JP2016156299A - Failure diagnostic device of fuel injection system - Google Patents

Failure diagnostic device of fuel injection system Download PDF

Info

Publication number
JP2016156299A
JP2016156299A JP2015033609A JP2015033609A JP2016156299A JP 2016156299 A JP2016156299 A JP 2016156299A JP 2015033609 A JP2015033609 A JP 2015033609A JP 2015033609 A JP2015033609 A JP 2015033609A JP 2016156299 A JP2016156299 A JP 2016156299A
Authority
JP
Japan
Prior art keywords
fuel
pressure
fuel injection
amount
drop amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015033609A
Other languages
Japanese (ja)
Other versions
JP6561493B2 (en
Inventor
史隆 佐藤
Fumitaka Sato
史隆 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2015033609A priority Critical patent/JP6561493B2/en
Publication of JP2016156299A publication Critical patent/JP2016156299A/en
Application granted granted Critical
Publication of JP6561493B2 publication Critical patent/JP6561493B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a failure diagnostic device which can be completed in a common rail system and can diagnose failure of a fuel pressure sensor even when a fuel injection valve fails.SOLUTION: A failure diagnostic device (50) applied to a fuel injection system (10) having a pressure accumulating chamber (20), a plurality of fuel injection valves (40) and a fuel pressure sensor (22) includes injection execution means for executing fuel injection on a predetermined injection condition with remaining fuel injection valves when fuel injection is executed by one fuel injection valve on the predetermined injection condition, detected drop amount calculating means for calculating a drop amount of a fuel pressure in the pressure accumulating chamber as a detected drop amount, estimated drop amount calculating means for calculating an estimated drop amount of the fuel pressure in the pressure accumulating chamber as an estimated drop amount, fluctuation calculating means for calculating fluctuation in the detected drop amount, and fuel pressure sensor failure determination means for determining failure of the fuel pressure sensor when the fluctuation is within a first prescribed range and the difference between the detected drop amount and the estimated drop amount is outside a second prescribed range.SELECTED DRAWING: Figure 2

Description

燃料噴射システム内の故障を診断する故障診断装置に関する。   The present invention relates to a failure diagnosis device for diagnosing a failure in a fuel injection system.

ディーゼル機関の燃料噴射装置として、各気筒の燃料噴射弁に高圧の燃料を供給する共通の蓄圧室(コモンレール)を備えるものが周知である。このコモンレール式のディーゼル機関によれば、機関運転状態に応じて、コモンレール内の燃料圧力を自由に制御することができ、ひいては燃料噴射弁に供給される燃料圧力を自由に制御することができる。   2. Description of the Related Art As a fuel injection device for a diesel engine, one having a common pressure accumulation chamber (common rail) for supplying high-pressure fuel to a fuel injection valve of each cylinder is well known. According to this common rail type diesel engine, the fuel pressure in the common rail can be freely controlled according to the engine operating state, and as a result, the fuel pressure supplied to the fuel injection valve can be freely controlled.

このような燃料噴射装置において、燃圧センサが故障になって正確な燃料圧力を検出できなくなると、燃料噴射を適切に制御できなくなるという問題がある。   In such a fuel injection device, there is a problem that fuel injection cannot be properly controlled if the fuel pressure sensor fails and the accurate fuel pressure cannot be detected.

燃圧センサの故障検出について、例えば特許文献1に記載の先行技術がある。この特許文献1では、要求噴射量を変化させたときの内燃機関の出力の変動量から噴射量を推定し、噴射量から燃料圧力を推定している。そして、推定した燃料圧力と燃圧センサが検出する燃料圧力とによって定まる1つのポイントが正常範囲内にない時に、圧力センサに故障があると判定している。また、定まるポイントが中央特性値に対してどのようにずれたかを把握することで、燃圧センサの故障は具体的にどのような性質の故障なのか判定している。   Regarding the failure detection of the fuel pressure sensor, there is a prior art described in Patent Document 1, for example. In Patent Document 1, the injection amount is estimated from the fluctuation amount of the output of the internal combustion engine when the required injection amount is changed, and the fuel pressure is estimated from the injection amount. Then, when one point determined by the estimated fuel pressure and the fuel pressure detected by the fuel pressure sensor is not within the normal range, it is determined that the pressure sensor has a failure. Further, by grasping how the determined point deviates from the central characteristic value, it is determined what kind of property the failure of the fuel pressure sensor is specifically.

特開2007―40113JP2007-40113

しかしながら、特許文献1に記載の先行技術は、ディーゼル機関の出力を検出するセンサを必須とした構成であり、コモンレールシステム内で完結した故障診断装置とは言い難い。また燃料噴射弁の故障により燃料圧力が変動している場合も含めて燃圧センサの故障と判定してしまうおそれがある。   However, the prior art described in Patent Document 1 has a configuration in which a sensor for detecting the output of a diesel engine is essential, and it is difficult to say that the failure diagnosis device is completed within the common rail system. Further, it may be determined that the fuel pressure sensor has failed, even when the fuel pressure fluctuates due to a failure of the fuel injection valve.

本発明は、上記課題を解決するためになされたものであり、その主たる目的は、コモンレールシステム内で完結し、燃料噴射弁の故障がある場合でも燃圧センサの故障を診断することが可能な故障診断装置を提供することにある。   The present invention has been made in order to solve the above-mentioned problems, and its main purpose is a failure that can be completed within the common rail system and can diagnose the failure of the fuel pressure sensor even when there is a failure of the fuel injection valve. It is to provide a diagnostic device.

本発明は、高圧の燃料を貯蔵する蓄圧室と、前記蓄圧室に供する燃料を加圧して吐出する燃料ポンプと、前記蓄圧室に高圧状態で蓄えられた燃料を噴射する複数の燃料噴射弁と、前記蓄圧室内の燃料圧力を検出する燃圧センサと、を備えた燃料噴射システムに適用される故障診断装置であって、前記複数の燃料噴射弁の内一つの燃料噴射弁により所定の噴射条件で燃料の噴射が実行された場合に、残りの前記燃料噴射弁により前記所定の噴射条件で燃料の噴射を実行させる噴射実行手段と、前記所定の噴射条件で前記燃料噴射弁による噴射に伴い生じた前記蓄圧室内の燃料圧力の降下量を検出降下量として、それぞれ前記燃圧センサの検出値に基づいて算出する検出降下量算出手段と、前記所定の噴射条件で前記燃料噴射弁による噴射に伴い生じると推定される前記蓄圧室内の燃料圧力の降下量を推定降下量として算出する推定降下量算出手段と、前記検出降下量算出手段により算出された検出降下量の前記複数の燃料噴射弁間でのばらつきを算出するばらつき算出手段と、前記ばらつき算出手段により算出された前記ばらつきが第一所定範囲内であり、且つ検出降下量算出手段により算出された前記検出降下量と前記推定降下量算出手段により算出された推定降下量との相違量が第二所定範囲から外れる場合に、前記燃圧センサの故障と判定する燃圧センサ故障判定手段と、を備えることを特徴とする。   The present invention includes a pressure accumulation chamber that stores high-pressure fuel, a fuel pump that pressurizes and discharges fuel supplied to the pressure accumulation chamber, and a plurality of fuel injection valves that inject fuel stored in a high pressure state in the pressure accumulation chamber; And a fuel pressure sensor for detecting a fuel pressure in the pressure accumulating chamber, wherein the fault diagnosis device is applied to a fuel injection system with a predetermined injection condition by one of the plurality of fuel injection valves. When fuel injection is executed, injection execution means for executing fuel injection under the predetermined injection condition by the remaining fuel injection valves, and caused by injection by the fuel injection valve under the predetermined injection condition With the amount of decrease in the fuel pressure in the pressure accumulating chamber as a detected amount of decrease, a detection decrease amount calculation means for calculating based on the detection value of the fuel pressure sensor, and the injection by the fuel injection valve under the predetermined injection condition An estimated descent amount calculating means for calculating an estimated descent amount of the fuel pressure drop in the pressure accumulating chamber between the plurality of fuel injection valves and the detected descent amount calculated by the detected descent amount calculating means. A variation calculating means for calculating a variation at the time, and the variation calculated by the variation calculating means is within a first predetermined range, and the detected drop amount and the estimated drop amount calculated by the detected drop amount calculating means And a fuel pressure sensor failure determination means for determining that the fuel pressure sensor has failed when the difference from the estimated amount of descent calculated by the means is out of the second predetermined range.

上記構成によれば、燃料噴射システムは、蓄圧室と、燃料ポンプと、燃料噴射弁と、燃圧センサを備えている。この燃料噴射システムの故障診断装置は、噴射実行手段を備えており、複数の燃料噴射弁の内一つの燃料噴射弁により所定の噴射条件で燃料の噴射が実行された場合に、残りの前記燃料噴射弁により前記所定の噴射条件で燃料の噴射を実行させる。全気筒が所定の噴射条件で燃料の噴射を実行するように制御されると、燃料噴射弁による噴射に伴い生じた蓄圧室内の燃料圧力の降下量は検出降下量として検出降下量算出手段によりそれぞれ算出される。ばらつき算出手段により、複数の燃料噴射弁間で算出された検出降下量のばらつきが算出される。また、燃料噴射弁から噴射させる燃料の目標噴射量に基づいて、推定降下量算出手段により噴射に伴い生じると推定される蓄圧室内の燃料圧力降下量が推定降下量として算出される。   According to the above configuration, the fuel injection system includes the pressure accumulation chamber, the fuel pump, the fuel injection valve, and the fuel pressure sensor. This failure diagnosis apparatus for a fuel injection system includes injection execution means, and when the fuel is injected under a predetermined injection condition by one of the plurality of fuel injection valves, the remaining fuel The fuel is injected under the predetermined injection condition by the injection valve. When all the cylinders are controlled to perform fuel injection under predetermined injection conditions, the amount of fuel pressure drop in the accumulator chamber caused by the injection by the fuel injection valve is detected as a detected drop amount by the detected drop amount calculating means. Calculated. The variation of the detected drop amount calculated between the plurality of fuel injection valves is calculated by the variation calculating means. Further, based on the target injection amount of the fuel injected from the fuel injection valve, the estimated pressure drop amount calculating means calculates the fuel pressure drop amount in the pressure accumulating chamber that is estimated to be caused by the injection as the estimated drop amount.

燃圧センサが故障している場合には、噴射に伴い生じると推定される推定降下量に対して算出される検出降下量に大きい方向又は小さい方向へのずれが生まれるため、検出降下量と推定降下量との相違量は、全ての燃料噴射弁において第二所定範囲から外れることになる。また、全ての燃料噴射弁で同様のずれを生じさせるため、ばらつき算出手段により算出される複数の燃料噴射弁間で算出された検出降下量のばらつきは、第一所定範囲内に収まる。したがって、ばらつき算出手段により算出されたばらつきが第一所定範囲内であり、且つ検出降下量算出手段により算出された検出降下量と推定降下量算出手段により算出された推定降下量との相違量が第二所定範囲から外れる場合に、燃圧センサ故障判定手段により燃圧センサの故障が判定される。燃料噴射弁の故障がある場合、複数の燃料噴射弁のうち故障した燃料噴射弁の検出降下量は他の燃料噴射弁の検出降下量と差異が生まれるため、ばらつき算出手段により算出される複数の燃料噴射弁間での検出降下量のばらつきは第一所定範囲内に収まらない。このため、燃料噴射弁の故障がある場合でも燃圧センサの故障を診断することが可能となる。また、構成が燃料噴射システムのみで完結しており、例えば内燃機関の出力を検出するセンサなど外部の構成を必要としないですむ。   When the fuel pressure sensor is out of order, the detected drop amount calculated with respect to the estimated drop amount estimated to be caused by the injection is shifted in a large or small direction. The amount of difference from the amount is out of the second predetermined range in all the fuel injection valves. In addition, since the same deviation is caused in all the fuel injection valves, the variation in the detected drop amount calculated among the plurality of fuel injection valves calculated by the variation calculation means falls within the first predetermined range. Accordingly, the variation calculated by the variation calculation means is within the first predetermined range, and the difference between the detected fall amount calculated by the detected fall amount calculation means and the estimated fall amount calculated by the estimated fall amount calculation means is When the fuel pressure sensor is out of the second predetermined range, the fuel pressure sensor failure determination means determines that the fuel pressure sensor has failed. When there is a failure of the fuel injection valve, the detected drop amount of the failed fuel injection valve among the plurality of fuel injection valves is different from the detected drop amount of the other fuel injection valves. The variation in the detected drop amount between the fuel injection valves does not fall within the first predetermined range. For this reason, it is possible to diagnose the failure of the fuel pressure sensor even when there is a failure of the fuel injection valve. Further, the configuration is completed only by the fuel injection system, and an external configuration such as a sensor for detecting the output of the internal combustion engine is not required.

また、本発明は、高圧の燃料を貯蔵する蓄圧室と、前記蓄圧室に供する燃料を加圧して吐出する燃料ポンプと、前記蓄圧室に高圧状態で蓄えられた燃料を噴射する複数の燃料噴射弁と、前記蓄圧室内の燃料圧力を検出する燃圧センサと、を備えた燃料噴射システムに適用される故障診断装置であって、前記複数の燃料噴射弁の内一つの燃料噴射弁により所定の噴射条件で燃料の噴射が実行された場合に、残りの前記燃料噴射弁により前記所定の噴射条件で燃料の噴射を実行させる噴射実行手段と、前記所定の噴射条件で前記燃料噴射弁による噴射に伴い生じた前記蓄圧室内の燃料圧力の降下量を検出降下量として、それぞれ前記燃圧センサの検出値に基づいて算出する検出降下量算出手段と、前記所定の噴射条件で前記燃料噴射弁による噴射に伴い生じると推定される前記蓄圧室内の燃料圧力の降下量を推定降下量として算出する推定降下量算出手段と、前記検出降下量算出手段により算出された気筒ごとの前記検出降下量から過半数を超える前記検出降下量を過半数降下量として選択し、前記過半数降下量と前記推定降下量算出手段により算出された前記推定降下量との相違に基づいた相違量を算出する相違量算出手段と、前記相違量算出手段により算出された前記相違量が第二所定範囲から外れる場合に、前記燃圧センサの故障と判定する燃圧センサ故障判定手段と、備えることを特徴とする。   The present invention also provides a pressure accumulation chamber that stores high-pressure fuel, a fuel pump that pressurizes and discharges fuel supplied to the pressure accumulation chamber, and a plurality of fuel injections that inject fuel stored in a high pressure state in the pressure accumulation chamber A failure diagnosis device applied to a fuel injection system comprising a valve and a fuel pressure sensor for detecting fuel pressure in the pressure accumulating chamber, wherein a predetermined injection is performed by one of the plurality of fuel injection valves When fuel injection is executed under conditions, injection execution means for executing fuel injection under the predetermined injection conditions by the remaining fuel injection valves, and accompanying injection by the fuel injection valves under the predetermined injection conditions The amount of fuel pressure drop that has occurred in the accumulator chamber that has occurred is used as a detected drop amount, and the detected drop amount calculation means calculates the detection pressure based on the detected value of the fuel pressure sensor, and the injection by the fuel injection valve under the predetermined injection condition An estimated descent amount calculating means for calculating an estimated descent amount of the fuel pressure drop in the pressure accumulating chamber estimated to be generated, and a majority from the detected descent amount for each cylinder calculated by the detected descent amount calculating means. A difference amount calculating means for selecting the detected drop amount as a majority drop amount and calculating a difference amount based on a difference between the majority drop amount and the estimated drop amount calculated by the estimated drop amount calculating means; Fuel pressure sensor failure determination means for determining a failure of the fuel pressure sensor when the difference amount calculated by the amount calculation means is out of the second predetermined range.

上記構成によれば、燃料噴射システムは、蓄圧室と、燃料ポンプと、燃料噴射弁と、燃圧センサを備えている。この燃料噴射システムの故障診断装置は、噴射実行手段を備えており、複数の燃料噴射弁の内一つの燃料噴射弁により所定の噴射条件で燃料の噴射が実行された場合に、残りの前記燃料噴射弁により前記所定の噴射条件で燃料の噴射を実行させる。全気筒が所定の噴射条件で燃料の噴射を実行するように制御されると、燃料噴射弁による噴射に伴い生じた蓄圧室内の燃料圧力の降下量は検出降下量として検出降下量算出手段によりそれぞれ算出される。また、燃料噴射弁から噴射させる燃料の目標噴射量に基づいて、推定降下量算出手段により噴射に伴い生じると推定される蓄圧室内の燃料圧力降下量が推定降下量として算出される。燃圧センサが故障している場合には、噴射に伴い生じると期待される推定降下量に対して全気筒の検出降下量に大きい方向又は小さい方向へのずれが生まれるため、相違量算出手段により算出されたそれぞれの相違量は、全て第二所定範囲から外れることになる。このような燃圧センサの故障が生じているか判定を行う際には、全ての燃料噴射弁で検出降下量が推定降下量に対してずれが生じているか判定する必要はない。なぜならば、区別して故障判定すべき燃料噴射弁の故障が同時に過半数を超えて生じる可能性が小さいため、検出降下量が推定降下量に対してずれが生じている燃料噴射弁が過半数よりも多い場合には燃圧センサの故障と判定できるからである。したがって、算出された全ての検出降下量から過半数を超える検出降下量が過半数降下量として選択され、過半数降下量と推定降下量算出手段により算出された推定降下量との相違に基づいた相違量が相違量算出手段により算出される。算出された相違量が第二所定範囲から外れる燃料噴射弁が過半数よりも多い場合に、燃圧センサ故障判定手段により燃圧センサの故障と判定される。よって、このような燃圧センサの故障判定でも、燃料噴射弁の故障と区別して診断することが可能となる。また、構成が燃料噴射システムのみで完結しており、例えば内燃機関の出力を検出するセンサなど外部の構成を必要としないですむ。   According to the above configuration, the fuel injection system includes the pressure accumulation chamber, the fuel pump, the fuel injection valve, and the fuel pressure sensor. This failure diagnosis apparatus for a fuel injection system includes injection execution means, and when the fuel is injected under a predetermined injection condition by one of the plurality of fuel injection valves, the remaining fuel The fuel is injected under the predetermined injection condition by the injection valve. When all the cylinders are controlled to perform fuel injection under predetermined injection conditions, the amount of fuel pressure drop in the accumulator chamber caused by the injection by the fuel injection valve is detected as a detected drop amount by the detected drop amount calculating means. Calculated. Further, based on the target injection amount of the fuel injected from the fuel injection valve, the estimated pressure drop amount calculating means calculates the fuel pressure drop amount in the pressure accumulating chamber that is estimated to be caused by the injection as the estimated drop amount. When the fuel pressure sensor is out of order, there is a shift in the detected drop amount of all cylinders in the large or small direction with respect to the estimated drop amount that is expected to be caused by the injection. All the difference amounts thus made are out of the second predetermined range. When determining whether or not such a fuel pressure sensor failure has occurred, it is not necessary to determine whether or not the detected drop amount is deviated from the estimated drop amount in all the fuel injection valves. This is because there is a small possibility that the failure of the fuel injection valves that should be determined as failure by distinction will be more than a majority at the same time, so there are more fuel injection valves than the majority in which the detected drop amount deviates from the estimated drop amount This is because it can be determined that the fuel pressure sensor has failed. Therefore, the detected fall amount exceeding the majority is selected as the majority fall amount from all the calculated fall amounts, and the difference amount based on the difference between the majority fall amount and the estimated fall amount calculated by the estimated fall amount calculation means is calculated. Calculated by the difference amount calculation means. When the calculated difference amount is larger than the majority of fuel injection valves that are out of the second predetermined range, the fuel pressure sensor failure determination means determines that the fuel pressure sensor has failed. Therefore, even with such a fuel pressure sensor failure determination, it is possible to make a diagnosis in distinction from a fuel injection valve failure. Further, the configuration is completed only by the fuel injection system, and an external configuration such as a sensor for detecting the output of the internal combustion engine is not required.

本実施形態にかかる燃料噴射システムの概略構成図である。It is a schematic structure figure of a fuel injection system concerning this embodiment. 本実施形態にかかるECUにより実行される制御フローチャートである。It is a control flowchart performed by ECU concerning this embodiment. 本実施形態にかかる燃料噴射弁異常及び圧力センサ出力異常時の挙動を示す図である。It is a figure which shows the behavior at the time of fuel injection valve abnormality concerning this embodiment, and pressure sensor output abnormality. 圧力センサの出力異常に関する一例である。It is an example regarding the output abnormality of a pressure sensor. 圧力センサの出力異常に関する一例である。It is an example regarding the output abnormality of a pressure sensor. 圧力センサ出力異常時におけるポンプ吐出量及びフィードバック量を示す図である。It is a figure which shows the pump discharge amount and feedback amount at the time of pressure sensor output abnormality. 図2に示されている制御フローチャートの一変形例である。It is a modification of the control flowchart shown by FIG.

以下、本実施形態を図に基づいて説明する。図1に、本実施形態の燃料噴射システム10を示す。   Hereinafter, the present embodiment will be described with reference to the drawings. FIG. 1 shows a fuel injection system 10 of the present embodiment.

蓄圧式の燃料噴射システム10は、燃料供給ポンプ16(燃料ポンプに該当)、コモンレール20(蓄圧室に該当)、圧力センサ22(燃圧センサに該当)、減圧弁30、複数の燃料噴射弁40、電子制御装置(ECU:Electronic Control Unit)50、電子駆動装置(EDU:ElectronicDriving Unit)52等から構成されており、内燃機関として図示しない4気筒のディーゼルエンジン(以下、単にエンジンとも言う。)の各気筒に燃料を噴射する。尚、図の煩雑さを避けるため、図1においては、EDU52から1個の燃料噴射弁40への制御信号線、ならびにコモンレール20から1個の燃料噴射弁40への噴射配管202だけを示している。   The pressure accumulation fuel injection system 10 includes a fuel supply pump 16 (corresponding to a fuel pump), a common rail 20 (corresponding to a pressure accumulating chamber), a pressure sensor 22 (corresponding to a fuel pressure sensor), a pressure reducing valve 30, a plurality of fuel injection valves 40, An electronic control unit (ECU) 50, an electronic driving unit (EDU) 52, and the like, each of a four-cylinder diesel engine (hereinafter also simply referred to as an engine) not shown as an internal combustion engine. Fuel is injected into the cylinder. In FIG. 1, only the control signal line from the EDU 52 to one fuel injection valve 40 and the injection pipe 202 from the common rail 20 to one fuel injection valve 40 are shown in order to avoid the complexity of the figure. Yes.

燃料フィルタ14は、燃料タンク12から燃料供給ポンプ16が吸入する燃料中の異物を除去する。燃料供給ポンプ16は、燃料タンク12から燃料を吸入するフィードポンプを内蔵しており、吸入した燃料を加圧し供給配管200を通してコモンレール20に吐出する。   The fuel filter 14 removes foreign matters in the fuel sucked by the fuel supply pump 16 from the fuel tank 12. The fuel supply pump 16 has a built-in feed pump that sucks fuel from the fuel tank 12, pressurizes the sucked fuel, and discharges it to the common rail 20 through the supply pipe 200.

燃料供給ポンプ16は、カムシャフトのカムの回転にともないプランジャが往復移動することにより加圧室に吸入した燃料を加圧する公知のポンプである。ECU50が燃料供給ポンプ16の調量弁18を制御することにより、燃料供給ポンプ16が吸入行程で吸入する燃料の吸入量が調量される。そして、吸入量が調量されることにより、燃料供給ポンプ16からの燃料の吐出量が調量される。尚、燃料供給ポンプ16の吐出側に、燃料の吐出量を調量する調量弁を設置して吐出量を調量してもよい。   The fuel supply pump 16 is a known pump that pressurizes the fuel sucked into the pressurizing chamber when the plunger reciprocates as the cam of the camshaft rotates. By controlling the metering valve 18 of the fuel supply pump 16 by the ECU 50, the amount of fuel sucked by the fuel supply pump 16 in the suction stroke is metered. Then, the amount of fuel discharged from the fuel supply pump 16 is adjusted by adjusting the intake amount. It should be noted that a metering valve for metering the fuel discharge amount may be installed on the discharge side of the fuel supply pump 16 to meter the discharge amount.

コモンレール20は、燃料供給ポンプ16が吐出する燃料を蓄圧してエンジン運転状態に応じた所定の高圧に燃料圧力を保持し、噴射配管202を通して燃料噴射弁40に燃料を供給する。圧力センサ22は、コモンレール20の内部の燃料圧力(実レール圧)に応じた信号を出力する。   The common rail 20 accumulates the fuel discharged from the fuel supply pump 16 to maintain the fuel pressure at a predetermined high pressure corresponding to the engine operating state, and supplies the fuel to the fuel injection valve 40 through the injection pipe 202. The pressure sensor 22 outputs a signal corresponding to the fuel pressure (actual rail pressure) inside the common rail 20.

減圧弁30は、通電制御により開弁しコモンレール20の内部の燃料を低圧側のリターン配管204に排出する電磁弁である。   The pressure reducing valve 30 is an electromagnetic valve that opens by energization control and discharges the fuel inside the common rail 20 to the return pipe 204 on the low pressure side.

燃料噴射弁40は、4気筒のディーゼルエンジンの各気筒に搭載され、コモンレール20が蓄圧している燃料を気筒内に噴射する。燃料噴射弁40は、エンジンの運転状態に基づいて、1回の燃焼サイクルにおいてメイン噴射の前後にパイロット噴射およびポスト噴射を含む多段噴射を行う。燃料噴射弁40は、ノズルニードルに閉弁方向に燃料圧力を加える背圧室の圧力を制御することにより燃料噴射量を制御する公知の電磁駆動式の噴射弁である。燃料噴射弁40の電磁駆動部は、ピエゾアクチュエータまたは電磁コイルで構成されている。   The fuel injection valve 40 is mounted in each cylinder of a four-cylinder diesel engine, and injects fuel accumulated in the common rail 20 into the cylinder. The fuel injection valve 40 performs multi-stage injection including pilot injection and post injection before and after the main injection in one combustion cycle based on the operating state of the engine. The fuel injection valve 40 is a known electromagnetically driven injection valve that controls the fuel injection amount by controlling the pressure in the back pressure chamber that applies fuel pressure to the nozzle needle in the valve closing direction. The electromagnetic drive unit of the fuel injection valve 40 is constituted by a piezo actuator or an electromagnetic coil.

背圧制御弁42は、燃料噴射弁40の背圧室の圧力が所定圧を超えると開弁し、背圧室の燃料をリターン配管204に排出する。これにより、燃料噴射弁40の背圧室の圧力が所定圧を超えることを防止する。   The back pressure control valve 42 opens when the pressure in the back pressure chamber of the fuel injection valve 40 exceeds a predetermined pressure, and discharges the fuel in the back pressure chamber to the return pipe 204. This prevents the pressure in the back pressure chamber of the fuel injection valve 40 from exceeding a predetermined pressure.

ECU50は、CPU、ROM、RAM、フラッシュメモリ等の書換可能な不揮発性メモリ、入出力インタフェース等を中心とするマイクロコンピュータ(マイコン)から主に構成されている。   The ECU 50 is mainly composed of a microcomputer (microcomputer) mainly including a rewritable nonvolatile memory such as a CPU, a ROM, a RAM, and a flash memory, an input / output interface, and the like.

ECU50は、ROMまたはフラッシュメモリに記憶されている制御プログラムを実行することにより、燃料噴射システム10の各種制御を実行する。例えば、ECU50は、燃料供給ポンプ16の吐出量、および減圧弁30の開閉を制御して、圧力センサ22の出力信号から検出する検出レール圧と、エンジン運転状態に基づいて設定する目標圧力(目標レール圧)との差圧に基づいて検出レール圧を目標レール圧に追随させるフィードバック(F/B)制御を実行する(フィードバック制御手段に該当)。   The ECU 50 executes various controls of the fuel injection system 10 by executing a control program stored in the ROM or flash memory. For example, the ECU 50 controls the discharge amount of the fuel supply pump 16 and the opening / closing of the pressure reducing valve 30 to detect the detected rail pressure from the output signal of the pressure sensor 22 and the target pressure (target) set based on the engine operating state. The feedback (F / B) control is executed to make the detected rail pressure follow the target rail pressure based on the differential pressure with respect to the rail pressure (corresponding to feedback control means).

ECU50は、本発明に係わる噴射実行手段、検出降下量算出手段、推定降下量算出手段、ばらつき算出手段、燃圧センサ故障判定手段、フィードバック量判定手段、ずれ方向特定手段、燃料噴射弁故障判定手段、相違量算出手段、故障噴射弁特定手段などの機能を有している。   The ECU 50 includes an injection executing means, a detected drop amount calculating means, an estimated drop amount calculating means, a variation calculating means, a fuel pressure sensor failure determining means, a feedback amount determining means, a deviation direction specifying means, a fuel injection valve failure determining means according to the present invention, It has functions such as a difference amount calculating means and a failure injection valve specifying means.

EDU52は、ECU50が出力する制御信号に基づいて減圧弁30、燃料噴射弁40に駆動電流または駆動電圧を供給するための駆動装置である。   The EDU 52 is a drive device for supplying drive current or drive voltage to the pressure reducing valve 30 and the fuel injection valve 40 based on a control signal output from the ECU 50.

以下、ECU50が実行する燃料噴射システム10に関する制御内容を説明する。図2に示す燃料噴射システム10に関する制御は、ECU50の電源オン期間中にECU50によって所定周期で繰り返し実行される。   Hereinafter, the control content regarding the fuel injection system 10 which ECU50 performs is demonstrated. The control related to the fuel injection system 10 shown in FIG. 2 is repeatedly executed by the ECU 50 at a predetermined cycle during the power-on period of the ECU 50.

本制御が起動されると、まずステップ100で診断条件が成立したか否かを判定する。診断条件とは、4気筒あるうち1つの気筒が特定の運転状態(所定の噴射条件に該当)になることを示している。具体的には、コモンレール20内の目標レール圧が所定圧力PFINとなり、所定圧力PFINに応じて燃料噴射弁40に指示される指示噴射量が所定噴射量QFINに設定されることを示している。診断条件が成立しなかった場合には(ステップ100:NO)、そのまま本制御は終了する。診断条件が成立した場合には(ステップ100:YES)、ステップ101に進む。   When this control is activated, it is first determined in step 100 whether or not a diagnostic condition is satisfied. The diagnosis condition indicates that one of the four cylinders is in a specific operation state (corresponding to a predetermined injection condition). Specifically, the target rail pressure in the common rail 20 becomes the predetermined pressure PFIN, and the command injection amount instructed to the fuel injection valve 40 according to the predetermined pressure PFIN is set to the predetermined injection amount QFIN. When the diagnosis condition is not satisfied (step 100: NO), this control is finished as it is. If the diagnosis condition is satisfied (step 100: YES), the process proceeds to step 101.

ステップ101では、診断条件が成立した場合に他の気筒についても、同様の噴射条件を設定する。具体的には図3に示すように、#1気筒の診断条件が成立した場合に、#2以降の気筒についてもその目標レール圧を所定圧力PFINに、指示噴射量を所定噴射量QFINに設定する。   In step 101, the same injection condition is set for the other cylinders when the diagnosis condition is satisfied. Specifically, as shown in FIG. 3, when the diagnosis condition for the # 1 cylinder is satisfied, the target rail pressure is set to the predetermined pressure PFIN and the command injection amount is set to the predetermined injection amount QFIN for the cylinders after # 2. To do.

その後、ステップ102において、各気筒に備えられている燃料噴射弁40からの燃料噴射により低下した検出レール圧を、圧力センサ22からの信号に基づいてそれぞれ算出する。   Thereafter, in step 102, the detected rail pressures that have decreased due to the fuel injection from the fuel injection valve 40 provided in each cylinder are calculated based on the signal from the pressure sensor 22, respectively.

ステップ103にて、噴射される前のコモンレール20内の検出レール圧とステップ102にて算出された燃料噴射後の検出レール圧との差圧を検出差圧ΔPkとして気筒ごとに算出する。   In step 103, the differential pressure between the detected rail pressure in the common rail 20 before injection and the detected rail pressure after fuel injection calculated in step 102 is calculated for each cylinder as a detected differential pressure ΔPk.

ステップ104にて、算出された各気筒の検出差圧ΔPkから気筒間のばらつきXを算出する。本実施形態では、算出された各気筒の検出差圧ΔPkを用いて、標準偏差を算出する。この算出された標準偏差が気筒間のばらつきXに該当する。   In step 104, the variation X between cylinders is calculated from the calculated detected differential pressure ΔPk of each cylinder. In the present embodiment, the standard deviation is calculated using the calculated detected differential pressure ΔPk of each cylinder. This calculated standard deviation corresponds to the variation X between cylinders.

ステップ105にて、算出された気筒間のばらつきXが第一所定範囲α内かどうかを判定する。なお、第一所定範囲αは、圧力センサ22及び全気筒の燃料噴射弁40が故障していないときに算出されると期待される気筒間のばらつきXに誤差を含めた範囲として設定される。このとき、例えば図3に示すように#3気筒の燃料噴射弁40が故障しているならば、#3気筒の検出差圧ΔPkが他の気筒と比較して異なる値を示すため、気筒間のばらつきXは第一所定範囲αから外れる。よって、気筒間のばらつきXが第一所定範囲α内に収まらなかった場合には(ステップ105:NO)、ステップ106に進み、燃料噴射弁40が故障している気筒があることを判定する。そして、燃料噴射弁40が故障していると判定された場合に、過半数を超える気筒の検出差圧ΔPkと異なる値を示す気筒の燃料噴射弁40について、その燃料噴射弁40が故障していると特定する。なお、過半数を超える気筒の検出差圧ΔPkとは、互いの差が所定値以内にある複数の検出差圧ΔPkであって、その個数が過半数を超えるものを指す。   In step 105, it is determined whether or not the calculated variation X between cylinders is within the first predetermined range α. The first predetermined range α is set as a range including an error in the variation X between cylinders that is expected to be calculated when the pressure sensor 22 and the fuel injection valves 40 of all the cylinders are not out of order. At this time, for example, as shown in FIG. 3, if the fuel injection valve 40 of the # 3 cylinder is out of order, the detected differential pressure ΔPk of the # 3 cylinder shows a different value compared to the other cylinders. Variation X deviates from the first predetermined range α. Therefore, when the variation X between the cylinders does not fall within the first predetermined range α (step 105: NO), the process proceeds to step 106, and it is determined that there is a cylinder in which the fuel injection valve 40 has failed. And when it determines with the fuel injection valve 40 having failed, the fuel injection valve 40 is out of order about the fuel injection valve 40 of the cylinder which shows a value different from detection differential pressure (DELTA) Pk of the cylinder exceeding a majority. Is identified. The detected differential pressure ΔPk of the cylinder exceeding the majority refers to a plurality of detected differential pressures ΔPk whose difference is within a predetermined value, the number of which exceeds the majority.

気筒間のばらつきXが第一所定範囲α内に収まった場合には(ステップ105:YES)、ステップ107に進む。ステップ107では、圧力センサ22及び燃料噴射弁40が故障していないときに算出されると推定される所定の噴射条件で燃料が噴射された際に生じる気筒内の差圧としての推定差圧ΔPtと、ある気筒の検出差圧ΔPkとで相違があるか否かを判定する。例えば、図3に示すように、圧力センサ22の出力に異常がある場合には、全ての気筒において、推定差圧ΔPtに対し検出差圧ΔPkが一定のずれを生じさせることになる。したがって、本実施形態では、検出差圧ΔPkを推定差圧ΔPtで割った商(相違量に該当)が第二所定範囲β内に収まらなかった場合に、相違があると判定する。また、既に燃料噴射弁40の故障判定を行った後である為、圧力センサ22の故障判定では燃料噴射弁40の故障を考慮する必要がない。よって、全気筒で検出差圧ΔPkと推定差圧ΔPtとの相違があるかを判定せず、1つの気筒において検出差圧ΔPkと推定差圧ΔPtとの相違があるかを判定している。なお、第二所定範囲βは、圧力センサ22及び燃料噴射弁40が正常である場合に期待される検出差圧ΔPkを推定差圧ΔPtで割った商に誤差を含んだ範囲として設定される。   When the variation X between the cylinders falls within the first predetermined range α (step 105: YES), the routine proceeds to step 107. In step 107, the estimated differential pressure ΔPt as the differential pressure in the cylinder generated when the fuel is injected under a predetermined injection condition estimated to be calculated when the pressure sensor 22 and the fuel injection valve 40 are not malfunctioning. And whether or not there is a difference between the detected differential pressure ΔPk of a certain cylinder. For example, as shown in FIG. 3, when the output of the pressure sensor 22 is abnormal, the detected differential pressure ΔPk causes a certain deviation from the estimated differential pressure ΔPt in all cylinders. Therefore, in this embodiment, when the quotient (corresponding to the difference amount) obtained by dividing the detected differential pressure ΔPk by the estimated differential pressure ΔPt does not fall within the second predetermined range β, it is determined that there is a difference. In addition, since the failure determination of the fuel injection valve 40 has already been performed, it is not necessary to consider the failure of the fuel injection valve 40 when determining the failure of the pressure sensor 22. Therefore, it is not determined whether there is a difference between the detected differential pressure ΔPk and the estimated differential pressure ΔPt in all cylinders, but it is determined whether there is a difference between the detected differential pressure ΔPk and the estimated differential pressure ΔPt in one cylinder. The second predetermined range β is set as a range including an error in the quotient obtained by dividing the detected differential pressure ΔPk expected when the pressure sensor 22 and the fuel injection valve 40 are normal by the estimated differential pressure ΔPt.

検出差圧ΔPkを推定差圧ΔPtで割った商が第二所定範囲β内に収まった場合(推定差圧ΔPtとある気筒の検出差圧ΔPkとで相違がなかった場合)には(ステップ107:YES)、そのまま本制御は終了する。検出差圧ΔPkを推定差圧ΔPtで割った商が第二所定範囲β内に収まらなかった場合(推定差圧ΔPtとある気筒の検出差圧ΔPkとで相違があった場合)には(ステップ107:NO)、ステップ108に進み、圧力センサ22が故障していると判定する。   When the quotient obtained by dividing the detected differential pressure ΔPk by the estimated differential pressure ΔPt falls within the second predetermined range β (when there is no difference between the estimated differential pressure ΔPt and the detected differential pressure ΔPk of a certain cylinder) (step 107) : YES), this control is finished as it is. When the quotient obtained by dividing the detected differential pressure ΔPk by the estimated differential pressure ΔPt does not fall within the second predetermined range β (when there is a difference between the estimated differential pressure ΔPt and the detected differential pressure ΔPk of a certain cylinder) (step) 107: NO), the process proceeds to step 108, and it is determined that the pressure sensor 22 has failed.

ステップ109では、本来検出される検出レール圧から圧力センサ22がどのように出力がずれているのかを判定する。このとき、例えば圧力センサ22の出力が中央特性に対し図4に示すようにずれた場合、検出差圧ΔPkを推定差圧ΔPtで割った商が第二所定範囲βよりも大きい値として算出される。これは、推定差圧ΔPtよりも検出差圧ΔPkの方が大きい値であることを示しており、つまり想定される噴射パルスで噴射が実施されたにも関わらず検出レール圧(圧力センサ認識圧)は想定される値よりも下回ったことを意味している。実レール圧と燃料噴射量は相関関係があり、噴射前の実レール圧が高いほどに噴射される燃料噴射量は多くなることは公知である。よって、想定される噴射パルスで噴射が実施されたにも関わらず検出レール圧は想定される値よりも下回ったということは、それだけ噴射前の実レール圧が高かったために想定よりも多く燃料が噴射され、検出レール圧が大きく低下したということになる。つまり、圧力センサ22により検出される検出レール圧は本来検出されるべき実レール圧よりも小さい値として検出されていることが分かる。また、中央特性と比較しても、検出レール圧は低い値を検出していることになる。   In step 109, it is determined how the output of the pressure sensor 22 deviates from the detected rail pressure that is originally detected. At this time, for example, when the output of the pressure sensor 22 deviates from the center characteristic as shown in FIG. 4, the quotient obtained by dividing the detected differential pressure ΔPk by the estimated differential pressure ΔPt is calculated as a value larger than the second predetermined range β. The This indicates that the detected differential pressure ΔPk is larger than the estimated differential pressure ΔPt, that is, the detected rail pressure (pressure sensor recognition pressure) although injection is performed with the assumed injection pulse. ) Means below the expected value. It is known that there is a correlation between the actual rail pressure and the fuel injection amount, and the higher the actual rail pressure before injection, the larger the fuel injection amount that is injected. Therefore, the fact that the detected rail pressure was lower than the expected value even though the injection was carried out with the assumed injection pulse means that the actual rail pressure before the injection was so high that more fuel was expected than expected. It is injected and the detected rail pressure is greatly reduced. That is, it can be seen that the detected rail pressure detected by the pressure sensor 22 is detected as a value smaller than the actual rail pressure that should be detected. Further, even when compared with the central characteristic, the detected rail pressure is detected at a low value.

しかし、図5のように燃料噴射前は中央特性よりも検出レール圧が高く、燃料噴射後は中央特性をまたいで検出レール圧が大きく低下した場合、上記の方法で圧力センサ22の出力のずれを特定するのは困難である。なぜなら、この場合推定差圧ΔPtに対し検出差圧ΔPkは大きい値が算出されるが、所定の噴射条件において噴射を開始するときには圧力センサ22の出力は中央特性に対し大きい方向にずれているにも関わらず、圧力センサ22の出力は中央特性に対し小さい方向にずれていると誤判定することになるからである。本実施形態では、このような誤判定を抑制するため、コモンレール20内の検出レール圧を所定圧力PFINとするようにF/B制御されたときの燃料噴射量の実フィードバック量Fに注目した。   However, as shown in FIG. 5, when the detected rail pressure is higher than the central characteristic before fuel injection and the detected rail pressure greatly decreases across the central characteristic after fuel injection, the deviation of the output of the pressure sensor 22 is performed by the above method. Is difficult to identify. This is because, in this case, the detected differential pressure ΔPk is calculated to be larger than the estimated differential pressure ΔPt, but when the injection is started under a predetermined injection condition, the output of the pressure sensor 22 is shifted in a large direction with respect to the central characteristic. Nevertheless, it is erroneously determined that the output of the pressure sensor 22 is shifted in a small direction with respect to the center characteristic. In this embodiment, in order to suppress such erroneous determination, attention is paid to the actual feedback amount F of the fuel injection amount when the F / B control is performed so that the detected rail pressure in the common rail 20 is set to the predetermined pressure PFIN.

図5に示す圧力センサ22の出力異常において、燃料噴射前の実レール圧が中央特性よりも低いために、燃料噴射量もまた少ない。燃料噴射量と燃料供給ポンプ16の吐出量は相関関係にあるため、図6に示すように燃料供給ポンプ16の吐出量も出荷時に測定される燃料供給ポンプ16の吐出量と比較して少ないことが分かる。このときの吐出量は、目標レール圧に応じて設定される基本圧送量に、検出レール圧を目標レール圧とするようにF/B制御されたときの実フィードバック量Fが加えられたものである。つまり、圧力センサ22の出力異常時に、直接影響を受けるのは実フィードバック量Fである。よって、本実施形態では、実フィードバック量Fが所定の噴射条件におけるフィードバック量の初期値(出荷時のデフォルトフィードバック量)としての初期フィードバック量FBよりも多いか少ないかを判定することで、圧力センサ22の出力が中央センサに対しどちらにずれたのかを判定する。   In the output abnormality of the pressure sensor 22 shown in FIG. 5, since the actual rail pressure before fuel injection is lower than the center characteristic, the fuel injection amount is also small. Since the fuel injection amount and the discharge amount of the fuel supply pump 16 have a correlation, as shown in FIG. 6, the discharge amount of the fuel supply pump 16 is also smaller than the discharge amount of the fuel supply pump 16 measured at the time of shipment. I understand. The discharge amount at this time is obtained by adding the actual feedback amount F when the F / B control is performed so that the detected rail pressure becomes the target rail pressure to the basic pumping amount set according to the target rail pressure. is there. That is, the actual feedback amount F is directly affected when the output of the pressure sensor 22 is abnormal. Therefore, in the present embodiment, it is determined whether the actual feedback amount F is larger or smaller than the initial feedback amount FB as an initial value (default feedback amount at the time of shipment) of the feedback amount in a predetermined injection condition. It is determined which of 22 outputs is shifted with respect to the center sensor.

図6によれば、圧力センサ22の出力異常時における各気筒の実フィードバック量Fは初期フィードバック量FBよりも少ないものとなる。圧力センサ22が正常である場合の初期フィードバック量FBよりも実フィードバック量Fが少ないということは、推定差圧ΔPtよりも検出差圧ΔPkの方が大きい値であるにも関わらず、実際に噴射した燃料噴射量は出荷時に測定された燃料噴射量と比較して少ないことを示している。つまり、圧力センサ22の出力が中央特性に対して大きい方向にずれており、検出レール圧よりも実レール圧が低いために、燃料噴射量が出荷時と比較して少ないものとなったことが分かる。   According to FIG. 6, the actual feedback amount F of each cylinder when the output of the pressure sensor 22 is abnormal is smaller than the initial feedback amount FB. The fact that the actual feedback amount F is smaller than the initial feedback amount FB when the pressure sensor 22 is normal means that the detected differential pressure ΔPk is larger than the estimated differential pressure ΔPt, but actually injected. This shows that the amount of fuel injection performed is smaller than the amount of fuel injection measured at the time of shipment. That is, the output of the pressure sensor 22 is shifted in a direction larger than the center characteristic, and the actual rail pressure is lower than the detected rail pressure, so that the fuel injection amount is smaller than that at the time of shipment. I understand.

よって、ステップ109では、圧力センサ22のずれ方向を特定するために、実際の各気筒の実フィードバック量Fが初期フィードバック量FBよりも多いか否かを判定する。実際の各気筒の実フィードバック量Fが初期フィードバック量FBよりも多くない場合には(S109:NO)、圧力センサ22は中央特性に対して大きい方向にずれていると判定して、本制御を終了する。実際の各気筒の実フィードバック量Fが、圧力センサ22が正常である場合の初期フィードバック量FBよりも多い場合には(S109:YES)、圧力センサ22は中央特性に対して小さい方向にずれていると判定して、本制御を終了する。   Therefore, in step 109, in order to specify the displacement direction of the pressure sensor 22, it is determined whether the actual feedback amount F of each actual cylinder is larger than the initial feedback amount FB. When the actual feedback amount F of each actual cylinder is not larger than the initial feedback amount FB (S109: NO), it is determined that the pressure sensor 22 has shifted in a large direction with respect to the center characteristic, and this control is performed. finish. When the actual feedback amount F of each cylinder is larger than the initial feedback amount FB when the pressure sensor 22 is normal (S109: YES), the pressure sensor 22 is shifted in a small direction with respect to the central characteristic. This control is terminated.

上記構成により、本実施形態に係る内燃機関の制御装置は、以下の効果を奏する。   With the above configuration, the control device for an internal combustion engine according to the present embodiment has the following effects.

・ECU50により、燃料噴射弁40による噴射に伴い生じたコモンレール20内の検出レール圧の降下量が検出差圧ΔPkとして、気筒別に算出される。複数の燃料噴射弁40間で算出された検出差圧ΔPkのばらつきXが算出される。また、所定噴射量QFINに基づいた噴射に伴い生じると推定されるコモンレール20内の燃料圧力降下量が推定差圧ΔPtとして算出される。圧力センサ22が故障している場合には、推定差圧ΔPtに対して算出される検出差圧ΔPkに大きい方向又は小さい方向へのずれが生まれるため、検出差圧ΔPkを推定差圧ΔPtで割った商は、全ての燃料噴射弁40において第二所定範囲βから外れることになる。また、全ての燃料噴射弁40で同様のずれを生じさせるため、複数の燃料噴射弁40間で算出された検出差圧ΔPkのばらつきXは、第一所定範囲内に収まる。したがって、算出されたばらつきXが第一所定範囲内であり、且つ検出差圧ΔPkを推定差圧ΔPtで割った商が第二所定範囲βから外れる場合に、圧力センサ22の故障が判定される。燃料噴射弁40の故障がある場合、複数の燃料噴射弁40のうち故障した燃料噴射弁40の検出差圧ΔPkは他の燃料噴射弁40の検出差圧ΔPkと差異が生まれるため、複数の燃料噴射弁40間で算出されたΔPkのばらつきXは第一所定範囲α内に収まらない。このため、燃料噴射弁40の故障がある場合でも圧力センサ22の故障を診断することが可能となる。また、構成が燃料噴射システム10のみで完結しており、例えば内燃機関の出力を検出するセンサなど外部の構成を必要としないですむ。   The ECU 50 calculates the amount of decrease in the detected rail pressure in the common rail 20 caused by the injection by the fuel injection valve 40 for each cylinder as the detected differential pressure ΔPk. A variation X of the detected differential pressure ΔPk calculated between the plurality of fuel injection valves 40 is calculated. Further, the fuel pressure drop amount in the common rail 20 that is estimated to be caused by the injection based on the predetermined injection amount QFIN is calculated as the estimated differential pressure ΔPt. When the pressure sensor 22 is out of order, the detected differential pressure ΔPk calculated with respect to the estimated differential pressure ΔPt is shifted in a large or small direction. Therefore, the detected differential pressure ΔPk is divided by the estimated differential pressure ΔPt. The quotient deviates from the second predetermined range β in all the fuel injection valves 40. Further, since the same deviation is caused in all the fuel injection valves 40, the variation X of the detected differential pressure ΔPk calculated among the plurality of fuel injection valves 40 is within the first predetermined range. Accordingly, when the calculated variation X is within the first predetermined range and the quotient obtained by dividing the detected differential pressure ΔPk by the estimated differential pressure ΔPt is out of the second predetermined range β, a failure of the pressure sensor 22 is determined. . When there is a failure in the fuel injection valve 40, the detected differential pressure ΔPk of the failed fuel injection valve 40 among the plurality of fuel injection valves 40 is different from the detected differential pressure ΔPk of the other fuel injection valves 40. The variation X of ΔPk calculated between the injection valves 40 does not fall within the first predetermined range α. For this reason, even when there is a failure in the fuel injection valve 40, it is possible to diagnose a failure in the pressure sensor 22. Further, the configuration is completed only by the fuel injection system 10, and an external configuration such as a sensor for detecting the output of the internal combustion engine is not required.

・ECU50は、圧力センサ22の出力信号から検出する検出レール圧と、エンジン運転状態に基づいて設定する目標レール圧との差圧に基づいて検出レール圧を目標レール圧に追随させるフィードバック(F/B)制御を実行する。圧力センサ22の故障が判定された場合に、所定の噴射条件におけるフィードバック量の初期値としての初期フィードバック量FBに対して、実フィードバック量Fが多いのか少ないのかが判定される。この判定に基づいて、ECU50は、実際のコモンレール20内の実レール圧に対する圧力センサ22の出力のずれ方向が特定される。例えば、初期フィードバック量FBに対して、実際に制御された実フィードバック量Fが少ない場合、検出レール圧よりも実レール圧が低いために、燃料噴射量が出荷時と比較して少ないものとなったことが分かる。よって、圧力センサ22の出力が中央特性に対して大きい方向にずれていることが分かる。このため、実フィードバック量Fの変化を考慮することで、実レール圧の変化に対して圧力センサ22の出力がどのようにずれたのかを特定することが可能となる。   The ECU 50 provides feedback (F / F) that causes the detected rail pressure to follow the target rail pressure based on the differential pressure between the detected rail pressure detected from the output signal of the pressure sensor 22 and the target rail pressure set based on the engine operating state. B) Control is executed. When the failure of the pressure sensor 22 is determined, it is determined whether the actual feedback amount F is larger or smaller than the initial feedback amount FB as an initial value of the feedback amount under a predetermined injection condition. Based on this determination, the ECU 50 specifies the deviation direction of the output of the pressure sensor 22 with respect to the actual rail pressure in the actual common rail 20. For example, when the actual feedback amount F actually controlled is smaller than the initial feedback amount FB, the actual rail pressure is lower than the detected rail pressure, so the fuel injection amount is smaller than that at the time of shipment. I understand that. Therefore, it can be seen that the output of the pressure sensor 22 is shifted in a large direction with respect to the center characteristic. Therefore, by considering the change in the actual feedback amount F, it is possible to specify how the output of the pressure sensor 22 has deviated from the change in the actual rail pressure.

・ECU50により燃料噴射弁40が故障していないと判定された場合に、圧力センサ22が故障しているか否かが判定される。このため、燃料噴射弁40の故障と圧力センサ22の故障を区別して判定することが可能となる。   When the ECU 50 determines that the fuel injection valve 40 has not failed, it is determined whether or not the pressure sensor 22 has failed. For this reason, it becomes possible to distinguish and determine the failure of the fuel injection valve 40 and the failure of the pressure sensor 22.

・ECU50により燃料噴射弁40が故障していると判定した場合に、算出された検出差圧ΔPkを気筒間で比較し、過半数を超える気筒の検出差圧ΔPkと異なる検出差圧ΔPkが算出された気筒について、その気筒の燃料噴射弁40が故障していることが特定される。このため、燃料噴射弁40の故障を判定するのみならず、どの気筒の燃料噴射弁40が故障しているのかを特定することが可能となる。   When the ECU 50 determines that the fuel injection valve 40 is out of order, the calculated detected differential pressure ΔPk is compared between the cylinders, and a detected differential pressure ΔPk that is different from the detected differential pressure ΔPk of the cylinder exceeding the majority is calculated. For each cylinder, it is specified that the fuel injection valve 40 of that cylinder has failed. For this reason, it becomes possible not only to determine the failure of the fuel injection valve 40 but also to identify which cylinder of the fuel injection valve 40 is in failure.

・診断条件は、コモンレール20内の目標レール圧が所定圧力PFINになり、所定圧力PFINに追随するように指示される目標噴射量が所定噴射量QFINになることと設定される。これにより、ある気筒が診断条件を成立させた場合には、他全ての気筒の目標レール圧を所定圧力PFINとし、目標噴射量を所定噴射量QFINに制御した上で、故障判定が実行される。このため、ある気筒が診断条件を満たした時に、他の気筒の条件をそれに合わせることで、診断機会を増加させることができる。   The diagnosis condition is set such that the target rail pressure in the common rail 20 becomes the predetermined pressure PFIN, and the target injection amount instructed to follow the predetermined pressure PFIN becomes the predetermined injection amount QFIN. Thereby, when a certain cylinder satisfies the diagnosis condition, the failure determination is executed after the target rail pressure of all the other cylinders is set to the predetermined pressure PFIN and the target injection amount is controlled to the predetermined injection amount QFIN. . For this reason, when a certain cylinder satisfies the diagnosis condition, the diagnosis opportunity can be increased by adjusting the condition of the other cylinder to that condition.

なお、上記実施形態を、以下のように変更して実施することもできる。   In addition, the said embodiment can also be changed and implemented as follows.

・上記実施形態では、ある一つの気筒における検出差圧ΔPkを推定差圧ΔPtで割った商が第二所定範囲β内であるか否かの判定を実施していた。このことについて、過半数を超える気筒で一致する検出差圧ΔPk(過半数降下量に該当)を選択し、この検出差圧ΔPkと推定差圧ΔPtで割った商が第二所定範囲β内であるか否かの判定を実施してもよい。   In the above embodiment, it is determined whether or not the quotient obtained by dividing the detected differential pressure ΔPk in one cylinder by the estimated differential pressure ΔPt is within the second predetermined range β. With respect to this, whether the detected differential pressure ΔPk (corresponding to the majority drop) corresponding to the cylinders exceeding the majority is selected, and whether the quotient divided by the detected differential pressure ΔPk and the estimated differential pressure ΔPt is within the second predetermined range β. A determination of whether or not may be performed.

・上記実施形態では、検出差圧ΔPkを推定差圧ΔPtで割った商が第二所定範囲β内であるか否かの判定を実施していた。このことについて、検出差圧ΔPkと推定差圧ΔPtとの差が第四所定範囲ω内であるか否かの判定をしてもよい。この場合、第四所定範囲ωは、圧力センサ22及び燃料噴射弁40が正常である場合に期待される検出差圧ΔPkと推定差圧ΔPtとの差に誤差を含んだ範囲として設定される。すなわち、気筒間のばらつきXが第一所定範囲αであり、且つ検出差圧ΔPkと推定差圧ΔPtとの差が第四所定範囲ω内ではない場合に、圧力センサ22の故障が判定される。   In the above embodiment, it is determined whether or not the quotient obtained by dividing the detected differential pressure ΔPk by the estimated differential pressure ΔPt is within the second predetermined range β. In this regard, it may be determined whether or not the difference between the detected differential pressure ΔPk and the estimated differential pressure ΔPt is within the fourth predetermined range ω. In this case, the fourth predetermined range ω is set as a range including an error in the difference between the detected differential pressure ΔPk and the estimated differential pressure ΔPt expected when the pressure sensor 22 and the fuel injection valve 40 are normal. That is, when the variation X between the cylinders is within the first predetermined range α and the difference between the detected differential pressure ΔPk and the estimated differential pressure ΔPt is not within the fourth predetermined range ω, a failure of the pressure sensor 22 is determined. .

・気筒間のばらつきXについて、各気筒の検出差圧ΔPkを用いて、その標準偏差を気筒間のばらつきXとしていた。このことについて、標準偏差に代えて分散値をばらつきXとしてもよい。この場合、第一所定範囲αは、算出方法の変更に伴ってその設定も変更される。   Regarding the variation X between cylinders, the standard deviation is defined as the variation X between cylinders using the detected differential pressure ΔPk of each cylinder. In this regard, the dispersion value may be the variation X instead of the standard deviation. In this case, the setting of the first predetermined range α is also changed with the change of the calculation method.

・上記実施形態では、気筒間のばらつきXが第一所定範囲α内であると判定したのちに、検出差圧ΔPkを推定差圧ΔPtで割った商が第二所定範囲β内であるか否かの判定を実施していた。このことについて、検出差圧ΔPkを推定差圧ΔPtで割った商が第二所定範囲β内ではない場合に、気筒間のばらつきXが第一所定範囲α内であるか否かの判定を実施してもよい。この場合、検出差圧ΔPkを推定差圧ΔPtで割った商が第二所定範囲β内であるか否かの判定は全ての気筒で行われる。図2を参照して説明すると、ステップ105及びステップ105に付随するステップ106と、ステップ107とを入れ替える。具体的には、ステップ107にて、全ての気筒において検出差圧ΔPkを推定差圧ΔPtで割った商が第二所定範囲β内であるか否かの判定を実施し、検出差圧ΔPkを推定差圧ΔPtで割った商が第二所定範囲β内ではない気筒が少なくとも一つある場合に(S107:NO)、ステップ105に進む。そしてステップ105にて、気筒間のばらつきXが第一所定範囲α内であると判定した場合には(ステップ105:YES)、全ての気筒にて検出差圧ΔPkと推定差圧ΔPtとで相違があるとして、圧力センサ22が故障していると判定する。一方で、気筒間のばらつきXが第一所定範囲α内ではないと判定した場合には(ステップ105:NO)、ステップ106に進み、ある気筒の燃料噴射弁40が故障していることを判定する。   In the above embodiment, whether or not the quotient obtained by dividing the detected differential pressure ΔPk by the estimated differential pressure ΔPt after determining that the variation X between the cylinders is within the first predetermined range α is within the second predetermined range β. The judgment was carried out. In this regard, when the quotient obtained by dividing the detected differential pressure ΔPk by the estimated differential pressure ΔPt is not within the second predetermined range β, it is determined whether or not the variation X between the cylinders is within the first predetermined range α. May be. In this case, whether or not the quotient obtained by dividing the detected differential pressure ΔPk by the estimated differential pressure ΔPt is within the second predetermined range β is determined for all the cylinders. Referring to FIG. 2, step 105 and step 106 accompanying step 105 and step 107 are interchanged. Specifically, in step 107, it is determined whether or not the quotient obtained by dividing the detected differential pressure ΔPk by the estimated differential pressure ΔPt in all the cylinders is within the second predetermined range β, and the detected differential pressure ΔPk is determined. When there is at least one cylinder whose quotient divided by the estimated differential pressure ΔPt is not within the second predetermined range β (S107: NO), the routine proceeds to step 105. If it is determined in step 105 that the variation X between the cylinders is within the first predetermined range α (step 105: YES), there is a difference between the detected differential pressure ΔPk and the estimated differential pressure ΔPt in all the cylinders. As a result, it is determined that the pressure sensor 22 has failed. On the other hand, when it is determined that the variation X between the cylinders is not within the first predetermined range α (step 105: NO), the routine proceeds to step 106, where it is determined that the fuel injection valve 40 of a certain cylinder has failed. To do.

・燃料噴射弁40が故障していると判定された場合に、過半数を超える気筒の検出差圧ΔPkと異なる値を示す気筒の燃料噴射弁40について、その燃料噴射弁40が故障していると特定することとしていた。このことについて、燃料噴射弁40が故障していると判定された場合に、検出差圧ΔPkを推定差圧ΔPtで割った商が第二所定範囲β内ではない気筒について、燃料噴射弁40が故障していると特定してもよい。   When it is determined that the fuel injection valve 40 has failed, the fuel injection valve 40 of the cylinder that shows a value different from the detected differential pressure ΔPk of the cylinder that exceeds a majority is in failure I was going to identify. In this regard, when it is determined that the fuel injection valve 40 is out of order, the fuel injection valve 40 is in a cylinder whose quotient obtained by dividing the detected differential pressure ΔPk by the estimated differential pressure ΔPt is not within the second predetermined range β. You may specify that it is out of order.

・図7は、図2のフローチャートの一部を変容したものである。すなわち、図2におけるステップ104を削除し、その代わりにステップ204を設ける。ステップ204では、過半数を超える気筒で一致する検出差圧ΔPkを差圧ΔPaとして選択する。また、ステップ105は削除される。ステップ107を削除し、その代わりにステップ207を設ける。ステップ207では、選択された差圧ΔPaを推定差圧ΔPtで割った商が第二所定範囲β内であるか否かの判定を実施する。差圧ΔPaを推定差圧ΔPtで割った商が第二所定範囲β内に収まった場合に(S207:YES)、新規に追加されるステップ212に進む。ステップ212では、検出差圧ΔPkが第三所定範囲γに収まらない気筒があるか否かの判定をする。このとき、第三所定範囲γとは、推定差圧ΔPtに誤差を含んだ範囲として設定される。検出差圧ΔPkが第三所定範囲γに収まらない気筒がある場合には(S212:YES)、ステップ206に進み、その気筒の燃料噴射弁40が故障していると判定して、本制御を終了する。   FIG. 7 is a modification of a part of the flowchart of FIG. That is, step 104 in FIG. 2 is deleted, and step 204 is provided instead. In step 204, the detected differential pressure ΔPk that matches the majority of cylinders is selected as the differential pressure ΔPa. Also, step 105 is deleted. Step 107 is deleted, and step 207 is provided instead. In step 207, it is determined whether or not the quotient obtained by dividing the selected differential pressure ΔPa by the estimated differential pressure ΔPt is within the second predetermined range β. When the quotient obtained by dividing the differential pressure ΔPa by the estimated differential pressure ΔPt falls within the second predetermined range β (S207: YES), the process proceeds to step 212, which is newly added. In step 212, it is determined whether or not there is a cylinder whose detected differential pressure ΔPk is not within the third predetermined range γ. At this time, the third predetermined range γ is set as a range including an error in the estimated differential pressure ΔPt. If there is a cylinder whose detected differential pressure ΔPk does not fall within the third predetermined range γ (S212: YES), the routine proceeds to step 206, where it is determined that the fuel injection valve 40 of that cylinder has failed, and this control is performed. finish.

それ以外のステップについて、図7の各ステップ200,201,202,203,208,209,210,及び211の処理は、それぞれ図2の各ステップ100,101,102,103,108,109,110,及び111の処理と同一である。   For the other steps, the processes of steps 200, 201, 202, 203, 208, 209, 210, and 211 in FIG. 7 are respectively performed in steps 100, 101, 102, 103, 108, 109, and 110 of FIG. , And 111 are the same.

圧力センサ22が故障している場合には、噴射に伴い生じると期待される推定差圧ΔPtに対して全気筒の検出差圧ΔPkに大きい方向又は小さい方向へのずれが生まれるため、検出差圧ΔPkを推定差圧ΔPtで割った商は、全ての気筒において第二所定範囲βから外れることになる。このような圧力センサ22の故障が生じているか判定を行う際には、全ての燃料噴射弁40で検出差圧ΔPkが推定差圧ΔPtに対してずれが生じているか判定する必要はない。なぜならば、区別して故障判定すべき燃料噴射弁40の故障は同時に過半数を超える気筒で生じる可能性が小さいため、検出差圧ΔPkが推定差圧ΔPtに対してずれを生じさせている燃料噴射弁40が過半数よりも多い場合には燃圧センサが故障していると判定できるからである。したがって、算出された全ての検出差圧ΔPkから過半数を超えて一致する検出差圧ΔPkが差圧ΔPaとして選択され、差圧ΔPaを推定差圧ΔPtで割った商が第二所定範囲β内に収まらない場合に、圧力センサ22が故障していると判定される。   When the pressure sensor 22 is out of order, the detected differential pressure ΔPk of all the cylinders is deviated in a large direction or a small direction with respect to the estimated differential pressure ΔPt expected to be generated by the injection. The quotient obtained by dividing ΔPk by the estimated differential pressure ΔPt is out of the second predetermined range β in all the cylinders. When determining whether such a failure of the pressure sensor 22 has occurred, it is not necessary to determine whether the detected differential pressure ΔPk is deviated from the estimated differential pressure ΔPt in all the fuel injection valves 40. This is because the failure of the fuel injection valve 40 to be determined as a failure by distinction is unlikely to occur in more than a majority of the cylinders at the same time, so that the detected differential pressure ΔPk causes a deviation from the estimated differential pressure ΔPt. This is because it can be determined that the fuel pressure sensor has failed when 40 is greater than the majority. Therefore, the detected differential pressure ΔPk that matches more than a majority from all the calculated detected differential pressures ΔPk is selected as the differential pressure ΔPa, and the quotient obtained by dividing the differential pressure ΔPa by the estimated differential pressure ΔPt is within the second predetermined range β. If not, it is determined that the pressure sensor 22 has failed.

ある気筒の燃料噴射弁40が故障した場合には、燃料噴射弁40が故障した場合の検出差圧ΔPkと推定差圧ΔPtとで差異が生じる。このため、故障した燃料噴射弁40が燃料噴射を実施した際には、検出差圧ΔPkは推定差圧ΔPtに誤差を含んだ範囲として設定される第三所定範囲γから外れることになる。したがって、差圧ΔPaを推定差圧ΔPtで割った商が第二所定範囲β内に収まり、且つ算出された検出差圧ΔPkが第三所定範囲γから外れる燃料噴射弁40が存在する場合に、その気筒の燃料噴射弁40が故障していると判定される。   When the fuel injection valve 40 of a certain cylinder fails, a difference occurs between the detected differential pressure ΔPk and the estimated differential pressure ΔPt when the fuel injection valve 40 fails. For this reason, when the failed fuel injection valve 40 performs fuel injection, the detected differential pressure ΔPk deviates from the third predetermined range γ set as a range including an error in the estimated differential pressure ΔPt. Therefore, when there is a fuel injection valve 40 in which the quotient obtained by dividing the differential pressure ΔPa by the estimated differential pressure ΔPt is within the second predetermined range β and the calculated detected differential pressure ΔPk is outside the third predetermined range γ, It is determined that the fuel injection valve 40 of that cylinder has failed.

よって、圧力センサ22の出力異常が発生していないことを判定した上で、圧力センサ22の故障を診断することが可能となる。また、燃料噴射弁40が故障していると判定された場合に、どの気筒の燃料噴射弁40の故障かを特定することが可能である。   Therefore, it is possible to diagnose the failure of the pressure sensor 22 after determining that the output abnormality of the pressure sensor 22 has not occurred. Further, when it is determined that the fuel injection valve 40 has failed, it is possible to identify which cylinder of the fuel injection valve 40 has failed.

本別例について、差圧ΔPaを推定差圧ΔPtで割った商が第二所定範囲β内に収まるか否かを判定していた。このことについて、差圧ΔPaと推定差圧ΔPtとの差が第四所定範囲ω内に収まるか否かを判定してもよい。すなわち、差圧ΔPaと推定差圧ΔPtとの差が第四所定範囲ω内に収まらない場合に(S207:NO)、圧力センサ22が故障していると判定する。   In this example, it was determined whether or not the quotient obtained by dividing the differential pressure ΔPa by the estimated differential pressure ΔPt falls within the second predetermined range β. In this regard, it may be determined whether or not the difference between the differential pressure ΔPa and the estimated differential pressure ΔPt falls within the fourth predetermined range ω. That is, when the difference between the differential pressure ΔPa and the estimated differential pressure ΔPt does not fall within the fourth predetermined range ω (S207: NO), it is determined that the pressure sensor 22 has failed.

本別例について、差圧ΔPaを推定差圧ΔPtで割った商が第二所定範囲β内に収まらなかった場合に、検出差圧ΔPkが第三所定範囲γに収まらない気筒があるか否かの判定をしていた。このことについて、ステップ207とステップ212を入れ替えて、検出差圧ΔPkが第三所定範囲γに収まらない気筒がある場合に、差圧ΔPaを推定差圧ΔPtで割った商が第二所定範囲β内に収まるか否かを判定してもよい。具体的にはステップ204終了後にステップ212に進み、検出差圧ΔPkが第三所定範囲γに収まらない気筒がある場合に(S212:YES)、ステップ207に進む。そして、差圧ΔPaを推定差圧ΔPtで割った商が第二所定範囲β内に収まる場合に(S207:YES)、ステップ206に進み、燃料噴射弁40が故障していると判定する。また、差圧ΔPaを推定差圧ΔPtで割った商が第二所定範囲β内に収まらない場合に(S207:NO)、ステップ208に進み、圧力センサ22が故障していると判定する。   Whether or not there is a cylinder in which the detected differential pressure ΔPk does not fall within the third predetermined range γ when the quotient obtained by dividing the differential pressure ΔPa by the estimated differential pressure ΔPt does not fall within the second predetermined range β. It was judged. In this regard, if there is a cylinder where the detected differential pressure ΔPk does not fall within the third predetermined range γ by replacing Step 207 and Step 212, the quotient obtained by dividing the differential pressure ΔPa by the estimated differential pressure ΔPt is the second predetermined range β It may be determined whether or not it falls within. Specifically, after step 204 ends, the process proceeds to step 212. If there is a cylinder whose detected differential pressure ΔPk does not fall within the third predetermined range γ (S212: YES), the process proceeds to step 207. If the quotient obtained by dividing the differential pressure ΔPa by the estimated differential pressure ΔPt falls within the second predetermined range β (S207: YES), the routine proceeds to step 206, where it is determined that the fuel injection valve 40 has failed. When the quotient obtained by dividing the differential pressure ΔPa by the estimated differential pressure ΔPt does not fall within the second predetermined range β (S207: NO), the process proceeds to step 208, and it is determined that the pressure sensor 22 has failed.

10…燃料噴射システム、16…燃料供給ポンプ、20…コモンレール、22…圧力センサ、40…燃料噴射弁、50…ECU。 DESCRIPTION OF SYMBOLS 10 ... Fuel injection system, 16 ... Fuel supply pump, 20 ... Common rail, 22 ... Pressure sensor, 40 ... Fuel injection valve, 50 ... ECU.

Claims (8)

高圧の燃料を貯蔵する蓄圧室(20)と、
前記蓄圧室に供する燃料を加圧して吐出する燃料ポンプ(16)と、
前記蓄圧室に高圧状態で蓄えられた燃料を噴射する複数の燃料噴射弁(40)と、
前記蓄圧室内の燃料圧力を検出する燃圧センサ(22)と、
を備えた燃料噴射システム(10)に適用される故障診断装置(50)であって、
前記複数の燃料噴射弁の内一つの燃料噴射弁により所定の噴射条件で燃料の噴射が実行された場合に、残りの前記燃料噴射弁により前記所定の噴射条件で燃料の噴射を実行させる噴射実行手段と、
前記所定の噴射条件で前記燃料噴射弁による噴射に伴い生じた前記蓄圧室内の燃料圧力の降下量を検出降下量として、それぞれ前記燃圧センサの検出値に基づいて算出する検出降下量算出手段と、
前記所定の噴射条件で前記燃料噴射弁による噴射に伴い生じると推定される前記蓄圧室内の燃料圧力の降下量を推定降下量として算出する推定降下量算出手段と、
前記検出降下量算出手段により算出された検出降下量の前記複数の燃料噴射弁間でのばらつきを算出するばらつき算出手段と、
前記ばらつき算出手段により算出された前記ばらつきが第一所定範囲内であり、且つ検出降下量算出手段により算出された前記検出降下量と前記推定降下量算出手段により算出された推定降下量との相違量が第二所定範囲から外れる場合に、前記燃圧センサの故障と判定する燃圧センサ故障判定手段と、
を備えることを特徴とする燃料噴射システムの故障診断装置。
An accumulator (20) for storing high-pressure fuel;
A fuel pump (16) for pressurizing and discharging the fuel to be supplied to the pressure accumulation chamber;
A plurality of fuel injection valves (40) for injecting fuel stored in a high pressure state in the pressure accumulation chamber;
A fuel pressure sensor (22) for detecting the fuel pressure in the pressure accumulation chamber;
A failure diagnosis device (50) applied to a fuel injection system (10) comprising:
When the fuel is injected under a predetermined injection condition by one of the plurality of fuel injectors, the remaining fuel injectors execute the fuel injection under the predetermined injection condition. Means,
A detected drop amount calculating means for calculating a drop amount of the fuel pressure in the pressure accumulating chamber caused by the injection by the fuel injection valve under the predetermined injection condition as a detected drop amount, respectively, based on a detection value of the fuel pressure sensor;
Estimated drop amount calculating means for calculating a drop amount of the fuel pressure in the pressure accumulating chamber, which is estimated to be caused by the injection by the fuel injection valve under the predetermined injection conditions,
Variation calculating means for calculating variations among the plurality of fuel injection valves of the detected drop amount calculated by the detected drop amount calculating unit;
The difference calculated by the variation calculating means is within a first predetermined range, and the difference between the detected drop calculated by the detected drop calculating means and the estimated drop calculated by the estimated drop calculating means A fuel pressure sensor failure determination means for determining a failure of the fuel pressure sensor when the amount is out of the second predetermined range;
A failure diagnosis apparatus for a fuel injection system, comprising:
前記燃圧センサにより検出される前記燃料圧力を目標圧力とするように、前記燃料ポンプにより吐出される燃料の吐出量のフィードバック量を制御するフィードバック制御手段と、
前記目標圧力に対応する前記フィードバック量の初期値に対して、前記フィードバック制御手段により制御されたフィードバック量が多いのか少ないのかを判定するフィードバック量判定手段と、
前記燃圧センサ故障判定手段により前記燃圧センサの故障と判定された場合に、前記フィードバック量判定手段の結果に基づいて、実際の前記蓄圧室の燃料圧力に対する前記燃圧センサの出力のずれ方向を特定するずれ方向特定手段と、
を備えることを特徴とする請求項1に記載の燃料噴射システムの故障診断装置。
Feedback control means for controlling a feedback amount of a discharge amount of fuel discharged by the fuel pump so that the fuel pressure detected by the fuel pressure sensor is set as a target pressure;
Feedback amount determination means for determining whether the feedback amount controlled by the feedback control means is large or small with respect to the initial value of the feedback amount corresponding to the target pressure;
When the fuel pressure sensor failure determination means determines that the fuel pressure sensor has failed, the direction of deviation of the output of the fuel pressure sensor relative to the actual fuel pressure in the pressure accumulating chamber is specified based on the result of the feedback amount determination means. A deviation direction specifying means;
The failure diagnosis device for a fuel injection system according to claim 1, comprising:
前記ばらつき算出手段により算出された前記ばらつきが第一所定範囲から外れている場合に、燃料噴射弁の故障と判定する燃料噴射弁故障判定手段を備え、
前記燃料噴射弁故障判定手段により前記燃料噴射弁の故障と判定されなかった場合に、前記燃圧センサ故障判定手段により前記燃圧センサの故障が判定されることを特徴とする請求項1又は2に記載の燃料噴射システムの故障診断装置。
A fuel injection valve failure determination unit that determines that the fuel injection valve has failed when the variation calculated by the variation calculation unit is out of a first predetermined range;
3. The fuel pressure sensor failure is determined by the fuel pressure sensor failure determination means when the fuel injection valve failure determination means does not determine that the fuel injection valve has failed. The fuel pressure sensor failure is determined by the fuel pressure sensor failure determination means. Diagnostic device for fuel injection system.
前記燃料噴射弁故障判定手段が前記燃料噴射弁の故障と判定した場合において、前記検出降下量算出手段により算出された前記検出降下量を気筒間で比較し、前記検出降下量が過半数を超える気筒の前記検出降下量と異なる気筒について、該気筒の前記燃料噴射弁が故障していることを特定する故障噴射弁特定手段を備えることを特徴とする請求項3に記載の燃料噴射システムの故障診断装置。   When the fuel injection valve failure determination means determines that the fuel injection valve has failed, the detected drop amount calculated by the detected drop amount calculation means is compared between the cylinders, and the detected drop amount exceeds a majority. The failure diagnosis of the fuel injection system according to claim 3, further comprising: a failure injection valve specifying unit that specifies that the fuel injection valve of the cylinder has a failure with respect to a cylinder different from the detected drop amount. apparatus. 前記燃圧センサ故障判定手段は、前記ばらつき算出手段により算出された前記ばらつきが第一所定範囲内であり、且つ検出降下量算出手段により算出された前記検出降下量から過半数を超える前記検出降下量を過半数降下量として選択し、前記過半数降下量と前記推定降下量との相違量が第二所定範囲から外れる場合に、前記燃圧センサの故障と判定することを特徴とする請求項1乃至4のいずれか1項に記載の燃料噴射システムの故障診断装置。   The fuel pressure sensor failure determination means determines the detected drop amount that is greater than a majority from the detected drop amount calculated by the detected drop amount calculator and the variation calculated by the variation calculator is within a first predetermined range. 5. The fuel pressure sensor is determined to be a failure when the majority drop amount is selected and a difference between the majority drop amount and the estimated drop amount is out of a second predetermined range. 2. A failure diagnosis apparatus for a fuel injection system according to claim 1. 高圧の燃料を貯蔵する蓄圧室(20)と、
前記蓄圧室に供する燃料を加圧して吐出する燃料ポンプ(16)と、
前記蓄圧室に高圧状態で蓄えられた燃料を噴射する複数の燃料噴射弁(40)と、
前記蓄圧室内の燃料圧力を検出する燃圧センサ(22)と、
を備えた燃料噴射システム(10)に適用される故障診断装置(50)であって、
前記複数の燃料噴射弁の内一つの燃料噴射弁により所定の噴射条件で燃料の噴射が実行された場合に、残りの前記燃料噴射弁により前記所定の噴射条件で燃料の噴射を実行させる噴射実行手段と、
前記所定の噴射条件で前記燃料噴射弁による噴射に伴い生じた前記蓄圧室内の燃料圧力の降下量を検出降下量として、それぞれ前記燃圧センサの検出値に基づいて算出する検出降下量算出手段と、
前記所定の噴射条件で前記燃料噴射弁による噴射に伴い生じると推定される前記蓄圧室内の燃料圧力の降下量を推定降下量として算出する推定降下量算出手段と、
前記検出降下量算出手段により算出された気筒ごとの前記検出降下量から過半数を超える前記検出降下量を過半数降下量として選択し、前記過半数降下量と前記推定降下量算出手段により算出された前記推定降下量との相違に基づいた相違量を算出する相違量算出手段と、
前記相違量算出手段により算出された前記相違量が第二所定範囲から外れる場合に、前記燃圧センサの故障と判定する燃圧センサ故障判定手段と、
を備えることを特徴とする燃料噴射システムの故障診断装置。
An accumulator (20) for storing high-pressure fuel;
A fuel pump (16) for pressurizing and discharging the fuel to be supplied to the pressure accumulation chamber;
A plurality of fuel injection valves (40) for injecting fuel stored in a high pressure state in the pressure accumulation chamber;
A fuel pressure sensor (22) for detecting the fuel pressure in the pressure accumulation chamber;
A failure diagnosis device (50) applied to a fuel injection system (10) comprising:
When the fuel is injected under a predetermined injection condition by one of the plurality of fuel injectors, the remaining fuel injectors execute the fuel injection under the predetermined injection condition. Means,
A detected drop amount calculating means for calculating a drop amount of the fuel pressure in the pressure accumulating chamber caused by the injection by the fuel injection valve under the predetermined injection condition as a detected drop amount, respectively, based on a detection value of the fuel pressure sensor;
Estimated drop amount calculating means for calculating a drop amount of the fuel pressure in the pressure accumulating chamber, which is estimated to be caused by the injection by the fuel injection valve under the predetermined injection conditions,
The detected drop amount exceeding a majority is selected as a majority drop amount from the detected drop amount for each cylinder calculated by the detected drop amount calculating means, and the estimated drop amount calculated by the majority drop amount and the estimated drop amount calculating means. A difference amount calculating means for calculating a difference amount based on the difference from the descent amount;
A fuel pressure sensor failure determination unit that determines that the fuel pressure sensor has failed when the difference amount calculated by the difference amount calculation unit is out of a second predetermined range;
A failure diagnosis apparatus for a fuel injection system, comprising:
前記燃圧センサ故障判定手段により前記燃圧センサの故障と判定されず、且つ前記検出降下量算出手段により算出された前記検出降下量が第三所定範囲から外れる前記燃料噴射弁が存在する場合に、該燃料噴射弁の故障と判定する燃料噴射弁故障判定手段と、
を備えることを特徴とする請求項6に記載の燃料噴射システムの故障診断装置。
The fuel pressure sensor failure determining means does not determine that the fuel pressure sensor has failed, and there is the fuel injection valve in which the detected drop amount calculated by the detected drop amount calculating means is outside a third predetermined range, A fuel injection valve failure determination means for determining a failure of the fuel injection valve;
A failure diagnosis apparatus for a fuel injection system according to claim 6.
前記所定の噴射条件とは、前記蓄圧室内の目標圧力が所定圧力と定まり、前記所定圧力に応じて前記噴射実行手段により指示される指示噴射量が所定噴射量に設定されることを特徴とする請求項1乃至7のいずれか1項に記載の燃料噴射システムの故障診断装置。   The predetermined injection condition is characterized in that a target pressure in the pressure accumulating chamber is determined as a predetermined pressure, and an instructed injection amount instructed by the injection execution means is set to a predetermined injection amount in accordance with the predetermined pressure. The failure diagnosis device for a fuel injection system according to any one of claims 1 to 7.
JP2015033609A 2015-02-24 2015-02-24 Failure diagnosis device for fuel injection system Active JP6561493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015033609A JP6561493B2 (en) 2015-02-24 2015-02-24 Failure diagnosis device for fuel injection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015033609A JP6561493B2 (en) 2015-02-24 2015-02-24 Failure diagnosis device for fuel injection system

Publications (2)

Publication Number Publication Date
JP2016156299A true JP2016156299A (en) 2016-09-01
JP6561493B2 JP6561493B2 (en) 2019-08-21

Family

ID=56825431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015033609A Active JP6561493B2 (en) 2015-02-24 2015-02-24 Failure diagnosis device for fuel injection system

Country Status (1)

Country Link
JP (1) JP6561493B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106224108A (en) * 2016-08-29 2016-12-14 重庆隆鑫机车有限公司 Engine electric spray executor's self checking method and system
CN111734567A (en) * 2019-01-10 2020-10-02 罗伯特·博世有限公司 Method for identifying a defective injection valve from a plurality of injection valves

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084577A (en) * 1994-06-20 1996-01-09 Toyota Motor Corp Fuel injection device for internal combustion engine
JP2001336460A (en) * 2000-05-25 2001-12-07 Denso Corp Fuel supply apparatus of internal combustion engine
JP2006077709A (en) * 2004-09-10 2006-03-23 Denso Corp Common rail type fuel injection device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH084577A (en) * 1994-06-20 1996-01-09 Toyota Motor Corp Fuel injection device for internal combustion engine
JP2001336460A (en) * 2000-05-25 2001-12-07 Denso Corp Fuel supply apparatus of internal combustion engine
JP2006077709A (en) * 2004-09-10 2006-03-23 Denso Corp Common rail type fuel injection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106224108A (en) * 2016-08-29 2016-12-14 重庆隆鑫机车有限公司 Engine electric spray executor's self checking method and system
CN111734567A (en) * 2019-01-10 2020-10-02 罗伯特·博世有限公司 Method for identifying a defective injection valve from a plurality of injection valves

Also Published As

Publication number Publication date
JP6561493B2 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
JP4656198B2 (en) Fuel injection control device
US9279404B2 (en) Fuel supply device and fuel supply control method for internal combustion engine
JP4355346B2 (en) Control device for internal combustion engine
US7438052B2 (en) Abnormality-determining device and method for fuel supply system, and engine control unit
JP4780137B2 (en) High pressure fuel control device
JP2012172549A (en) Fuel injection device
JP5939227B2 (en) Pump control device
JP5212502B2 (en) Fuel injection device
US9523325B2 (en) Method and system for diagnosing failure of a gasoline direct injection engine
JP6561493B2 (en) Failure diagnosis device for fuel injection system
JP2010216279A (en) Fuel injection control device and accumulator fuel injection system using the same
JP5313846B2 (en) Abnormality diagnosis device for pressure sensor and accumulator fuel injection device
JP5278290B2 (en) Failure diagnosis device for fuel injection system
JP6823286B2 (en) Internal combustion engine fuel injection system
JP6390660B2 (en) Engine control device
JP2011032870A (en) Abnormality diagnostic device for fuel pressure holding mechanism
JP5804639B2 (en) Fuel leak detection method and common rail fuel injection control device
JP5472151B2 (en) Fuel injection device
JP6273904B2 (en) Pressure sensor abnormality detection device
JP2011064108A (en) Fuel injection device
JP2015105589A (en) Engine control device
JP2018123789A (en) Internal combustion engine fuel injection device
JP6512066B2 (en) Fuel injection state estimation device
JP4863528B2 (en) Operation control method for accumulator fuel injector
JP6094464B2 (en) Fuel injection control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190708

R151 Written notification of patent or utility model registration

Ref document number: 6561493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250