JP2016157820A - Magnet unit for magnetron sputtering device, and sputtering method using the magnet unit - Google Patents

Magnet unit for magnetron sputtering device, and sputtering method using the magnet unit Download PDF

Info

Publication number
JP2016157820A
JP2016157820A JP2015034569A JP2015034569A JP2016157820A JP 2016157820 A JP2016157820 A JP 2016157820A JP 2015034569 A JP2015034569 A JP 2015034569A JP 2015034569 A JP2015034569 A JP 2015034569A JP 2016157820 A JP2016157820 A JP 2016157820A
Authority
JP
Japan
Prior art keywords
target
sputtering
center
magnet
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015034569A
Other languages
Japanese (ja)
Other versions
JP6471000B2 (en
Inventor
賢吾 堤
Kengo Tsutsumi
賢吾 堤
中村 真也
Shinya Nakamura
真也 中村
一義 橋本
Kazuyoshi Hashimoto
一義 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2015034569A priority Critical patent/JP6471000B2/en
Publication of JP2016157820A publication Critical patent/JP2016157820A/en
Application granted granted Critical
Publication of JP6471000B2 publication Critical patent/JP6471000B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnet unit for magnetron sputtering device which is capable of efficiently removing a re-deposit film that is formed at a target center, by means of dummy sputtering in the case of deposition, and reproduces in-plane distribution of film thickness or film quality when sputtering for deposition is performed after the end of dummy sputtering.SOLUTION: The magnet unit for magnetron sputtering is disposed at a back side of a sputtering surface of a target 3 and rotationally driven with a center 3c of the target as a rotational center. The magnet unit comprises a first magnet body 5 and a second magnet body 6 that surrounds the first magnet body and within a predetermined range between the center of the target and an outer circumference, a magnetic field leaked from the target is generated in such a manner that a line L1 passing a position where a vertical component of the magnetic field becomes zero, is closed in an endless shape. Movement means is provided which radially moves in portions 61a and 61b of the second magnet body that is positioned at a center side of the target, and the magnet unit is freely deformable in such a manner that a part of the line passing the position where the vertical component of the magnetic field becomes zero is spread over the center of the target.SELECTED DRAWING: Figure 4

Description

本発明は、マグネトロンスパッタリング装置用の磁石ユニット及びスパッタリング方法に関し、より詳しくは、ターゲットの中心に形成されるリデポ膜を短時間で除去できるものに関する。   The present invention relates to a magnet unit for a magnetron sputtering apparatus and a sputtering method, and more particularly to a device capable of removing a redeposit film formed at the center of a target in a short time.

例えば、不揮発性メモリ等の半導体デバイスの製造工程においては、半導体ウエハなどの処理すべき基板の表面に誘電体膜を量産性良く成膜するために、マグネトロンスパッタリング装置が用いられる。マグネトロンスパッタリング装置には、通常、平面視円形のターゲットのスパッタ面と背向する側に磁石ユニットが配置されている。   For example, in a manufacturing process of a semiconductor device such as a nonvolatile memory, a magnetron sputtering apparatus is used to form a dielectric film on a surface of a substrate to be processed such as a semiconductor wafer with high productivity. In a magnetron sputtering apparatus, a magnet unit is usually arranged on the side facing away from the sputtering surface of a circular target in plan view.

磁石ユニットとして、ターゲットを略均一に侵食して高寿命化を図る等のため、例えば、ターゲットの中心と外周との間の所定領域に、同磁化の磁石片の複数個を環状に列設した第1の磁石体と、第1の磁石体の周囲を囲うように第1の磁石体と同磁化の磁石片の複数個を環状に列設した第2の磁石体とを有して当該領域に磁場の垂直成分がゼロとなる位置を通る線(即ち、プラズマ密度が最も高くなる箇所)が無端状に閉じるようにターゲットから漏洩する磁場を発生させ、スパッタリング中にターゲットの中心を回転中心として回転駆動されるものが一般に知られている。このようにスパッタリング中に磁石ユニットを回転駆動させる場合、ターゲット中心を含む中央領域が局所的に侵食されることを防止するために、磁場の垂直成分がゼロとなる位置を通る線がターゲットの中心と外周との間の所定範囲に収まるように通常は設計され、ターゲットの中央領域に実質的にスパッタリングにより侵食されない非侵食領域が残存することがある。   As a magnet unit, for example, a plurality of magnet pieces having the same magnetization are arranged in a ring in a predetermined region between the center and the outer periphery of the target in order to erode the target substantially uniformly and to increase the life. A first magnet body; and a second magnet body in which a plurality of magnet pieces having the same magnetization as the first magnet body are arranged in a ring so as to surround the first magnet body. A magnetic field that leaks from the target is generated so that the line passing through the position where the vertical component of the magnetic field becomes zero (that is, the point where the plasma density is highest) is closed endlessly, and the center of the target is the rotation center during sputtering. What is rotationally driven is generally known. When rotating the magnet unit during sputtering in this way, a line passing through the position where the vertical component of the magnetic field is zero is the center of the target in order to prevent the central region including the target center from being locally eroded. A non-erodible region that is normally designed to fall within a predetermined range between the outer periphery and the outer periphery and that is not substantially eroded by sputtering may remain in the central region of the target.

ターゲットの中央領域に残存する非侵食領域には、スパッタリング中、ターゲットのスパッタリングにより発生したスパッタ粒子が再付着してリデポ膜が形成される。このリデポ膜は、パーティクル等となって製品歩留まりの低下を招来する原因になり得る。このため、所定の厚さ以上のリデポ膜が形成される前に、成膜条件とは異なる条件(例えば、低圧)でダミースパッタリングを行うことでリデポ膜が除去されるが、リデポ膜を除去するのに多大な時間を要するため、生産効率を低下させる要因となる。ターゲットの侵食領域を変更するために、第1の磁石体を一体に径方向に移動させることが例えば特許文献1で知られている。然し、これでは、ターゲット全面の侵食領域が成膜のためのスパッタリング時とダミースパッタリング時とで異なるものとなって、ターゲット全面の侵食形状が変化する。その結果、ダミースパッタリング後に第1の磁石体を一体に元の位置に戻し、成膜のためのスパッタリングを行うと、ターゲットの侵食形状の変化に起因して、例えばスパッタ粒子の飛散分布が変化し、ひいては、膜厚面内分布や膜質面内分布の再現性よく成膜することができないという問題が生じる。   In the non-erosion region remaining in the central region of the target, sputtered particles generated by sputtering of the target are reattached during sputtering, and a redeposited film is formed. This redeposited film may become a particle or the like and cause a decrease in product yield. For this reason, before the redepo film having a predetermined thickness or more is formed, the redeposite film is removed by performing dummy sputtering under conditions (for example, low pressure) different from the film formation conditions. However, the redepo film is removed. It takes a lot of time to reduce the production efficiency. For example, Patent Document 1 discloses that the first magnet body is moved in the radial direction integrally in order to change the erosion area of the target. However, in this case, the erosion region on the entire surface of the target is different between the sputtering for film formation and the dummy sputtering, and the erosion shape on the entire surface of the target changes. As a result, if the first magnet body is returned to the original position after dummy sputtering and sputtering for film formation is performed, for example, the scattering distribution of sputtered particles changes due to the change in the erosion shape of the target. As a result, there arises a problem that the film cannot be formed with good reproducibility of the in-plane distribution of the film thickness and the in-plane distribution of the film quality.

特開2004−269952号公報JP 2004-269952 A

本発明は、以上の点に鑑み、成膜時にターゲット中心に形成されたリデポ膜をダミースパッタにより効率よく除去することができ、しかも、ダミースパッタ終了後に成膜のためのスパッタリングを行ったときに膜厚面内分布や膜質面内分布を再現することができるマグネトロンスパッタリング装置用の磁石ユニット及びスパッタリング方法を提供することをその課題とする。   In view of the above points, the present invention can efficiently remove the redeposition film formed at the center of the target during film formation by dummy sputtering, and when sputtering for film formation is performed after completion of dummy sputtering. It is an object of the present invention to provide a magnet unit and a sputtering method for a magnetron sputtering apparatus that can reproduce the in-plane distribution of film thickness and the in-plane distribution of film quality.

上記課題を解決するために、平面視円形のターゲットのスパッタ面と背向する側に配置され、ターゲットの中心を回転中心として回転駆動される本発明のマグネトロンスパッタリング装置用の磁石ユニットは、第1の磁石体と第1の磁石体の周囲を囲う第2の磁石体とを有してターゲットの中心と外周との間の所定範囲に磁場の垂直成分がゼロとなる位置を通る線が無端状に閉じるようにターゲットから漏洩する磁場を発生させ、ターゲットの中心側に位置する第2磁石体の部分を径方向に移動する移動手段を設け、磁場の垂直成分がゼロとなる位置を通る線の一部がターゲットの中心を跨ぐように変形自在としたことを特徴とする。本発明において、「磁場の垂直成分がゼロとなる位置を通る線の一部がターゲット中心を跨ぐ」とは、当該線がターゲットの中心を厳密に跨ぐ(通る)場合だけでなく、ターゲットの中央領域が侵食領域にできるように線を変形させている場合をも含む。   In order to solve the above problems, a magnet unit for a magnetron sputtering apparatus of the present invention, which is disposed on the side facing the sputtering surface of a circular target in plan view and is driven to rotate about the center of the target, is a first unit. A line passing through a position where the vertical component of the magnetic field is zero in a predetermined range between the center and the outer periphery of the target, and the second magnet body surrounding the periphery of the first magnet body. The magnetic field leaking from the target is generated so as to be closed, and the moving means for moving the second magnet body portion located on the center side of the target in the radial direction is provided, and the line passing through the position where the vertical component of the magnetic field becomes zero It is characterized in that a part can be deformed so as to straddle the center of the target. In the present invention, “a part of a line passing through a position where the vertical component of the magnetic field is zero straddles the target center” is not only the case where the line strictly strides (passes) the center of the target, but also the center of the target. This includes the case where the line is deformed so that the region can be an eroded region.

また、本発明において、前記移動手段は、第2磁石体の部分を保持するヨークと、ヨークに連結されるアクチュエータとで構成されることができる。これによれば、アクチュエータを駆動することで、第2磁石体の部分を径方向に移動させることができる。   In the present invention, the moving means may be composed of a yoke that holds a portion of the second magnet body and an actuator that is coupled to the yoke. According to this, the part of a 2nd magnet body can be moved to radial direction by driving an actuator.

上記課題を解決するために、上記磁石ユニットを備えるスパッタリング装置を用いた本発明のスパッタリング方法は、第1及び第2の磁石体によりターゲットの中心と外周との間の所定範囲に磁場の垂直成分がゼロとなる位置を通る線が無端状に閉じるようにターゲットから漏洩磁場を発生させた状態で、ターゲットのスパッタ面をスパッタリングし、スパッタ粒子を基板に付着、堆積させて基板表面に成膜する成膜工程と、ターゲットの中心側に位置する第2の磁石体の部分を移動させて磁場の垂直成分がゼロとなる位置を通る線の一部がターゲット中心を跨ぐように変形させた状態でターゲットのスパッタ面をスパッタリングするダミースパッタリング工程とを含むことを特徴とする。   In order to solve the above-mentioned problem, the sputtering method of the present invention using a sputtering apparatus comprising the above-described magnet unit is characterized in that the vertical component of the magnetic field falls within a predetermined range between the center and the outer periphery of the target by the first and second magnet bodies Sputtering the sputtering surface of the target and depositing and depositing the sputtered particles on the substrate to form a film on the substrate surface in a state where a leakage magnetic field is generated from the target so that the line passing through the position where zero becomes zero is closed endlessly In the state where the film forming step and the part of the second magnet body located on the center side of the target are moved so that a part of the line passing through the position where the vertical component of the magnetic field becomes zero straddle the target center And a dummy sputtering step of sputtering the sputtering surface of the target.

本発明によれば、第1及び第2の磁石体によりターゲットの中心と外周との間に磁場の垂直成分がゼロとなる位置を通る線が無端状に閉じるようにスパッタ面から漏洩磁場を発生させた状態で成膜すると、ターゲットの非侵食領域たる中央領域にリデポ膜が形成される。このリデポ膜を除去するダミースパッタリング時に、磁場の垂直成分がゼロとなる位置を通る線の一部をターゲット中心を跨ぐように変形させることで、効率よくリデポ膜を除去できる。しかも、ターゲットの中心側に位置する第2の磁石体の部分のみを移動させるため、成膜のためのスパッタリング時(成膜工程)とダミースパッタリング時との間でターゲットの中央領域を除いてターゲットの侵食領域が変化しない。このため、ダミースパッタリングの後に第2の磁石体の部分を元の位置に戻し、成膜のためのスパッタリングを行うと、膜厚面内分布や膜質面内分布の再現性よく成膜することができる。   According to the present invention, the first and second magnet bodies generate a leakage magnetic field from the sputtering surface so that the line passing through the position where the vertical component of the magnetic field is zero between the center and the outer periphery of the target is closed endlessly. When the film is formed in such a state, a redeposited film is formed in the central region which is the non-eroding region of the target. At the time of dummy sputtering for removing the redeposite film, the redepo film can be efficiently removed by deforming part of the line passing through the position where the vertical component of the magnetic field becomes zero so as to straddle the target center. In addition, since only the portion of the second magnet body located on the center side of the target is moved, the target is excluded except for the central region of the target between the sputtering for film formation (film formation process) and the dummy sputtering. The erosion area does not change. For this reason, if the second magnet body part is returned to the original position after dummy sputtering and sputtering for film formation is performed, the film thickness distribution in the film surface and the film quality surface distribution can be formed with good reproducibility. it can.

本発明の実施形態の磁石ユニットを備えるマグネトロンスパッタリング装置を示す模式図。The schematic diagram which shows a magnetron sputtering apparatus provided with the magnet unit of embodiment of this invention. 図1に示す磁石ユニットの拡大断面図。The expanded sectional view of the magnet unit shown in FIG. 移動手段を模式的に示す平面図。The top view which shows a moving means typically. 磁場の垂直成分がゼロとなる位置を通る線の変形を説明する図。The figure explaining the deformation | transformation of the line which passes along the position where the perpendicular | vertical component of a magnetic field becomes zero.

以下、図面を参照して、マグネトロンスパッタリング装置(以下「スパッタリング装置」という)に組み付けられるものを例に、本発明の実施形態の磁石ユニットについて説明する。以下においては、「上」「下」といった方向を示す用語は、図1を基準とする。   Hereinafter, with reference to the drawings, a magnet unit according to an embodiment of the present invention will be described with reference to an example of a magnetron sputtering apparatus (hereinafter referred to as “sputtering apparatus”). In the following, terms indicating directions such as “up” and “down” are based on FIG.

図1に示すように、スパッタリング装置SMは、ロータリーポンプ、ターボ分子ポンプなどの真空排気手段Pを介して所定の真空度に保持できる真空チャンバ1を備える。真空チャンバ1の側壁には、マスフローコントローラ10を介設したガス管11が接続されており、図示省略のガス源からスパッタガスを真空チャンバ1内に導入できるようになっている。スパッタガスには、Ar等の希ガスだけでなく、反応性スパッタリングを行う場合には酸素ガスが含まれるものとする。   As shown in FIG. 1, the sputtering apparatus SM includes a vacuum chamber 1 that can be maintained at a predetermined degree of vacuum via a vacuum exhaust means P such as a rotary pump or a turbo molecular pump. A gas pipe 11 provided with a mass flow controller 10 is connected to the side wall of the vacuum chamber 1 so that sputtering gas can be introduced into the vacuum chamber 1 from a gas source (not shown). The sputtering gas includes not only a rare gas such as Ar but also oxygen gas when reactive sputtering is performed.

真空チャンバ1の底部には、基板ステージ2が配置されている。基板ステージ2は、図示省略する公知の静電チャックを有し、静電チャックの電極にチャック電源からチャック電圧を印加することで、基板ステージ2上に基板Wをその成膜面を上にして吸着保持できるようになっている。   A substrate stage 2 is disposed at the bottom of the vacuum chamber 1. The substrate stage 2 has a known electrostatic chuck (not shown). By applying a chuck voltage to the electrodes of the electrostatic chuck from a chuck power source, the substrate W is placed on the substrate stage 2 with its film formation surface facing up. It can be held by suction.

真空チャンバ1の上壁に形成された開口には、スパッタ面31が基板ステージ2を臨むように平面視円形のターゲット3が配置されている。ターゲット3は、基板Wに成膜しようとする薄膜の組成に応じて適宜選択される金属や絶縁物から成り、公知の方法により基板Wより一回り大きい外形となるように作製されている。ターゲット3の上面(図1中、スパッタ面31と背向する面)には、スパッタリングによる成膜中、ターゲット3を冷却する銅製のバッキングプレート32がインジウムやスズなどの熱伝導率が高い材料からなるボンディング材を介して接合され、バッキングプレート32の外周部が絶縁部材Iを介して真空チャンバ1の上壁に取り付けられている。ターゲット3にはスパッタ電源Eが接続され、スパッタリング時、ターゲット3に負の電位を持つ直流電力や交流電力を投入できるようになっている。   In the opening formed in the upper wall of the vacuum chamber 1, a circular target 3 in plan view is arranged so that the sputtering surface 31 faces the substrate stage 2. The target 3 is made of a metal or an insulator that is appropriately selected according to the composition of the thin film to be deposited on the substrate W, and is made to have an outer shape that is slightly larger than the substrate W by a known method. On the upper surface of the target 3 (the surface opposite to the sputtering surface 31 in FIG. 1), a copper backing plate 32 that cools the target 3 during film formation by sputtering is made of a material having high thermal conductivity such as indium or tin. The outer peripheral portion of the backing plate 32 is attached to the upper wall of the vacuum chamber 1 via the insulating member I. A sputtering power source E is connected to the target 3 so that DC power or AC power having a negative potential can be applied to the target 3 during sputtering.

ターゲット3のスパッタ面31と背向する側(バッキングプレート32の上方)には磁石ユニット4が配置され、ターゲット3のスパッタ面31の下方空間に漏洩する磁場を発生させ、スパッタリング時にスパッタ面31の下方で電離した電子等を捕捉してターゲット3から飛散したスパッタ粒子を効率よくイオン化している。磁石ユニット4は、ヨーク41と、ヨーク41の下面に同磁化の複数個(本実施形態では12個)の磁石片51a〜51lを環状に列設した第1の磁石体5と、第1の磁石体5の周囲を囲うように第1の磁石体5と同磁化の複数個(本実施形態では18個)の磁石片61a〜61rを環状に列設した第2の磁石体6とを有する。ヨーク41には図示省略の回動手段の回転軸が接続され、回転軸を回転駆動することで、ターゲット3の中心を回転中心として第1及び第2の磁石体5,6を回転駆動できるようになっている。   The magnet unit 4 is arranged on the side opposite to the sputtering surface 31 of the target 3 (above the backing plate 32), and generates a magnetic field that leaks to the space below the sputtering surface 31 of the target 3, so that the sputtering surface 31 is exposed during sputtering. The sputtered particles scattered from the target 3 are efficiently ionized by capturing electrons etc. ionized below. The magnet unit 4 includes a yoke 41, a first magnet body 5 in which a plurality of (12 in this embodiment) magnet pieces 51 a to 51 l having the same magnetization are arranged in a ring on the lower surface of the yoke 41, The first magnet body 5 and the second magnet body 6 in which a plurality of (18 in the present embodiment) magnet pieces 61a to 61r are arranged in an annular shape so as to surround the periphery of the magnet body 5. . The yoke 41 is connected to a rotating shaft of a rotating means (not shown), and the first and second magnet bodies 5 and 6 can be driven to rotate about the center of the target 3 by rotating the rotating shaft. It has become.

これら第1及び第2の磁石体5,6は、図4に示すように、スパッタリング中にターゲット3の中心を含む中央領域が局所的に浸食されることを防止するために、ターゲット3の中心3cと外周との間の所定範囲に磁場の垂直成分がゼロとなる位置を通る線L1が無端状に閉じるように(言い換えれば、ターゲット3の中央領域に実質的にスパッタリングにより侵食されない非侵食領域が残存するように)、ターゲット3から漏洩する磁場を発生させるように配置されている。   As shown in FIG. 4, the first and second magnet bodies 5 and 6 have a center of the target 3 in order to prevent the central region including the center of the target 3 from being locally eroded during sputtering. A line L1 passing through a position where the vertical component of the magnetic field becomes zero is closed endlessly within a predetermined range between 3c and the outer periphery (in other words, a non-eroding region that is not substantially eroded by sputtering in the central region of the target 3) So that a magnetic field leaking from the target 3 is generated.

本実施形態の磁石ユニット4は、ターゲット3の中心側に位置する第2の磁石体6の部分を径方向に移動する移動手段7を設け、磁場の垂直成分がゼロとなる位置を通る線の一部がターゲットの中心3cを跨ぐように変形自在に構成している。移動手段7は、第2の磁石体6の部分(磁石片61a,61b)を保持するヨーク71と、ヨーク71に連結されるアクチュエータ72とで構成されている。このような構成によれば、アクチュエータ72を径方向で伸縮動作させることで、磁石片61a,61bを容易に移動させることができる。磁石片61a,61bの移動距離は、例えば、5〜10mmの範囲で設定することができる。ヨーク41の中央部には、ヨーク71の外形よりも径方向に一回り大きい輪郭を有する透孔41aが開設され、この透孔41a内にヨーク71を配置した状態でアクチュエータ72がヨーク41上面に固定部材73により固定されている。尚、本実施形態では、第1の磁石体5の磁石片51a,51bもヨーク71で保持し、第2の磁石体6の磁石片61a,61bと共に移動させている。   The magnet unit 4 of the present embodiment is provided with a moving means 7 that moves in the radial direction the portion of the second magnet body 6 that is located on the center side of the target 3, and the line passing through the position where the vertical component of the magnetic field becomes zero A part is configured to be deformable so as to straddle the center 3c of the target. The moving means 7 includes a yoke 71 that holds the second magnet body 6 (magnet pieces 61 a and 61 b) and an actuator 72 that is connected to the yoke 71. According to such a configuration, the magnet pieces 61a and 61b can be easily moved by extending and contracting the actuator 72 in the radial direction. The moving distance of the magnet pieces 61a and 61b can be set in the range of 5 to 10 mm, for example. A through hole 41 a having a contour that is slightly larger in the radial direction than the outer shape of the yoke 71 is opened in the central portion of the yoke 41, and the actuator 72 is disposed on the upper surface of the yoke 41 with the yoke 71 disposed in the through hole 41 a. It is fixed by a fixing member 73. In the present embodiment, the magnet pieces 51 a and 51 b of the first magnet body 5 are also held by the yoke 71 and moved together with the magnet pieces 61 a and 61 b of the second magnet body 6.

上記スパッタリング装置SMは、マイクロコンピュータやシーケンサ等を備えた公知の制御手段(図示省略)を有し、マスフローコントローラ10の稼働及び真空排気手段Pの稼働、アクチュエータ72の駆動等を統括制御するようにしている。以下、上記スパッタリング装置SMを用いた本発明の実施形態のスパッタリング方法について説明する。   The sputtering apparatus SM has known control means (not shown) including a microcomputer, a sequencer, etc., and controls the operation of the mass flow controller 10, the operation of the vacuum exhaust means P, the drive of the actuator 72, and the like. ing. Hereinafter, the sputtering method of the embodiment of the present invention using the sputtering apparatus SM will be described.

先ず、図4において実線で示す位置に第1及び第2の磁石体5,6を位置させると、ターゲット3の中心3cと外周との間の所定範囲に磁場の垂直成分がゼロとなる位置を通る線L1が無端状に閉じるようにターゲット3から漏洩する磁場が発生する。この状態で、アルミナ製ターゲット3が配置された真空チャンバ1内を所定の真空度(例えば、1×10−5Pa)まで真空引きし、図外の搬送ロボットにより真空チャンバ1内に基板Wを搬送し、基板ステージ2に基板Wを受け渡し、静電吸着する。このとき、基板ステージ2をヒータ等により加熱し、基板Wを所定温度に加熱してもよい。次いで、スパッタガスたるアルゴンガスを所定流量で導入し、スパッタ電源Eからターゲット3に交流電力(例えば、13.56MHz、4kWの高周波電力)を投入することにより、真空チャンバ1内にプラズマを形成する。これにより、ターゲット3のスパッタ面31がスパッタされ、飛散したスパッタ粒子を基板Wの表面に付着、堆積させてアルミナ膜を成膜する(成膜工程)。 First, when the first and second magnet bodies 5 and 6 are positioned at the positions indicated by the solid lines in FIG. 4, the position where the vertical component of the magnetic field becomes zero in a predetermined range between the center 3 c and the outer periphery of the target 3. A magnetic field leaking from the target 3 is generated so that the passing line L1 is closed endlessly. In this state, the vacuum chamber 1 in which the alumina target 3 is arranged is evacuated to a predetermined degree of vacuum (for example, 1 × 10 −5 Pa), and the substrate W is placed in the vacuum chamber 1 by a transfer robot (not shown). Then, the substrate W is transferred to the substrate stage 2 and electrostatically attracted. At this time, the substrate stage 2 may be heated by a heater or the like, and the substrate W may be heated to a predetermined temperature. Next, argon gas as a sputtering gas is introduced at a predetermined flow rate, and AC power (for example, 13.56 MHz, 4 kW high frequency power) is supplied from the sputtering power source E to the target 3 to form plasma in the vacuum chamber 1. . As a result, the sputtering surface 31 of the target 3 is sputtered, and the sputtered particles scattered are attached and deposited on the surface of the substrate W to form an alumina film (film forming step).

ここで、成膜工程中、ターゲットの中央領域に存在する非浸食領域には、ターゲット3から飛散したスパッタ粒子の一部が再付着してリデポ膜が形成される。このリデポ膜がターゲット3から剥離して基板Wに堆積すると、パーティクル等となって製品歩留まりの低下を招来する原因となり得る。そこで、例えば、電源Eからターゲット3への積算電力投入時間(積算電力)が所定値(例えば、1.5kWh)に達したとき、次のダミースパッタリング工程を行う。   Here, during the film forming process, a part of the sputtered particles scattered from the target 3 is reattached to the non-erosion region existing in the central region of the target, and a redeposited film is formed. If this redeposited film is peeled off from the target 3 and deposited on the substrate W, it may become particles or the like and cause a decrease in product yield. Therefore, for example, when the accumulated power input time (integrated power) from the power source E to the target 3 reaches a predetermined value (for example, 1.5 kWh), the next dummy sputtering step is performed.

ダミースパッタリング工程では、アクチュエータ72を伸ばすことで、図4において仮想線で示すようにターゲット3の中心側に位置する第2の磁石体6の部分たる磁石片61a,61b(及び磁石片51a,51b)を径方向に5〜10mm移動させ、磁場の垂直成分がゼロとなる位置を通る線L1の一部L2がターゲット3の中心3cを跨ぐように変形させる。この状態でターゲット3をスパッタリング(ダミースパッタリング)する。ダミースパッタリングの条件としては、成膜時とは異なる条件(例えば、低圧)を用いることができる。このダミースパッタリングにより、ターゲット3の非浸食領域たる中央領域に付着したリデポ膜を効率よく除去できる。このとき、ターゲット3の中心側に位置する磁石片61a,61b(51a,51b)のみを移動させ、それ以外の磁石片61c〜61r(51c〜51l)は移動させないため、成膜工程とダミースパッタリング工程との間でターゲット3の中央領域を除いてターゲット3の侵食領域が変化しない。このため、ダミースパッタリング工程を所定時間(例えば150sec)行った後にアクチュエータ72を縮めることで上記磁石片61a,61b(51a,51b)を元の位置に戻し、成膜工程を行うと、膜厚面内分布や膜質面内分布の再現性よく成膜することができる。   In the dummy sputtering step, by extending the actuator 72, the magnet pieces 61a and 61b (and the magnet pieces 51a and 51b) which are parts of the second magnet body 6 located on the center side of the target 3 as shown by a virtual line in FIG. ) Is moved 5 to 10 mm in the radial direction, and a part L2 of the line L1 passing through the position where the vertical component of the magnetic field becomes zero is deformed so as to straddle the center 3c of the target 3. In this state, the target 3 is sputtered (dummy sputtering). As the conditions for dummy sputtering, conditions (for example, low pressure) different from those at the time of film formation can be used. By this dummy sputtering, the redeposite film adhering to the central region which is the non-eroding region of the target 3 can be efficiently removed. At this time, only the magnet pieces 61a and 61b (51a and 51b) positioned on the center side of the target 3 are moved, and the other magnet pieces 61c to 61r (51c to 51l) are not moved. The erosion area of the target 3 does not change except for the central area of the target 3 between the processes. For this reason, when the dummy sputtering process is performed for a predetermined time (for example, 150 seconds), the actuator 72 is contracted to return the magnet pieces 61a and 61b (51a and 51b) to their original positions, and the film forming process is performed. The film can be formed with good reproducibility of the internal distribution and the distribution within the film quality plane.

次に、上記スパッタリング装置SMを用い、本発明の効果を確認するために実験を行った。発明実験では、基板Wをφ300mmのシリコンウエハとし、ターゲット3としてφ440mmのアルミナターゲットを用い、基板W−ターゲット3間の距離(TS間距離)を70mmとした。基板ステージ2により基板Wを保持し、真空チャンバ1内にスパッタガスとしてアルゴンガスを200sccmの流量で導入し(このとき、真空チャンバ1内の圧力は2.7Pa)、ターゲット3に対し電源Eから13.56MHz、4kWの高周波電力を投入してプラズマを形成し、ターゲット3をスパッタして基板W表面にアルミナ膜を130sec成膜した。平均膜厚と膜厚面内分布を測定した結果、平均膜厚が46.45mm、膜厚面内分布が1.37%であった。このような成膜を繰り返し行うと、ターゲット3の中央領域にリデポ膜が形成されることが確認され、これにより、ターゲット3の中央領域が非浸食領域となることが判った。次に、基板Wを搬出した後、ダミー基板を保持し、アクチュエータ72を10mm伸ばして磁石片61a,61b(51a,51b)を径方向に移動させた。この状態でターゲット3をスパッタリングした(ダミースパッタリング工程)。ダミースパッタリング工程では、アルゴンガスの流量を35sccmとし(このときの、真空チャンバ1内の圧力は1.6×10−1Pa)、ターゲット3への投入電力は成膜工程と同じとした。ダミースパッタリングを90sec行った後のターゲット3を観察したところ、リデポ膜が除去されることが確認された。その後、アクチュエータを縮めて上記磁石片を元に戻し、上記成膜工程を再び行った。平均膜厚と膜厚面内分布を測定した結果、平均膜厚が46.21nm、膜厚面内分布が1.24%であり、膜厚面内分布の再現性よく成膜することができることが判った。 Next, an experiment was conducted to confirm the effect of the present invention using the sputtering apparatus SM. In the invention experiment, the substrate W was a φ300 mm silicon wafer, the target 3 was an φ440 mm alumina target, and the distance between the substrate W and the target 3 (distance between TSs) was 70 mm. The substrate W is held by the substrate stage 2, and argon gas is introduced as a sputtering gas into the vacuum chamber 1 at a flow rate of 200 sccm (at this time, the pressure in the vacuum chamber 1 is 2.7 Pa). Plasma was formed by applying high-frequency power of 13.56 MHz and 4 kW, and the target 3 was sputtered to form an alumina film on the surface of the substrate W for 130 seconds. As a result of measuring the average film thickness and the in-plane distribution, the average film thickness was 46.45 mm and the in-plane distribution was 1.37%. When such film formation was repeated, it was confirmed that a redeposition film was formed in the central region of the target 3, and it was found that the central region of the target 3 became a non-erodible region. Next, after carrying out the board | substrate W, the dummy board | substrate was hold | maintained, the actuator 72 was extended 10 mm, and magnet piece 61a, 61b (51a, 51b) was moved to radial direction. In this state, the target 3 was sputtered (dummy sputtering process). In the dummy sputtering process, the flow rate of argon gas was set to 35 sccm (at this time, the pressure in the vacuum chamber 1 was 1.6 × 10 −1 Pa), and the input power to the target 3 was the same as in the film forming process. When the target 3 after observing the dummy sputtering for 90 seconds was observed, it was confirmed that the redeposition film was removed. Thereafter, the actuator was contracted to return the magnet piece to its original position, and the film forming step was performed again. As a result of measuring the average film thickness and the in-plane distribution, the average film thickness is 46.21 nm and the in-plane distribution is 1.24%, so that the film thickness can be formed with good reproducibility. I understood.

上記発明実験に対する比較実験を以下のように行った。ダミースパッタリングする際に第1及び第2の磁石体5,6を移動させずに成膜工程と同じ位置とした場合、ダミースパッタリングを90sec行ってもリデポ膜が除去されず、270sec行うことでリデポ膜が除去されることが確認された。これにより、ダミースパッタリングの際に上記磁石片を径方向に移動させることで、効率よくリデポ膜を除去できることが判った。   A comparative experiment with respect to the above-described invention experiment was performed as follows. When the first and second magnet bodies 5 and 6 are not moved when performing dummy sputtering, the redeposited film is not removed even if the dummy sputtering is performed for 90 sec. It was confirmed that the film was removed. Thus, it has been found that the redeposition film can be efficiently removed by moving the magnet piece in the radial direction during dummy sputtering.

尚、上記発明実験では、従来技術との比較のために、ダミースパッタリング時の真空チャンバ内の圧力を従来技術と同様に成膜時よりも低く設定したが、これに限られない。従来技術の圧力〜成膜時の圧力の範囲(即ち、1.6×10−1Pa〜2.7Pa)でダミースパッタリングを行えば、上記発明実験と同様に、90secのダミースパッタリングにより効率よくリデポ膜を除去できることを確認した。 In the experiment of the present invention, for comparison with the prior art, the pressure in the vacuum chamber at the time of dummy sputtering was set lower than that at the time of film formation as in the prior art, but this is not restrictive. If dummy sputtering is performed in the range of pressure from the prior art to the pressure at the time of film formation (ie, 1.6 × 10 −1 Pa to 2.7 Pa), as in the above-described invention experiment, the redeposition can be efficiently performed by 90 sec dummy sputtering. It was confirmed that the film could be removed.

また、ダミースパッタリングの際、従来例の如く第1の磁石体5の全ての磁石片51a〜51lを一体に径方向に移動させて、上記と同様の条件でダミースパッタリングを90sec行った結果、リデポ膜を除去できることが確認された。しかしながら、ダミースパッタリングの後に第1の磁石体5を一体に元の位置に戻し、成膜工程を行ったところ、平均膜厚が47.56nm、膜厚面内分布が2.25%となり、膜厚面内分布の再現性よく成膜することができないことが判った。これは、成膜工程とダミースパッタリング工程との間でターゲット3の全体に亘って侵食領域が変化したため、ダミースパッタリング工程を行った後に磁石片51a〜51lを元の位置に戻して成膜工程を行っても、膜厚面内分布や膜質面内分布の再現性よく成膜することがでできないと推察される。   In addition, when performing dummy sputtering, all the magnet pieces 51a to 51l of the first magnet body 5 are integrally moved in the radial direction as in the conventional example, and dummy sputtering is performed for 90 seconds under the same conditions as described above. It was confirmed that the film could be removed. However, after the dummy sputtering, the first magnet body 5 was returned to its original position and the film forming process was performed. As a result, the average film thickness was 47.56 nm and the film thickness in-plane distribution was 2.25%. It was found that the film could not be formed with good reproducibility of the in-plane distribution. This is because the erosion region changed over the entire target 3 between the film forming process and the dummy sputtering process, and after performing the dummy sputtering process, the magnet pieces 51a to 51l are returned to their original positions. Even if it is performed, it is assumed that the film cannot be formed with good reproducibility of the in-plane distribution of film thickness and in-plane distribution of film quality.

なお、本発明は上記実施形態に限定されるものではない。例えば、上記実施形態では、ターゲット3の中心3c側に位置する磁石片61a,61bと磁石片51a,51bを移動させる場合について説明したが、磁石片61a,61bを移動させれば本発明の効果が得られる。   The present invention is not limited to the above embodiment. For example, although the case where the magnet pieces 61a and 61b and the magnet pieces 51a and 51b located on the center 3c side of the target 3 are moved has been described in the above embodiment, the effect of the present invention can be achieved by moving the magnet pieces 61a and 61b. Is obtained.

また、上記実施形態では、ダミースパッタリング時に基板ステージ2にダミー基板を保持しているが、ターゲット3とステージ2との間に進退自在な公知のシャッターを設け、ダミースパッタリング時に両者の間にシャッターを進入させるようにしてもよい。これによれば、ダミー基板の出し入れの時間が不要となり、スループットを向上できてよい。   In the above embodiment, the dummy substrate is held on the substrate stage 2 at the time of dummy sputtering, but a known shutter that can be moved forward and backward is provided between the target 3 and the stage 2, and the shutter is interposed between the two at the time of dummy sputtering. You may make it enter. According to this, the time for taking in and out the dummy substrate becomes unnecessary, and the throughput may be improved.

L1…磁場の垂直成分がゼロとなる位置を通る線、L2…ターゲットの中心を跨ぐように変形した磁場の垂直成分がゼロとなる位置を通る線L1の一部、SM…マグネトロンスパッタリング装置、W…基板、3…ターゲット、3c…ターゲット3の中心、4…磁石ユニット、5…第1の磁石体、6…第2の磁石体、61a,61b…磁石片(ターゲットの中心側に位置する第2磁石体6の部分)、7…移動手段、71…ヨーク、72…アクチュエータ。   L1 ... a line passing through a position where the vertical component of the magnetic field is zero, L2 ... a part of a line L1 passing through a position where the vertical component of the magnetic field deformed so as to straddle the center of the target is zero, SM ... a magnetron sputtering apparatus, W ... substrate, 3 ... target, 3c ... center of target 3, 4 ... magnet unit, 5 ... first magnet body, 6 ... second magnet body, 61a, 61b ... magnet piece (the first located on the center side of the target) 2 magnet body 6), 7 ... moving means, 71 ... yoke, 72 ... actuator.

Claims (3)

平面視円形のターゲットのスパッタ面と背向する側に配置され、ターゲットの中心を回転中心として回転駆動されるマグネトロンスパッタリング装置用の磁石ユニットであって、
第1の磁石体と第1の磁石体の周囲を囲う第2の磁石体とを有してターゲットの中心と外周との間の所定範囲に磁場の垂直成分がゼロとなる位置を通る線が無端状に閉じるようにターゲットから漏洩する磁場を発生させるものにおいて、
ターゲットの中心側に位置する第2磁石体の部分を径方向に移動する移動手段を設け、磁場の垂直成分がゼロとなる位置を通る線の一部がターゲットの中心を跨ぐように変形自在としたことを特徴とするマグネトロンスパッタリング装置用の磁石ユニット。
A magnet unit for a magnetron sputtering apparatus that is disposed on the side facing away from the sputtering surface of a circular target in plan view and is driven to rotate around the center of the target,
A line having a first magnet body and a second magnet body surrounding the first magnet body and passing through a position where the vertical component of the magnetic field is zero is within a predetermined range between the center and the outer periphery of the target. In those that generate a magnetic field that leaks from the target to endlessly close,
Provided with a moving means for moving the second magnet body portion located on the center side of the target in the radial direction, the portion passing through the position where the vertical component of the magnetic field is zero can be deformed so as to straddle the center of the target A magnet unit for a magnetron sputtering apparatus.
前記移動手段は、第2磁石体の部分を保持するヨークと、ヨークに連結されるアクチュエータとで構成されることを特徴とする請求項1記載のマグネトロンスパッタリング装置用の磁石ユニット。   2. The magnet unit for a magnetron sputtering apparatus according to claim 1, wherein the moving means includes a yoke for holding a portion of the second magnet body and an actuator connected to the yoke. 請求項1記載のマグネトロンスパッタリング装置用の磁石ユニットを備えるマグネトロンスパッタリング装置を用いたスパッタリング方法において、
第1及び第2の磁石体によりターゲットの中心と外周との間の所定範囲に磁場の垂直成分がゼロとなる位置を通る線が無端状に閉じるようにターゲットから漏洩磁場を発生させた状態で、ターゲットのスパッタ面をスパッタリングし、スパッタ粒子を基板に付着、堆積させて基板表面に成膜する成膜工程と、
ターゲットの中心側に位置する第2磁石体の部分を移動させて磁場の垂直成分がゼロとなる位置を通る線の一部がターゲット中心を跨ぐように変形させた状態でターゲットのスパッタ面をスパッタリングするダミースパッタリング工程とを含むことを特徴とするスパッタリング方法。
In a sputtering method using a magnetron sputtering apparatus comprising the magnet unit for the magnetron sputtering apparatus according to claim 1,
In a state in which a leakage magnetic field is generated from the target so that a line passing through a position where the vertical component of the magnetic field becomes zero is closed endlessly in a predetermined range between the center and the outer periphery of the target by the first and second magnet bodies A film forming step of sputtering the target sputtering surface and depositing and depositing sputtered particles on the substrate to form a film on the substrate surface;
Sputter the sputtering surface of the target while moving the part of the second magnet body located on the center side of the target and deforming so that a part of the line passing through the position where the vertical component of the magnetic field becomes zero straddles the target center And a dummy sputtering step.
JP2015034569A 2015-02-24 2015-02-24 Magnet unit for magnetron sputtering apparatus and sputtering method using this magnet unit Active JP6471000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015034569A JP6471000B2 (en) 2015-02-24 2015-02-24 Magnet unit for magnetron sputtering apparatus and sputtering method using this magnet unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015034569A JP6471000B2 (en) 2015-02-24 2015-02-24 Magnet unit for magnetron sputtering apparatus and sputtering method using this magnet unit

Publications (2)

Publication Number Publication Date
JP2016157820A true JP2016157820A (en) 2016-09-01
JP6471000B2 JP6471000B2 (en) 2019-02-13

Family

ID=56826400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015034569A Active JP6471000B2 (en) 2015-02-24 2015-02-24 Magnet unit for magnetron sputtering apparatus and sputtering method using this magnet unit

Country Status (1)

Country Link
JP (1) JP6471000B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020033590A (en) * 2018-08-29 2020-03-05 株式会社アルバック Sputtering cathode
WO2020066247A1 (en) * 2018-09-27 2020-04-02 株式会社アルバック Magnet unit for magnetron sputtering device
JP2020200525A (en) * 2019-06-13 2020-12-17 株式会社アルバック Cathode unit for magnetron sputtering apparatus
CN112639160A (en) * 2018-08-27 2021-04-09 株式会社爱发科 Sputtering apparatus and film forming method
TWI819294B (en) * 2020-04-24 2023-10-21 大陸商北京北方華創微電子裝備有限公司 Semiconductor processing equipment and magnetron mechanism

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11295938B2 (en) * 2020-06-30 2022-04-05 Applied Materials, Inc. Multi-radius magnetron for physical vapor deposition (PVD) and methods of use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319780A (en) * 1999-05-07 2000-11-21 Sony Corp Sputtering cathode and magnetron type sputtering device equipped with the same
JP2007530787A (en) * 2004-03-24 2007-11-01 アプライド マテリアルズ インコーポレイテッド Selectable dual position magnetron
JP2008163451A (en) * 2006-10-27 2008-07-17 Applied Materials Inc Position controlled dual magnetron

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319780A (en) * 1999-05-07 2000-11-21 Sony Corp Sputtering cathode and magnetron type sputtering device equipped with the same
JP2007530787A (en) * 2004-03-24 2007-11-01 アプライド マテリアルズ インコーポレイテッド Selectable dual position magnetron
JP2008163451A (en) * 2006-10-27 2008-07-17 Applied Materials Inc Position controlled dual magnetron

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020044872A1 (en) * 2018-08-27 2021-06-10 株式会社アルバック Sputtering equipment and film formation method
US11230760B2 (en) 2018-08-27 2022-01-25 Ulvac, Inc. Sputtering apparatus and method of forming film
KR102611646B1 (en) 2018-08-27 2023-12-11 가부시키가이샤 알박 Sputtering device and film forming method
CN112639160A (en) * 2018-08-27 2021-04-09 株式会社爱发科 Sputtering apparatus and film forming method
KR20210044867A (en) 2018-08-27 2021-04-23 가부시키가이샤 알박 Sputtering device and film formation method
JP6997877B2 (en) 2018-08-27 2022-02-10 株式会社アルバック Sputtering equipment and film formation method
JP2020033590A (en) * 2018-08-29 2020-03-05 株式会社アルバック Sputtering cathode
WO2020066247A1 (en) * 2018-09-27 2020-04-02 株式会社アルバック Magnet unit for magnetron sputtering device
JPWO2020066247A1 (en) * 2018-09-27 2021-08-30 株式会社アルバック Magnet unit for magnetron sputtering equipment
US11239064B2 (en) 2018-09-27 2022-02-01 Ulvac, Inc. Magnet unit for magnetron sputtering apparatus
CN112739848A (en) * 2018-09-27 2021-04-30 株式会社爱发科 Magnet unit for magnetron sputtering device
JP7057430B2 (en) 2018-09-27 2022-04-19 株式会社アルバック Magnetron unit for magnetron sputtering equipment
JP7326036B2 (en) 2019-06-13 2023-08-15 株式会社アルバック Cathode unit for magnetron sputtering equipment
JP2020200525A (en) * 2019-06-13 2020-12-17 株式会社アルバック Cathode unit for magnetron sputtering apparatus
TWI819294B (en) * 2020-04-24 2023-10-21 大陸商北京北方華創微電子裝備有限公司 Semiconductor processing equipment and magnetron mechanism

Also Published As

Publication number Publication date
JP6471000B2 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
JP6471000B2 (en) Magnet unit for magnetron sputtering apparatus and sputtering method using this magnet unit
JP6007070B2 (en) Sputtering method and sputtering apparatus
KR102273512B1 (en) sputtering device
JP6701455B2 (en) Sputtering apparatus and film forming method
JP2019099882A (en) Pvd processing method and pvd processing device
JP6559233B2 (en) Magnetron sputtering equipment
JP6588351B2 (en) Deposition method
JP2011202190A (en) Sputtering apparatus and sputtering method
JP6425431B2 (en) Sputtering method
JP6456010B1 (en) Sputtering equipment
JP6641472B2 (en) Film forming method and sputtering apparatus
JP6088780B2 (en) Plasma processing method and plasma processing apparatus
JP6030813B1 (en) High frequency sputtering apparatus and sputtering method
JP5558020B2 (en) Deposition method
JP4437347B2 (en) Pretreatment etching apparatus and thin film forming apparatus
JP2014181376A (en) Sputtering apparatus and sputtering method
JP7286026B1 (en) Recycling method of inner wall member
JP6310678B2 (en) Sputtering method
JP2018104738A (en) Film deposition method
TWI692532B (en) Methods and apparatus for nodule control in a titanium-tungsten target
JP2016216764A (en) Cathode unit for magnetron sputtering apparatus and sputtering method using the cathode unit
CN116783324A (en) Cathode unit for magnetron sputtering device and magnetron sputtering device
JP2021021120A (en) Sputtering method and sputtering apparatus
JP2019019376A (en) Film deposition method, and sputtering apparatus
JPH04314858A (en) Magnetron sputteriong method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R150 Certificate of patent or registration of utility model

Ref document number: 6471000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250