JP2016155768A - Porphyrin derivative and photosensitizer containing the same - Google Patents

Porphyrin derivative and photosensitizer containing the same Download PDF

Info

Publication number
JP2016155768A
JP2016155768A JP2015033566A JP2015033566A JP2016155768A JP 2016155768 A JP2016155768 A JP 2016155768A JP 2015033566 A JP2015033566 A JP 2015033566A JP 2015033566 A JP2015033566 A JP 2015033566A JP 2016155768 A JP2016155768 A JP 2016155768A
Authority
JP
Japan
Prior art keywords
porphyrin derivative
photosensitizer
ion
metal complex
porphyrin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015033566A
Other languages
Japanese (ja)
Other versions
JP6444211B2 (en
Inventor
穣 人見
Yutaka Hitomi
穣 人見
なつみ 大橋
Natsumi Ohashi
なつみ 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doshisha Co Ltd
Original Assignee
Doshisha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doshisha Co Ltd filed Critical Doshisha Co Ltd
Priority to JP2015033566A priority Critical patent/JP6444211B2/en
Publication of JP2016155768A publication Critical patent/JP2016155768A/en
Application granted granted Critical
Publication of JP6444211B2 publication Critical patent/JP6444211B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a porphyrin derivative capable of being specifically transferring into cancer cells by an oxygen reaction of a membrane protein specifically expressed in the cancer cells, a photosensitizer using characteristic of the porphyrin derivative to being specifically transferred into the cancer cells, a fluorescence visualization agent and MRI contrast medium.SOLUTION: There are provided a porphyrin derivative represented by the general formula (I) and a metal complex where metal ion are inserted into the porphyrin derivative. There is provided a metal complex where metal ions to be inserted are ions of Mn, Zn, Mg, Sn, Pt, Ag and Au and counter ions are Cl, Br, NO, CFSO, hydroxide ion or CHCOO. In the general formula (I), n is a natural number of 0 to 5 and R may be same or different.SELECTED DRAWING: None

Description

本発明は、ポルフィリン誘導体、これを含む光増感剤及び蛍光可視化剤、前記ポルフィリンに金属イオンを挿入してなる金属錯体、及び前記金属錯体を含む光増感剤及びMRI造影剤に関する。   The present invention relates to a porphyrin derivative, a photosensitizer and a fluorescence visualization agent containing the same, a metal complex formed by inserting a metal ion into the porphyrin, and a photosensitizer and an MRI contrast agent containing the metal complex.

光線力学治療法(PDT)は、光増感剤を静脈注射などの方法により投与して、癌組織に保持させたのち、所定波長のレーザー光やLED光を照射して癌組織のみを選択的に破壊する癌の治療方法である。   Photodynamic therapy (PDT) is a method in which photosensitizers are administered by intravenous injection, etc., held in cancer tissue, and then irradiated with laser light or LED light of a predetermined wavelength to select only the cancer tissue. It is a method of treating cancer that destroys it.

より詳しくは、PDTは、癌組織に集積された光増感剤に光を照射して、光増感剤を一重項励起状態に励起させ、系間交差によって一重項励起状態から最低三重項状態となった光増感剤の近傍にある三重項酸素分子を一重項酸素(活性酸素)に変換させ、近傍の細胞を破壊することによって、周囲の正常組織に比較的損傷を与えずに癌細胞や癌組織を破壊して治療する、癌の治療方法である。   More specifically, PDT irradiates a photosensitizer accumulated in cancer tissue with light to excite the photosensitizer to a singlet excited state, and from the singlet excited state to the lowest triplet state by intersystem crossing. By transforming triplet oxygen molecules in the vicinity of the resulting photosensitizer into singlet oxygen (active oxygen) and destroying nearby cells, cancer cells are relatively damaged without relatively damaging the surrounding normal tissue It is a cancer treatment method that destroys and treats cancer tissue.

このように、PDTは、正常組織に与える影響が少ないため、手術、抗癌剤による化学療法、放射線治療法等に続く、新しい癌の治療法として注目を浴びている。   Thus, since PDT has little influence on normal tissues, it has attracted attention as a new cancer treatment method following surgery, chemotherapy with anticancer agents, radiation therapy, and the like.

さて、PDT用の光増感剤としては、既に市販されているレザフリン、ビスダイン、テモポルフィン(Foscan)等のポルフィリン誘導体が使用されており、ポルフィリン誘導体を中心に従来から様々な誘導体が研究されている(例えば、特許文献1〜13及び非特許文献1を参照。)。   Well-known porphyrin derivatives such as resafrin, bisdyne, and temoporfin (Foscan) have been used as photosensitizers for PDT, and various derivatives have been studied mainly from porphyrin derivatives. (For example, see Patent Documents 1 to 13 and Non-Patent Document 1.)

ただ、従来からあるポルフィリン誘導体は、水溶性とともに疎水性も備えており、癌細胞や癌組織だけに特異的に集積せず、迅速には体外に排出されない。そのため、PDTの終了後、患者は、体内に残留した光増感剤によって光線過敏症を発症しないように、暗室状態で一定期間入院しなければならなかった。   However, conventional porphyrin derivatives are both water-soluble and hydrophobic, do not specifically accumulate only in cancer cells and cancer tissues, and are not rapidly discharged out of the body. Therefore, after the end of PDT, the patient had to be hospitalized for a certain period of time in a dark room so that the photosensitizer remaining in the body did not develop photosensitivity.

このような問題を解決するため、従来から癌組織や癌細胞に特異的に集積するポルフィリン誘導体について研究されている。例えば、ピリジニウム基、テトラメチルアンモニウム基、グアニジウム基などを有するカチオン性ポルフィリンが、細胞内に移行することが知られている。   In order to solve these problems, porphyrin derivatives that have been specifically accumulated in cancer tissues and cancer cells have been studied. For example, it is known that a cationic porphyrin having a pyridinium group, a tetramethylammonium group, a guanidinium group, and the like migrates into cells.

しかし、これらのカチオン性ポルフィリンは、癌細胞で特異的に発現しているγ-グルタルトランスペプターゼ等の膜蛋白質による酵素反応によって発生させることはできない。そのため、これらのカチオン性ポルフィリンは、癌細胞内に特異的に移行させることができなかった。   However, these cationic porphyrins cannot be generated by an enzymatic reaction with a membrane protein such as γ-glutar transpeptase that is specifically expressed in cancer cells. Therefore, these cationic porphyrins could not be specifically transferred into cancer cells.

特開平05−097857号公報Japanese Patent Laid-Open No. 05-097857 特開平09−124652号公報Japanese Patent Laid-Open No. 09-124652 特開2001−11077号公報JP 2001-11077 A 特開2004−2438号公報Japanese Patent Laid-Open No. 2004-2438 特開2005−507383号公報JP 2005-507383 A 特開2012−506425号公報JP 2012-506425 A 特許第3191223号公報Japanese Patent No. 3191223 特許第3718887号公報Japanese Patent No. 3718887 特許第5068920号公報Japanese Patent No. 5068920 特許第5226317号公報Japanese Patent No. 5226317 特公平04−24661号公報Japanese Examined Patent Publication No. 04-24661 特公平07−25763号公報Japanese Patent Publication No. 07-25563 国際公開第2002/020536号International Publication No. 2002/020536

Yoon et al. Clin. Endosc. 2013, 46, 7-23Yoon et al. Clin. Endosc. 2013, 46, 7-23

そこで、本発明は、癌細胞で特異的に発現する膜蛋白質の酵素反応によって、癌細胞内に特異的に移行できるポルフィリン誘導体を提供することを課題とする。また、前記ポルフィリン誘導体が癌細胞内に特異的に移行する性質を利用する光増感剤、蛍光可視化剤、MRI造影剤を提供することを課題とする。   Then, this invention makes it a subject to provide the porphyrin derivative which can be specifically transferred into a cancer cell by the enzyme reaction of the membrane protein specifically expressed in a cancer cell. It is another object of the present invention to provide a photosensitizer, a fluorescence visualization agent, and an MRI contrast agent that utilize the property that the porphyrin derivative specifically migrates into cancer cells.

発明者らは、鋭意検討の結果、アミド基がγ-グルタルトランスペプターゼ等による酵素反応によって第一級アミノ基へと容易に変換されることに着目して、4つの第一級アミノ基を有する水溶性ポルフィリン誘導体を合成し、このポルフィリン誘導体が光増感剤、蛍光可視化剤、MRI造影剤等に使用できることを見出した。   As a result of intensive studies, the inventors have paid attention to the fact that the amide group is easily converted into a primary amino group by an enzymatic reaction such as γ-glutar transpeptase. The present inventors have synthesized a water-soluble porphyrin derivative and have found that this porphyrin derivative can be used as a photosensitizer, a fluorescence visualization agent, an MRI contrast agent, and the like.

すなわち、請求項1に記載の発明は、下記一般式(I)で表されるポルフィリン誘導体である。

Figure 2016155768
(式中、nは0〜5の自然数であり、Rは同一又は互いに異なっていてもよい。) That is, the invention described in claim 1 is a porphyrin derivative represented by the following general formula (I).
Figure 2016155768
(In the formula, n is a natural number of 0 to 5, and R may be the same or different from each other.)

また、請求項2に記載の発明は、請求項1に記載のポルフィリン誘導体であって、nが3のポルフィリン誘導体である。   The invention according to claim 2 is the porphyrin derivative according to claim 1, wherein n is 3.

また、請求項3に記載の発明は、請求項1又は請求項2の何れかに記載のポルフィリン誘導体を有効成分として含む光増感剤である。   The invention according to claim 3 is a photosensitizer comprising the porphyrin derivative according to claim 1 or 2 as an active ingredient.

また、請求項4に記載の発明は、請求項1又は請求項2の何れかに記載のポルフィリン誘導体を有効成分として含む蛍光可視化剤である。   The invention according to claim 4 is a fluorescence visualization agent comprising the porphyrin derivative according to claim 1 or 2 as an active ingredient.

また、請求項5に記載の発明は、下記一般式(II)で表される金属錯体である。

Figure 2016155768
(式中、nは0〜5の自然数であり、Rは同一又は互いに異なっていてもよい。また、Mは、マンガン、亜鉛、マグネシウム、スズ、パラジウム、銀、金の内の何れかである。さらに、Xは塩素イオン、臭素イオン、硝酸イオン、トリフルオロメタンスルホン酸イオン、水酸化物イオン、酢酸イオンのうちの何れかである。) The invention according to claim 5 is a metal complex represented by the following general formula (II).
Figure 2016155768
(In the formula, n is a natural number of 0 to 5, and R may be the same or different from each other. M is any one of manganese, zinc, magnesium, tin, palladium, silver, and gold. Furthermore, X is any one of chlorine ion, bromine ion, nitrate ion, trifluoromethanesulfonate ion, hydroxide ion and acetate ion.)

また、請求項6に記載の発明は、請求項5に記載の金属錯体であって、nが3の金属錯体である。   The invention according to claim 6 is the metal complex according to claim 5, wherein n is 3.

さらに、請求項7に記載の発明は、請求項5又は請求項6の何れかに記載の金属錯体を有効成分として含む光増感剤である。   Furthermore, the invention according to claim 7 is a photosensitizer containing the metal complex according to claim 5 or 6 as an active ingredient.

加えて、請求項8に記載の発明は、請求項5又は請求項6の何れかに記載の金属錯体を有効成分として含むMRI造影剤である。   In addition, the invention according to claim 8 is an MRI contrast agent comprising the metal complex according to claim 5 or 6 as an active ingredient.

本発明のポルフィリン誘導体は、従来からあるカチオン性ポルフィリン誘導体よりも高効率、かつ特異的に癌細胞内に移行する。そのため、本発明のポルフィリン誘導体を含む光増感剤を使用すれば、投与量が少なくても癌組織に高濃度で集積でき、光線力学治療法による高い治療効果、癌組織の高い蛍光可視化効果が期待できる。   The porphyrin derivative of the present invention is more efficiently and specifically transferred into cancer cells than conventional cationic porphyrin derivatives. Therefore, if the photosensitizer containing the porphyrin derivative of the present invention is used, it can be accumulated at a high concentration in a cancer tissue even if the dose is small, and a high therapeutic effect by a photodynamic therapy method and a high fluorescence visualization effect of the cancer tissue are obtained. I can expect.

また、本発明のポルフィリン誘導体にマンガンイオンを挿入した本発明の金属錯体も高効率、かつ特異的に癌細胞内に移行する。そのため、本発明の金属錯体を含む光増感剤を使用しても、光線力学治療法による高い治療効果が期待できる。また、本発明の金属錯体を含むMRI造影剤を使用すれば、投与量が少なくても癌組織に高濃度で集積でき、癌組織をより鮮明に検出できる。   In addition, the metal complex of the present invention in which manganese ions are inserted into the porphyrin derivative of the present invention also migrates into cancer cells specifically with high efficiency. Therefore, even if a photosensitizer containing the metal complex of the present invention is used, a high therapeutic effect by photodynamic therapy can be expected. Moreover, if the MRI contrast agent containing the metal complex of this invention is used, even if there is little dosage, it can accumulate | store in cancer tissue at high concentration, and cancer tissue can be detected more clearly.

図1は、本発明のポルフィリン誘導体の合成経路の一例を示す図である。FIG. 1 is a diagram showing an example of a synthesis route of a porphyrin derivative of the present invention. 図2は、本発明のポルフィリン誘導体の濃度と癌細胞死滅効果との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the concentration of the porphyrin derivative of the present invention and the cancer cell killing effect.

1.ポルフィリン誘導体
本発明のポルフィリン誘導体は、下記一般式(I)で表される。なお、nは0〜5の自然数であり、合成が容易で、且つ、水溶性に優れているという理由から3が好ましい。また、4つのRは同一又は互いに異なっていてもよいが、合成が容易であることから、同一であることが好ましい。
1. Porphyrin Derivative The porphyrin derivative of the present invention is represented by the following general formula (I). Note that n is a natural number of 0 to 5, and 3 is preferable because it is easy to synthesize and has excellent water solubility. The four Rs may be the same or different from each other, but are preferably the same because they are easily synthesized.

Figure 2016155768
Figure 2016155768

本発明のポルフィリン誘導体は、例えば、以下に示す(A)及び(B)の化学反応を組み合わせて合成できる。なお、本発明のポルフィリン誘導体は、以下の合成法により製造されたものに限定されない。   The porphyrin derivative of the present invention can be synthesized, for example, by combining the following chemical reactions (A) and (B). In addition, the porphyrin derivative of this invention is not limited to what was manufactured by the following synthetic methods.

(A)カルボン酸アミドの合成
下記の化学式(III)に示すように、ポルフィリン誘導体であるカルボン酸aとアジド基を有する第一級アミンbとをアミド結合させて、カルボン酸アミドcを合成する。
(A) Synthesis of Carboxylic Acid Amide As shown in the following chemical formula (III), carboxylic acid amide c is synthesized by amide bonding of carboxylic acid a which is a porphyrin derivative and primary amine b having an azide group. .

Figure 2016155768
Figure 2016155768

(B)アジド基の還元
下記の化学式(IV)に示すように、カルボン酸アミドcの末端にあるアジド基を還元して、アミンdを合成する。
(B) Reduction of azide group As shown in the following chemical formula (IV), the azide group at the terminal of the carboxylic acid amide c is reduced to synthesize an amine d.

Figure 2016155768
Figure 2016155768

2. 光増感剤及び蛍光可視化剤
本発明の光増感剤及び蛍光可視化剤は、本発明のポルフィリン誘導体を有効成分として含むものであり、ヒト又はそれ以外の動物に投与することができる。
2. Photosensitizer and fluorescence visualization agent The photosensitizer and fluorescence visualization agent of the present invention contain the porphyrin derivative of the present invention as an active ingredient and can be administered to humans or other animals.

なお、本発明の光増感剤及び蛍光可視化剤の剤形は、特に制限されるものではなく、必要に応じて適宜選択すればよい。具体的には、注射剤、点滴剤等の非経口剤として利用することが一般的ではあるが、錠剤、カプセル剤、顆粒剤、細粒剤、散剤等の経口剤として利用できる。なお、光増感剤及び蛍光可視化剤の中のポルフィリン誘導体の濃度、患者への造影剤の投与量は、患者の年齢、体重、疾患の程度に応じて自由に選択することができる。   In addition, the dosage form of the photosensitizer and the fluorescence visualization agent of the present invention is not particularly limited, and may be appropriately selected as necessary. Specifically, it is generally used as a parenteral preparation such as an injection or an infusion, but can be used as an oral preparation such as a tablet, capsule, granule, fine granule or powder. The concentration of the porphyrin derivative in the photosensitizer and the fluorescence visualization agent and the dose of the contrast agent to the patient can be freely selected according to the patient's age, weight, and degree of disease.

本発明の光増感剤及び蛍光可視化剤を注射剤、点滴剤等の非経口剤として製造する場合には、注射用蒸留水、生理食塩水希釈剤、ブドウ糖水溶液等の希釈剤とともに、公知の方法によって製造することができる。なお、必要に応じて、殺菌剤、防腐剤、安定剤を加えてもよい。また、この非経口剤は安定性の点から、バイアル等に充填後冷凍して、通常の凍結乾燥処理により水分を除き、使用直前に凍結乾燥物から液剤に再調製することもできる。さらに、必要に応じて、等張化剤、安定剤、防腐剤、無痛化剤を加えてもよい。   When the photosensitizer and fluorescence visualization agent of the present invention are produced as parenteral preparations such as injections and infusions, well-known diluents such as distilled water for injection, physiological saline diluents, aqueous glucose solutions, etc. It can be manufactured by a method. In addition, you may add a disinfectant, antiseptic | preservative, and a stabilizer as needed. In addition, from the viewpoint of stability, this parenteral preparation can be frozen after filling into a vial or the like, the water removed by a normal freeze-drying treatment, and re-prepared from a freeze-dried product immediately before use. Furthermore, an isotonic agent, stabilizer, preservative, and soothing agent may be added as necessary.

本発明の光増感剤及び蛍光可視化剤を錠剤等の経口剤として製造する場合には、公知の賦型剤、結合剤、崩壊剤、界面活性剤、滑沢剤、流動性促進剤等とともに、公知の製造方法により製造することができる。また、本発明の光増感剤及び蛍光可視化剤は、懸濁液、エマルジョン剤、シロップ剤、エリキシル剤としてとしても経口投与することができる。この場合、矯味剤、矯臭剤、着色剤などを含有していてもよい。   When producing the photosensitizer and fluorescent visualization agent of the present invention as an oral preparation such as a tablet, together with known excipients, binders, disintegrants, surfactants, lubricants, fluidity promoters, etc. It can be produced by a known production method. The photosensitizer and fluorescence visualization agent of the present invention can also be administered orally as suspensions, emulsions, syrups and elixirs. In this case, a flavoring agent, a flavoring agent, a colorant and the like may be contained.

なお、本発明の光増感剤及び蛍光可視化剤は、公知のDDS技術、例えば、本発明の造影剤をリポソームなどの運搬体に封入して、体内投与してもよい。この場合、標的部位の細胞を特異的に認識する運搬体などを利用すれば、本発明の光増感剤及び蛍光可視化剤を標的部位により効率よく運ぶことができる。   The photosensitizer and fluorescence visualization agent of the present invention may be administered in the body by encapsulating the known DDS technique, for example, the contrast agent of the present invention in a carrier such as a liposome. In this case, if a carrier that specifically recognizes cells at the target site is used, the photosensitizer and fluorescence visualization agent of the present invention can be efficiently transported to the target site.

3.金属錯体
本発明のポルフィリン錯体は、本発明のポルフィリン誘導体にマンガンイオンを挿入したものであって、下記の化学式(II)に示すものである。なお、nは0〜5の自然数であり、合成が容易で、且つ、水溶性に優れているという理由から3が好ましい。また、4つのRは同一又は互いに異なっていてもよいが、合成が容易であることから、同一であることが好ましい。
3. Metal Complex The porphyrin complex of the present invention is obtained by inserting manganese ions into the porphyrin derivative of the present invention and represented by the following chemical formula (II). Note that n is a natural number of 0 to 5, and 3 is preferable because it is easy to synthesize and has excellent water solubility. The four Rs may be the same or different from each other, but are preferably the same because they are easily synthesized.

さらに、Mは、マンガン、亜鉛、マグネシウム、スズ、パラジウム、銀、金の内の何れかであり、MRI造影の効果が高いとの理由から、マンガンが好ましい。加えて、Xは塩素イオン、臭素イオン、硝酸イオン、トリフルオロメタンスルホン酸イオン、水酸化物イオン、酢酸イオンのうちの何れかであり、精製が容易という理由から塩素イオンが好ましい。   Further, M is any one of manganese, zinc, magnesium, tin, palladium, silver, and gold, and manganese is preferable because it has a high MRI contrast effect. In addition, X is any one of chlorine ion, bromine ion, nitrate ion, trifluoromethanesulfonic acid ion, hydroxide ion, and acetate ion, and chlorine ion is preferable because it is easy to purify.

Figure 2016155768
Figure 2016155768

本発明の金属錯体は、本発明のポルフィリン誘導体を配位子としてマンガンなどの金属イオンに配位させる公知の方法を使用して製造できる。具体的には、中心金属となる金属イオンを含む塩をメタノール、アセトニトリルなどの極性有機溶剤に溶かした金属イオン溶液と、本発明のポルフィリン誘導体を極性有機溶剤に溶かしたポルフィリン誘導体溶液とを調製し、金属イオン溶液とポルフィリン誘導体溶液とを混合攪拌すれば、錯体の結晶を析出させることができる。なお、この結晶を極性有機溶媒によって洗浄すればより純度の高い結晶が得られる。   The metal complex of the present invention can be produced using a known method in which the porphyrin derivative of the present invention is coordinated to a metal ion such as manganese. Specifically, a metal ion solution in which a salt containing a metal ion serving as a central metal is dissolved in a polar organic solvent such as methanol or acetonitrile, and a porphyrin derivative solution in which the porphyrin derivative of the present invention is dissolved in a polar organic solvent are prepared. If the metal ion solution and the porphyrin derivative solution are mixed and stirred, crystals of the complex can be precipitated. If this crystal is washed with a polar organic solvent, a crystal with higher purity can be obtained.

4.光増感剤及びMRI造影剤
本発明の他の光増感剤及びMRI造影剤は、本発明の金属錯体を有効成分として含むものであり、ヒト又はそれ以外の動物に投与することができる。なお、MRI造影剤の剤型、投与量などは、本発明の光増感剤及び蛍光可視化剤と同様に任意に設定・変更できる。
4. Photosensitizer and MRI contrast agent The other photosensitizer and MRI contrast agent of the present invention contain the metal complex of the present invention as an active ingredient and can be administered to humans or other animals. it can. The dosage form, dosage, etc. of the MRI contrast agent can be arbitrarily set and changed in the same manner as the photosensitizer and fluorescence visualization agent of the present invention.

以下、本発明について実施例に基づいてより詳細に説明する。なお、本発明の特許請求の範囲は、以下の実施例によって如何なる意味においても制限されない。   Hereinafter, the present invention will be described in more detail based on examples. The claims of the present invention are not limited in any way by the following examples.

1.ポルフィリン誘導体の合成
本発明にかかるポルフィリン誘導体TAEPを、図1の合成経路に沿って合成した。なお、理解し易くするため、以下の説明では、同じ化合物については図1と同じ記号を使用した。
1. Synthesis of Porphyrin Derivative The porphyrin derivative TAEP according to the present invention was synthesized along the synthetic route of FIG. In addition, in order to make it easy to understand, in the following description, the same symbol as FIG. 1 was used about the same compound.

(1)カルボン酸アミド(化合物c)の合成
テトラキス(4-カルボキシフェニル)ポルフィリン(化合物a,CAS# 14609-54-2,100 mg, 0.125 mmol) を二口ナスフラスコに入れ、窒素下でジクロロメタン(10mL)を加えた。反応溶液を攪拌しながら、塩化オキサリル(0.25mL, 3mmol)及びN,N-ジメチルホルムアミド(1μL)を加え、窒素下、遮光した状態で室温で19時間攪拌した。反応溶液をアルカリトラップと液体窒素トラップに接続されたロータリーエバポレーターで濃縮し、ジクロロメタン(5mL)で洗浄した。この操作を2回繰り返したのち、反応溶液に窒素下でジクロロメタン(10mL)を加えた(以下、反応溶液1と省略する。)。
(1) Synthesis of carboxylic acid amide (compound c) Tetrakis (4-carboxyphenyl) porphyrin (compound a, CAS # 14609-54-2, 100 mg, 0.125 mmol) was placed in a two-necked eggplant flask and dichloromethane under nitrogen. (10 mL) was added. While stirring the reaction solution, oxalyl chloride (0.25 mL, 3 mmol) and N, N-dimethylformamide (1 μL) were added, and the mixture was stirred at room temperature for 19 hours under a light-shielded condition under nitrogen. The reaction solution was concentrated with a rotary evaporator connected to an alkali trap and a liquid nitrogen trap, and washed with dichloromethane (5 mL). After repeating this operation twice, dichloromethane (10 mL) was added to the reaction solution under nitrogen (hereinafter abbreviated as reaction solution 1).

これとは別に、11-アジド-3,6,9-トリオキサウンデカン-1-アミン(化合物b,CAS# 134179-38-7,318mg, 1.25 mmol)を二口ナスフラスコに測り取り、窒素下でジクロロメタン (5 mL)を加えたのち、N,N-ジイソプロピルエチルアミン(0.5mL)を加えた(以下、反応溶液2と省略する。)。その後、反応溶液2を窒素下で反応溶液1に加え、窒素下、遮光した状態で、室温で22時間攪拌した。   Separately, 11-azido-3,6,9-trioxaundecan-1-amine (compound b, CAS # 134179-38-7, 318 mg, 1.25 mmol) was weighed into a two-necked eggplant flask under nitrogen. After adding dichloromethane (5 mL), N, N-diisopropylethylamine (0.5 mL) was added (hereinafter abbreviated as reaction solution 2). Thereafter, the reaction solution 2 was added to the reaction solution 1 under nitrogen, and the mixture was stirred at room temperature for 22 hours under light-shielding under nitrogen.

得られた反応溶液をジクロロメタン(100mL)で希釈したのち、有機層を1N塩酸、1N水酸化ナトリウム水溶液、飽和食塩水の順で洗浄した。有機層を硫酸ナトリウムで脱水して濾過したのち、ロータリーエバポレーターで濃縮、真空乾燥した。真空乾燥物をフラッシュクロマトグラフィーで精製したのち、ロータリーエバポレーターで濃縮、真空乾燥し、濃紫色の粉末を得た(収量: 142.4 mg 、収率: 72 %)。なお、この化合物は核磁気共鳴分光法(1H NMR)、フーリエ変換赤外分光光度計(FT-IR) の測定結果から同定した。その結果を以下に示す。 The obtained reaction solution was diluted with dichloromethane (100 mL), and then the organic layer was washed with 1N hydrochloric acid, 1N aqueous sodium hydroxide solution and saturated brine in this order. The organic layer was dehydrated with sodium sulfate and filtered, and then concentrated on a rotary evaporator and dried in vacuo. The vacuum dried product was purified by flash chromatography, and then concentrated and vacuum dried by a rotary evaporator to obtain a dark purple powder (yield: 142.4 mg, yield: 72%). This compound was identified from the measurement results of nuclear magnetic resonance spectroscopy ( 1 H NMR) and Fourier transform infrared spectrophotometer (FT-IR). The results are shown below.

1HNMR (500MHz, CDCl3): δ [ppm] = 8.83 (s, 8H, pyrrolic-β-CH), 8.29 (d, J = 8.3 Hz, 8H, phenylic CH), 8.21 (d, J = 8.3 Hz 8H, phenylic CH), 7.16 (t, J = 5.2 Hz, 4H, amido), 3.86 (t, J = 4.8 Hz, 8H, N3CH2CH2), 3.83 (d, J = 4.1 Hz, 8H, CONHCH2), 3.73 (m, 32H, PEG), 3.66 (t, J = 5.2 Hz, 8H, CONHCH2CH2), 3.35 (t, J = 4.8 Hz, 8H, N3CH2), -2.81 (s, 2H, pyrrolic-NH).
FTIR (neat): 2099 cm-1as N3), 1100 cm-1as C-O-C).
1 HNMR (500MHz, CDCl 3 ): δ [ppm] = 8.83 (s, 8H, pyrrolic-β-CH), 8.29 (d, J = 8.3 Hz, 8H, phenylic CH), 8.21 (d, J = 8.3 Hz 8H, phenylic CH), 7.16 (t, J = 5.2 Hz, 4H, amido), 3.86 (t, J = 4.8 Hz, 8H, N 3 CH 2 CH 2 ), 3.83 (d, J = 4.1 Hz, 8H, CONHCH 2 ), 3.73 (m, 32H, PEG), 3.66 (t, J = 5.2 Hz, 8H, CONHCH 2 CH 2 ), 3.35 (t, J = 4.8 Hz, 8H, N 3 CH 2 ), -2.81 ( s, 2H, pyrrolic-NH).
FTIR (neat): 2099 cm -1as N 3 ), 1100 cm -1as COC).

(2)アジド基の還元(化合物dの合成)
トリフェニルホスフィン(99mg, 0.38mmol)を二口ナスフラスコに測り取り、テトラヒドロフラン(2mL)に溶解した。このトリフェニルホスフィン溶液を、化合物c(60mg, 0.038mmol)を測り取ったシュレンク管に加え、窒素下、室温で18時間攪拌した。反応溶液に水(0.2 mL)を加え、再び窒素下、室温で23時間攪拌した。
(2) Reduction of azide group (synthesis of compound d)
Triphenylphosphine (99 mg, 0.38 mmol) was weighed into a two-necked eggplant flask and dissolved in tetrahydrofuran (2 mL). This triphenylphosphine solution was added to a Schlenk tube in which compound c (60 mg, 0.038 mmol) was measured, and stirred at room temperature for 18 hours under nitrogen. Water (0.2 mL) was added to the reaction solution, and the mixture was again stirred at room temperature under nitrogen for 23 hours.

得られた反応液をロータリーエバポレーターで濃縮して真空乾燥した。真空乾燥物を0.5 M 塩酸(50mL)で希釈して、酢酸エチルで3回洗浄した。水層を1N水酸化ナトリウム水溶液、飽和食塩水の順番で洗浄したのち、クロロホルムにより抽出した。クロロホルム層を硫酸ナトリウムで脱水して濾過して、濾液をロータリーエバポレーターで濃縮、真空乾燥し、濃紫色のゲル状物質(化合物d)を得た(収量: 62.4mg, quant.)。なお、この化合物は核磁気共鳴分光法(1H NMR)、質量分析法の測定結果から同定した。その結果を以下に示す。 The obtained reaction liquid was concentrated with a rotary evaporator and vacuum-dried. The vacuum dried product was diluted with 0.5 M hydrochloric acid (50 mL) and washed 3 times with ethyl acetate. The aqueous layer was washed with 1N aqueous sodium hydroxide solution and saturated brine in this order, and extracted with chloroform. The chloroform layer was dehydrated with sodium sulfate and filtered, and the filtrate was concentrated on a rotary evaporator and dried in vacuo to obtain a dark purple gel material (compound d) (yield: 62.4 mg, quant.). This compound was identified from the measurement results of nuclear magnetic resonance spectroscopy ( 1 H NMR) and mass spectrometry. The results are shown below.

1H NMR (500MHz, CDCl3): δ [ppm] = 8.82 (s, 8H, pyrrolic-β-CH), 8.27 (d, J = 8.7 Hz, 8H, phenylic CH), 8.24 (d, J = 8.0 Hz 8H, phenylic CH), 7.88 (t, J = 5.1 Hz, 4H, amido), 3.64-3.85 (m, 48H, PEG), 3.50 (t, J = 5.1 Hz, 8H, NH2CH2CH2), 2.83 (t, J = 5.1 Hz, 8H, NH2CH2), 1.61 (s, 8H, NH2), -2.84 (s, 2H, pyrrolic-NH).
m/z (ESI): Calcd. for C80H104N12O16 [M+2H]2+ 496.92; found 496.92, Calcd. for C80H105N12O16 [M+3H]3+ 744.37; found 744.37.
1 H NMR (500MHz, CDCl 3 ): δ [ppm] = 8.82 (s, 8H, pyrrolic-β-CH), 8.27 (d, J = 8.7 Hz, 8H, phenylic CH), 8.24 (d, J = 8.0 Hz 8H, phenylic CH), 7.88 (t, J = 5.1 Hz, 4H, amido), 3.64-3.85 (m, 48H, PEG), 3.50 (t, J = 5.1 Hz, 8H, NH 2 CH 2 CH 2 ) , 2.83 (t, J = 5.1 Hz, 8H, NH 2 CH 2) , 1.61 (s, 8H, NH 2 ), -2.84 (s, 2H, pyrrolic-NH).
m / z (ESI): Calcd. for C 80 H 104 N 12 O 16 [M + 2H] 2+ 496.92; found 496.92, Calcd. for C 80 H 105 N 12 O 16 [M + 3H] 3+ 744.37; found 744.37.

2.癌細胞死滅効果
本発明のポルフィリン誘導体を光増感剤として使用して、光線力学治療法による癌細胞の死滅効果を調べた。具体的には、以下の手順で調べた。なお、従来からあるポルフィリン誘導体であるMesotetra(4-N-methylpyridyl)porphine tetraiodide(以下、TMPyPと省略する。CAS# 36674-90-5)を実験対照として使用した。
2. Cancer cell killing effect Using the porphyrin derivative of the present invention as a photosensitizer, the killing effect of cancer cells by photodynamic therapy was examined. Specifically, the following procedure was used. A conventional porphyrin derivative, Mesotetra (4-N-methylpyridyl) porphine tetraiodide (hereinafter abbreviated as TMPyP, CAS # 36674-90-5) was used as an experimental control.

(1)癌細胞の培養
HeLa細胞(RIKEN RCB007)を含む細胞培養用培地(D-MEM,1×105 cells/mL, 100 μL/well)を、96穴マイクロプレートに入れ、細胞培養用インキュベーターで24時間培養した。なお、同様のプレートを計4枚用意した。
(1) Cancer cell culture
A cell culture medium (D-MEM, 1 × 10 5 cells / mL, 100 μL / well) containing HeLa cells (RIKEN RCB007) was placed in a 96-well microplate and cultured in a cell culture incubator for 24 hours. A total of four similar plates were prepared.

(2)光増感剤溶液の調製
実施例1で製造したポルフィリン誘導体TAEP、及びTMPyPのDMSO溶液(TAEP: 2.18 mM, TMPyP: 1.23 mM)を調製した。これらポルフィリン誘導体のDMSO溶液をD-MEM(血清不含)を使用して10μMとなるように希釈した。さらに、これらをD-MEM(血清不含)を使用して段階希釈し、10μM、 8μM、 6μM、 5μM、 4μM、 3μM、 2.5μM、 2μM、 1 μMのポルフィリン誘導体希釈培地を調製した。
(2) Preparation of photosensitizer solution The porphyrin derivative TAEP manufactured in Example 1 and a TMPyP DMSO solution (TAEP: 2.18 mM, TMPyP: 1.23 mM) were prepared. These DMSO solutions of porphyrin derivatives were diluted to 10 μM using D-MEM (without serum). Furthermore, these were serially diluted using D-MEM (without serum) to prepare 10 μM, 8 μM, 6 μM, 5 μM, 4 μM, 3 μM, 2.5 μM, 2 μM, and 1 μM porphyrin derivative-diluted media.

(3)光線力学治療
インキュベーターから96穴マイクロプレートを取り出し、クリーンベンチにて培地をすべて取り除いた。12連ピペットマンを使用して、96穴マイクロプレートの各ウェルにポルフィリン誘導体希釈培地(100μL/well)をそれぞれ加えて、TAEPの希釈培地を含む96穴マイクロプレート2枚と、TMPyPの希釈培地を含む96穴マイクロプレート2枚を調製した。調製した4枚の96穴マイクロプレートをインキュベーターで24時間培養した。
(3) Photodynamic treatment The 96-well microplate was taken out from the incubator, and all the medium was removed on a clean bench. Using a 12-pipetman, add porphyrin derivative-diluted medium (100 μL / well) to each well of a 96-well microplate, and include two 96-well microplates containing TAEP-diluted medium and TMPyP-diluted medium Two 96-well microplates were prepared. The prepared four 96-well microplates were cultured in an incubator for 24 hours.

各ポルフィリン希釈溶液を含む96穴マイクロプレートから1枚ずつ選び、選んだ96穴マイクロプレートから培地をクリーンベンチにてすべて取り除き、D-PBS(120μL/well)で2回洗浄し、D-MEM(血清不含, 100μL/well)を加えた。   Select one from a 96-well microplate containing each porphyrin diluted solution, remove all medium from the selected 96-well microplate with a clean bench, wash twice with D-PBS (120 μL / well), and D-MEM ( Serum free, 100 μL / well) was added.

未洗浄の2枚の96穴マイクロプレートと、洗浄済みの2枚の96穴マイクロプレートを暗室に移した。キセノン光源(朝日分光製、MAX-303,λ = 375〜700 nm)を使用して、96穴マイクロプレートに400±20 mW/m2の光を30分間照射したのち、インキュベーターで20時間培養した。 Two unwashed 96-well microplates and two washed 96-well microplates were transferred to a dark room. Using a xenon light source (manufactured by Asahi Spectroscope, MAX-303, λ = 375 to 700 nm), a 96-well microplate was irradiated with 400 ± 20 mW / m 2 of light for 30 minutes and then cultured in an incubator for 20 hours. .

(4)生存率の測定
96穴マイクロプレートの各ウェル中で生存している癌細胞の生存率をMTTアッセイに従って調べた。まず、MTT溶液(2.5 mg/mL, 20 μL/well)を各ウェルに加えたのち、インキュベーターで3時間培養し、クリーンベンチ内で培地をすべて取り除いた。つぎに、ホルマザン溶解液(100 μL/well)を各ウェルに加えてピペッティングしたのち、マイクロプレートリーダー(Molecular Devices製、 OptiMax Tunable Microplate Reader)で570 nmにおける吸光度を測定した。測定した吸光度から、癌細胞の生存率を計算した。その結果を図2に示す。
(4) Measurement of survival rate
The viability of cancer cells surviving in each well of a 96-well microplate was examined according to the MTT assay. First, an MTT solution (2.5 mg / mL, 20 μL / well) was added to each well, followed by culturing in an incubator for 3 hours, and all the medium was removed in a clean bench. Next, after adding a formazan solution (100 μL / well) to each well and pipetting, the absorbance at 570 nm was measured with a microplate reader (manufactured by Molecular Devices, OptiMax Tunable Microplate Reader). From the measured absorbance, the survival rate of the cancer cells was calculated. The result is shown in FIG.

(5)まとめ
図2に示すように、TAEPは、癌細胞を洗浄後(図2中のTAEP+Wash)も細胞洗浄前(図2中のTAEP)とほぼ同様に光照射による高い癌細胞死滅効果(1μM以下で癌細胞が100%近く死滅。)を示しており、高い細胞移行性を有することが分かった。なお、実験対照であるTMPyPでは、細胞洗浄前(図2中のTMPyP)と細胞洗浄後(図2中のTMPyP+Wash)とを比べると、IC50=1μMからIC50=5μMに癌細胞死滅効果が低下している。
(5) Summary As shown in FIG. 2, TAEP is highly cancerous killed by light irradiation even after washing cancer cells (TAEP + Wash in FIG. 2) and before washing cells (TAEP in FIG. 2). It showed an effect (cancer cells died nearly 100% at 1 μM or less) and was found to have high cell migration. In addition, in TMPyP, which is an experimental control, comparing cancer cells before washing (TMPyP in FIG. 2) and after washing (TMPyP + Wash in FIG. 2), IC 50 = 1 μM to IC 50 = 5 μM. The effect is decreasing.

Claims (8)

下記一般式(I)で表されるポルフィリン誘導体。
Figure 2016155768
(式中、nは0〜5の自然数であり、Rは同一又は互いに異なっていてもよい。)
Porphyrin derivatives represented by the following general formula (I).
Figure 2016155768
(In the formula, n is a natural number of 0 to 5, and R may be the same or different from each other.)
nが3である請求項1に記載のポルフィリン誘導体。   The porphyrin derivative according to claim 1, wherein n is 3. 請求項1又は請求項2の何れかに記載のポルフィリン誘導体を有効成分として含む光増感剤。   The photosensitizer which contains the porphyrin derivative in any one of Claim 1 or Claim 2 as an active ingredient. 請求項1又は請求項2の何れかに記載のポルフィリン誘導体を有効成分として含む蛍光可視化剤。   A fluorescence visualization agent comprising the porphyrin derivative according to claim 1 as an active ingredient. 下記一般式(II)で表される金属錯体。
Figure 2016155768
(式中、nは0〜5の自然数であり、Rは同一又は互いに異なっていてもよい。また、Mは、マンガン、亜鉛、マグネシウム、スズ、パラジウム、銀、金の内の何れかである。さらに、Xは塩素イオン、臭素イオン、硝酸イオン、トリフルオロメタンスルホン酸イオン、水酸化物イオン、酢酸イオンのうちの何れかである。)
A metal complex represented by the following general formula (II).
Figure 2016155768
(In the formula, n is a natural number of 0 to 5, and R may be the same or different from each other. M is any one of manganese, zinc, magnesium, tin, palladium, silver, and gold. Furthermore, X is any one of chlorine ion, bromine ion, nitrate ion, trifluoromethanesulfonate ion, hydroxide ion and acetate ion.)
nが3である請求項5に記載の金属錯体。   6. The metal complex according to claim 5, wherein n is 3. 請求項5又は請求項6に記載の金属錯体を有効成分として含む光増感剤。   The photosensitizer which contains the metal complex of Claim 5 or Claim 6 as an active ingredient. 請求項5又は請求項6に記載の金属錯体を有効成分として含むMRI造影剤。   An MRI contrast agent comprising the metal complex according to claim 5 or 6 as an active ingredient.
JP2015033566A 2015-02-24 2015-02-24 Porphyrin derivatives and photosensitizers containing the same Expired - Fee Related JP6444211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015033566A JP6444211B2 (en) 2015-02-24 2015-02-24 Porphyrin derivatives and photosensitizers containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015033566A JP6444211B2 (en) 2015-02-24 2015-02-24 Porphyrin derivatives and photosensitizers containing the same

Publications (2)

Publication Number Publication Date
JP2016155768A true JP2016155768A (en) 2016-09-01
JP6444211B2 JP6444211B2 (en) 2018-12-26

Family

ID=56825018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015033566A Expired - Fee Related JP6444211B2 (en) 2015-02-24 2015-02-24 Porphyrin derivatives and photosensitizers containing the same

Country Status (1)

Country Link
JP (1) JP6444211B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0338587A (en) * 1989-07-03 1991-02-19 Doujin Kagaku Kenkyusho:Kk Labeling compound catalyzing oxidation reaction
JPH11509180A (en) * 1995-06-07 1999-08-17 デューク・ユニバーシティ Oxidant remover
CN101857597A (en) * 2010-05-27 2010-10-13 中国医学科学院生物医学工程研究所 Diethylene triamine pentaacetic acid or ethylene diamine tetraacetic acid or amine triacetic acid modified porphyrin, preparation method and application thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0338587A (en) * 1989-07-03 1991-02-19 Doujin Kagaku Kenkyusho:Kk Labeling compound catalyzing oxidation reaction
JPH11509180A (en) * 1995-06-07 1999-08-17 デューク・ユニバーシティ Oxidant remover
CN101857597A (en) * 2010-05-27 2010-10-13 中国医学科学院生物医学工程研究所 Diethylene triamine pentaacetic acid or ethylene diamine tetraacetic acid or amine triacetic acid modified porphyrin, preparation method and application thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BAKLEH, M. E. ET AL.: "An efficient route to VEGF-like peptide porphyrin conjugates via microwave-assisted 'click-chemistry", TETRAHEDRON, vol. 65(36), JPN6018033464, 2009, pages 7385-7392. *
GIANFERRARA, TERESA ET AL.: "Ruthenium-Porphyrin Conjugates with Cytotoxic and Phototoxic Antitumor Activity", JOURNAL OF MEDICINAL CHEMISTRY, vol. 53(12), JPN6018033460, 2010, pages 4678-4690. *
HITOMI, Y. ET AL.: "Water proton relaxivity, superoxide dismutase-like activity, and cytotoxicity of a manganese(III) po", CHEMISTRY LETTERS, vol. 43, no. 5, JPN6018033462, 2014, pages 732 - 734 *
II YOON,JIA ZHU LI ET AL.: "Advanced in Photosensitizers and Light Delivery for Photodynamic Therapy", PHOTODYNAMIC THERAPY, vol. 46, JPN6018033461, 2013, pages 7-23. *

Also Published As

Publication number Publication date
JP6444211B2 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
Hu et al. Hydroxyphthalocyanines as potential photodynamic agents for cancer therapy
JP6910551B2 (en) Photosensitizers, their derivatives and applications
CN108030921B (en) Preparation method and application of albumin-loaded metalloporphyrin complex nanoparticles
WO2007003944A2 (en) Compounds for imaging and therapy
AU2020356793A1 (en) PH/glutathione-responsive β-carbolines/cycloketene derivatives and their preparation and application
CN106572991A (en) Texaphyrin-PT(IV) conjugates and compositions for use in overcoming platinum resistance
US20190309000A1 (en) Chelated PSMA Inhibitors
CN107987081A (en) A kind of new chlorin e 6 derivative and its pharmaceutically acceptable salt, its preparation method and application
CN107417752A (en) One kind has compound of active anticancer and its preparation method and application
JPH07233065A (en) Photochemical therapeutic agent containing pyrylium salt or pyrylium analog salt
WO2016143699A1 (en) Boron-dipyrrin complex and pharmaceutical product containing same
CN111825624B (en) Ester-water amphiphilic hypocrellin derivative and preparation method and application thereof
JP6444211B2 (en) Porphyrin derivatives and photosensitizers containing the same
CN113234439B (en) Bovine serum albumin self-assembly triphenylamine photosensitizer and preparation method and application thereof
JP2021528482A (en) Oxazine compounds and their use
WO2018101434A1 (en) Glycosylated chlorin e6 derivative or a pharmaceutically acceptable salt thereof, pharmaceutical composition, method for destroying target, and method for producing glycosylated chlorin e6 derivative or a pharmaceutically acceptable salt thereof
CN109456334B (en) Cyclo-monosubstituted amphiphilic phthalocyanine photosensitizer and preparation and application thereof
US20210238211A1 (en) Near-ir activatable fluorescent small molecules with dual modes of cytotoxicity
JP2018199649A (en) Ultrasonic wave sensitizer
CN115381830B (en) Use of water-soluble anionic-pi-aryl azo compounds
RU2725876C1 (en) Derivatives of fluorine-containing chlorins exhibiting anti-tumour activity
EP4174079A1 (en) Cisplatin derivative with cytotoxicity controlled by uv / vis light, method of its production and use in anti-cancer therapy
CN113929699B (en) PSMA (patterned beam-induced plasma) targeted internal peroxide system and application
RU2707754C1 (en) Fluorinated porphyrin derivatives exhibiting anti-tumor activity
KR101766969B1 (en) Novel compound for the treatment of breast cancer and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181127

R150 Certificate of patent or registration of utility model

Ref document number: 6444211

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees