JP2016156971A - Topological photonic crystal - Google Patents

Topological photonic crystal Download PDF

Info

Publication number
JP2016156971A
JP2016156971A JP2015034902A JP2015034902A JP2016156971A JP 2016156971 A JP2016156971 A JP 2016156971A JP 2015034902 A JP2015034902 A JP 2015034902A JP 2015034902 A JP2015034902 A JP 2015034902A JP 2016156971 A JP2016156971 A JP 2016156971A
Authority
JP
Japan
Prior art keywords
dielectric
topological
photonic crystal
lattice
regular hexagon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015034902A
Other languages
Japanese (ja)
Other versions
JP6536938B2 (en
Inventor
暁 古月
Gyo Furutsuki
暁 古月
龍華 呉
Long-Hua Wu
龍華 呉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2015034902A priority Critical patent/JP6536938B2/en
Publication of JP2016156971A publication Critical patent/JP2016156971A/en
Application granted granted Critical
Publication of JP6536938B2 publication Critical patent/JP6536938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a topological photonic crystal that uses a common material such as silicon, and can be produced without requiring a special process difficult to control.SOLUTION: In a state (a) in which dielectric cylinders disposed in a regular hexagonal shape are arranged in a honeycomb shape, a topological photonic insulation state is obtained by establishing a/R<3. Where, 2R is the length of the diagonal line of the regular hexagon, and a0 is a distance between the center of a regular hexagon and the center of its adjacent regular hexagon.SELECTED DRAWING: Figure 1

Description

本発明はトポロジカルフォトニック結晶に関し、特にシリコン等の通常の材料を使用して作製できるトポロジカルフォトニック結晶に関する。   The present invention relates to a topological photonic crystal, and more particularly to a topological photonic crystal that can be produced using a normal material such as silicon.

量子ホール効果(quantum Hall effect、QHE)の発見により、トポロジーを中心概念とした物性研究の新たな進展が見られた(非特許文献1〜11)。トポロジカル状態は学術的な観点で興味深いものであるというだけではなく、応用面にも重大な影響を及ぼすものと期待されている。それは、バルクトポロジーによって保護される強靭な表面(あるいエッジ)状態により、スピントロニクス及び量子計算に新たな可能性がもたらされるからである(非特許文献12〜17)。   With the discovery of the quantum Hall effect (QHE), new progress in physical property research centered on topology has been made (Non-Patent Documents 1 to 11). The topological state is not only interesting from an academic point of view, but is also expected to have a significant impact on applications. This is because the strong surface (or edge) state protected by the bulk topology provides new possibilities for spintronics and quantum computation (Non-Patent Documents 12 to 17).

しかしながら、現在までにトポロジカル状態が確認されている物質はごく少数であり、またそのほとんどのものは非常に低い温度のみでトポロジカルな性質を示す。この問題により、実際の応用に必須である材料の詳細な研究や操作が妨げられていた。   However, only a few substances have been confirmed to have a topological state so far, and most of them exhibit topological properties only at very low temperatures. This problem hindered detailed research and manipulation of materials essential for practical applications.

本発明の課題は、特殊な材料やプロセスを使用することなく作成できるトポロジカルフォトニック結晶を設計することにある。   An object of the present invention is to design a topological photonic crystal that can be formed without using a special material or process.

本発明の一側面によれば、平面上に互いに平行に立設された複数の誘電体円柱を有すると共に前記誘電体円柱の周囲が前記誘電体円柱を構成する誘電体とは異なる誘電率を有する誘電体で埋められた領域において、前記複数の誘電体円柱は同じ大きさの正六角形に配置された誘電体円柱の複数の組に分けられ、前記誘電体円柱の複数の組に対応する複数の前記正六角形の中心は三角格子の格子点に配置されるとともに、前記正六角形の頂点は隣接する二つの前記格子点間を結ぶ格子線上に配置され、前記正六角形の対角線の長さを2Rとし、前記正六角形とそれに隣接する前記正六角形との中心間の距離をaとするとき、a/R<3が成立するトポロジカルフォトニック結晶が与えられる。
ここで、前記領域は2枚の互いに平行な金属板で挟まれてよい。
また、前記金属板は金からなってよい。
また、前記誘電体円柱はシリコンからなってよい。
また、前記誘電体円柱の周囲を埋める誘電体は空気または真空であってよい。
According to one aspect of the present invention, the dielectric cylinder includes a plurality of dielectric cylinders standing parallel to each other on a plane, and the periphery of the dielectric cylinder has a dielectric constant different from that of the dielectric constituting the dielectric cylinder. In the region filled with the dielectric, the plurality of dielectric cylinders are divided into a plurality of sets of dielectric cylinders arranged in a regular hexagon of the same size, and a plurality of pairs corresponding to the plurality of sets of dielectric cylinders The center of the regular hexagon is disposed at a lattice point of a triangular lattice, the vertex of the regular hexagon is disposed on a lattice line connecting two adjacent lattice points, and the diagonal length of the regular hexagon is 2R. , when the distance between the centers of the regular hexagon and the regular hexagon adjacent thereto and a 0, a 0 / R <topological photonic crystal 3 is satisfied is provided.
Here, the region may be sandwiched between two parallel metal plates.
The metal plate may be made of gold.
The dielectric cylinder may be made of silicon.
The dielectric filling the periphery of the dielectric cylinder may be air or vacuum.

本発明によれば、シリコン等のありふれた材料を使用し、また特殊で制御が困難なプロセスを要することなく作成できるトポロジカルフォトニック結晶が与えられる。   According to the present invention, a topological photonic crystal can be provided that uses a common material such as silicon and can be formed without requiring a special and difficult-to-control process.

フォトニック結晶の設計を説明する図。(a)はそれぞれ6本のz方向に伸びる誘電体円柱によって構成される「人工原子」の三角フォトニック結晶の構成の概略を示す図。細い破線で描かれたひし形及び正六角形はそれぞれハニカム格子及び三角格子の単位セルを示す。やや太い黒色の実線で描かれた正六角形は人工原子を示し、またやや太い黒色の破線で描かれた六角形は人工原子の格子間領域を示す。(b)TM(transverse magnetic)モードの磁界H±iHの左手及び右手円偏光に関連付けられた本願フォトニック系の擬スピン状態を概念的に示す図。 (a)人工原子におけるp/p及び
フォトニック軌道の電界Eの分布を示す図。(b)正及び負の角運動量を持つ電界Eの分布

及び

を示す図。
フォトニックバンドを示す図であって、ε=11.7(シリコン)、ε=1(空気、もちろん真空でもよい)及びR=1.5dである2Dフォトニック結晶についてのTMモードの分散関係を示す。(a)a/R=3.16の場合(差し込み図は三角格子のBrillouinゾーンを表す)、(b)a/R=3の場合及び(c)a/R=2.78の場合をそれぞれ示す。図中で中間調濃度の曲線は図右端の縦棒に示すように濃度によりd±バンド及びp±バンドを区別して表し、特に(c)のa/R=2.78についての図中の中間調濃度のカーブは両者の混成を表すように、d±バンド及びp±バンドをそれぞれ表す濃度の間で連続的に遷移している。 フォトニックギャップ以下のΓ点におけるPoyntingベクトルの実空間分布を示す図。(a)自明な(trivial)状態であるa/R=3.16の場合。(b)トポロジカル状態であるa/R=2.78の場合。 ヘリカルトポロジカルエッジ状態を示す図。(a)一つの方向に無限の長さを持ち、もう一つの方向にはトポロジカル領域及び自明な領域についてそれぞれ45個及び6個の人工原子を有する、リボン形状フォトニック結晶の分散関係を示す。右側はトポロジカルエッジ状態を含むフォトニック結晶ギャップ近傍の拡大図で、太い曲線はトポロジカルエッジ状態である。A及びBは電界Eが示されている二つの点である。ここで使用されているパラメータは、トポロジカル領域についてa/R=2.9であり、自明な領域についてはa/R=3.125であること以外は図3と同じである。(b)点A及びBにおける電界Ezの分布を示す。右側は界面に隣接したトポロジカル領域側の単位セルでの時間平均Poyntingベクトル
(黒い矢印)である。
本発明の実施例のトポロジカルフォトニック結晶の構造を概念的に示す図。(a)高さが有限のフォトニック結晶であって、2枚の水平の金の板が多数の誘電体(シリコン)円柱の両端に対称に配置されている。(b)2枚の平行な金の板に挟まれたトポロジカルフォトニック結晶の正方形の試料中の電界Ezによるエネルギー密度分布
本発明の実施例において、a/R=3の場合のシリコン円柱の配置を概念的に示す図。 本発明の実施例において、a/R>3の場合のシリコン円柱の配置を概念的に示す図。 本発明の実施例において、a/R<3の場合のシリコン円柱の配置を概念的に示す図。
The figure explaining the design of a photonic crystal. (A) is a figure which shows the outline of a structure of the triangular photonic crystal of the "artificial atom" comprised by the dielectric cylinder which each extends in six z directions. Diamonds and regular hexagons drawn with thin broken lines indicate unit cells of a honeycomb lattice and a triangular lattice, respectively. A regular hexagon drawn with a slightly thick black solid line indicates an artificial atom, and a hexagon drawn with a slightly thick black broken line indicates an interstitial region of the artificial atom. (B) TM (transverse magnetic) mode of the magnetic field H x ± iH diagram conceptually illustrating a pseudo spin state of the left hand and the present photonic system associated with the right-hand circularly polarized light of y. (A) p in an artificial atom x / p y and
It shows the distribution of the electric field E z photonic trajectory. (B) Distribution of the electric field E z having positive and negative angular momentum

as well as

FIG.
FIG. 4 shows a photonic band, TM mode dispersion for a 2D photonic crystal with ε d = 11.7 (silicon), ε A = 1 (air, of course vacuum), and R = 1.5d. Show the relationship. (A) a 0 /R=3.16 (inset represents Brillouin zone of triangular lattice), (b) a 0 / R = 3 and (c) a 0 /R=2.78 Each case is shown. In the figure, as shown in the vertical bar at the right end of the figure, the halftone density curve is shown by distinguishing the d ± band and the p ± band by density, and in particular, in the figure for (c) a 0 /R=2.78. The halftone density curve continuously transitions between the densities representing the d ± band and the p ± band, respectively, so as to represent the hybrid of both. The figure which shows the real space distribution of the Poynting vector in (GAMMA) point below a photonic gap. (A) When a 0 /R=3.16, which is a trivial state. (B) In the case of a 0 /R=2.78 which is a topological state. The figure which shows a helical topological edge state. (A) The dispersion relation of a ribbon-shaped photonic crystal having an infinite length in one direction and 45 and 6 artificial atoms in the topological region and the obvious region in the other direction, respectively. The right side is an enlarged view near the photonic crystal gap including the topological edge state, and the thick curve is the topological edge state. A and B are two points where the electric field E z is shown. Parameters used herein, the topological region is a 0 /R=2.9, for obvious areas except a a 0 /R=3.125 is the same as FIG. (B) The distribution of the electric field Ez at points A and B is shown. On the right side, the time-average Poynting vector in the unit cell on the topological region side adjacent to the interface
(Black arrow).
The figure which shows notionally the structure of the topological photonic crystal of the Example of this invention. (A) A photonic crystal having a finite height, and two horizontal gold plates are arranged symmetrically at both ends of a large number of dielectric (silicon) cylinders. (B) Energy density distribution due to electric field Ez in a square sample of topological photonic crystal sandwiched between two parallel gold plates
In an embodiment of the present invention, a 0 / R = 3 conceptually shows an arrangement of silicon cylinder in the case of. In an embodiment of the present invention, a 0 / R> 3 conceptually shows an arrangement of silicon cylinder in the case of. In an embodiment of the present invention, a 0 / R <diagram conceptually showing the arrangement of a silicon cylinder in the case of 3.

フォトニック結晶は固体の中で並んでいる原子が周期的な誘電率及び/または透磁率を有する媒体で置き換えられている光学的材料である(非特許文献18)。負の屈折率、磁気レンズ等の自然界では得られない電磁的性質を実現する等、メタマテリアル(meta-material)と呼ばれている(非特許文献19)。最近、電磁波のユニークなエッジ伝播モードで特徴付けられるトポロジカルフォトニック状態が、外部磁界下にある磁気回転材料(gyromagnetic material)、電界と磁界とが結合する双異方性(bi-anisotropic)メタマテリアル、また結合共振器光学導波管(coupled resonator optical waveguide、CROW)で実現できるということがわかってきた(非特許文献20〜32)。   A photonic crystal is an optical material in which atoms arranged in a solid are replaced by a medium having a periodic dielectric constant and / or magnetic permeability (Non-patent Document 18). It is called a meta-material, such as a negative refractive index and an electromagnetic property that cannot be obtained in nature such as a magnetic lens (Non-patent Document 19). Recently, the topological photonic state characterized by the unique edge propagation mode of electromagnetic waves is a gyromagnetic material under an external magnetic field, and a bi-anisotropic metamaterial that combines an electric field and a magnetic field. It has also been found that this can be realized by a coupled resonator optical waveguide (CROW) (Non-Patent Documents 20 to 32).

本発明の一態様によれば、シリコン等の通常の誘電体だけでできた二次元(2D)フォトニック結晶が与えられる。なお、以下では代表例としてこのような誘電体としてもっぱらシリコンを使用した構成を説明するが、当然一般性を失うものではないことを注意しておく。   According to one aspect of the present invention, a two-dimensional (2D) photonic crystal made only of a normal dielectric such as silicon is provided. In the following, a configuration using silicon exclusively as such a dielectric will be described as a representative example, but it should be noted that the generality is not lost.

ハニカム格子は6つの近隣サイトで構成される正六角形のクラスタの三角格子と同等であり、また、二つのサイトで構成されるひし型の単位セルの代わりに当該大きな正六角形の単位セルで考えることにより、ハニカム格子の第1のブリルアンゾーン(Brillouin zone)中のK及びK’点におけるDiracコーン(Dirac cone)が折りたたまれてΓ点でDiracコーンに二重に縮退する。ここで、C対称群のΓ点における空間的な反転操作における奇及び偶パリティに対応する二つの2D既約表現が存在することを検討するのは興味深いことである。これらの性質に基づいて、本発明者は図1(a)に示すように、正六角形クラスタの形状及びサイズ、さらにこれらが満たすC対称性を保つようにハニカム格子を変形することにより、トポロジカル非自明状態(topological nontrivial state)を実現した。厳密に言えば、Maxwell方程式を解くことにより、本発明者は、本発明の構成において「人工原子(artificial atom)」として動作する六角形クラスタでの電磁モードは、固体中の電子軌道と同様にs−波形、d−波形及びp−波形を呈してフォトニックバンドを形成することを見出した。また、Maxwell方程式が一般的に持つ時間反転対称性(time reversal(TR)symmetry)及び設計によるC結晶対称性を組み合わせることによって生まれる擬TR対称性を明らかにした。この擬TR対称性は電子系でのTR対称性と同じ挙動を示し、本発明のフォトニック系でKramers二重化(Kramers doubling)を引き起こす。このことは、三次元系について提案されたトポロジカル結晶絶縁体の場合と類似している(非特許文献33)。このことはTMモードにおける右手/左手回転偏光と電子の上向き/下向きスピンとの間の一対一対応に密接に関連する。フォトニックバンドのBerry曲率(Berry curvature)及び有限系のエッジ状態を評価することを通じて、「人工原子」の三角形格子の格子定数がシリコン円柱の元のハニカム格子に対応する値から縮小したときにトポロジカル状態が出現することを示すことに成功した。いかなる外部強磁場もまた回転磁界あるいは双異方性の材料も必要としない、シリコンだけで作製できる本発明のトポロジカル状態は、将来の応用に非常に有望である。 A honeycomb lattice is equivalent to a triangular lattice of regular hexagonal clusters composed of six neighboring sites, and the large regular hexagonal unit cells should be considered instead of the diamond-shaped unit cells composed of two sites. As a result, the Dirac cone at the K and K ′ points in the first Brillouin zone of the honeycomb lattice is folded and double degenerates to the Dirac cone at the Γ point. Here, it is interesting to consider that the two 2D irreducible representation corresponding to the odd and even parity in spatial inversion operation in Γ point of the C 6 symmetry group is present. Based on these properties, the inventor modified the honeycomb lattice so as to maintain the shape and size of regular hexagonal clusters and the C 6 symmetry that they satisfy, as shown in FIG. Realized a topological nontrivial state. Strictly speaking, by solving the Maxwell equation, the inventor found that the electromagnetic modes in hexagonal clusters operating as “artificial atoms” in the configuration of the present invention are similar to the electron orbits in solids. It has been found that a photonic band is formed with an s-waveform, a d-waveform and a p-waveform. Also revealed pseudo TR symmetry born by the Maxwell equations combine C 6 crystal symmetry by generally having time-reversal symmetry (time reversal (TR) symmetry) and design. This pseudo-TR symmetry exhibits the same behavior as TR symmetry in an electronic system, and causes Kramers doubling in the photonic system of the present invention. This is similar to the case of the topological crystal insulator proposed for the three-dimensional system (Non-patent Document 33). This is closely related to the one-to-one correspondence between right-handed / left-handed rotational polarization and electron up / down spin in TM mode. Through evaluating the Berry curvature of the photonic band and the edge state of the finite system, the lattice constant of the “artificial atom” triangular lattice is reduced topologically from the value corresponding to the original honeycomb lattice of the silicon cylinder. Succeeded to show that the condition appears. The topological state of the present invention, which can be made of silicon alone, which does not require any external strong magnetic field nor rotating magnetic field or bi-anisotropic material, is very promising for future applications.

<人工原子及び擬スピン>
誘電材料中の電磁波のTMモード(つまり、有限の平面内H、H及び面外E成分;他はゼロ)について検討する。簡単化のため、考慮している周波数領域における誘電率は周波数に依存しない実数とみなす。この場合、周波数ωの電磁波モードについてのマスター方程式は、Maxwell方程式より以下のように与えられる(非特許文献34):
<Artificial atoms and pseudospin>
Consider the TM mode of electromagnetic waves in a dielectric material (ie, finite in-plane H x , H y and out-of-plane E x components; others are zero). For simplicity, the dielectric constant in the frequency range considered is considered a real number independent of frequency. In this case, the master equation for the electromagnetic wave mode at the frequency ω is given as follows from the Maxwell equation (Non-patent Document 34):

ここで、ε(r)は位置依存の誘電率であり、cは光の速度である。磁界の横方向成分はFaraday関係 Here, ε (r) is a position-dependent dielectric constant, and c is the speed of light. The transverse component of the magnetic field is Faraday related

により与えられる。ここで透磁率μは真空の透磁率を仮定している。上記マスター方程式(1)は一般化されたSchroedinger方程式と考えることができ、従って電子系上におけるBloch理論は、ε(r)が図1(a)に図式的に示すように空間中で周期的である場合には、本発明の系に適用される。しかしながら、マスター方程式(1)は、スピン自由度を持つ電子ではなく、電磁波を記述していることに注意する必要がある。その最も際立った相違点は、時間反転操作に対する応答にある。 Given by. Here, the permeability μ 0 assumes a vacuum permeability. The master equation (1) can be considered as a generalized Schroedinger equation, and therefore Bloch theory on the electronic system is periodic in space as ε (r) is schematically shown in FIG. Is applied to the system of the present invention. However, it should be noted that the master equation (1) describes an electromagnetic wave, not an electron having a spin degree of freedom. The most significant difference is in the response to the time reversal operation.

本発明に係る2Dフォトニック結晶では、図1(a)に示すように、z軸に平行な方向の比誘電率εを有する誘電体(例えばシリコン)がそれとは異なる誘電率εを有する誘電材料(例えば空気)中に埋め込まれている。以下の議論はz軸に沿って一様である状態についてのものであって、この想定により問題は2Dに還元される。 In the 2D photonic crystal according to the present invention, as shown in FIG. 1A, a dielectric (for example, silicon) having a relative dielectric constant ε d in a direction parallel to the z-axis has a different dielectric constant ε A. Embedded in a dielectric material (eg air). The following discussion is for a state that is uniform along the z-axis, and this assumption reduces the problem to 2D.

ハニカム格子状に配列された複数の誘電体円柱から出発し、6本の隣接する円柱からなる正六角形クラスタ及びC対称性が維持されるようにこの配列を変形する。このような変形が行なわれると、誘電体円柱の整列の態様は、正六角形の「人工原子」の三角形状格子と考える方がより好都合である。当該三角形状格子に付随するC対称群について、2つの2D既約表現E’及びE”が存在する。E’及びE”は単純関数x/y及びxy/(x−y)のような奇及び偶空間パリティに対応する(非特許文献35)。マスター方程式(1)を解くことによって得られる図2(a)の電界Eからわかるように、人工原子は固体中の通常の原子の電子軌道の対称性と同じ対称性をもつp/p及び Starting from a plurality of dielectric cylinders arranged in a honeycomb grid, this arrangement is modified so that regular hexagonal clusters of 6 adjacent cylinders and C 6 symmetry are maintained. When such a deformation is performed, it is more convenient to consider the arrangement of the dielectric cylinders as a regular hexagonal “artificial atom” triangular lattice. There are two 2D irreducible representations E ′ and E ″ for the C 6 symmetry group associated with the triangular lattice. E ′ and E ″ are the simple functions x / y and xy / (x 2 −y 2 ). It corresponds to such odd and even space parity (Non-patent Document 35). As can be seen from the electric field E z in Fig obtained by solving the master equation (1) 2 (a), p x / p artificial atoms with the same symmetry as the symmetry of the electron orbit normal atoms in solids y and

軌道を有している。 Has an orbit.

ここで2組の固有波動関数を以下のように定義する。   Here, two sets of eigenwave functions are defined as follows.

これらの波動関数の「角運動量」jは±1及び±2である。以下の反ユニタリ演算子によって定義される擬TR操作を構成する。 The “angular momentum” j z of these wave functions is ± 1 and ± 2. The pseudo-TR operation defined by the following anti-unitary operator is constructed.

ここで、Kは複素共役演算子であって、マスター方程式(1)によって支配されるTMモード上のTR操作に対応する。また、σは2×2 Pauli行列である。 Here, K is a complex conjugate operator and corresponds to the TR operation on the TM mode governed by the master equation (1). Σ z is a 2 × 2 Pauli matrix.

及び as well as

であることを示すことができ、これにより式(2)に示される2セットの固有波動関数の下で So that under the two sets of eigenwave functions shown in equation (2)

がもたらされる。ここで強調しておくことは、一般的にはMaxwell方程式が持つTR対称性は、典型的にはボソン(boson)的なもので、K=1によって特徴付けられるが、本系には、典型的にはフェルミオン(fermion)的で、式(3)によって定義され式(4)を満たすTR演算子Tに特徴づけられる、隠された創成TR対称性が存在する。擬TR演算子Tにより、本Maxwell系におけるKramers二重化が電子系のKramers二重化(非特許文献35)に良く似ていることが保証される。式(2)中の固有波動関数から、2つの擬スピン状態は電界Eフィールドの正及び負の角運動量によって、あるいは等価なこととして、図1(b)及び図2(b)に示されるようにH±iHによって定義される面内磁界の左手及び右手回転偏光によって与えられることが明らかである。 Is brought about. It should be emphasized that the TR symmetry of the Maxwell equation is typically boson-like and is characterized by K 2 = 1. There is a hidden creation TR symmetry that is typically fermion-like and characterized by the TR operator T defined by equation (3) and satisfying equation (4). The pseudo-TR operator T ensures that Kramers duplication in this Maxwell system is very similar to Kramers duplication in electronic systems (Non-patent Document 35). From the eigenwave function in equation (2), the two quasi-spin states are shown in FIG. 1 (b) and FIG. 2 (b) by positive and negative angular momentum of the electric field Ez field, or equivalently. It is evident that the in-plane magnetic field defined by H x ± iH y is given by left-handed and right-handed rotational polarization.

フォトニック系では、今まで議論された擬スピンは電界及び磁界の結合/反結合状態(bonding/antibonding states)(非特許文献24、25)、電磁波の左手/右手回転偏光(非特許文献28)及びCROW中での光の時計回り/反時計回り循環(非特許文献29、30)を含む。有効スピン軌道結合(spin-orbit coupling、SOC)は、分割リング共振器(split-ring resonator)及びΩ粒子に基づくメタマテリアルにより、圧電・圧磁材料超格子により、またCROW中の結合ループの非対称位置により、それぞれ拠出される。これらのうちの最初の二つの実装は込み入ったメタマテリアル構造を伴うので、微妙な製造工程が必要とされる。最後の一つはシリコン等の誘電体ファイバーだけを使用するので作成しやすいが、結合ループのうちの一つでも壊れれば、それが磁気的不純物(magnetic impurity)として働き、量子スピンホール効果(QSHE)のヘリカルエッジ状態を破壊する。   In the photonic system, the pseudo-spins that have been discussed so far are the electric field and magnetic field bonding / antibonding states (Non-Patent Documents 24 and 25), and the left / right-handed polarization of electromagnetic waves (Non-Patent Document 28). And clockwise / counterclockwise circulation of light in CROW (Non-Patent Documents 29 and 30). Effective spin-orbit coupling (SOC) is achieved by split-ring resonators and metamaterials based on Ω particles, by piezoelectric / piezomagnetic superlattices, and asymmetry of coupling loops in CROW. Each position contributes. The first two of these implementations involve a complicated metamaterial structure, so a delicate manufacturing process is required. The last one uses only dielectric fiber such as silicon, so it is easy to make, but if one of the coupling loops breaks, it works as a magnetic impurity and the quantum spin Hall effect ( QSHE) Helical edge state is destroyed.

<トポロジカルフォトニック結晶>
本発明者は、図1(a)により与えられる単位ベクトル
<Topological photonic crystal>
The inventor has determined that the unit vector given by FIG.

及び as well as

に沿った周期境界条件の下でマスター方程式(1)によって記述されるフォトニックバンド分散を計算した。図3に示すように、バンド分散における二重縮退(double degeneracy)がΓ点に現れ、これらはp±及びd±状態であることが確認され、対称性からの考察と一致している。格子定数が大きい場合は、ギャップより下(または上)のフォトニックバンドはp±(またはd±)状態によって占有される(例えば、a/R=3.16の場合を示す図3(a)を参照)。定量的に言えば、a=1μmとした場合、Ω=138.6THzにおけるギャップΔω=7.7THzとなる。ここでこれらの周波数は格子定数aに逆比例する。 The photonic band dispersion described by the master equation (1) under the periodic boundary condition along is calculated. As shown in FIG. 3, double degeneracy in band dispersion appears at the Γ point, which is confirmed to be p ± and d ± states, which is consistent with the consideration from symmetry. When the lattice constant is large, the photonic band below (or above) the gap is occupied by the p ± (or d ± ) state (eg, FIG. 3 (a) showing the case of a 0 /R=3.16. )). Quantitatively speaking, when a 0 = 1 μm, the gap Δω = 7.7 THz at Ω = 138.6 THz is obtained. Wherein these frequencies is inversely proportional to the lattice constant a 0.

格子定数a/Rを3まで小さくすると、p及びd状態はΓ点において縮退し、図3(b)に示すように、二つのDiracコーンが現れる。これは、格子定数がこのようになったとき、系は個別の円柱がハニカム格子に配列されたものと等価になり、二重に縮退したDiracコーンは、二つのサイトのひし形単位セルに基づくハニカム格子のBrillouinゾーン中のK及びK’点におけるDiracコーンに他ならない。フォトニック系におけるDirac分散はこれまでに正方格子及び三角格子の両者について議論された(非特許文献36、37)。これらの過去の系とは異なり、ここで人工原子の構造に組み込まれた構造によって保障されている擬TR対称性に付随する二つのDiracコーンが存在し、これによって、本系において非自明なトポロジーが可能となる。 When the lattice constant a 0 / R is decreased to 3, the p and d states degenerate at the Γ point, and two Dirac cones appear as shown in FIG. This is because when the lattice constant becomes like this, the system is equivalent to the individual cylinders arranged in a honeycomb lattice, the doubly degenerated Dirac cone is a honeycomb based on rhomboid unit cells at two sites. It is none other than the Dirac cone at the K and K 'points in the Brillouin zone of the grid. Dirac dispersion in photonic systems has been discussed for both square and triangular lattices (Non-Patent Documents 36 and 37). Unlike these past systems, there are two Dirac cones associated with the pseudo-TR symmetry guaranteed here by the structure incorporated in the structure of the artificial atom, which leads to a non-trivial topology in this system. Is possible.

格子定数a/Rを更に小さくすると、a/R=2.78の場合について図3(c)に示すように、Brillouinゾーン全体に渡ってバンドギャップ(global band gap)が再び開かれる。Γ点の周りで、バンドギャップの低(高)周波数側における電界Eがd±(p±)特性を示し、Γ点から遠ざかると順序が逆になる。すなわち、本願のフォトニック格子では、格子定数aを小さくするとバンド逆転が起こる。 If the lattice constant a 0 / R is further reduced, the band gap (global band gap) is reopened over the entire Brillouin zone as shown in FIG. 3C for the case of a 0 /R=2.78. Around the Γ point, the electric field E z on the low (high) frequency side of the band gap exhibits the d ± (p ± ) characteristics, and the order is reversed as the distance from the Γ point is increased. That is, in the present application of the photonic lattice, band reverse happens when reducing the lattice constant a 0.

バンド逆転前後の系を特徴づけるために、本願の電磁系におけるエネルギーフローを周期τ=2π/ω上で平均したPoyntingベクトル   To characterize the system before and after band reversal, the Poynting vector that averages the energy flow in the electromagnetic system of this application over the period τ = 2π / ω

の実空間分布を確認した。a/R=3.16についての図4(a)(擬スピンアップをもつPoyntingベクトルは明記しない)に示すように、Poyntingベクトルは個別の原子の周りを循環する。この場合、電磁エネルギーは個々の原子の周りに流れるので、これは通常の「絶縁」状態の特徴を示すものである。a/R=2.78の場合、つまりバンド逆転の後では、図4(b)に示すように、Poyntingベクトルは人工原子の間の領域で大いに増強される。これは図4(a)の場合との際立った違いであり、従来のものではない絶縁状態であることを意味している。 The real space distribution of was confirmed. As shown in FIG. 4 (a) for a 0 /R=3.16 (the Poynting vector with pseudo spin-up is not specified), the Poynting vector circulates around individual atoms. In this case, electromagnetic energy flows around individual atoms, which is characteristic of the normal “insulated” state. In the case of a 0 /R=2.78, that is, after band inversion, the Poynting vector is greatly enhanced in the region between artificial atoms, as shown in FIG. 4 (b). This is a conspicuous difference from the case of FIG. 4A, which means that the insulation state is not a conventional one.

この状況を更に明らかにするため、上述のトポロジカルフォトニック結晶をリボン状にしたものを考える。ここで、リボンの外側は同じ周波数領域で自明なバンドギャップを有するフォトニック結晶を置く。これにより、トポロジカルエッジ状態が自由空間へ漏出することが防止される。ここで注意すべきこととして、6本の円柱のクラスタが本願設計の基本ブロックとされるので、意味のある議論においてはこれを壊してはならない。図5(a)に示すように、バルク分散のギャップ内に太い曲線で示され、二重縮退を有するエッジ状態が現れる。Γ点近傍の典型的な波数における電界Eの実空間分布を調べると(図5(a)中の拡大表示(右側)中の、k=±0.04×(2π)/aであるA及びB)、図5(b)に示すように、ギャップ内状態はエッジに位置し、バルクに向かって指数関数的に減衰することがわかる(他の二つの状態はリボンの反対側のエッジに位置するが、ここでは明示的には示されていない)。図5(b)の右側にある差し込み図から分かるように、Poyntingベクトルは、人工原子について平均化した場合でも擬スピンダウン/スピンアップ状態について有限の下向き/上向き電磁エネルギーフローを示す。このことはエッジにおいて二つの擬スピン状態に付随した逆方向での電磁エネルギーフローを曖昧さなく示し、これはQSHE状態の特徴である。リボン系について図5(a)に示すバルクバンド中のPoyntingベクトルの分布は図4に示す無限の系についての分布とそれほど大きくは異なっていない。準古典描像では、QHEは強い外部磁界の下における電子のバルクでの円運動及びエッジでのスキップ運動によって記述されたことがある(非特許文献38)。ここで、Poyntingベクトルは電磁系における物理量であり、従ってフォトニックQSHE状態について図4、5及び6に示される分布は実験で観測できることを強調しておく。本願の系におけるQSHEはまたΓ点近傍で成り立つk・pモデルに基づくZトポロジー指数の計算によっても確認できる。 In order to further clarify this situation, let us consider a ribbon-like topological photonic crystal. Here, a photonic crystal having an obvious band gap in the same frequency region is placed outside the ribbon. This prevents the topological edge state from leaking into the free space. It should be noted here that a cluster of 6 cylinders is the basic block of the present design and should not be broken in a meaningful discussion. As shown in FIG. 5A, an edge state having a double degeneracy appears as a thick curve in the bulk dispersion gap. Examining the real space distribution of the electric field E z at a typical wave number near the Γ point (k x = ± 0.04 × (2π) / a 0 in the enlarged display (right side) in FIG. 5A. As shown in FIG. 5 (b), the in-gap state is located at the edge and decays exponentially towards the bulk (the other two states are on the opposite side of the ribbon). Located on the edge, but not explicitly shown here). As can be seen from the inset on the right side of FIG. 5 (b), the Poynting vector shows a finite downward / upward electromagnetic energy flow for the pseudo spin down / spin up state even when averaged for artificial atoms. This unambiguously shows the electromagnetic energy flow in the opposite direction associated with the two pseudo-spin states at the edge, which is characteristic of the QSHE state. The distribution of Poynting vectors in the bulk band shown in FIG. 5A for the ribbon system is not so different from the distribution for the infinite system shown in FIG. In the quasi-classical picture, QHE has been described by a circular motion in the bulk of electrons and a skip motion at the edge under a strong external magnetic field (Non-Patent Document 38). Here, it is emphasized that the Poynting vector is a physical quantity in the electromagnetic system, and therefore the distribution shown in FIGS. 4, 5 and 6 can be observed experimentally for the photonic QSHE state. QSHE in the present system can be confirmed by also calculating the Z 2 topological index based on the k · p model established in the vicinity of point gamma.

本願のトポロジー状態の実験的な実装については、z軸方向に沿ったシリコン円柱の有限の高さを考慮に入れた。距離H=10mmだけ離間した2枚の平行な金の板に挟まれた、正方形状である試料を検討した(図6(a))。トポロジカルな試料のサイズを   For the experimental implementation of the topology state of the present application, the finite height of the silicon cylinder along the z-axis direction was taken into account. A square sample sandwiched between two parallel gold plates separated by a distance H = 10 mm was examined (FIG. 6A). Topological sample size

とし、四辺の縁は皆自明なフォトニック結晶で囲む。トポロジカルな領域及び自明な領域についてRをそれぞれ3.65mm及び3mmとした。なお、ここで両領域のRの値が異なっているのは、設計の際の計算の都合上、格子定数aの値を両領域で一致させたことによって両領域のRが異なることになったためである。また、両領域についてd=2.4mm及びa=10mmとした。この構造により、トポロジカル周波数は13.47±1.2GHzとなった。周波数ω=13.47GHzの直線偏光を持つ線状電磁波源をシリコン円柱と平行においた。直線偏光を持つ電磁波源は二つの円偏光(二つの擬スピン)に分解することができるので、図6(b)に示すように、系はヘリカルトポロジカルエッジ状態を示す。 And all the edges of the four sides are surrounded by obvious photonic crystals. R was set to 3.65 mm and 3 mm for the topological region and the obvious region, respectively. Note that the R values in the two regions are different from each other because the values of the lattice constant a 0 are matched in both regions for the convenience of calculation at the time of design. This is because. In addition, d = 2.4 mm and a 0 = 10 mm for both regions. With this structure, the topological frequency was 13.47 ± 1.2 GHz. A linear electromagnetic wave source having linearly polarized light with a frequency ω = 13.47 GHz was placed in parallel with the silicon cylinder. Since an electromagnetic wave source having linearly polarized light can be decomposed into two circularly polarized lights (two pseudo spins), the system shows a helical topological edge state as shown in FIG.

以下では、図7A〜図7Cを参照して、本実施例におけるトポロジカルフォトニック結晶の自明な領域及びトポロジカル領域を実現するシリコン円柱の配置をより具体的に説明する。これらの図は何れも平面上に立設された多数のシリコン円柱を上から(図1の表記に従えばz方向から)見たものであり、黒色の円がそれぞれのシリコン円柱を現している。また、シリコン円柱の周囲の誘電体は空気である。   Below, with reference to FIG. 7A-FIG. 7C, the arrangement | positioning of the silicon | silicone cylinder which implement | achieves the trivial area | region of a topological photonic crystal and a topological area | region in a present Example is demonstrated more concretely. Each of these figures is a view of a large number of silicon cylinders erected on a plane from above (from the z direction according to the notation of FIG. 1), and a black circle represents each silicon cylinder. . The dielectric around the silicon cylinder is air.

図7Aはシリコン円柱がハニカム格子状に配置されており、これらの円柱は互いに等間隔になっている。つまり、6本のシリコン円柱の組の各シリコン円柱を頂点とする淡色の正六角形の対角線を対角線の長さ(この長さが2Rであることに注意されたい)の半分、つまり正六角形の中心からその頂点までの距離Rだけ延長すると、隣接する6本のシリコン円柱の組に属する最も近いシリコン円柱の中心位置に到達する。この対角線を更にRだけ延長すると当該隣接する6本のシリコン円柱の組の中心に到達する。このような隣接するシリコン円柱の組の中心間の距離はaであるから、この配置が上で説明したa/R=3に相当する。 In FIG. 7A, silicon cylinders are arranged in a honeycomb lattice shape, and these cylinders are equally spaced from each other. That is, the diagonal line of a light-colored regular hexagon with each silicon cylinder in the set of 6 silicon cylinders as a vertex is half of the diagonal length (note that this length is 2R), that is, the center of the regular hexagon. When the distance R is extended by a distance R from the top, the center position of the nearest silicon cylinder belonging to the set of six adjacent silicon cylinders is reached. When this diagonal line is further extended by R, it reaches the center of the set of six adjacent silicon cylinders. Since the distance between the centers of such a pair of adjacent silicon cylinders is a 0 , this arrangement corresponds to a 0 / R = 3 described above.

図7Bは図7Aの配置を変形し、6本のシリコン円柱が構成する組のそれぞれにおいて、上述の正六角形の形状及びサイズを維持したままで(つまりRを一定にして)、各組の間の距離aを大きくすることによって拡大したものである。この場合には明らかにa/R>3となる。従って、この配置では自明な状態となる。 FIG. 7B is a modification of the arrangement of FIG. 7A, and maintains the regular hexagonal shape and size described above in each of the groups of six silicon cylinders (ie, R is constant). it is an enlargement by increasing the distance a 0 in. In this case, obviously, a 0 / R> 3. Therefore, this arrangement is self-evident.

この距離の拡大を、上記正六角形の中心を格子点とすることで構成される三角格子(正三角格子)を使って説明すれば、以下のようになる。図7Aの配置において、これらの正六角形の中心はそれぞれ上記三角格子の格子点上に位置するとともに、正六角形の各頂点は隣接する格子点を結ぶ格子線上に位置する。この三角格子をこの三角格子の面内で比例拡大(等方向的に拡大)すると、格子点は相互の距離が一様に拡大するように移動する(この移動に当たって正六角形の形状・サイズ・向きは不変)ので、隣接する格子点相互の間隔aは当初の3Rから大きくなる。また上記正六角形は当初載っていた格子点の移動に伴ってそれと一緒に移動する。これにより、a/R>3となる。なお、この移動の際に正六角形の向きが変化しない、つまり平行移動が行なわれる。これにより、正六角形の頂点は隣接した格子点を結ぶ格子線上に位置した状態を維持する。 The expansion of this distance can be explained as follows using a triangular lattice (regular triangular lattice) configured by using the center of the regular hexagon as a lattice point. In the arrangement of FIG. 7A, the centers of these regular hexagons are located on the lattice points of the triangular lattice, and the vertices of the regular hexagon are located on lattice lines connecting adjacent lattice points. When this triangular lattice is proportionally expanded (isometrically expanded) in the plane of this triangular lattice, the lattice points move so that the mutual distances are uniformly expanded (in this movement, the shape, size, and orientation of the regular hexagon) Therefore, the interval a 0 between adjacent lattice points becomes larger from the initial 3R. In addition, the regular hexagon moves together with the movement of the lattice point originally placed. As a result, a 0 / R> 3. In this movement, the direction of the regular hexagon does not change, that is, a parallel movement is performed. Thereby, the vertex of a regular hexagon maintains the state located on the lattice line which connects the adjacent lattice point.

図7Cは図7Aの配置を図7Bとは逆方向に変形したものである。つまり、6本のシリコン円柱が構成する正六角形の形状及びサイズを維持したままで各組の間の距離aを小さくすることによって縮小したものである。この場合には明らかにa/R<3となる。従って、この配置ではトポロジカル状態が現れる。 FIG. 7C is obtained by modifying the arrangement of FIG. 7A in the direction opposite to that of FIG. 7B. That is, it is reduced by reducing the distance a 0 between each set while maintaining the shape and size of the regular hexagon formed by the six silicon cylinders. In this case, it is clearly a 0 / R <3. Therefore, a topological state appears in this arrangement.

図7Bの場合と同じようにこれらの六角形の中心を格子点とする三角格子に基づいて当該縮小を表現すれば、図7Bとは逆にこの三角格子をこの三角格子の面内で比例縮小(等方向的に縮小)すると、格子点は相互の距離が一様に縮小するように移動する(この移動に当たって正六角形の形状・サイズ・向きは不変)ので、隣接する格子点相互の間隔aは当初の3Rから小さくなる。また上記正六角形は当初載っていた格子点の移動に伴ってそれと一緒に平行移動する。これにより、a/R<3となる。 As in the case of FIG. 7B, if the reduction is expressed based on the triangular lattice having the hexagonal centers as lattice points, the triangular lattice is proportionally reduced in the plane of the triangular lattice, contrary to FIG. 7B. When (isometrically reduced), the lattice points move so that the mutual distance is uniformly reduced (the shape, size, and orientation of the regular hexagon do not change during this movement), so the distance a between adjacent lattice points a 0 is smaller than the original 3R. In addition, the regular hexagon moves in parallel with the movement of the lattice point originally placed. As a result, a 0 / R <3.

ここで、シリコン円柱(一般には誘電体円柱)のハニカム格子状配置から6本組み円柱で構成される正六角形間距離の縮小を行う場合、a/R=2に到達すると隣接する正六角形が互いに接触するので、実際には2<a/R<3とする必要がある。なお、Rは誘電体円柱の中心位置からの距離であるため、円柱の太さが無視できない大きさである場合には、当然のことであるがこの比の値が実際に取り得る範囲が更に狭くなることに注意されたい。 Here, when the distance between regular hexagons composed of six cylinders is reduced from the honeycomb lattice arrangement of silicon cylinders (generally, dielectric cylinders), when a 0 / R = 2 is reached, the adjacent regular hexagons are Since they are in contact with each other, it is actually necessary to satisfy 2 <a 0 / R <3. Since R is the distance from the center position of the dielectric cylinder, it is natural that the range of this ratio can be further increased if the thickness of the cylinder is not negligible. Note that it becomes narrower.

以上詳細に説明したように、本発明によれば通常の半導体デバイスに使用される材料など、ありふれた材料を使用し、また特殊で適切な制御が困難な処理を必要とせずにトポロジカルフォトニック結晶を実現できる。また、このようにして実現されたトポロジカルフォトニック結晶は室温でも動作可能であるため、実用に供するにあたって制限が少ない。   As described above in detail, according to the present invention, a topological photonic crystal is used without using a common material such as a material used for a normal semiconductor device, and without requiring a special and difficult control process. Can be realized. Further, since the topological photonic crystal realized in this way can operate at room temperature, there are few restrictions on practical use.

Klitzing, K. v., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494-497 (1980).Klitzing, K. v., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance.Phys. Rev. Lett. 45, 494-497 (1980). Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045-3067 (2010).Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045-3067 (2010). Qi, X.-L. & Zhang S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057-1110 (2011).Qi, X.-L. & Zhang S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057-1110 (2011). Thouless, D. J., Kohmoto, M., Nightingale, M. P. & Nijs, M. d. Quantized Hall Conductance in a Two-Dimensional Periodic Potential. Phys. Rev. Lett. 49, 405-408 (1982).Thouless, D. J., Kohmoto, M., Nightingale, M. P. & Nijs, M. d.Quantized Hall Conductance in a Two-Dimensional Periodic Potential.Phys. Rev. Lett. 49, 405-408 (1982). Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959-2007 (2010).Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959-2007 (2010). Haldane, F. D. M. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the “Parity Anomaly”. Phys. Rev. Lett. 61, 2015 (1988).Haldane, F.D.M.Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the “Parity Anomaly”. Phys. Rev. Lett. 61, 2015 (1988). Kane, C. L. & Mele E. J. Quantum Spin Hall Effect in Graphene. Phys. Rev. Lett. 95, 226801 (2005).Kane, C. L. & Mele E. J. Quantum Spin Hall Effect in Graphene. Phys. Rev. Lett. 95, 226801 (2005). Bernevig, B. A., Hughes, T. L. & Zhang S.-C. Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells. Science 314, 1757-1761 (2006).Bernevig, B. A., Hughes, T. L. & Zhang S.-C.Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells.Science 314, 1757-1761 (2006). Hsieh, D., Qian, D., Wray, L., Xia, Y., Hor, Y. S., Cava, R. J. & Hasan M. Z. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970-974 (2008).Hsieh, D., Qian, D., Wray, L., Xia, Y., Hor, YS, Cava, RJ & Hasan MZ A topological Dirac insulator in a quantum spin Hall phase.Nature 452, 970-974 (2008) . Yu, R., Zhang, W., Zhang, H.-J., Zhang, S.-C., Dai, X. & Fang, Z. Quantized Anomalous Hall Effect in Magnetic Topological Insulators. Science 329, 61-64 (2010).Yu, R., Zhang, W., Zhang, H.-J., Zhang, S.-C., Dai, X. & Fang, Z. Quantized Anomalous Hall Effect in Magnetic Topological Insulators. Science 329, 61-64 (2010). Chang, C.-Z. et al. Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator. Science 340, 167-170 (2013).Chang, C.-Z. et al. Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator. Science 340, 167-170 (2013). Liang, Q.-F., Wu, L-.H. & Hu, X. Electrically tunable topological state in [111] perovskite materials with an antiferromagnetic exchange field. New J. Phys. 15, 063031 (2013).Liang, Q.-F., Wu, L-.H. & Hu, X. Electrically tunable topological state in [111] perovskite materials with an antiferromagnetic exchange field. New J. Phys. 15, 063031 (2013). Pesin, D. & MacDonald, A. H. Spintronics and pseudospintronics in graphene and topological insulators. Nature Mater. 11, 409-416 (2012).Pesin, D. & MacDonald, A. H. Spintronics and pseudospintronics in graphene and topological insulators.Nature Mater. 11, 409-416 (2012). Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083-1159 (2008).Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083-1159 (2008). Stanescu, T. D., & Tewari, S. Majorana fermions in semiconductor nanowires: fundamentals, modeling, and experiment. J. Phys.: Condens. Matter 25, 233201 (2013).Stanescu, T. D., & Tewari, S. Majorana fermions in semiconductor nanowires: fundamentals, modeling, and experiment.J. Phys .: Condens. Matter 25, 233201 (2013). Beenakker, C. W. J. Search for Majorana Fermions in Superconductors. Annu. Rev. Condens. Matter Phys. 4, 113-136 (2013).Beenakker, C. W. J. Search for Majorana Fermions in Superconductors. Annu. Rev. Condens. Matter Phys. 4, 113-136 (2013). Wu, L.-H., Liang, Q.-F. & Hu, X. New scheme for braiding Majorana fermions. Sci. Technol. Adv. Mater. 15, 064402 (2014).Wu, L.-H., Liang, Q.-F. & Hu, X. New scheme for braiding Majorana fermions. Sci. Technol. Adv. Mater. 15, 064402 (2014). Yablonovitch, E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys. Rev. Lett. 58, 2059-2062 (1987).Yablonovitch, E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics.Phys. Rev. Lett. 58, 2059-2062 (1987). Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart W. J. Magnetism from Conductors and Enhanced Nonlinear Phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075-2084 (1999).Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart W. J. Magnetism from Conductors and Enhanced Nonlinear Phenomena.IEEE Trans. Microw. Theory Tech. 47, 2075-2084 (1999). Haldane, F. D. M. & Raghu, S. Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry. Phys. Rev. Lett. 100, 013904 (2008).Haldane, F. D. M. & Raghu, S. Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry.Phys. Rev. Lett. 100, 013904 (2008). Wang, Z., Chong, Y. D., Joannopoulos, J. D. & Soljacic, M. Reflection-Free One-Way Edge Modes in a Gyromagnetic Photonic Crystal. Phys. Rev. Lett. 100, 013905 (2008).Wang, Z., Chong, Y. D., Joannopoulos, J. D. & Soljacic, M. Reflection-Free One-Way Edge Modes in a Gyromagnetic Photonic Crystal. Phys. Rev. Lett. 100, 013905 (2008). Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljacic, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772-775 (2009).Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljacic, M. Observation of unidirectional backscattering-immune topological electromagnetic states.Nature 461, 772-775 (2009). Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nature Photon. 6, 782-787 (2012).Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation.Nature Photon. 6, 782-787 (2012). Khanikaev, A. B. et al. Photonic topological insulators. Nature Mater. 12, 233-239 (2013).Khanikaev, A. B. et al. Photonic topological insulators. Nature Mater. 12, 233-239 (2013). Ma, T., Khanikaev, A. B., Mousavi, S. H. & Shvets, G. Topologically protected photonic transport in bianisotropic meta-waveguides. arXiv: 1401.1276 (2014).Ma, T., Khanikaev, A. B., Mousavi, S. H. & Shvets, G. Topologically protected photonic transport in bianisotropic meta-waveguides.arXiv: 1401.1276 (2014). Liang, G. Q. & Chong, Y. D. Optical Resonator Analog of a Two-Dimensional Topological Insulator. Phys. Rev. Lett. 110, 203904 (2013).Liang, G. Q. & Chong, Y. D. Optical Resonator Analog of a Two-Dimensional Topological Insulator. Phys. Rev. Lett. 110, 203904 (2013). Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196-200 (2013). 6Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196-200 (2013). 6 He, C., Sun, X.-C., Liu, X.-P., Lu, M.-H., Chen, Y., Feng, L. & Chen, Y.-F. Photonic analogue of quantum spin Hall effect. arXiv: 1405.2869 (2014).He, C., Sun, X.-C., Liu, X.-P., Lu, M.-H., Chen, Y., Feng, L. & Chen, Y.-F. Photonic analogue of quantum spin Hall effect.arXiv: 1405.2869 (2014). Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nature Phys. 7, 907-912 (2011).Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection.Nature Phys. 7, 907-912 (2011). Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nature Photon. 7, 1001-1005 (2013).Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics.Nature Photon. 7, 1001-1005 (2013). Ochiai, T. Photonic realization of the (2+1)-dimensional parity anomaly. Phys. Rev. B 86, 075152 (2012); ibid Broken Symmetry and Topology in Photonic Analog of Graphene. Int. J. Mod. Phys. B. 28, 1441004 (2013).Ochiai, T. Photonic realization of the (2 + 1) -dimensional parity anomaly.Phys. Rev. B 86, 075152 (2012); ibid Broken Symmetry and Topology in Photonic Analog of Graphene. Int. J. Mod. Phys. B 28, 1441004 (2013). Lu, L., Joannopoulos, J. D. & Soljacic, Topological photonics. Nature Photon. 8, 821-829 (2014).Lu, L., Joannopoulos, J. D. & Soljacic, Topological photonics.Nature Photon. 8, 821-829 (2014). Fu, L. Topological Crystalline Insulators. Phys. Rev. Lett. 106, 106802 (2011).Fu, L. Topological Crystalline Insulators. Phys. Rev. Lett. 106, 106802 (2011). Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light (Princeton UniversityPress, New Jersey, 2008).Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light (Princeton UniversityPress, New Jersey, 2008). Dresselhaus, M. S., Dresselhaus, G. & Jorio, A. Group theory: Application to the physics of condensed matter. (Springer-Verlag, Berlin, Heidelberg, 2008).Dresselhaus, M. S., Dresselhaus, G. & Jorio, A. Group theory: Application to the physics of condensed matter. (Springer-Verlag, Berlin, Heidelberg, 2008). Sakoda, K. Double Dirac cones in triangular-lattice metamaterials. Opt. Express 20, 9925-9939 (2012).Sakoda, K. Double Dirac cones in triangular-lattice metamaterials.Opt. Express 20, 9925-9939 (2012). Sakoda, K. Dirac cone in two- and three-dimensional metamaterials. Opt. Express 20, 3898-3917 (2012).Sakoda, K. Dirac cone in two- and three-dimensional metamaterials.Opt. Express 20, 3898-3917 (2012). Girvin, S. M. The Quantum Hall Effect: Novel Excitations and Broken Symmetries. (Springer-Verlag, Berlin, Heidelberg, 1999).Girvin, S. M. The Quantum Hall Effect: Novel Excitations and Broken Symmetries. (Springer-Verlag, Berlin, Heidelberg, 1999).

Claims (5)

平面上に互いに平行に立設された複数の誘電体円柱を有すると共に前記誘電体円柱の周囲が前記誘電体円柱を構成する誘電体とは異なる誘電率を有する誘電体で埋められた領域を設け、
前記領域において、前記複数の誘電体円柱は同じ大きさの正六角形に配置された誘電体円柱の複数の組に分けられ、
前記誘電体円柱の複数の組に対応する複数の前記正六角形の中心は三角格子の格子点に配置されるとともに、前記正六角形の頂点は隣接する二つの前記格子点間を結ぶ格子線上に配置され、
前記正六角形の対角線の長さを2Rとし、前記正六角形とそれに隣接する前記正六角形との中心間の距離をaとするとき、a/R<3が成立する
トポロジカルフォトニック結晶。
A plurality of dielectric cylinders standing parallel to each other on a plane are provided, and a region where the periphery of the dielectric cylinder is filled with a dielectric having a dielectric constant different from that of the dielectric constituting the dielectric cylinder is provided. ,
In the region, the plurality of dielectric cylinders are divided into a plurality of sets of dielectric cylinders arranged in regular hexagons of the same size,
The centers of the plurality of regular hexagons corresponding to the plurality of sets of the dielectric cylinders are disposed at lattice points of a triangular lattice, and the vertices of the regular hexagons are disposed on lattice lines connecting two adjacent lattice points. And
A topological photonic crystal in which a 0 / R <3 is established, where the diagonal length of the regular hexagon is 2R and the distance between the centers of the regular hexagon and the regular hexagon adjacent thereto is a 0 .
前記領域は2枚の互いに平行な金属板で挟まれる、請求項1に記載のトポロジカルフォトニック結晶。   The topological photonic crystal according to claim 1, wherein the region is sandwiched between two parallel metal plates. 前記金属板は金からなる、請求項2に記載のトポロジカルフォトニック結晶。   The topological photonic crystal according to claim 2, wherein the metal plate is made of gold. 前記誘電体円柱はシリコンからなる、請求項1または2に記載のトポロジカルフォトニック結晶。   The topological photonic crystal according to claim 1, wherein the dielectric cylinder is made of silicon. 前記誘電体円柱の周囲を埋める誘電体は空気または真空である、請求項1から4の何れかに記載のトポロジカルフォトニック結晶。   The topological photonic crystal according to any one of claims 1 to 4, wherein the dielectric filling the periphery of the dielectric cylinder is air or vacuum.
JP2015034902A 2015-02-25 2015-02-25 Topological photonic crystal Active JP6536938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015034902A JP6536938B2 (en) 2015-02-25 2015-02-25 Topological photonic crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015034902A JP6536938B2 (en) 2015-02-25 2015-02-25 Topological photonic crystal

Publications (2)

Publication Number Publication Date
JP2016156971A true JP2016156971A (en) 2016-09-01
JP6536938B2 JP6536938B2 (en) 2019-07-03

Family

ID=56825956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015034902A Active JP6536938B2 (en) 2015-02-25 2015-02-25 Topological photonic crystal

Country Status (1)

Country Link
JP (1) JP6536938B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018142660A (en) * 2017-02-28 2018-09-13 学校法人上智学院 Optical device and manufacturing method of optical device
CN110007398A (en) * 2019-04-30 2019-07-12 江苏大学 Realize the optical waveguide of photonic crystal topology boundary state spin of photon guiding mechanism
CN110161621A (en) * 2019-04-30 2019-08-23 江苏大学 A kind of photonic crystal slow optical wave guide based on honeycomb structure
CN110941109A (en) * 2019-12-31 2020-03-31 电子科技大学 Silicon-based integrated optical isolator based on topology protection mechanism
JP2021032997A (en) * 2019-08-22 2021-03-01 国立大学法人東京工業大学 Topological optical circuit
CN112596154A (en) * 2020-12-11 2021-04-02 江苏大学 Novel topological photonic crystal structure and optical waveguide
WO2021109350A1 (en) * 2019-12-06 2021-06-10 北京大学 Energy band inversion and optical field confinement effect-based topological bulk laser and method
CN112994642A (en) * 2021-03-10 2021-06-18 电子科技大学 Hexagonal honeycomb circuit
CN114185116A (en) * 2021-11-02 2022-03-15 江苏大学 Topological optical communication device capable of realizing topological boundary state and/or zero-dimensional angle state
CN114488356A (en) * 2022-01-13 2022-05-13 华南理工大学 Compact microwave topology beam splitter
CN114660719A (en) * 2022-03-09 2022-06-24 江苏大学 Photonic crystal structure with complex unit cell and optical waveguide
JP2022118051A (en) * 2017-02-28 2022-08-12 学校法人上智学院 Optical device and manufacturing method of optical device
CN115343892A (en) * 2022-05-23 2022-11-15 天津大学 Multifunctional all-dielectric topological waveguide state switch capable of being coded
JP2022553762A (en) * 2019-10-28 2022-12-26 中国科学院物理研究所 Topological photonic crystal cavity and its application in laser
CN116105710A (en) * 2023-04-14 2023-05-12 中国人民解放军国防科技大学 Beat frequency detection device, angular velocity measurement device and method based on ring resonant cavity
CN117239375A (en) * 2023-11-14 2023-12-15 香港科技大学(广州) On-chip frequency router based on topology metamaterial

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035846A (en) * 2001-07-24 2003-02-07 Matsushita Electric Works Ltd Photoelectric converting device
JP2003131390A (en) * 2001-03-22 2003-05-09 Seiko Epson Corp Method of manufacturing fine structure, method of manufacturing electronic device and apparatus for manufacturing the same
JP2008210555A (en) * 2007-02-23 2008-09-11 Seiko Epson Corp Optical element
JP2008233741A (en) * 2007-03-23 2008-10-02 Seiko Epson Corp Optical element
JP2009147071A (en) * 2007-12-13 2009-07-02 Sumitomo Electric Ind Ltd Semiconductor light-emitting element
JP2014143329A (en) * 2013-01-25 2014-08-07 National Institute For Materials Science Topological insulator capable of adjusting electric field utilizing perovskite structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003131390A (en) * 2001-03-22 2003-05-09 Seiko Epson Corp Method of manufacturing fine structure, method of manufacturing electronic device and apparatus for manufacturing the same
JP2003035846A (en) * 2001-07-24 2003-02-07 Matsushita Electric Works Ltd Photoelectric converting device
JP2008210555A (en) * 2007-02-23 2008-09-11 Seiko Epson Corp Optical element
JP2008233741A (en) * 2007-03-23 2008-10-02 Seiko Epson Corp Optical element
JP2009147071A (en) * 2007-12-13 2009-07-02 Sumitomo Electric Ind Ltd Semiconductor light-emitting element
JP2014143329A (en) * 2013-01-25 2014-08-07 National Institute For Materials Science Topological insulator capable of adjusting electric field utilizing perovskite structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU, LONG-HUA, ET AL.: "Scheme for Achieving a Topological Photonic Crystal by Using Dielectric Material", PHYSICAL REVIEW LETTERS, vol. 114, no. 22, JPN6018038806, 5 June 2015 (2015-06-05), US, pages 223901 - 1, ISSN: 0003892336 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018142660A (en) * 2017-02-28 2018-09-13 学校法人上智学院 Optical device and manufacturing method of optical device
JP7090861B2 (en) 2017-02-28 2022-06-27 学校法人上智学院 Optical devices and manufacturing methods for optical devices
JP2022118051A (en) * 2017-02-28 2022-08-12 学校法人上智学院 Optical device and manufacturing method of optical device
JP7333666B2 (en) 2017-02-28 2023-08-25 学校法人上智学院 Optical device and method for manufacturing optical device
CN110007398A (en) * 2019-04-30 2019-07-12 江苏大学 Realize the optical waveguide of photonic crystal topology boundary state spin of photon guiding mechanism
CN110161621A (en) * 2019-04-30 2019-08-23 江苏大学 A kind of photonic crystal slow optical wave guide based on honeycomb structure
CN110007398B (en) * 2019-04-30 2020-11-03 江苏大学 Optical waveguide for realizing photonic crystal topological boundary state photon spin guiding mechanism
JP2021032997A (en) * 2019-08-22 2021-03-01 国立大学法人東京工業大学 Topological optical circuit
JP7318864B2 (en) 2019-08-22 2023-08-01 国立大学法人東京工業大学 topological optical circuit
JP7420416B2 (en) 2019-10-28 2024-01-23 中国科学院物理研究所 Topological photonic crystal resonator and its use in lasers
JP2022553762A (en) * 2019-10-28 2022-12-26 中国科学院物理研究所 Topological photonic crystal cavity and its application in laser
WO2021109350A1 (en) * 2019-12-06 2021-06-10 北京大学 Energy band inversion and optical field confinement effect-based topological bulk laser and method
CN110941109A (en) * 2019-12-31 2020-03-31 电子科技大学 Silicon-based integrated optical isolator based on topology protection mechanism
CN110941109B (en) * 2019-12-31 2021-03-30 电子科技大学 Silicon-based integrated optical isolator based on topology protection mechanism
CN112596154B (en) * 2020-12-11 2022-06-14 江苏大学 Novel topological photonic crystal structure and optical waveguide
CN112596154A (en) * 2020-12-11 2021-04-02 江苏大学 Novel topological photonic crystal structure and optical waveguide
CN112994642A (en) * 2021-03-10 2021-06-18 电子科技大学 Hexagonal honeycomb circuit
CN114185116A (en) * 2021-11-02 2022-03-15 江苏大学 Topological optical communication device capable of realizing topological boundary state and/or zero-dimensional angle state
CN114488356A (en) * 2022-01-13 2022-05-13 华南理工大学 Compact microwave topology beam splitter
CN114660719A (en) * 2022-03-09 2022-06-24 江苏大学 Photonic crystal structure with complex unit cell and optical waveguide
CN115343892A (en) * 2022-05-23 2022-11-15 天津大学 Multifunctional all-dielectric topological waveguide state switch capable of being coded
CN116105710A (en) * 2023-04-14 2023-05-12 中国人民解放军国防科技大学 Beat frequency detection device, angular velocity measurement device and method based on ring resonant cavity
CN116105710B (en) * 2023-04-14 2023-06-09 中国人民解放军国防科技大学 Beat frequency detection device, angular velocity measurement device and method based on ring resonant cavity
CN117239375A (en) * 2023-11-14 2023-12-15 香港科技大学(广州) On-chip frequency router based on topology metamaterial
CN117239375B (en) * 2023-11-14 2024-01-19 香港科技大学(广州) On-chip frequency router based on topology metamaterial

Also Published As

Publication number Publication date
JP6536938B2 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
JP6536938B2 (en) Topological photonic crystal
Wu et al. Scheme for achieving a topological photonic crystal by using dielectric material
Armitage et al. Weyl and Dirac semimetals in three-dimensional solids
Sheng et al. d orbital topological insulator and semimetal in the antifluorite Cu2S family: Contrasting spin Helicities, nodal box, and hybrid surface states
Volovik From standard model of particle physics to room-temperature superconductivity
Chen et al. Pseudospin-polarized topological line defects in dielectric photonic crystals
Xue et al. Observation of dislocation-induced topological modes in a three-dimensional acoustic topological insulator
Yang et al. Dirac node lines in two-dimensional Lieb lattices
Zhu et al. Simulating quantum spin Hall effect in the topological Lieb lattice of a linear circuit network
US20120212375A1 (en) Quantum broadband antenna
Sushkov et al. Topological insulating states in laterally patterned ordinary semiconductors
CN112285822B (en) Topological structure of two-dimensional photonic crystal under non-Hermite modulation
CN112540427B (en) Terahertz topological transmission waveguide based on optical quantum spin Hall effect
Feng et al. Phonon-interference resonance effects by nanoparticles embedded in a matrix
Essin et al. Antiferromagnetic topological insulators in cold atomic gases
Kee et al. Absolute photonic band gap in a two-dimensional square lattice of square dielectric rods in air
Yannopapas Photonic analog of a spin-polarized system with Rashba spin-orbit coupling
Li et al. Realizing pure spin current with photogalvanic effect in zigzag graphene nanoribbon junctions: The roles of tetragon and hexagon connectors
Chen et al. Valley-protected backscattering suppression in silicon photonic graphene
Du et al. Progress and challenges in magnetic skyrmionics
Kee et al. Defect modes in a two-dimensional square lattice of square rods
Ke et al. Pure magnon valley currents in a patterned ferromagnetic thin film
JP6478187B2 (en) Honeycomb lattice-type material that has a Kekule superlattice structure and exhibits giant effective spin-orbit interaction and topological state
Lin et al. Topological phenomena at topological defects
Liang et al. Fractional Topological Numbers at Photonic Edges and Corners

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190523

R150 Certificate of patent or registration of utility model

Ref document number: 6536938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250