawing in the second embodiment of the present invention 図2の一部を拡大した断面拡大図2 is an enlarged cross-sectional view of a part of FIG. 本発明の第三の実施例における断面図Sectional drawing in the third embodiment of the present invention

本発明の一実施例を図面を用いて説明する。図1は本発明の第一の実施例における脱酸素装置の構成を説明するための断面図、図2は図1の一部を拡大した断面拡大図である。図1の脱酸素装置1では、一方の端部から原水を供給し、他方の端部から脱酸素水を取り出すものであり、原水入口2と脱酸素水取り出し口3の間は一続きの流路で接続している。原水入口2は装置の上部、脱酸素水取り出し口3は装置の下部としており、脱酸素装置は小型でコンパクトなものでありながら処理水の流路は長くするため、下向き流路、上向き流路、下向き流路の順で蛇行させている。図1の実施例では、下向き流路部分が脱酸素部6となる。2本設置している下向き流路の上端に近い部分には、それぞれに窒素ガス噴射ノズル5を設置しておき、窒素ガスの注入は下向き流路の上端部に設けた窒素ガス噴射ノズル5から行う。下向き流路の部分には、管径を小さくした流路縮小部8と、管径を大きくした流路拡大部7を複数個、交互に設けている。流路の拡大と縮小は、管の一方の端部を絞り加工したレジューサや、径を異ならせた異径ソケットなどを用いることによって作ることができる。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view for explaining the configuration of a deoxygenation apparatus in a first embodiment of the present invention, and FIG. 2 is an enlarged cross-sectional view of a part of FIG. In the deoxygenating apparatus 1 of FIG. 1, raw water is supplied from one end and deoxygenated water is taken out from the other end. A continuous flow is provided between the raw water inlet 2 and the deoxygenated water outlet 3. Connected by road. The raw water inlet 2 is the upper part of the apparatus, and the deoxygenated water outlet 3 is the lower part of the apparatus. The deoxygenation apparatus is small and compact, but the flow path of the treated water is long. , Meandering in the order of the downward flow path. In the embodiment of FIG. 1, the downward flow path portion becomes the deoxygenation unit 6. Nitrogen gas injection nozzles 5 are respectively installed in portions close to the upper ends of the two downward flow paths installed, and nitrogen gas is injected from the nitrogen gas injection nozzles 5 provided at the upper ends of the downward flow paths. Do. In the downward flow path portion, a plurality of flow path reduction sections 8 having a reduced tube diameter and a plurality of flow path expansion sections 7 having a large pipe diameter are alternately provided. The expansion and contraction of the flow path can be made by using a reducer in which one end of the tube is drawn, a different diameter socket having a different diameter, or the like.

2カ所の窒素ガス噴射ノズル5から処理水中に窒素ガスを噴射すると、処理水内には窒素による無数の気泡が発生し、脱酸素部6では処理水は下向きに流れているため、処理水内の気泡も処理水の流れ乗って下向きに流れていく。処理水と気泡は、接触しているだけでも気泡から処理水への気体成分の溶存と処理水から気泡への気体成分の放出が行われる。この場合、気泡から処理水へ溶け込む気体成分はほぼ窒素であり、処理水から気泡へ放出される気体成分は窒素と酸素が主体となる。そのため、処理水と気泡の間で気体成分の処理水中の酸素量は減少していくことになる。ただし、気泡が処理水とともに流れているだけでは、気体成分の溶存と放出の速度が低いため、溶存酸素の除去を十分に行うことができない。 When nitrogen gas is injected into the treated water from the two nitrogen gas injection nozzles 5, numerous bubbles are generated by nitrogen in the treated water, and the treated water flows downward in the deoxidation section 6. Bubbles also flow downward on the treated water flow. Even if the treated water and the bubbles are in contact with each other, dissolution of the gas component from the bubbles to the treated water and release of the gaseous component from the treated water to the bubbles are performed. In this case, the gas component dissolved from the bubbles into the treated water is substantially nitrogen, and the gas components released from the treated water into the bubbles are mainly nitrogen and oxygen. For this reason, the amount of oxygen in the treated water of the gas component decreases between the treated water and the bubbles. However, if the bubbles just flow with the treated water, the dissolved and released rates of the gas components are low, so that the dissolved oxygen cannot be sufficiently removed.

そこで本発明では、脱酸素部での流路は、管径を小さくた流路縮小部8と、管径を大きした流路拡大部7を交互に設置している。このようにした場合の脱酸素部を流れる処理水は、流路拡大部7での流速低下と、流路縮小部8での流速増加を繰り返すことになる。流路拡大部7で処理水の流速が低下すると、気泡を押し下げる作用が低下する。気泡自体は水よりも比重が軽いために水中では浮上する力が働いているため、処理水の流速低下によって気泡押し下げの力が弱まる流路拡大部7の部分では、気泡のたまりが発生する。 Therefore, in the present invention, the flow path in the deoxygenation section is alternately provided with the flow path reduction section 8 having a small pipe diameter and the flow path expansion section 7 having a large pipe diameter. In such a case, the treated water flowing through the deoxygenation unit repeats a decrease in the flow rate at the flow channel expansion unit 7 and an increase in the flow rate at the flow channel reduction unit 8. When the flow rate of the treated water is reduced at the flow path enlargement unit 7, the action of pushing down the bubbles is reduced. Since the bubbles themselves have a specific gravity lighter than that of water, a floating force is exerted in the water. Therefore, bubbles accumulate in the portion of the flow path expanding portion 7 where the force of pushing down the bubbles is weakened due to a decrease in the flow rate of the treated water.

この気泡たまりは流路拡大部で合流や分裂を繰り返しつつも止まり、止まっている気泡に対して流れている処理水が次々と接触していくため、気泡と処理水の間でのガスの交換効率が向上する。 This air bubble pool stops while repeating merging and splitting at the flow path expansion part, and the treated water flowing in contact with the stopped air bubbles comes into contact one after another, so the exchange of gas between the air bubbles and the treated water Efficiency is improved.

また、脱酸素部での流路面積が変化し、そこを流れる処理水の流速が変化すると、そのたびに撹拌が行われ、このことによっても酸素除去の効率が向上する。 Further, when the flow path area in the deoxygenation section changes and the flow rate of the treated water flowing therethrough changes, stirring is performed each time, and this also improves the efficiency of oxygen removal.

さらにまた、脱酸素部内を流れる処理水は、流路縮小部8で圧力が上昇し、流路拡大部7で圧力が下降することを繰り返すことでも、効率の向上が得られる。処理水の圧力が上昇した部分では、窒素ガスによる気泡の体積が小さくなるとともに、溶解度が上昇するために処理水に溶け込む窒素ガス量が増加する。逆に処理水の圧力が低下した部分では、処理水に溶け込んでいた気体が処理水内から放出されやすくなる。 Furthermore, the efficiency of the treated water flowing in the deoxidation part can also be improved by repeatedly increasing the pressure at the flow path reduction part 8 and decreasing the pressure at the flow path expansion part 7. In the portion where the pressure of the treated water is increased, the volume of bubbles due to the nitrogen gas is reduced, and the solubility is increased, so that the amount of nitrogen gas dissolved in the treated water is increased. On the contrary, in the part where the pressure of the treated water is reduced, the gas dissolved in the treated water is easily released from the treated water.

そのため、流路拡大部7と流路縮小部8を交互に設置していると、処理水への気体成分の溶け込みと処理水からの気体成分の放出がより多く行われる。処理水中には窒素や酸素が溶け込んでおり、そこに窒素ガスの吹き込みを行った場合、処理水内から気泡内へ放出される気体成分は窒素と酸素であるが、気泡内から処理水内に入る気体成分は窒素が主体となる。そのため、処理水中には不活性なガスである窒素が入り込み、腐食を引き起こす酸素は処理水内から外へ放出される。脱酸素部においては処理水内への窒素の溶け込みと処理水内からの酸素の放出が繰り返し行われ、処理水内の酸素量は減少していく。 For this reason, when the flow path expanding section 7 and the flow path reducing section 8 are alternately installed, the gas component dissolves into the treated water and the gas component is released from the treated water more. Nitrogen and oxygen are dissolved in the treated water, and when nitrogen gas is blown into the treated water, the gaseous components released from the treated water into the bubbles are nitrogen and oxygen, but from the bubbles into the treated water. The gas component that enters is mainly nitrogen. Therefore, nitrogen, which is an inert gas, enters the treated water, and oxygen that causes corrosion is released from the treated water to the outside. In the deoxygenation part, the dissolution of nitrogen into the treated water and the release of oxygen from the treated water are repeated, and the amount of oxygen in the treated water decreases.

図3は本発明の第二の実施例における脱酸素装置の構成を説明するための断面図、図4は図3の一部を拡大した断面拡大図である。第二実施例の場合、一方の端部から原水を供給し、他方の端部から脱酸素水を取り出すものであって、原水入口2と脱酸素水取り出し口3の間は一続きの流路で接続している点は第一の実施例と同じである。しかし、原水入口2は装置の下部、脱酸素水取り出し口4は装置の上部としている点、流路は上向き流路、下向き流路、上向き流路となるように蛇行させている点では第一の実施例とは異なっている。第二実施例では、上向き流路部分が脱酸素部6となる。 FIG. 3 is a cross-sectional view for explaining the configuration of the deoxygenation apparatus in the second embodiment of the present invention, and FIG. 4 is an enlarged cross-sectional view of a part of FIG. In the case of the second embodiment, raw water is supplied from one end and deoxygenated water is taken out from the other end, and a continuous flow path is provided between the raw water inlet 2 and the deoxygenated water outlet 3. The connection point is the same as in the first embodiment. However, the raw water inlet 2 is the lower part of the apparatus, the deoxygenated water outlet 4 is the upper part of the apparatus, and the first is that the flow path is meandering so as to be an upward flow path, a downward flow path, and an upward flow path. This example is different. In the second embodiment, the upward flow path portion becomes the deoxygenation unit 6.

第一の実施例の場合、脱酸素部6において、窒素ガスの気泡は処理水よりも比重が軽いために上方向の力が働くが、処理水の流れは下向きであるために処理水に押されて下向きの力もかかっており、そのために窒素ガスの気泡が流路拡大部で止まることになっていた。しかし脱酸素部において処理水を上向きに流した場合、気泡には上方向の力しか掛からないため、第一の実施例と同じ形状であると、窒素の気泡はすぐに流れてしまうことになり、その場合には脱酸素の作用をあまり得ることができない。そのため第二の実施例では、流路縮小部8の下部を流路拡大部7の上部に突出させる形状とし、流路拡大部7の上部に気泡たまりを設けている。 In the case of the first embodiment, in the deoxygenation unit 6, the nitrogen gas bubbles are lighter in specific gravity than the treated water, so an upward force is exerted. However, since the flow of the treated water is downward, it is pushed to the treated water. Therefore, a downward force is also applied, and for this reason, the bubbles of nitrogen gas are supposed to stop at the flow path enlarged portion. However, when the treated water is flowed upward in the deoxygenation section, only the upward force is applied to the bubbles, so if the shape is the same as in the first embodiment, the nitrogen bubbles will flow immediately. In that case, the effect of deoxidation cannot be obtained so much. Therefore, in the second embodiment, the lower part of the flow path reducing part 8 is shaped so as to protrude above the flow path expanding part 7, and a bubble pool is provided on the upper part of the flow path expanding part 7.

第二の実施例においても、止まっている気泡に対して流れている処理水が次々と接触していくため、気泡と処理水の間でのガスの交換効率が向上する。そして脱酸素部での流路は、管径を小さくた流路縮小部8と、管径を大きした流路拡大部7を交互に設置しているため、脱酸素部6を流れる処理水は流路拡大部7での流速低下と流路縮小部8での流速増加を繰り返し、そのたびに撹拌が行われるため、酸素除去の効率が向上する。 Also in the second embodiment, since the treated water that is flowing in contact with the stationary bubbles is in contact with each other, the efficiency of gas exchange between the bubbles and the treated water is improved. And since the flow path in the deoxygenation part alternately installs the flow path reduction part 8 with a small pipe diameter and the flow path enlargement part 7 with a large pipe diameter, the treated water flowing through the deoxygenation part 6 Since the flow velocity decrease in the flow channel expansion unit 7 and the flow velocity increase in the flow channel reduction unit 8 are repeated and stirring is performed each time, the efficiency of oxygen removal is improved.

さらにまた、処理水流路断面積の拡大と縮小を繰り返すことで、処理水に溶け込む窒素ガス量の増加と、処理水からの酸素の放出が増加する。このことによっても処理水と気泡との間でのガスの置き換えが促進され、処理水中の酸素量を減少させる効果が高まることになる。 Furthermore, by repeatedly expanding and reducing the cross-sectional area of the treated water flow path, the amount of nitrogen gas dissolved in the treated water and the release of oxygen from the treated water are increased. This also promotes the replacement of gas between the treated water and the bubbles, and increases the effect of reducing the amount of oxygen in the treated water.

図5は本発明の第三の実施例における脱酸素装置の構成を説明するための断面図である。図5は第一の実施例と第二の実施例を組み合わせた形状としており、下向き流路では第一の実施例に記載している構造での流路拡大部7と流路縮小部8を設け、上向き流路部分では第二の実施例に記載している構造での流路拡大部7と流路縮小部8を設けている。この場合は、下向き流路と上向き流路の両方で脱酸素を行うことになる。 FIG. 5 is a cross-sectional view for explaining the structure of a deoxygenation apparatus in the third embodiment of the present invention. FIG. 5 shows a combination of the first embodiment and the second embodiment. In the downward flow path, the flow path enlargement portion 7 and the flow path reduction portion 8 in the structure described in the first embodiment are provided. In the upward channel portion, the channel expanding portion 7 and the channel reducing portion 8 having the structure described in the second embodiment are provided. In this case, deoxidation is performed in both the downward flow path and the upward flow path.

なお、本発明は以上説明した実施例に限定されるものではなく、多くの変形が本発明の技術的思想内で当分野において通常の知識を有する者により可能である。 The present invention is not limited to the embodiments described above, and many modifications can be made by those having ordinary knowledge in the art within the technical idea of the present invention.

1 脱酸素装置
2 原水入口
3 脱酸素水取り出し口
4 処理水流路
5 窒素ガス噴射ノズル
6 脱酸素部
7 流路拡大部
8 流路縮小部
9 気泡たまり


1 Deoxygenation device
2 Raw water entrance
3 Deoxygenated water outlet 4 Processed water flow channel 5 Nitrogen gas injection nozzle 6 Deoxygenated portion 7 Flow channel enlarged portion 8 Flow channel reduced portion 9 Bubble pool


Claims (3)

溶存酸素を含んだ原水を流路の一端に設けた原水入口から供給し、溶存酸素を除去した脱酸素水を流路他端の脱酸素水取り出し口から取り出すようにしている脱酸素装置であって、原水入口と脱酸素水取り出し口の間をつなぐ処理水流路の途中に窒素ガスを注入する窒素ガス噴射ノズルを設置しておき、脱酸素装置内を流れる処理水中に窒素ガスを注入して処理水中の溶存酸素を除去するようにしている脱酸素装置において、処理水流路の窒素ガス噴射ノズルより下流側である脱酸素部では、処理水流路の流路断面積が大きな流路拡大部と流路面積の小さな流路縮小部を交互に複数個設置していることを特徴とする脱酸素装置。 A deoxygenation device that supplies raw water containing dissolved oxygen from a raw water inlet provided at one end of a flow path and takes out deoxygenated water from which dissolved oxygen has been removed from a deoxygenated water outlet at the other end of the flow path. Install a nitrogen gas injection nozzle that injects nitrogen gas in the middle of the treated water flow path connecting the raw water inlet and the deoxygenated water outlet, and injects nitrogen gas into the treated water flowing in the deoxidizer. In the deoxygenation apparatus configured to remove dissolved oxygen in the treated water, the deoxidized portion on the downstream side of the nitrogen gas injection nozzle of the treated water flow path includes a flow path expanding section having a large flow path cross-sectional area of the treated water flow path. A deoxygenation apparatus, wherein a plurality of flow path reduction portions having a small flow path area are alternately installed. 請求項1に記載の脱酸素装置において、窒素ガス噴射ノズルは脱酸素部の上方に設置し、脱酸素部では処理水は下向きに流す構成としていることを特徴とする脱酸素装置。   2. The deoxygenation apparatus according to claim 1, wherein the nitrogen gas injection nozzle is installed above the deoxygenation unit, and the treated water flows downward in the deoxygenation unit. 3. 請求項1に記載の脱酸素装置において、窒素ガス噴射ノズルは脱酸素部の下方に設置し、脱酸素部では処理水は上向きに流す構成とした場合、流路縮小部の下部を流路拡大部の上部に突出させる形状とすることで、流路拡大部の上部に気泡たまりを設けていることを特徴とする脱酸素装置。

2. The deoxygenation apparatus according to claim 1, wherein the nitrogen gas injection nozzle is installed below the deoxygenation part, and in the deoxygenation part, when the treated water flows upward, the lower part of the flow path reduction part is expanded in the flow path. The deoxygenation device is characterized in that a bubble pool is provided at the upper part of the flow path expanding part by projecting the upper part of the part.

JP2015043944A 2015-03-05 2015-03-05 Deoxygenation device Pending JP2016159292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015043944A JP2016159292A (en) 2015-03-05 2015-03-05 Deoxygenation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015043944A JP2016159292A (en) 2015-03-05 2015-03-05 Deoxygenation device

Publications (1)

Publication Number Publication Date
JP2016159292A true JP2016159292A (en) 2016-09-05

Family

ID=56843804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015043944A Pending JP2016159292A (en) 2015-03-05 2015-03-05 Deoxygenation device

Country Status (1)

Country Link
JP (1) JP2016159292A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113772772A (en) * 2021-08-31 2021-12-10 国网冀北电力有限公司电力科学研究院 Dissolved oxygen removal device, internal cooling water system of converter valve and dissolved oxygen removal method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113772772A (en) * 2021-08-31 2021-12-10 国网冀北电力有限公司电力科学研究院 Dissolved oxygen removal device, internal cooling water system of converter valve and dissolved oxygen removal method thereof

Similar Documents

Publication Publication Date Title
JP6104399B2 (en) Contaminated water purification system provided with fine bubble generating device and fine bubble generating device
US20030155436A1 (en) Method for mixing fluids
AU2001269265A1 (en) Method for mixing fluids
US20090121365A1 (en) Eddy chamber
JP2011147932A (en) Fluid-mixing device
JP5372585B2 (en) Gas-liquid dissolution tank
JP2016159292A (en) Deoxygenation device
US10159915B2 (en) Device and method for degassing liquids
JP4678602B2 (en) Liquid-phase and gas-phase mixed distribution method
KR20110042295A (en) Method and system for phase inversion using a static mixer/coalescer
Dai et al. Numerical study on bubble formation of a gas‐liquid flow in a T‐junction microchannel
JP2011088061A (en) Gas-liquid dissolving tank
JP2007269655A (en) Reaction method and reaction apparatus
JP2013248607A (en) Membrane separator apparatus and membrane separation method
US10773974B2 (en) Compact floatation unit
JP2005515883A (en) Mixing equipment
US20220305447A1 (en) Apparatus for dissolving gas into a liquid and method for producing the same
US7703752B2 (en) Method and equipment for mixing fluids
JP2013017948A (en) Apparatus and method for agitating fluid
CN108349763B (en) Method and device for treating wastewater by using ozone
KR101128948B1 (en) The oxygen melting device
CN109516519A (en) Multichannel mixing wastewater with air flotation device
JP2007136285A (en) Pressure floatation apparatus
CA2852167A1 (en) Method and installation for ozone treatment of wastewater
CZ28803U1 (en) Cavitation nozzle, especially for apparatus realizing flotation with dissolved gas li kavitační tryska