JP6478187B2 - Honeycomb lattice-type material that has a Kekule superlattice structure and exhibits giant effective spin-orbit interaction and topological state - Google Patents

Honeycomb lattice-type material that has a Kekule superlattice structure and exhibits giant effective spin-orbit interaction and topological state Download PDF

Info

Publication number
JP6478187B2
JP6478187B2 JP2015101321A JP2015101321A JP6478187B2 JP 6478187 B2 JP6478187 B2 JP 6478187B2 JP 2015101321 A JP2015101321 A JP 2015101321A JP 2015101321 A JP2015101321 A JP 2015101321A JP 6478187 B2 JP6478187 B2 JP 6478187B2
Authority
JP
Japan
Prior art keywords
spin
kekule
topological
honeycomb lattice
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015101321A
Other languages
Japanese (ja)
Other versions
JP2016219546A (en
Inventor
暁 古月
暁 古月
龍華 呉
龍華 呉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2015101321A priority Critical patent/JP6478187B2/en
Publication of JP2016219546A publication Critical patent/JP2016219546A/en
Application granted granted Critical
Publication of JP6478187B2 publication Critical patent/JP6478187B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Hall/Mr Elements (AREA)

Description

本発明はトポロジカル状態を発現する材料に関し、より詳細には、蜂の巣格子(honeycomb lattice)上の最隣接格子点間電子の遷移係数の   The present invention relates to a material that develops a topological state, and more particularly, to the transition coefficient of electrons between adjacent lattice points on a honeycomb lattice.

(以下、Kekuleと称する)超格子構造により巨大有効スピン軌道相互作用を誘起し、これによって安定なトポロジカル状態を発現する蜂の巣格子構造材料に関する。 The present invention relates to a honeycomb lattice structure material that induces a giant effective spin-orbit interaction by a superlattice structure (hereinafter referred to as Kekule) and thereby develops a stable topological state.

量子ホール効果(quantum Hall effect、QHE)の発見により、トポロジーを中心概念とした物性研究の新たな進展が見られた(非特許文献1〜11)。トポロジカル状態は学術的な観点で興味深いものであるというだけではなく、応用面にも重大な影響を及ぼすものと期待されている。それは、バルクトポロジーによって保護される強靭な表面(あるいエッジ)状態により、スピントロニクス及び量子計算に新たな可能性がもたらされるからである(非特許文献12〜17)。   With the discovery of the quantum Hall effect (QHE), new progress in physical property research centered on topology has been made (Non-Patent Documents 1 to 11). The topological state is not only interesting from an academic point of view, but is also expected to have a significant impact on applications. This is because the strong surface (or edge) state protected by the bulk topology provides new possibilities for spintronics and quantum computation (Non-Patent Documents 12 to 17).

しかしながら、現在までにトポロジカル状態が確認されている物質はごく少数であり、またそのほとんどのものは非常に低い温度のみでトポロジカルな性質を示す。この問題により、実際の応用に必須である材料の詳細な研究や操作が妨げられていた。   However, only a few substances have been confirmed to have a topological state so far, and most of them exhibit topological properties only at very low temperatures. This problem hindered detailed research and manipulation of materials essential for practical applications.

グラフェンの特異な物理特性が大きく注目されており、基礎物性の探索から新規デバイスの開発まで広く研究されている。グラフェンの特性を支配するのは炭素のπ電子が持つディラック型エネルギー分散である。つまり、電子のエネルギーの運動量依存性はフェルミレベルで線型的になっている。これは蜂の巣格子のC対称性で決まっている。 Graphene's unique physical properties are attracting a great deal of attention, and it has been widely studied from the search for basic physical properties to the development of new devices. The characteristic of graphene is the Dirac energy dispersion of carbon π electrons. In other words, the momentum dependence of the electron energy is linear at the Fermi level. This is determined by the C 3 symmetry honeycomb lattice.

蜂の巣格子上電子のディラック型分散関係を利用してトポロジカル状態を実現できることが理解され、トポロジカル絶縁体を含むトポロジカル物質研究の全盛につながった。Haldaneは非特許文献6において蜂の巣格子上の電子タイトバインディングモデルに次近接サイト間の電子遷移に伴ういわゆる交替フラックス(staggered flux)項を加えた。それによってディラック電子が質量を持ち、ブリュリアン・ゾーンのコーナーにあるK点とK’点でのBerry位相が揃い、量子異常ホール効果が生まれる。KaneとMeleは非特許文献7で電子のスピン自由度を考え、次近接サイト間の電子遷移に伴うスピン軌道相互作用もK点とK’点のBerry位相を揃えられることを明らかにした。この場合、スピン上向きと下向きの電子のBerry位相は反対であり、時間反転対称性が満たされ、量子スピンホール効果が現れる。   It was understood that the topological state can be realized using the Dirac dispersion relation of electrons on the honeycomb lattice, which led to the flourishing research of topological materials including topological insulators. In Non-Patent Document 6, Haldane added a so-called staggered flux term accompanying an electron transition between adjacent sites to the electron tight binding model on the honeycomb lattice. As a result, Dirac electrons have mass, the Berry phases at the K and K ′ points in the corner of the Brilliant zone are aligned, and a quantum anomalous Hall effect is produced. Kane and Mele considered the spin degree of freedom of electrons in Non-Patent Document 7 and clarified that the spin-orbit interaction accompanying the electron transition between the next adjacent sites can be aligned with the Berry phase of the K point and the K ′ point. In this case, the Berry phase of the spin upward and downward electrons is opposite, the time reversal symmetry is satisfied, and the quantum spin Hall effect appears.

しかし、グラフェンのスピン軌道相互作用は非常に小さいため、量子スピンホール効果を実験的に観測するのは極めて難しい。一方で、交替フラックスは円偏光した光の照射によって実現できるが、デバイスの実現には不利である。   However, the spin-orbit interaction of graphene is very small, so it is very difficult to experimentally observe the quantum spin Hall effect. On the other hand, the alternating flux can be realized by irradiation with circularly polarized light, but it is disadvantageous for realizing the device.

本発明の課題は、原子が蜂の巣状に配置された蜂の巣格子上の電子の遷移エネルギーのKekule超構造の導入により、従来提案されている材料に比べて、巨大な有効スピン軌道相互作用と安定したトポロジカル状態を発現する材料を提供することにある。   The problem of the present invention is that the introduction of the Kekule superstructure of the transition energy of electrons on the honeycomb lattice in which atoms are arranged in a honeycomb shape makes it possible to stabilize the giant effective spin-orbit interaction and stability compared to the conventionally proposed materials. The object is to provide a material that develops a topological state.

本発明の一側面によれば、原子が蜂の巣状に配置された蜂の巣格子型材料であって、 最隣接サイトとの電子遷移エネルギーがKekule超構造を有し、その六員環内部の電子遷移エネルギーtが最隣接六員環との間の電子遷移エネルギーtよりも小さい、Kekule超格子を有し、巨大有効スピン軌道相互作用及びトポロジカル状態を発現する蜂の巣格子型材料が与えられる。
ここで、Cu[111]面にCO分子が配置され、一部の六員環に余分のCO分子を導入することにより、前記Kekule超構造を導入してよい。
According to one aspect of the present invention, there is a honeycomb lattice type material in which atoms are arranged in a honeycomb shape, the electron transition energy with the nearest site has a Kekule superstructure, and the electron transition energy inside the six-membered ring A honeycomb lattice-type material having a Kekule superlattice, where t 0 is smaller than the electronic transition energy t 1 between the nearest six-membered rings and exhibiting giant effective spin-orbit interaction and topological states is provided.
Here, the Kekule superstructure may be introduced by arranging CO molecules on the Cu [111] plane and introducing extra CO molecules into some of the six-membered rings.

本発明の一側面によれば、原子が蜂の巣状に配置された蜂の巣格子型材料であって、最隣接サイトとの電子遷移エネルギーがKekule超構造を有し、前記Kekule超構造の六員環内部の電子遷移エネルギーtが最隣接六員環との間の電子遷移エネルギーt超構造よりも小さい、Kekule超格子を有し、巨大有効スピン軌道相互作用及びトポロジカル状態を発現する蜂の巣格子型材料が与えられる。
ここで、Cu[111]面にCO分子が配置され、一部の六員環に余分のCO分子を導入することにより、前記Kekule超構造を導入してよい。
According to one aspect of the present invention, there is a honeycomb lattice-type material in which atoms are arranged in a honeycomb shape, the electron transition energy with the nearest site has a Kekule superstructure, and the inside of the six-membered ring of the Kekule superstructure Honeycomb lattice-type material having a Kekule superlattice that exhibits a large effective spin-orbit interaction and a topological state, in which the electron transition energy t 0 is smaller than the electron transition energy t 1 superstructure between adjacent six-membered rings Is given.
Here, the Kekule superstructure may be introduced by arranging CO molecules on the Cu [111] plane and introducing extra CO molecules into some of the six-membered rings.

(a)最隣接サイトとの間の電子遷移エネルギー(hopping integral)がKekule超構造を持つように調節した蜂の巣格子を示す図。tは図中の右下隅部に示す破線で囲まれた六角形内の黒い実線で示される六員環内部の電子遷移エネルギー、tは隣接する六員環間の電子遷移エネルギーを示す。破線で囲まれた六角形は格子ベクトルが(A) The figure which shows the honeycomb lattice adjusted so that the electronic transition energy (hopping integral) between adjacent sites may have a Kekule superstructure. t 0 represents the electron transition energy inside the six-membered ring indicated by the black solid line in the hexagon surrounded by the broken line shown in the lower right corner of the figure, and t 1 represents the electron transition energy between the adjacent six-membered rings. The hexagon surrounded by a broken line has a lattice vector

であり、格子定数が And the lattice constant is

である三角格子の単純胞(primitive cell)である。(b)一つの六員環で構成される人工原子の固有軌道(eigen orbital)を示す図。
六角形の単位胞をもつ格子系の分散関係(dispersion relation)を示す図。(a)t=0.9tの場合、(b)t=tの場合、及び(c)t=1.1tの場合。図中、(a)〜(c)のグラフのそれぞれで最上部にある上に凸の曲線及び最下部にある下に凸の曲線以外の曲線において、濃い灰色の線及びやや薄い灰色の線はそれぞれ|p±〉及び|d±〉に対応し、また(c)の中央付近にある両方が入り混じっているように見える部分は両者の混成を示す。ここで、オンサイトエネルギー(on-site energy)はε=0とした。 (a)36個の六員環を有するとともに六員環同士の間の電子遷移エネルギーt=1.1tである構造のリボン形状系の両側を、それぞれ12個の六員環を有するとともに六員環同士の電子遷移エネルギーt=0.9tの構造で挟んだ複合系の分散関係を示す図。淡色の広がった曲線群はバルクバンドについてのものであり、赤い曲線に対応する分散はリボン系特有のものである。(b)(a)中の中央で交差した2本の濃色で描かれたやや太い曲線に対応する状態が実空間で上記2つの界面に局在化している様子。黒及び白の矢印がそれぞれ擬スピンアップ及び擬スピンダウンチャネルを示す。 (a)トポロジカル状態の電気伝導を測定する6端子ホールバー。但し、中央部の細かな網掛けの入った部分は図3にあるトポロジカル領域、周辺部の網掛けの入っていない、トポロジカル領域よりもやや淡色の灰色部分は自明領域であり、電流は左側の端子から注入され、右側の端子から取り出す。ホールバーでの電流密度の分布が濃淡で示されている。(b)平行方向とホール電気伝導の注入電子エネルギー依存性。但し、電子のオンサイトエネルギー(on-site energy)はε=0とした。 Cu[111]表面電子系をCO分子の三角格子で装飾することによって実現される分子グラフェン系の模式図:(a)t>tでトポロジカル相,(b)t<tで自明相に対応する。灰色丸はCO分子を示し、STM等の技法で配置されている。太いボンドは細いボンドより短く、電子遷移のKekule超構造が実現されている。
Is a primitive cell of a triangular lattice. (B) The figure which shows the natural orbital (eigen orbital) of the artificial atom comprised by one 6-membered ring.
The figure which shows the dispersion relation (dispersion relation) of the lattice system which has a hexagonal unit cell. (A) when t 1 = 0.9t 0 , (b) when t 1 = t 0 and (c) when t 1 = 1.1t 0 . In the graphs (a) to (c), in the curves other than the convex curve at the top and the convex curve at the bottom at the top, the dark gray line and the slightly light gray line are The portions corresponding to | p ± > and | d ± >, respectively, in the vicinity of the center of (c) and appearing to be mixed, indicate the combination of the two. Here, the on-site energy was ε 0 = 0. (A) Both sides of the ribbon-shaped system having 36 six-membered rings and a structure in which the electron transition energy t 1 = 1.1t 0 between the six-membered rings has 12 six-membered rings, respectively. It shows a dispersion relation of the composite system across the structure of the electronic transition energy t 1 = 0.9t 0 six-membered rings. The light-colored spread curve group is for the bulk band, and the dispersion corresponding to the red curve is specific to the ribbon system. (B) A state corresponding to a slightly thick curve drawn in two dark colors intersecting at the center in (a) is localized at the two interfaces in real space. Black and white arrows indicate pseudo-spin-up and pseudo-spin-down channels, respectively. (A) A 6-terminal hole bar that measures electrical conduction in a topological state. However, the finely shaded part at the center is the topological area shown in FIG. 3, the gray part slightly lighter than the topological area is not obvious, and the current is on the left side. It is injected from the terminal and taken out from the right terminal. The distribution of current density at the hall bar is shown in shades. (B) Injection electron energy dependence of parallel direction and hole electrical conduction. However, the on-site energy of electrons was set to ε 0 = 0. Schematic diagram of a molecular graphene system realized by decorating the Cu [111] surface electron system with a triangular lattice of CO molecules: (a) Topological phase when t 1 > t 0 , (b) Trivial when t 1 <t 0 Corresponds to the phase. Gray circles indicate CO molecules and are arranged by a technique such as STM. A thick bond is shorter than a thin bond, and the Kekule superstructure of electronic transition is realized.

本発明の一形態では、蜂の巣格子上の最隣接格子点間の電子の遷移エネルギーを一定のルールに従って強弱をつけ、Kekule遷移超構造を導入するだけで、巨大な有効スピン軌道相互作用と非常に安定なトポロジカル状態が実現可能であることを示す。具体的には、図1(a)に示すように、蜂の巣格子の全てのサイトを6個の最隣接サイトからなる六員環にグループ化し、六員環内の電子遷移エネルギーを一定にしたまま、六員環間の電子遷移エネルギーを強くする。この操作により、電子系にC対称性が実現され、それに伴って電子波動関数に擬スピン自由度が生まれ、量子スピンホール効果が可能になる。この場合、擬スピンに対応する有効スピン軌道相互作用がグラフェンに見られる内在スピン軌道相互作用より数ケタも大きくなる。有効スピン軌道相互作用が非常に大きいため、ここで議論されているトポロジカル状態が高温でも安定である。 In one form of the present invention, the transition energy of electrons between the nearest lattice points on the honeycomb lattice is strengthened and weakened according to a certain rule, and the Kekule transition superstructure is introduced. It shows that a stable topological state can be realized. Specifically, as shown in FIG. 1 (a), all the sites of the honeycomb lattice are grouped into a six-membered ring consisting of six nearest neighbor sites, and the electron transition energy in the six-membered ring is kept constant. Strengthens the electron transition energy between six-membered rings. By this operation, C 6 symmetry is realized in the electron system, and accordingly, a pseudo-spin degree of freedom is generated in the electron wave function, and the quantum spin Hall effect becomes possible. In this case, the effective spin orbit interaction corresponding to the pseudo spin is several orders of magnitude larger than the intrinsic spin orbit interaction seen in graphene. Since the effective spin-orbit interaction is very large, the topological state discussed here is stable even at high temperatures.

出発点は蜂の巣格子上の電子のタイトバインディングモデルである:   The starting point is a tight-binding model of electrons on the honeycomb lattice:

ここで、cはサイトiでの電子消滅演算子、εはオンサイトエネルギーである。tは六員環内での電子遷移に伴うエネルギー、tは六員環間の電子遷移エネルギーである。一番目の和は全てのサイトについて、二番目の和は六員環内の最隣接サイト同志、三番目の和は六員環間であって、最隣接サイト同士についてそれぞれとるものである。議論を簡単にするため、先ず電子の持つスピンを考えないことにする。以下にtを一定にして、tを調整することを考える。tとtとが異なる場合、もともとの蜂の巣格子は六員環を単位とする三角格子になることに留意する。この六員環を1個の人工原子と見なすことが便利であり、この場合人工原子が作る格子の対称性はCである。 Here, c i is an electron annihilation operator at site i, and ε 0 is on-site energy. t 0 is the energy associated with the electron transition in the six-membered ring, and t 1 is the electron transition energy between the six-membered rings. The first sum is for all sites, the second sum is for the nearest neighbors in the six-membered ring, and the third sum is for the six-membered rings, and is for the nearest neighbor sites. To simplify the discussion, let's not consider the spin of electrons. In the following, it is considered that t 1 is adjusted with t 0 kept constant. Note that if t 1 and t 0 are different, the original honeycomb lattice is a triangular lattice with a six-membered ring as a unit. The six-membered ring may conveniently be regarded as one of the artificial atoms, the symmetry of the lattice to make this case the artificial atom is C 6.

まず1個の六員環を考える。そのハミルトニアンは   First, consider a single six-membered ring. The Hamiltonian

で与えられる。ここで、ベクトル Given in. Where vector

は6個サイトの電子消滅演算子で構成され、nは六員環の番号である。式(2)のハミルトニアンの固有ベクトルは Is composed of a six-site electron annihilation operator, and n is a six-membered ring number. The Hamiltonian eigenvector of equation (2) is

で与えられ、それぞれのエネルギーは順番通りに2,1,1,−1,−1,−2になっている、但し単位はtである。固有状態の規格化は黙認されているとする。式(3)の状態は人工格子の軌道と考えてよく、その形は図1(b)に示される。2番目から4番目の軌道はp軌道とd軌道になっていることが分かる。 Given by the respective energy 2,1,1 out of order, -1, -1, which is -2, where the unit is t 0. It is assumed that normalization of eigenstates is tolerated. The state of Equation (3) may be considered as an artificial lattice trajectory, and its shape is shown in FIG. It can be seen that the second to fourth orbits are p-orbit and d-orbit.

運動量空間での直接対角化によって、式(1)で記述される系のエネルギー分散関係が計算できる。但し、ここではεはゼロとする。t=0.9tの場合に計算されたバンド分散関係を図2(a)に示す。まず、バンドはΓ点において二つの二重縮退を持つ。これはC点群が有する2個の二次元不可約表現に対応する。 By direct diagonalization in the momentum space, the energy dispersion relationship of the system described by equation (1) can be calculated. However, ε 0 is zero here. FIG. 2A shows the band dispersion relationship calculated when t 1 = 0.9t 0 . First, the band has two double degeneracy at the Γ point. This corresponds to the two two-dimensional irreducible expressions of the C 6 point group.

計算された波動関数を図1(b)に示された人工分子軌道に射影すると、図2(a)に示されている分散関係の濃淡表現(元来の図面はカラーで表現)から分かるように、価電子バンドの中でエネルギーの最も高い状態はd軌道に、伝導電子バンドの中でエネルギーの最も低い状態はp軌道になっている。このエネルギー順序は孤立した六員環人工原子と同じであり、この場合のバンド絶縁体は孤立人工原子と連続的につながることを示唆する。   When the calculated wave function is projected onto the artificial molecular orbital shown in FIG. 1 (b), it can be seen from the gray scale expression of the dispersion relation shown in FIG. 2 (a) (the original drawing is expressed in color). In addition, the highest energy state in the valence band is d orbital, and the lowest energy state in the conduction electron band is p orbital. This energy sequence is the same as that of an isolated six-membered ring artificial atom, suggesting that the band insulator in this case is continuously connected to the isolated artificial atom.

を増大させると、図2(a)でのバンドギャップが小さくなる。t=tになると、図2(b)に示されているように、バンドギャップが閉じ、d軌道とp軌道とがΓ点で縮退すると共に、線型的なエネルギー分散がみられる。この二重に縮退したディラック錐は、蜂の巣格子のK点とK’点にあるディラック錐に由来する。t=tでは、系は蜂の巣格子に戻り、実空間の単位胞は二つのサイトからなる菱形である。一方で、図2に示されるバンド構造に対応する実空間の単位胞は六員環であるため、ブリュリアン・ゾーンは畳み込まれ、蜂の巣格子のK点及びK’点が図2のΓ点になる。 When t 1 is increased, the band gap in FIG. When t 1 = t 0 , as shown in FIG. 2B, the band gap is closed, the d orbit and the p orbit degenerate at the Γ point, and linear energy dispersion is observed. This doubly degenerated Dirac cone originates from Dirac cones at the K and K ′ points of the honeycomb lattice. At t 1 = t 0 , the system returns to the honeycomb lattice and the real cell unit cell is a rhombus composed of two sites. On the other hand, since the unit cell in the real space corresponding to the band structure shown in FIG. 2 is a six-membered ring, the Brilliant zone is convoluted, and the K and K ′ points of the honeycomb lattice become the Γ points in FIG. Become.

をさらに増大させると、Γ点でのバンドギャップが再び開く。図2(c)にはt=1.1tの結果を示している。図2(c)のバンド分散の濃淡表現から分かるように、Γ点ではエネルギーの最も高い価電子バンドではp軌道の成分が支配的であり、エネルギーの最も低い伝導電子バンドはd軌道になる。Γ点から離れると、バンドの軌道成分はΓ点と異なり、図2(a)と同じである。すなわち、p軌道とd軌道との間のバンド逆転が起きている。p軌道とd軌道とは空間反転操作に対して正反対のパリティを示すため、そのバンド反転はトポロジカル状態をもたらすことが可能である。これについては、本願発明者の論文である非特許文献18及びBHZモデル(非特許文献8)も参照されたい。 When t 1 is further increased, the band gap at the Γ point opens again. FIG. 2C shows the result when t 1 = 1.1t 0 . As can be seen from the density expression of band dispersion in FIG. 2C, the p-orbital component is dominant in the valence band having the highest energy at the Γ point, and the conduction electron band having the lowest energy is the d-orbital. When moving away from the Γ point, the orbital component of the band is the same as in FIG. That is, the band inversion between the p orbit and the d orbit occurs. Since the p-orbit and d-orbital exhibit diametrically opposite parity for the spatial inversion operation, the band inversion can result in a topological state. Regarding this, see also the non-patent document 18 and the BHZ model (non-patent document 8) which are the papers of the present inventor.

非自明なトポロジーを説明するために、この系が持つ擬時間反転対称性について議論する。擬時間反転対称演算子   To explain the non-trivial topology, we discuss the pseudo-time reversal symmetry of this system. Pseudo-time reversal symmetric operator

は複数共役演算子 Is the multiple conjugate operator

及び演算子 And operators

を用いて以下のように合成できる: Can be synthesized as follows:

但し However,

はパウリ行列である。重要な性質は、 Is a Pauli matrix. The important nature is

はp軌道に対してp/2回転、d軌道に対してp/4回転の演算子に対応することである。このため、p軌道とd軌道で張られる空間では Corresponds to an operator of p / 2 rotation for the p orbit and p / 4 rotation for the d orbit. For this reason, in the space spanned by p orbit and d orbit

になる。これにより、 become. This

が簡単に証明できる。この反ユニタリ演算子はスピン自由度を考慮した電子系の時間反転対称演算子と同じ性質を持つ。実際に、この擬時間反転対称演算子に付随するKramersペアは、軌道角運動量の正反対の状態 Can be proved easily. This anti-unitary operator has the same properties as the time-reversal symmetric operator of the electron system considering the spin degree of freedom. In fact, the Kramers pair associated with this pseudo-time-reversal symmetric operator is the opposite state of orbital angular momentum.

になることが簡単に確認できる。 Can be easily confirmed.

蜂の巣格子上の最隣接する6個のサイトからなる六員環人工原子を考えることにより、炭素のπ電子だけから、角運動量を持つ原子軌道が創生され、それらがC対称性の元で擬スピン自由度になる。 By considering a six-membered ring artificial atom consisting of the six adjacent sites on the honeycomb lattice, atomic orbitals with angular momentum are created from only the carbon π electrons, and these are created under C 6 symmetry. It becomes pseudo-spin degree of freedom.

式(4)にある擬スピンをもつ原子軌道から構成される基底[p,d,p,dで書かれたΓ点でのk・pモデル The basis [p + , d + , p e , d ] T composed of atomic orbits with pseudo-spins in equation (4), k · p model at Γ point written by T

を用いて、図2の振る舞いを理解できる。但し、ここでH及びHはそれぞれ Can be used to understand the behavior of FIG. Where H + and H are respectively

及び as well as

で与えられる。またδt=t−t、a及びbは1程度の実数、 Given in. Also, δt = t 1 -t 0 , a and b are real numbers of about 1,

は2行2例のゼロ行列である(非特許文献18)。図2(c)の場合、δt>0が満たされるので、バンド反転が起き、Zトポロジカル不変量に特徴づけられるトポロジカル状態が現れる(非特許文献7、非特許文献18、非特許文献22)。一方、図2(a)では、δt<0であり、バンドギャップは自明なものである。 Is a zero matrix with 2 rows and 2 examples (Non-patent Document 18). In the case of FIG. 2C, since δt> 0 is satisfied, band inversion occurs and a topological state characterized by a Z 2 topological invariant appears (Non-patent Document 7, Non-patent Document 18, Non-patent Document 22). . On the other hand, in FIG. 2A, δt <0 and the band gap is self-evident.

重要な点として、有効スピン軌道相互作用はλeSOC〜δtになっていることである。例えば、 δt=0.1tの場合、グラフェンの内在スピン軌道相互作用がλSOC〜0.1meVで、電子遷移エネルギーがt=2.7eVであることを考えれば、有効スピン軌道作用は内在スピン相互作用の3000倍程度になっていることが分かる。 Importantly, the effective spin orbit interaction is λ eSOC -δt. For example, in the case of δt = 0.1t 0 , the effective spin orbital action is intrinsic considering that the intrinsic spin orbit interaction of graphene is λ SOC ˜0.1 meV and the electron transition energy is t 0 = 2.7 eV. It can be seen that it is about 3000 times the spin interaction.

有効スピン軌道相互作用は電子遷移エネルギーによるものに対して、内在スピン軌道相互作用は相対論的効果であり、一般的に小さい値になる。巨大な有効スピン軌道相互作用が可能になることは本願発明の最も優れた特性であり、それによってトポロジカルバンドギャップのサイズが数千度の温度に相当する。   The effective spin-orbit interaction is based on the electron transition energy, whereas the intrinsic spin-orbit interaction is a relativistic effect and generally has a small value. The ability to enable a huge effective spin orbit interaction is the most excellent characteristic of the present invention, whereby the size of the topological band gap corresponds to a temperature of several thousand degrees.

トポロジカル状態をさらによく特徴づけるため、t=1.1tになるリボン系を、t=0.9tのもので挟む場合を解析する。図3に示されているように、バンドギャップに二重縮退を持つ新しい分散曲線(やや太い濃色の曲線)が現れている。それらが対応する状態の波動関数を調べると、それぞれ擬スピン上向きと下向きで、リボン系の二つの境界線に局在していることが分かる。これは典型的な量子スピンホール効果に期待される、逆スピンに伴う反対流に他ならない。 For characterizing better characterized topological state, the ribbon system becomes t 1 = 1.1t 0, analyzes the case of sandwiching with that of t 1 = 0.9t 0. As shown in FIG. 3, a new dispersion curve (a slightly thick dark curve) having double degeneracy in the band gap appears. Examining the wave functions of the states to which they correspond, it can be seen that the pseudo-spin is upward and downward, respectively, and is localized at the two boundaries of the ribbon system. This is nothing but the countercurrent associated with reverse spin, which is expected for a typical quantum spin Hall effect.

リボンの縁ではC対称性がC対称性に変わり、擬時間反転対称性が破れる。このため、擬スピン上向きと下向の電子同志が相互作用を及ぼし合い、エッジ状態の分散関係はG点で小さいギャップを持つ。定量的には0.01t程度で、図3の尺度では見えない。このミニギャップによって後方散乱が起き、量子スピンホール効果の理想的なエッジ輸送が妨げるかもしれない。この効果を定量的に見積もるため、図3にあるリボン系の電気伝導を計算する。このため、図4に示されるホールバー構造を用い、電流Iを左電極から注入し、右電極から取り出し、平行電圧Vとホール電圧Vを測定し、平行抵抗とホール抵抗を見積もる。理論的には、半無限になっている電極とホール散乱領域での波動関数を界面で接続させ(非特許文献21、非特許文献22)、Landauer-Buettiker公式(非特許文献29)を用いて6つの電極によって散乱される平面波の伝導率 The edges of the ribbons varies C 6 symmetry to C 2 symmetry, is broken inversion symmetry between擬時. For this reason, pseudo-spin upward and downward electrons interact with each other, and the edge state dispersion has a small gap at the G point. Quantitatively, it is about 0.01 to 0 and is not visible on the scale of FIG. This minigap causes backscattering and may hinder the ideal edge transport of the quantum spin Hall effect. To quantitatively estimate this effect, the electrical conductivity of the ribbon system shown in FIG. 3 is calculated. Therefore, using the hole bar structure shown in FIG. 4, the current I is injected from the left electrode, taken out from the right electrode, the parallel voltage V x and the Hall voltage V y are measured, and the parallel resistance and the Hall resistance are estimated. Theoretically, a semi-infinite electrode and a wave function in the hole scattering region are connected at the interface (Non-Patent Document 21, Non-Patent Document 22), and the Landauer-Buettiker formula (Non-Patent Document 29) is used. Conductivity of plane waves scattered by six electrodes

を計算する。 Calculate

図4(a)に示されているように、注入された電流Iは擬スピンによって二つに分かれ、上向きと下向き擬スピンはそれぞれホールバーの上側と下側の縁を流れる。理想的な場合、注入電子のエネルギーがバルクエネルギーギャップの中に設定されている限り、   As shown in FIG. 4A, the injected current I is divided into two by the pseudospin, and the upward and downward pseudospins flow on the upper and lower edges of the hole bar, respectively. Ideally, as long as the energy of the injected electrons is set within the bulk energy gap,

が期待される(非特許文献22、非特許文献23)。図4(b)にあるように、ミニギャップ〜0.01tの中では、電気伝導は期待された値から乖離する。しかし、エネルギーがミニギャップを超えると、GxxとGxyは最大振幅0.05e/hのFabry-Perot型振動(非特許文献30)の数周期のうちに、期待された値に近づく。フェルミレベルを[0.05t,0.1t]に設置した場合、殆ど完璧に量子化された電気伝導度(上式)が実現される。このエネルギー領域ではエッジ状態のエネルギー分散はほぼ直線であり、ミニギャップの存在を感じない。 Is expected (Non-Patent Document 22, Non-Patent Document 23). As in FIG. 4 (b), in among the mini gap ~0.01t 0, electric conduction deviates from the expected value. However, when the energy exceeds the minigap, G xx and G xy approach the expected values within several cycles of Fabry-Perot type vibration (Non-patent Document 30) with a maximum amplitude of 0.05 e 2 / h. When the Fermi level is set to [0.05 t 0 , 0.1 t 0 ], almost perfect quantized electrical conductivity (the above equation) is realized. In this energy region, the energy dispersion in the edge state is almost linear and does not feel the existence of the mini gap.

光格子(非特許文献24、非特許文献25)から二次元電子ガス(非特許文献26〜非特許文献28)までさまざまな系で人工的な蜂の巣格子でディラック型エネルギー分散を作り出すことが試みされている。これらの系はいずれも本願にあるように蜂の巣格子の格子点間の遷移エネルギーの調整によってトポロジカル状態を実現する有望なプラットフォームになっている。具体的に議論を進めるため、ここではCu[111]表面をCO分子の三角ゲートによってトポロジカル状態を創成することに限定する(非特許文献28)。もともとの分子グラフェンに、余分なCO分子を選ばれた場所に配置すれば、CO原子クラスタが局所的に斥力ポテンシャルを作り、電子を遠ざけるため(非特許文献27)、それらを囲む六員環のボンドの長さが大きくなり、従って電子の遷移エネルギーが小さくなる。本願発明の観点からみれば、上記手法によって、分子グラフェンに大きなスケールのKekule遷移バターンが既に実験的に実現されていることが非常に重要である(非特許文献28)。本願では図5(a)に示されたパターンのルールに従ってCO分子クラスタを配置する。明らかにここではもとものの蜂の巣格子に比べて、CO分子クラスタを囲む六員環内の電子遷移エネルギーが小さくなり、六員環間のそれが相対的に大きくなる。t>tが満たされているため、本願発明の理論に従って、この場合はトポロジカル状態が実現される。一方、既に実験的に実現されたKekule電子遷移パターンは図5(b)に示され(非特許文献28)、図5(a)のものと双対関係になり、t<tが満たされているため、系がトポロジカル自明な状態になる。 Attempts have been made to create Dirac energy dispersion with artificial honeycomb lattices in various systems from optical lattices (Non-patent Document 24, Non-patent Document 25) to two-dimensional electron gas (Non-patent Documents 26 to 28). ing. All of these systems are promising platforms for realizing a topological state by adjusting transition energy between lattice points of a honeycomb lattice as described in the present application. In order to proceed with the discussion specifically, here, the Cu [111] surface is limited to creating a topological state by a triangular gate of CO molecules (Non-patent Document 28). If an extra CO molecule is placed in the selected place in the original molecular graphene, the CO atom cluster creates a repulsive potential locally and keeps electrons away (Non-patent Document 27). The bond length is increased, and therefore the electron transition energy is reduced. From the viewpoint of the present invention, it is very important that a large scale Kekule transition pattern has already been experimentally realized in molecular graphene by the above method (Non-patent Document 28). In the present application, CO molecule clusters are arranged according to the rule of the pattern shown in FIG. Obviously, here, compared to the original honeycomb lattice, the electron transition energy in the six-membered ring surrounding the CO molecule cluster is smaller, and that between the six-membered rings is relatively larger. Since t 1 > t 0 is satisfied, the topological state is realized in this case according to the theory of the present invention. On the other hand, the Kekule electron transition pattern that has been experimentally realized is shown in FIG. 5B (Non-Patent Document 28), and has a dual relationship with that of FIG. 5A, and t 1 <t 0 is satisfied. Therefore, the system becomes a topologically obvious state.

バンドギャップから擬スピン自由度に対応するスピン軌道相互作用の大きさを見積もることが可能である。図2(c)のバンドギャップから分かるように、今の場合擬スピン軌道相互作用は近似的にλeSOC=0.1tになる(eSOCは有効(effective)スピン軌道結合(spin-orbit coupling))。グラフェンではt=2.7eV、λSOC=0.1meVであることを考えれば、電子遷移エネルギーを1割程度変調させるだけで、スピン軌道相互作用の数千倍になる有効擬スピン軌道相互作用が実現できる。スピン軌道相互作用は相対論的効果であり、一般的に弱いのに対して、擬スピン軌道相互作用は電気的な相互作用のみにより、非常に大きくなりえる。このことは本願発明の最も重要な特徴の一つであり、これにより高温でも安定なトポロジカル特性が得られる。 It is possible to estimate the magnitude of the spin-orbit interaction corresponding to the pseudo-spin degree of freedom from the band gap. As can be seen from the band gap in FIG. 2 (c), in this case, the pseudo-spin orbit interaction is approximately λ eSOC = 0.1t 0 (eSOC is an effective spin-orbit coupling). ). Considering that t 0 = 2.7 eV and λ SOC = 0.1 meV in graphene, the effective pseudo-spin-orbit interaction can be several thousand times the spin-orbit interaction by modulating the electron transition energy by about 10%. Can be realized. The spin-orbit interaction is a relativistic effect and is generally weak, whereas the pseudo-spin-orbit interaction can be very large only by electrical interaction. This is one of the most important features of the present invention, whereby stable topological characteristics can be obtained even at high temperatures.

電子の持つ内在スピン自由度を考慮に入れることが可能である。スピン軌道相互作用がなければ、二つのスピンチャンネルはそれぞれ独立に振る舞い、縮退度は上記結果の2倍になる。スピン軌道相互作用があれば、その縮退が解ける。一つの分散については、リボンのエッジでC対称性からC対称性に落ち、擬時間反転対称性の消失に伴ってΓ点に現れるミニギャップが閉じられる。残りの二つの状態についてはそのミニギャップが逆に大きくなる。 It is possible to take into account the intrinsic spin degree of freedom of electrons. Without spin-orbit interaction, the two spin channels behave independently of each other and the degree of degeneracy is twice that of the above result. If there is a spin orbit interaction, the degeneracy can be solved. For one distributed, it fell from C 6 symmetry C 2 symmetry ribbon edge, minigap appearing at Γ point with the擬時between inversion symmetry loss is closed. On the other hand, for the remaining two states, the minigap increases.

ここで、六員環内での電子遷移に伴うエネルギーtと六員環間の電子遷移エネルギーtとの間の比率を所望の値に設定するためには、これに限定されるものではないが、たとえば、Cu[111]面にCO分子を置くことによって人工グラフェンを創製したうえ、図5(a)に図示するように一部の六員環に余分のCO原子を導入し、電子遷移エネルギーのKekule超構造を導入する、等の手法を使用することができる(非特許文献28)。 Here, in order to set the ratio between the energy t 0 associated with the electron transition in the six-membered ring and the electron transition energy t 1 between the six-membered rings to a desired value, the present invention is not limited to this. However, for example, artificial graphene was created by placing CO molecules on the Cu [111] plane, and an extra CO atom was introduced into some of the six-membered rings as shown in FIG. A technique such as introducing a Kekule superstructure of transition energy can be used (Non-patent Document 28).

以上詳細に説明したように、本発明によれば原子が蜂の巣状に配置された蜂の巣格子上の電子遷移エネルギーをKekule超構造をもつように調整するだけで、巨大な有効スピン軌道相互作用が生まれ、従来よりもはるかに高温でもポロジカル状態を発現する材料を実現することができる。このような材料は、これに限定されるものではないが、例えばスピントロニクスや超伝導との結合によって新規量子計算への応用に当たって非常に有用であることが期待される。   As described above in detail, according to the present invention, a huge effective spin-orbit interaction can be created simply by adjusting the electron transition energy on the honeycomb lattice in which the atoms are arranged in a honeycomb shape so as to have the Kekule superstructure. Thus, a material that exhibits a porologic state even at a much higher temperature than before can be realized. Although such a material is not limited to this, it is expected to be very useful for application to new quantum computation, for example, by coupling with spintronics or superconductivity.

Klitzing, K. v., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494-497 (1980).Klitzing, K. v., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance.Phys. Rev. Lett. 45, 494-497 (1980). Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045-3067 (2010).Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045-3067 (2010). Qi, X.-L. & Zhang S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057-1110 (2011).Qi, X.-L. & Zhang S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057-1110 (2011). Thouless, D. J., Kohmoto, M., Nightingale, M. P. & Nijs, M. d. Quantized Hall Conductance in a Two-Dimensional Periodic Potential. Phys. Rev. Lett. 49, 405-408 (1982).Thouless, D. J., Kohmoto, M., Nightingale, M. P. & Nijs, M. d.Quantized Hall Conductance in a Two-Dimensional Periodic Potential.Phys. Rev. Lett. 49, 405-408 (1982). Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959-2007 (2010).Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959-2007 (2010). Haldane, F. D. M. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the “Parity Anomaly”. Phys. Rev. Lett. 61, 2015 (1988).Haldane, F.D.M.Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the “Parity Anomaly”. Phys. Rev. Lett. 61, 2015 (1988). Kane, C. L. & Mele E. J. Quantum Spin Hall Effect in Graphene. Phys. Rev. Lett. 95, 226801 (2005).Kane, C. L. & Mele E. J. Quantum Spin Hall Effect in Graphene. Phys. Rev. Lett. 95, 226801 (2005). Bernevig, B. A., Hughes, T. L. & Zhang S.-C. Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells. Science 314, 1757-1761 (2006).Bernevig, B. A., Hughes, T. L. & Zhang S.-C.Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells.Science 314, 1757-1761 (2006). Hsieh, D., Qian, D., Wray, L., Xia, Y., Hor, Y. S., Cava, R. J. & Hasan M. Z. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970-974 (2008).Hsieh, D., Qian, D., Wray, L., Xia, Y., Hor, YS, Cava, RJ & Hasan MZ A topological Dirac insulator in a quantum spin Hall phase.Nature 452, 970-974 (2008) . Yu, R., Zhang, W., Zhang, H.-J., Zhang, S.-C., Dai, X. & Fang, Z. Quantized Anomalous Hall Effect in Magnetic Topological Insulators. Science 329, 61-64 (2010).Yu, R., Zhang, W., Zhang, H.-J., Zhang, S.-C., Dai, X. & Fang, Z. Quantized Anomalous Hall Effect in Magnetic Topological Insulators. Science 329, 61-64 (2010). Chang, C.-Z. et al. Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator. Science 340, 167-170 (2013).Chang, C.-Z. et al. Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator. Science 340, 167-170 (2013). Liang, Q.-F., Wu, L-.H. & Hu, X. Electrically tunable topological state in [111] perovskite materials with an antiferromagnetic exchange field. New J. Phys. 15, 063031 (2013).Liang, Q.-F., Wu, L-.H. & Hu, X. Electrically tunable topological state in [111] perovskite materials with an antiferromagnetic exchange field. New J. Phys. 15, 063031 (2013). Pesin, D. & MacDonald, A. H. Spintronics and pseudospintronics in graphene and topological insulators. Nature Mater. 11, 409-416 (2012).Pesin, D. & MacDonald, A. H. Spintronics and pseudospintronics in graphene and topological insulators.Nature Mater. 11, 409-416 (2012). Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083-1159 (2008).Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083-1159 (2008). Stanescu, T. D., & Tewari, S. Majorana fermions in semiconductor nanowires: fundamentals, modeling, and experiment. J. Phys.: Condens. Matter 25, 233201 (2013).Stanescu, T. D., & Tewari, S. Majorana fermions in semiconductor nanowires: fundamentals, modeling, and experiment.J. Phys .: Condens. Matter 25, 233201 (2013). Beenakker, C. W. J. Search for Majorana Fermions in Superconductors. Annu. Rev. Condens. Matter Phys. 4, 113-136 (2013).Beenakker, C. W. J. Search for Majorana Fermions in Superconductors. Annu. Rev. Condens. Matter Phys. 4, 113-136 (2013). Wu, L.-H., Liang, Q.-F. & Hu, X. New scheme for braiding Majorana fermions. Sci. Technol. Adv. Mater. 15, 064402 (2014).Wu, L.-H., Liang, Q.-F. & Hu, X. New scheme for braiding Majorana fermions. Sci. Technol. Adv. Mater. 15, 064402 (2014). L.-H. Wu, & X. Hu, Scheme to Achieve Silicon Topological Photonics by Dielectric Material. Phys. Rev. Lett. [ arXiv:1503.00416 ].L.-H.Wu, & X. Hu, Scheme to Achieve Silicon Topological Photonics by Dielectric Material.Phys. Rev. Lett. [ArXiv: 1503.00416]. L. Fu, Topological Crystalline Insulators. Phys. Rev. Lett. 106, 106802 (2011).L. Fu, Topological Crystalline Insulators. Phys. Rev. Lett. 106, 106802 (2011). Ando, T. Quantum point contacts in magnetic fields. Phys. Rev. B 44, 8017 (1991).Ando, T. Quantum point contacts in magnetic fields.Phys. Rev. B 44, 8017 (1991). Groth, C. W., Wimmer, M., Akhmerov, A. R. & Waintal, X. Kwant: a software package for quantum transport. New J. Phys. 16, 063065 (2014).Groth, C. W., Wimmer, M., Akhmerov, A. R. & Waintal, X. Kwant: a software package for quantum transport.New J. Phys. 16, 063065 (2014). Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Science Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells. 314. 1757-1761 (2006).Bernevig, B. A., Hughes, T. L. & Zhang, S.-C.Science Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells.314. 1757-1761 (2006). Koenig, M., Wiedmann, S., Bruene, C., Roth, A., Buhmann, H., Molenkamp, L. W., Qi, X.-L. & Zhang, S.-C. Science Quantum Spin Hall Insulator Statein HgTe Quantum Wells. 318, 766-770 (2007).Koenig, M., Wiedmann, S., Bruene, C., Roth, A., Buhmann, H., Molenkamp, LW, Qi, X.-L. & Zhang, S.-C.Science Quantum Spin Hall Insulator Statein HgTe Quantum Wells. 318, 766-770 (2007). Wunsch, B., Guinea, F. & Sols, F. Dirac-point engineering and topological phase transitions in honeycomb optical lattices. New J. Phys. 10, 103027 (2008).Wunsch, B., Guinea, F. & Sols, F. Dirac-point engineering and topological phase transitions in honeycomb optical lattices.New J. Phys. 10, 103027 (2008). Tarruell, L., Greif, D., Uehlinger, T., Jotzu, G. & Esslinger, T. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature 483, 302-305 (2012).Tarruell, L., Greif, D., Uehlinger, T., Jotzu, G. & Esslinger, T. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice.Nature 483, 302-305 (2012) . Gibertini, M., Singha, A., Pellegrini, V. & Polini, M. Engineering artificial graphene in a two-dimensional electron gas. Phys. Rev. B, 79, 241406 (2009).Gibertini, M., Singha, A., Pellegrini, V. & Polini, M. Engineering artificial graphene in a two-dimensional electron gas.Phys. Rev. B, 79, 241406 (2009). Park, C.-H. & Louie, S. G. Making Massless Dirac Fermions from a Patterned Two-Dimensional Electron Gas. Nano Lett. 9, 1793-1797 (2009).Park, C.-H. & Louie, S. G. Making Massless Dirac Fermions from a Patterned Two-Dimensional Electron Gas.Nano Lett. 9, 1793-1797 (2009). Gomes, K. K., Mar, W., Ko, W., Guinea, F. & Manoharan, H. C. Designer Dirac fermions and topological phases in molecular graphene. Nature 483, 306-310 (2012).Gomes, K. K., Mar, W., Ko, W., Guinea, F. & Manoharan, H. C. Designer Dirac fermions and topological phases in molecular graphene.Nature 483, 306-310 (2012). Imry, Y. & Landauer, R. Conductance viewed as transmission, Rev. Mod. Phys. 71, S306-S312 (1999).Imry, Y. & Landauer, R. Conductance viewed as transmission, Rev. Mod. Phys. 71, S306-S312 (1999). Tkachov, G. & Hankiewicz, E. M. Ballistic Quantum Spin Hall State and Enhanced Edge Backscattering in Strong Magnetic Fields. Phys. Rev. Lett. 104, 166803 (2010).Tkachov, G. & Hankiewicz, E. M. Ballistic Quantum Spin Hall State and Enhanced Edge Backscattering in Strong Magnetic Fields. Phys. Rev. Lett. 104, 166803 (2010).

Claims (2)

原子が蜂の巣状に配置された蜂の巣格子型材料であって、
最隣接サイトとの電子遷移エネルギーがKekule超構造を有し、
前記Kekule超構造の六員環内部の電子遷移エネルギーtが最隣接六員環との間の電子遷移エネルギーt超構造よりも小さいKekule超格子を有し、巨大有効スピン軌道相互作用及びトポロジカル状態を発現する蜂の巣格子型材料。
A honeycomb lattice-type material in which atoms are arranged in a honeycomb shape,
The electron transition energy with the nearest site has a Kekule superstructure,
The Kekule superstructure has a Kekule superlattice in which the electron transition energy t 0 inside the six-membered ring of the Kekule superstructure is smaller than the electron transition energy t 1 superstructure between the nearest neighbor six-membered ring, and the giant effective spin-orbit interaction and topological A honeycomb lattice-type material that develops a state.
Cu[111]面にCO分子が配置され、
一部の六員環に余分のCO分子を導入することにより、前記Kekule超構造を導入した、
請求項1に記載の蜂の巣格子型材料。
CO molecules are arranged on the Cu [111] plane,
By introducing an extra CO molecule into some of the six-membered rings, the Kekule superstructure was introduced,
The honeycomb lattice-type material according to claim 1.
JP2015101321A 2015-05-18 2015-05-18 Honeycomb lattice-type material that has a Kekule superlattice structure and exhibits giant effective spin-orbit interaction and topological state Active JP6478187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015101321A JP6478187B2 (en) 2015-05-18 2015-05-18 Honeycomb lattice-type material that has a Kekule superlattice structure and exhibits giant effective spin-orbit interaction and topological state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015101321A JP6478187B2 (en) 2015-05-18 2015-05-18 Honeycomb lattice-type material that has a Kekule superlattice structure and exhibits giant effective spin-orbit interaction and topological state

Publications (2)

Publication Number Publication Date
JP2016219546A JP2016219546A (en) 2016-12-22
JP6478187B2 true JP6478187B2 (en) 2019-03-06

Family

ID=57581526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015101321A Active JP6478187B2 (en) 2015-05-18 2015-05-18 Honeycomb lattice-type material that has a Kekule superlattice structure and exhibits giant effective spin-orbit interaction and topological state

Country Status (1)

Country Link
JP (1) JP6478187B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112036573B (en) * 2020-08-26 2023-09-19 南通大学 Quantum bit interaction topological structure based on medium-scale noisy quantum computer and mapping method thereof
CN116594175B (en) * 2023-05-22 2023-12-01 南开大学 Optical vortex ladder construction method, system and product based on topological singular points

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6161147B2 (en) * 2013-01-25 2017-07-12 国立研究開発法人物質・材料研究機構 Electric field tunable topological insulator using perovskite structure

Also Published As

Publication number Publication date
JP2016219546A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
Kulish et al. Single-layer metal halides MX 2 (X= Cl, Br, I): stability and tunable magnetism from first principles and Monte Carlo simulations
Sushkov et al. Topological insulating states in laterally patterned ordinary semiconductors
Wang et al. Topological p-n junction
Kotov et al. Electron-electron interactions in graphene: Current status and perspectives
JP6536938B2 (en) Topological photonic crystal
Das Weyl semimetal and superconductor designed in an orbital-selective superlattice
Jiang et al. Spin negative differential resistance in edge doped zigzag graphene nanoribbons
Ratnikov et al. Novel type of superlattices based on gapless graphene with the alternating Fermi velocity
Jin et al. Dirac cone engineering in Bi 2 Se 3 thin films
Lü et al. Topological phases and pumps in the Su–Schrieffer–Heeger model periodically modulated in time
Vedeneev Quantum oscillations in three-dimensional topological insulators
JP6478187B2 (en) Honeycomb lattice-type material that has a Kekule superlattice structure and exhibits giant effective spin-orbit interaction and topological state
Tan et al. Instability of the magnetic state of MPX 3 (M= Mn, Ni; X= S, Se) monolayers induced by strain and doping
Tang et al. Magneto optical properties of self-assembled InAs quantum dots for quantum information processing
Wang et al. Electric control of the Josephson current-phase relation in a topological circuit
Zhang et al. Quantum phase transitions and topological proximity effects in graphene nanoribbon heterostructures
Polini et al. Artificial graphene as a tunable Dirac material
Li et al. Dirac fermions and pseudomagnetic fields in two-dimensional electron gases with triangular antidot lattices
Zhang et al. The transport properties of Kekulé-ordered graphene p–n junction
Wang et al. Electronic and optical properties of monolayer InSe quantum dots
Escudero et al. Fermi velocity reduction in graphene due to enhanced vacuum fluctuations
Zhao et al. Manipulating interface states in monolayer–bilayer graphene planar junctions
Albert et al. Optical Properties of Gated Bilayer Graphene Quantum Dots with Trigonal Warping
Kumar et al. A comparative study of carbon-based nanoribbons and MoS2-based nanoribbons for spintronics-based devices
Tan et al. Anomalous Bloch oscillation and electrical switching of edge magnetization in a bilayer graphene nanoribbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190125

R150 Certificate of patent or registration of utility model

Ref document number: 6478187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250