JP2016155307A - Molding method and molded article - Google Patents

Molding method and molded article Download PDF

Info

Publication number
JP2016155307A
JP2016155307A JP2015034801A JP2015034801A JP2016155307A JP 2016155307 A JP2016155307 A JP 2016155307A JP 2015034801 A JP2015034801 A JP 2015034801A JP 2015034801 A JP2015034801 A JP 2015034801A JP 2016155307 A JP2016155307 A JP 2016155307A
Authority
JP
Japan
Prior art keywords
mold
curable resin
molding method
base material
energy curable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015034801A
Other languages
Japanese (ja)
Other versions
JP6447817B2 (en
Inventor
勝己 古田
Katsumi Furuta
勝己 古田
章弘 藤本
Akihiro Fujimoto
章弘 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2015034801A priority Critical patent/JP6447817B2/en
Publication of JP2016155307A publication Critical patent/JP2016155307A/en
Application granted granted Critical
Publication of JP6447817B2 publication Critical patent/JP6447817B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a molding method and a molded article which can effectively suppress generation of bubbles using a simple system without prolonging a molding cycle.SOLUTION: Since a projection MD1d first comes into contact with a photocurable resin PL supplied onto a substrate ST at the time of relative approach to a mold member MD1, a position where the flow of the photocurable resin PL is started can be controlled. Accordingly, as contact occurs always at a defined position, the flow of the photocurable resin PL is started from the contact point, whereby the amount of resin moving around can be adjusted, and a bubble can be prevented from being enclosed in the resin even after closing the mold member MD1.SELECTED DRAWING: Figure 7

Description

本発明は、光学素子やマイクロチップなどの成形品を成形するのに適した成形方法及び成形品に関する。   The present invention relates to a molding method and a molded product suitable for molding a molded product such as an optical element or a microchip.

近年、光学素子やマイクロチップなどの成形品を成形するために、光硬化性樹脂や熱硬化性樹脂等のエネルギー硬化性樹脂を用いる試みがある。エネルギー硬化性樹脂は、エネルギーを付与することにより短時間で硬化する特性を有するため、これを用いることで高精度な成形品を安価に量産できると期待されている。特に、光学素子やマイクロチップの一タイプには、例えば板状の基材上に、成形したエネルギー硬化性樹脂を付着させて製品としたものがある。かかる製品は、別々に成形した樹脂と基材を貼り合わせることでも得ることができるが、例えば基材上にエネルギー硬化性樹脂を滴下した上で型をかぶせ、外部からエネルギーを供給することで、型により成形された樹脂を基材に付着させた製品を少ない工程で得ることができる。   In recent years, there has been an attempt to use an energy curable resin such as a photocurable resin or a thermosetting resin in order to mold a molded product such as an optical element or a microchip. Since the energy curable resin has a property of being cured in a short time by applying energy, it is expected that a highly accurate molded product can be mass-produced at a low cost by using the energy curable resin. In particular, one type of optical element and microchip includes a product obtained by attaching a molded energy curable resin on, for example, a plate-like substrate. Such a product can be obtained by laminating a separately molded resin and a base material, for example, by dropping an energy curable resin on the base material and then covering the mold, and supplying energy from the outside, A product in which the resin molded by the mold is adhered to the base material can be obtained with fewer steps.

ところで、エネルギー硬化性樹脂を基材上に塗布し、その上から型をかぶせて型締め動作を行う工程で、型と基材が接触する際に気泡を巻き込み、それにより成形不良を招く恐れがある。このような気泡の巻き込みへの対策としては、例えば真空状態で型締め動作を行ったり、基材と型の両面にエネルギー硬化性樹脂を塗布するなどの対策がある。しかし、前者の対策では型を密閉遮蔽する真空環境が必要になる。一方,後者の対策ではエネルギー硬化性樹脂の塗布前には、基材と型の双方の塗布面を重力加速度方向上方に向けておき、その後の成形時には、基材と型の塗布面を互いに対向させる必要があるから型を駆動する構成が複雑になる。従って、従来の対策では、いずれもコストの増大や成形サイクルの延長を招くこととなる。   By the way, in the process of applying the energy curable resin on the base material and covering the mold from above to perform the clamping operation, air bubbles may be involved when the mold comes into contact with the base material, which may lead to molding defects. is there. As measures against such entrainment of bubbles, for example, there are measures such as performing a mold clamping operation in a vacuum state, and applying energy curable resin on both surfaces of the substrate and the mold. However, the former measure requires a vacuum environment in which the mold is hermetically shielded. On the other hand, in the latter measure, before the application of the energy curable resin, both the base material and the mold application surface are directed upward in the direction of gravitational acceleration, and in the subsequent molding, the base material and the mold application surface face each other. Therefore, the configuration for driving the mold is complicated. Therefore, all of the conventional measures cause an increase in cost and an extension of the molding cycle.

これに対し、特許文献1には、基板に対してテンプレートを傾けた状態で接近させ、所定距離近接したときに、両者の近接する側からレジスト液を供給し、その後基板に対してテンプレートを閉じることで、毛細管現象を利用して気泡の巻き込みを抑制しつつレジスト液を展開する技術が開示されている。   On the other hand, in Patent Document 1, when the template is approached in an inclined state with respect to the substrate, and approaches a predetermined distance, a resist solution is supplied from the side where both approach, and then the template is closed with respect to the substrate. Thus, a technique for developing a resist solution while suppressing entrainment of bubbles by utilizing a capillary phenomenon has been disclosed.

特開2011-54755号公報JP 2011-54755 A

しかし、特許文献1の技術を応用して、基材と型の間にエネルギー硬化性樹脂を供給しようとすると、基材に対して型を傾けて接近させ、近接する側からエネルギー硬化性樹脂の供給を行うこととなるが、それにより型外周部への樹脂の付着による汚染が生じたり、型と基材の表面エネルギー差によっては樹脂が適切に転写面に供給されないなどの恐れがある。また、エネルギー硬化性樹脂の供給に毛細管現象を利用すると、相当に時間がかかり成形サイクルの延長を招くこととなる。   However, applying the technique of Patent Document 1 to supply an energy curable resin between the base material and the mold, the mold is inclined with respect to the base material, and the energy curable resin is However, there is a risk that contamination due to adhesion of the resin to the outer periphery of the mold may occur, or the resin may not be appropriately supplied to the transfer surface depending on the surface energy difference between the mold and the substrate. In addition, if the capillary phenomenon is used for supplying the energy curable resin, it takes a considerable time and the molding cycle is extended.

本発明は、上述した課題に鑑みてなされたものであり、簡素な設備を用い、成形サイクルを延長することなく、気泡の発生を有効に抑えることが出来る成形方法及び成形品を提供することを目的とする。   The present invention has been made in view of the above-described problems, and provides a molding method and a molded product that can effectively suppress the generation of bubbles without using a simple facility and extending a molding cycle. Objective.

本発明の成形方法は、接近又は離間するように相対移動可能な型と基材との間にエネルギー硬化性樹脂を供給して、成形品を成形する成形方法であって、
前記型の転写面には、複数の凹凸と、突起とが形成され、相対移動方向における前記突起の高さは、前記凹凸の最大深さよりも大きくなっており、
前記型と前記基材との間に前記エネルギー硬化性樹脂を供給し、更に前記型と前記基材とを前記相対移動方向に沿って接近させた際に、前記突起が前記エネルギー硬化性樹脂に接した後に、前記複数の凹凸が前記硬化性樹脂に接し、それにより前記型と前記基材との間で生じる前記エネルギー硬化性樹脂の流動を制御するようになっているものである。
The molding method of the present invention is a molding method for molding a molded article by supplying an energy curable resin between a mold and a substrate that are relatively movable so as to approach or separate from each other.
A plurality of irregularities and protrusions are formed on the transfer surface of the mold, and the height of the protrusions in the relative movement direction is greater than the maximum depth of the irregularities,
When the energy curable resin is supplied between the mold and the base material, and the mold and the base material are brought closer to each other along the relative movement direction, the protrusions are formed on the energy curable resin. After the contact, the plurality of irregularities come into contact with the curable resin, thereby controlling the flow of the energy curable resin generated between the mold and the substrate.

本発明に成形方法は、型と基材との間にエネルギー硬化性樹脂を供給して、成形品を成形する成形方法であって、
前記型と前記基材とのうち一方に前記エネルギー硬化性樹脂を供給し、他方の撓ませた部位を前記エネルギー硬化性樹脂に接触させ、その後他方の撓みを展伸することにより、前記型と前記基材との間で生じる前記エネルギー硬化性樹脂の流動を制御するようになっているものである。
The molding method according to the present invention is a molding method in which an energy curable resin is supplied between a mold and a substrate to mold a molded product,
By supplying the energy curable resin to one of the mold and the base material, bringing the other bent portion into contact with the energy curable resin, and then extending the other bending, The flow of the energy curable resin generated between the base material and the base material is controlled.

本発明によれば、簡素な設備を用い、成形サイクルを延長することなく、気泡の発生を有効に抑えることが出来る成形方法及び成形品を提供することができる。   According to the present invention, it is possible to provide a molding method and a molded product that can effectively suppress the generation of bubbles without using a simple facility and extending the molding cycle.

本実施形態における光学素子の製造装置を示す斜視図である。It is a perspective view which shows the manufacturing apparatus of the optical element in this embodiment. 光学素子の製造装置を周方向に展開して示す図である。It is a figure which expand | deploys and shows the manufacturing apparatus of an optical element in the circumferential direction. 転写面MD1aの斜視図である。It is a perspective view of transfer surface MD1a. 比較例にかかる型部材MD1’と基材保持部材MD2とを相対移動方向に直交する方向から見た図である。It is the figure which looked at type | mold member MD1 'concerning the comparative example and base-material holding member MD2 from the direction orthogonal to a relative movement direction. 本実施の形態にかかる型部材MD1と基材保持部材MD2とを相対移動方向に直交する方向から見た図である。It is the figure which looked at type | mold member MD1 concerning this Embodiment and base-material holding member MD2 from the direction orthogonal to a relative movement direction. 比較例について第1の処理部Aにおける基材ST上に付着した光硬化性樹脂PLの流動状態を経時的に示す図である。It is a figure which shows the flow state of photocurable resin PL adhering on the base material ST in the 1st process part A over time about a comparative example. 本実施の形態について第1の処理部Aにおける基材ST上に付着した光硬化性樹脂PLの流動状態を経時的に示す図である。It is a figure which shows the flow state of the photocurable resin PL adhering on the base material ST in the 1st process part A about this Embodiment with time. 別な実施の形態にかかる光学素子の製造装置を示す図である。It is a figure which shows the manufacturing apparatus of the optical element concerning another embodiment.

本発明において成形される成形品には、光学素子やマイクロチップなどがある。基材は、成形後に成形品の一部となると好ましい。「光学素子」としては、例えば回折格子や,可視光の波長以下の凹凸構造を持つモスアイ素子などがある。本発明において用いることができる「エネルギー硬化性樹脂」としては、光硬化性樹脂、熱硬化性樹脂などが挙げられる。光硬化性樹脂の場合、エネルギーとして所定波長の光を供給することで樹脂が硬化し、熱硬化性樹脂の場合、エネルギーとして熱を供給することで樹脂が硬化する。   Examples of the molded product molded in the present invention include an optical element and a microchip. The substrate is preferably a part of the molded product after molding. Examples of the “optical element” include a diffraction grating and a moth-eye element having a concavo-convex structure having a wavelength of visible light or less. Examples of the “energy curable resin” that can be used in the present invention include a photocurable resin and a thermosetting resin. In the case of a photocurable resin, the resin is cured by supplying light of a predetermined wavelength as energy, and in the case of a thermosetting resin, the resin is cured by supplying heat as energy.

エネルギー硬化性樹脂として光硬化性樹脂を用いる場合、型と基材のうち少なくとも一方が光透過性の素材から形成されていれば好ましい。又、型を撓ませる必要があるときは、可撓性のあるシリコーン(PDMS)製、又はフィルム状の樹脂製とすることが望ましい。   When using a photocurable resin as the energy curable resin, it is preferable that at least one of the mold and the substrate is formed of a light transmissive material. Further, when it is necessary to bend the mold, it is desirable to use flexible silicone (PDMS) or a film-like resin.

エネルギー硬化性樹脂として熱硬化性樹脂を用いる場合、エネルギー供給源として電熱ヒータやハロゲンヒータなどを用いることができる。この場合、型と基材は金属製もしくはガラス製であることが望ましい。更に、ガラス製の型とハロゲンヒータとを組み合わせて用いる場合、型の転写面(光学面転写面)に赤外線吸収材料が成膜されていると、発熱が効果的に生じるので望ましい。   When a thermosetting resin is used as the energy curable resin, an electric heater, a halogen heater, or the like can be used as an energy supply source. In this case, the mold and the substrate are desirably made of metal or glass. Further, when a glass mold and a halogen heater are used in combination, it is desirable that an infrared absorbing material is formed on the mold transfer surface (optical surface transfer surface) because heat generation is effectively generated.

型には、複数の凹凸と、突起が設けられている。相対移動方向における突起の高さは、凹凸の最大深さよりも大きくなっている。凹凸は、これを転写形成した構造が成形品において本来の機能(例えば回折機能等)を発揮できるものであり、一方、「突起」を転写成形しても、同様な機能は得られないものである。突起は、凹凸と独立して形成されていても良いし、凹凸により転写形成された構造の機能を損なわない限り、凹凸の一部として形成されていても良い。凹凸は、ラインアンドスペース構造のように周期的な繰り返し構造であると好ましい。突起は、例えば円錐形状、四角錐形状、棒状などの独立した形状であっても良いし、ブレードのように一定の高さで連続していても良い。但し、エネルギー硬化性樹脂に最初に接する突起の部位は、尖っていると好ましい。突起は、型と基材との相対移動方向における高さが1μm以上,相対移動方向に直交する最大幅が1μm以上であると好ましい。型の転写面に撥水処理や、型の材料として表面エネルギーの小さいものを用いるなどして、その表面エネルギーを、エネルギー硬化性樹脂が付着する基材の表面エネルギーよりも小さくすると好ましい。   The mold is provided with a plurality of projections and depressions. The height of the protrusion in the relative movement direction is larger than the maximum depth of the unevenness. Concavities and convexities are those in which the structure formed by transferring this can exhibit the original function (for example, diffraction function) in the molded product. On the other hand, even if “projection” is transferred and molded, the same function cannot be obtained. is there. The protrusions may be formed independently of the unevenness, or may be formed as a part of the unevenness as long as the function of the structure transferred by the unevenness is not impaired. The unevenness is preferably a periodic repeating structure such as a line and space structure. The protrusions may be independent shapes such as a conical shape, a quadrangular pyramid shape, and a rod shape, or may be continuous at a certain height like a blade. However, it is preferable that the portion of the protrusion that first contacts the energy curable resin is sharp. The protrusions preferably have a height in the relative movement direction of the mold and the substrate of 1 μm or more and a maximum width orthogonal to the relative movement direction of 1 μm or more. It is preferable to make the surface energy smaller than the surface energy of the substrate to which the energy curable resin adheres, such as by using a water repellent treatment on the transfer surface of the mold or using a mold material having a small surface energy.

以下、図面を参照しながら本発明にかかる実施形態について説明する。ただし、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、発明の範囲は以下の実施形態及び図示例に限定されるものではない。   Embodiments according to the present invention will be described below with reference to the drawings. However, although various technically preferable limitations for carrying out the present invention are given to the embodiments described below, the scope of the invention is not limited to the following embodiments and illustrated examples.

図1は、本発明の成形方法を実施できる光学素子の製造装置を示す斜視図である。図2は、図1に示した光学素子の製造装置の要部を周方向に展開して示す図である。製造装置は、第1円盤DC1と第2円盤DC2とを、隙間を空けて同軸に配置している。第1円盤DC1と第2円盤DC2の中央は、スプライン等を介して回転軸SFTに相対回転不能に連結されており、更に回転軸SFTを介して、固定された駆動部であるアクチュエータACにより、第1円盤DC1と第2円盤DC2は同期して回転駆動されるようになっている。   FIG. 1 is a perspective view showing an optical element manufacturing apparatus capable of performing the molding method of the present invention. FIG. 2 is a diagram showing an essential part of the optical element manufacturing apparatus shown in FIG. 1 developed in the circumferential direction. In the manufacturing apparatus, the first disk DC1 and the second disk DC2 are arranged coaxially with a gap therebetween. The center of the first disk DC1 and the second disk DC2 is connected to the rotation shaft SFT through a spline or the like so as not to rotate relative to the rotation shaft SFT. The first disk DC1 and the second disk DC2 are driven to rotate synchronously.

第1円盤DC1には、円形開口DC1aが複数個(ここでは8個)形成されており、円形開口DC1a内には、円柱状の型部材(型)MD1が固定されている。型部材MD1の下端は矩形板状となっていて、その下面に転写面MD1aを有する。   A plurality (eight in this case) of circular openings DC1a are formed in the first disk DC1, and a cylindrical mold member (type) MD1 is fixed in the circular openings DC1a. The lower end of the mold member MD1 has a rectangular plate shape and has a transfer surface MD1a on its lower surface.

図3は、転写面MD1aの斜視図であるが、一部誇張している。図3において、転写面MD1aは、矩形平面MD1bの中央に、複数の凹凸であるラインアンドスペース構造MD1cを形成している。又、ラインアンドスペース構造MD1cの近傍に、三角錐状の突起MD1dを形成している。相対移動方向における突起MD1dの高さHは、ラインアンドスペース構造MD1cの最大深さ(ここでは一様)Dよりも大きくなっている。一例として、深さDは100nm以下であり、高さHは10μm〜100μm以上である。型部材MD1は、透明なシリコーン(PDMS)により形成されている。具体的には、不図示の母型の母転写面を、シリコーンに転写することで型部材MD1を形成できる。   FIG. 3 is a perspective view of the transfer surface MD1a, but is partially exaggerated. In FIG. 3, the transfer surface MD1a forms a line-and-space structure MD1c, which is a plurality of irregularities, in the center of the rectangular plane MD1b. Further, a triangular pyramid-shaped protrusion MD1d is formed in the vicinity of the line and space structure MD1c. The height H of the protrusion MD1d in the relative movement direction is greater than the maximum depth (here, uniform) D of the line and space structure MD1c. As an example, the depth D is 100 nm or less, and the height H is 10 μm to 100 μm. The mold member MD1 is formed of transparent silicone (PDMS). Specifically, the mold member MD1 can be formed by transferring a mother transfer surface (not shown) of the mother mold to silicone.

第2円盤DC2には、円形開口DC1aと同じ配置になるようにして、円形開口DC2aが複数個(ここでは8個)形成されており、円形開口DC2a内には、円柱状の基材保持部材MD2が、回転軸SFTの軸線方向に移動可能に配置されている。基材保持部材MD2は、その上面に、転写面MD1aに対応した矩形板状の基材STを保持する機能を有する。尚、基材STと基材保持部材MD2は、光を透過可能であると好ましい。   The second disk DC2 is formed with a plurality of (eight in this case) circular openings DC2a so as to have the same arrangement as the circular openings DC1a, and in the circular openings DC2a, a cylindrical substrate holding member is formed. MD2 is arranged so as to be movable in the axial direction of the rotation axis SFT. The substrate holding member MD2 has a function of holding a rectangular plate-like substrate ST corresponding to the transfer surface MD1a on the upper surface thereof. The base material ST and the base material holding member MD2 are preferably capable of transmitting light.

第1円盤DC1と第2円盤DC2の周方向の一部を覆うようにして、遮蔽部SHが形成されている。遮蔽部SHの頂面には、光学素子の材料であるエネルギー硬化性樹脂を硬化させるためのエネルギー供給源として複数の(図2では2つ示したが実際には3つの)光源OPSが、第1円盤DC1と第2円盤DC2の周方向に沿って配置され,発光面を下方に向けている。尚、光源OPSは、回転移動する型部材MD1の中心の軌跡の直上に設けると好ましい。   A shielding part SH is formed so as to cover a part of the first disk DC1 and the second disk DC2 in the circumferential direction. On the top surface of the shielding part SH, a plurality of light sources OPS (two actually shown in FIG. 2 but three actually) are provided as energy supply sources for curing the energy curable resin that is the material of the optical element. It arrange | positions along the circumferential direction of 1 disk DC1 and 2nd disk DC2, and has faced the light emission surface below. The light source OPS is preferably provided immediately above the center trajectory of the mold member MD1 that rotates.

一方、図2に示すように、遮蔽部SHに対向するようにして、第2円盤DC2の下方に、複数の(図2では2つ示したが実際には3つの)光源OPSを配置している。光源OPSは、紫外線(以下、硬化光という)を出射することができる。   On the other hand, as shown in FIG. 2, a plurality of light sources OPS (two actually shown in FIG. 2 but three actually) are arranged below the second disk DC2 so as to face the shielding part SH. Yes. The light source OPS can emit ultraviolet rays (hereinafter referred to as curing light).

光源OPSは、制御回路CONTにより制御され、第1円盤DC1と第2円盤DC2の角度位置(照射対象となる型部材MD1及び基材保持部材MD2との位置関係)に応じて、硬化光の照射時間及び硬化光の強度の少なくとも一方を調整するようになっていると好ましい。   The light source OPS is controlled by the control circuit CONT, and is irradiated with curing light according to the angular positions of the first disk DC1 and the second disk DC2 (positional relationship between the mold member MD1 and the substrate holding member MD2 to be irradiated). It is preferable to adjust at least one of time and intensity of curing light.

第2円盤DC2の下方には、型駆動部を構成する一対のリング状のカム板CPが固定配置されている。図2に示すように、カム板CPのカム面CPaは、周方向の位置に応じて、低部CPb、登り斜面CPc、高部CPd、下り斜面CPeを有している。   Below the second disk DC2, a pair of ring-shaped cam plates CP constituting a mold drive unit are fixedly arranged. As shown in FIG. 2, the cam surface CPa of the cam plate CP has a low portion CPb, an ascending slope CPc, a high portion CPd, and a descending slope CPe according to the position in the circumferential direction.

図2に示すように、第1円盤DC1と第2円盤DC2の回転位置に応じて、第1の処理部A、第2の処理部B,第3の処理部C,第4の処理部Dとなっている。第1の処理部Aにおいては、光硬化性樹脂を適量吐出できるディスペンサDSPが配置されている。第2の処理部Bには、周方向に並べて光源OPSが配置されている。第4の処理部Dには、成形された光学素子OEを取り出すアーム式ロボットRBが配置されている。   As shown in FIG. 2, the first processing unit A, the second processing unit B, the third processing unit C, and the fourth processing unit D according to the rotational positions of the first disk DC1 and the second disk DC2. It has become. In the 1st process part A, dispenser DSP which can discharge a suitable quantity of photocurable resin is arrange | positioned. In the second processing unit B, light sources OPS are arranged in the circumferential direction. In the fourth processing unit D, an arm type robot RB for taking out the molded optical element OE is arranged.

本実施の形態における製造装置の動作及び光学素子の製造工程について、ここでは、一対の型部材MD1と基材保持部材MD2に着目しながら説明する。まず、不図示の電源からの給電によりアクチュエータACが駆動され、回転軸SFTを回転させると、第1円盤DC1と第2円盤DC2が同期して回転する。ここで、第1の処理部Aにおける前段では、基材保持部材MD2のフォロワFWは、カム板CPのカム面CPaにおける低部CPbにあるので、型部材MD1と基材保持部材MD2とが開いた状態にあり、よって、不図示のロボットアームにより基材STを基材保持部材MD2上に載置した後、ディスペンサDSPを介して、基材保持部材MD2の基材ST上に光硬化性樹脂PLを滴下させることができる。   Here, the operation of the manufacturing apparatus and the optical element manufacturing process in the present embodiment will be described while paying attention to the pair of mold members MD1 and the base material holding member MD2. First, when the actuator AC is driven by power supply from a power source (not shown) and the rotation shaft SFT is rotated, the first disk DC1 and the second disk DC2 rotate in synchronization. Here, in the former stage in the first processing section A, the follower FW of the base material holding member MD2 is in the low portion CPb on the cam surface CPa of the cam plate CP, so that the mold member MD1 and the base material holding member MD2 are opened. Therefore, after placing the base material ST on the base material holding member MD2 by a robot arm (not shown), the photocurable resin is placed on the base material ST of the base material holding member MD2 via the dispenser DSP. PL can be dropped.

次いで、光硬化性樹脂PLを間に供給された型部材MD1と基材保持部材MD2は、第1円盤DC1と第2円盤DC2の同期回転により移動する。ここで、基材保持部材MD2のフォロワFWは、カム板CPのカム面CPaにおける登り斜面CPc上を転動するようになるので、型部材MD1に対して基材保持部材MD2が軸線方向に沿って徐々に接近する。フォロワFWが、カム板CPのカム面CPaにおける高部CPdに到達した時点で、両者が密着して型締めがなされる。又、フォロワFWが、高部CPdを転動する間、型部材MD1と基材保持部材MD2の型締め状態が維持される。   Next, the mold member MD1 and the substrate holding member MD2 supplied with the photocurable resin PL therebetween move by the synchronous rotation of the first disk DC1 and the second disk DC2. Here, since the follower FW of the base material holding member MD2 rolls on the climbing slope CPc on the cam surface CPa of the cam plate CP, the base material holding member MD2 extends along the axial direction with respect to the mold member MD1. Gradually approach. When the follower FW reaches the high portion CPd on the cam surface CPa of the cam plate CP, both are brought into close contact with each other and the mold is clamped. Further, the mold clamping state of the mold member MD1 and the base material holding member MD2 is maintained while the follower FW rolls on the high portion CPd.

その後、型部材MD1と基材保持部材MD2は、型締め状態を維持しつつ、第1円盤DC1と第2円盤DC2の同期回転により第2の処理部Bへと移動する。第2の処理部Bにおいては、光源OPSから出射された光が、上型部材MD1を介して光硬化性樹脂PLへと到達し、光硬化性樹脂PLを硬化させる。各対の型部材MD1と基材保持部材MD2とは、同じ速度で固定された複数の光源OPSの下方を同様に通過するので、これにより、それぞれ個別に設けられた光源を用いる場合と比較して、光硬化性樹脂の均一な硬化が確保される。また、複数の光源OPSを用いることで、光硬化性樹脂PLに付与する光量を十分確保でき、高速移動による大量生産を可能にしている。   Thereafter, the mold member MD1 and the base material holding member MD2 move to the second processing unit B by the synchronous rotation of the first disk DC1 and the second disk DC2 while maintaining the clamped state. In the second processing unit B, the light emitted from the light source OPS reaches the photocurable resin PL via the upper mold member MD1, and cures the photocurable resin PL. Since each pair of mold member MD1 and base material holding member MD2 similarly passes below the plurality of light sources OPS fixed at the same speed, this compares with the case of using individually provided light sources. Thus, uniform curing of the photocurable resin is ensured. In addition, by using a plurality of light sources OPS, a sufficient amount of light to be applied to the photocurable resin PL can be secured, and mass production by high-speed movement is possible.

第2の処理部Bを通過した型部材MD1と基材保持部材MD2は、第1円盤DC1と第2円盤DC2の同期回転により第3の処理部Cへと移動する。ここで、基材保持部材MD2のフォロワFWは、カム板CPのカム面CPaにおける下り斜面CPe上を転動するようになるので、型部材MD1に対して基材保持部材MD2が徐々に離間することで型開きが行われる。   The mold member MD1 and the base material holding member MD2 that have passed through the second processing unit B move to the third processing unit C by the synchronous rotation of the first disk DC1 and the second disk DC2. Here, since the follower FW of the base material holding member MD2 rolls on the downward slope Cpe in the cam surface CPa of the cam plate CP, the base material holding member MD2 is gradually separated from the mold member MD1. The mold is opened.

フォロワFWが、下り斜面CPeを転動し終わった後、再び低部CPbを転動するようになるので、型部材MD1に対して基材保持部材MD2が開いた状態に維持される。このとき、型部材MD1の転写面における表面エネルギーが、光硬化性樹脂が付着する基材STの表面エネルギーよりも小さいので、基材STから型部材MD1を容易に離型することができる。続く第4の処理部Dにて、ロボットRBのアームを伸縮させることで、基材ST上に転写面MD1aで成形されたラインアンドスペース構造を持つ光学素子OEを取り出し、別工程に搬送することができる。尚、同じロボットRBにより、この時点で新たな基材STを基材保持部材MD2に載置しても良い。以上、一対の型部材MD1と基材保持部材MD2に着目して製造装置の動作及び光学素子の製造工程を説明したが、別の型部材MD1と基材保持部材MD2も、タイミングをずらして順次同様な製造工程をたどるので、高精度な光学素子OEを大量に生産できる。   After the follower FW has finished rolling on the descending slope Cpe, the lower part CPb rolls again, so that the base material holding member MD2 is kept open with respect to the mold member MD1. At this time, since the surface energy on the transfer surface of the mold member MD1 is smaller than the surface energy of the substrate ST to which the photocurable resin adheres, the mold member MD1 can be easily released from the substrate ST. In the subsequent fourth processing section D, the arm of the robot RB is expanded and contracted to take out the optical element OE having the line and space structure formed with the transfer surface MD1a on the substrate ST and transport it to another process. Can do. Note that a new base material ST may be placed on the base material holding member MD2 at this time by the same robot RB. As described above, the operation of the manufacturing apparatus and the optical element manufacturing process have been described focusing on the pair of mold members MD1 and the base material holding member MD2, but the other mold members MD1 and the base material holding member MD2 are also sequentially shifted at different timings. Since a similar manufacturing process is followed, high-precision optical elements OE can be produced in large quantities.

次に、比較例を参照して、本実施の形態の効果を説明する。図4は比較例にかかる型部材MD1’と基材保持部材MD2とを相対移動方向に直交する方向から見た図であり、図5は本実施の形態にかかる型部材MD1と基材保持部材MD2とを相対移動方向に直交する方向から見た図である。比較例が本実施の形態と異なる点は、突起MD1dを設けていない点であり、それ以外の構成は共通する。   Next, the effect of this exemplary embodiment will be described with reference to a comparative example. FIG. 4 is a view of the mold member MD1 ′ and the substrate holding member MD2 according to the comparative example viewed from a direction orthogonal to the relative movement direction, and FIG. 5 is a diagram illustrating the mold member MD1 and the substrate holding member according to the present embodiment. It is the figure which looked at MD2 from the direction orthogonal to a relative moving direction. The comparative example is different from the present embodiment in that the protrusion MD1d is not provided, and other configurations are common.

図6は、比較例について第1の処理部Aにおける基材ST上に付着した光硬化性樹脂PLの流動状態を経時的に示す図であり、図7は、本実施の形態について第1の処理部Aにおける基材ST上に付着した光硬化性樹脂PLの流動状態を経時的に示す図である。ここで、比較例の型部材MD1’には突起MD1dが形成されていないので、型部材MD1に対する相対接近時に、基材ST上に供給した光硬化性樹脂PLに対して、ラインアンドスペース構造MD1cのいずれかの部位が最初に接触することとなるが、その位置は型部材MD1の傾きや製造誤差等によって定まらないということがある。仮に、図6(a)に示す×印の位置で接触したとすると、この接触点から光硬化性樹脂PLの流動が開始するが、図6(b)に示すように樹脂が両側から回り込んで、図6(c)に示すように気泡BLを中に閉じ込めてしまう恐れがある。尚、比較例でも最初に接触した位置によっては気泡を巻き込まない場合もあるが、その位置が定まらないため、気泡を巻き込むかどうか不確実性が高く問題である。   FIG. 6 is a diagram showing the flow state of the photocurable resin PL attached on the base material ST in the first processing section A over time in the comparative example, and FIG. 7 shows the first embodiment of the present embodiment. It is a figure which shows the flow state of the photocurable resin PL adhering on the base material ST in the process part A with time. Here, since the protrusion MD1d is not formed on the mold member MD1 ′ of the comparative example, the line-and-space structure MD1c with respect to the photocurable resin PL supplied on the base material ST at the time of relative approach to the mold member MD1. However, the position may not be determined due to the inclination of the mold member MD1, manufacturing error, or the like. If contact is made at the position of the mark x shown in FIG. 6 (a), the flow of the photocurable resin PL starts from this contact point, but the resin wraps around from both sides as shown in FIG. 6 (b). Therefore, as shown in FIG. 6C, there is a possibility that the bubbles BL are trapped inside. Even in the comparative example, the bubble may not be involved depending on the position of the first contact, but since the position is not fixed, there is a high uncertainty as to whether or not the bubble is involved.

これに対し本実施の形態によれば、型部材MD1に対する相対接近時に、基材ST上に供給した光硬化性樹脂PLに対して、突起MD1dが最初に接触することとなる。これにより、光硬化性樹脂PLの流動が開始する位置を制御できる。具体的には、規定された位置(図7(a)に示す×印の位置)で必ず接触が生じるので、この接触点から光硬化性樹脂PLの流動が開始し、更に相対接近することでラインアンドスペース構造MD1cが光硬化性樹脂PLに接した後も、図7(b)に示すように樹脂の回り込み量を適切に調整でき、これにより図7(c)に示すように型部材MD1の型締めがなされた段階で、樹脂内に気泡を中に閉じ込めることを抑制できる。   On the other hand, according to the present embodiment, the protrusion MD1d first comes into contact with the photocurable resin PL supplied on the substrate ST at the time of relative approach to the mold member MD1. Thereby, the position where the flow of the photocurable resin PL starts can be controlled. Specifically, since contact always occurs at a defined position (the position of the x mark shown in FIG. 7A), the flow of the photocurable resin PL starts from this contact point, and further comes closer. Even after the line and space structure MD1c is in contact with the photocurable resin PL, the amount of wraparound of the resin can be appropriately adjusted as shown in FIG. 7B, and as a result, the mold member MD1 as shown in FIG. 7C. It is possible to suppress the trapping of bubbles in the resin at the stage where the mold is clamped.

図8は、別な実施の形態にかかる光学素子の製造装置を示す図である。本実施の形態においては、型部材MD1の下面に,シリコーン(PDMS)から形成された可撓型MD3を設けている。自由状態で湾曲した可撓型MD3は、全体的に板状であって図8で左端を型部材MD1に対してピン結合され、右端に形成した長孔MD3a内に、型部材MD1に取り付けた固定軸FSを挿通している。可撓型MD3の下面には、上述した実施の形態と同様に、ラインアンドスペース構造MD3bが形成されている。但し、突起は形成されていない。本実施の形態では、基材保持部材MD2を型部材MD1に対して接近させている。それ以外の構成は、上述した実施の形態と同様である。   FIG. 8 is a diagram illustrating an optical element manufacturing apparatus according to another embodiment. In the present embodiment, a flexible MD3 made of silicone (PDMS) is provided on the lower surface of the mold member MD1. The flexible MD3 curved in a free state is generally plate-shaped, and the left end in FIG. 8 is pin-coupled to the mold member MD1, and is attached to the mold member MD1 in a long hole MD3a formed at the right end. The fixed shaft FS is inserted. A line and space structure MD3b is formed on the lower surface of the flexible MD3 as in the above-described embodiment. However, no protrusion is formed. In the present embodiment, the substrate holding member MD2 is brought closer to the mold member MD1. Other configurations are the same as those of the above-described embodiment.

まず、図8(a)に示す型開き状態では、可撓型MD3は、自身の弾性力で又は重力で中央が撓んだ状態に維持される。この状態から、基材ST上に光硬化性樹脂PLを滴下した後、型部材MD1と基材保持部材MD2とを相対的に接近させると、まず可撓型MD3の中央が光硬化性樹脂PLに最初に接する。更に接近を継続すると、図8(b)に示すように、長孔MD3aと固定軸FSとが相対移動しつつ、可撓型MD3が基材STからの圧力で撓みが伸ばされることとなる。かかる状態で光硬化性樹脂PLを硬化させた後、図8(c)に示すように、型部材MD1と基材保持部材MD2とを離間させると、基材ST上の光硬化性樹脂PLにラインアンドスペース構造が転写されることとなると共に、可撓型MD3が撓んだ元の状態に復帰する。基材STを交換することで、新たな成形が可能になる。   First, in the mold open state shown in FIG. 8A, the flexible MD 3 is maintained in a state where the center is bent by its own elastic force or by gravity. From this state, after the photocurable resin PL is dropped on the base material ST, when the mold member MD1 and the base material holding member MD2 are brought relatively close to each other, first, the center of the flexible MD3 is the photocurable resin PL. First contact. If the approach is further continued, as shown in FIG. 8 (b), the flexure MD3 is extended by the pressure from the base material ST while the long hole MD3a and the fixed shaft FS move relative to each other. After the photocurable resin PL is cured in such a state, as shown in FIG. 8C, when the mold member MD1 and the base material holding member MD2 are separated from each other, the photocurable resin PL on the base material ST is formed. The line and space structure is transferred, and the flexible MD 3 returns to the original state. New molding becomes possible by exchanging the substrate ST.

本実施の形態によれば、可撓型MD3の撓みが伸ばされながら、基材ST上の光硬化性樹脂PLの中央から両側に向かって、可撓型MD3が光硬化性樹脂PLに漸次接触してゆくので、気泡を巻き込む恐れは少ない。尚、型の代わりに基材を可撓性の素材から形成し、これを撓ませた状態で、型に供給したエネルギー硬化性樹脂に接触させた後に展伸させても良い。   According to the present embodiment, the flexible MD3 gradually contacts the photocurable resin PL from the center of the photocurable resin PL on the substrate ST toward both sides while the flexure of the flexible MD3 is extended. Therefore, there is little risk of entrainment of bubbles. In addition, instead of the mold, the base material may be formed from a flexible material, and in the bent state, the base material may be extended after being brought into contact with the energy curable resin supplied to the mold.

本発明は、明細書に記載の実施例に限定されるものではなく、他の実施例・変形例を含むことは、本明細書に記載された実施例や思想から本分野の当業者にとって明らかである。   The present invention is not limited to the embodiments described in the specification, and other embodiments and modifications are apparent to those skilled in the art from the embodiments and ideas described in the present specification. It is.

A 第1の処理部
B 第2の処理部
C 第3の処理部
D 第4の処理部
AC アクチュエータ
CP カム板
CPa カム面
CPb 低部
CPc 登り斜面
CPd 高部
CPe 下り斜面
CR 搬送部
DC1 第1の円盤
DC1a 円形開口
DC2 第2の円盤
DC2a 円形開口
SP 支持部
DSP ディスペンサ
FW フォロワ
MD1 型部材
MD1a 転写面
MD1b 矩形平面
MD1c、MD3b ラインアンドスペース構造
MD1d 突起
MD2 基材保持部材
MD3 可撓型
OE 光学素子
OPS 光源
PL 光硬化性樹脂
RB ロボット
SFT 回転軸
SH 遮蔽部
ST 基材
A 1st processing part B 2nd processing part C 3rd processing part D 4th processing part AC Actuator CP Cam plate CPa Cam surface CPb Low part CPc Climbing slope CPd High part CPe Down slope CR Conveying part DC1 1st Disc DC1a Circular aperture DC2 Second disc DC2a Circular aperture SP Support portion DSP Dispenser FW Follower MD1 Mold member MD1a Transfer surface MD1b Rectangular plane MD1c, MD3b Line and space structure MD1d Projection MD2 Base material holding member MD3 Flexible OE Optical element OPS light source PL photo-curing resin RB robot SFT rotation shaft SH shielding part ST base material

Claims (8)

接近又は離間するように相対移動可能な型と基材との間にエネルギー硬化性樹脂を供給して、成形品を成形する成形方法であって、
前記型の転写面には、複数の凹凸と、突起とが形成され、相対移動方向における前記突起の高さは、前記凹凸の最大深さよりも大きくなっており、
前記型と前記基材との間に前記エネルギー硬化性樹脂を供給し、更に前記型と前記基材とを前記相対移動方向に沿って接近させた際に、前記突起が前記エネルギー硬化性樹脂に接した後に、前記複数の凹凸が前記硬化性樹脂に接し、それにより前記型と前記基材との間で生じる前記エネルギー硬化性樹脂の流動を制御するようになっている成形方法。
A molding method for molding a molded article by supplying an energy curable resin between a mold and a substrate that are relatively movable so as to approach or separate from each other,
A plurality of irregularities and protrusions are formed on the transfer surface of the mold, and the height of the protrusions in the relative movement direction is greater than the maximum depth of the irregularities,
When the energy curable resin is supplied between the mold and the base material, and the mold and the base material are brought closer to each other along the relative movement direction, the protrusions are formed on the energy curable resin. A molding method in which after the contact, the plurality of irregularities come into contact with the curable resin, thereby controlling the flow of the energy curable resin generated between the mold and the substrate.
前記エネルギー硬化性樹脂に最初に接する前記突起の部位は、尖っている請求項1に記載の成形方法。   The molding method according to claim 1, wherein a portion of the protrusion that first contacts the energy curable resin is pointed. 前記突起は、前記相対移動方向における高さが1μm以上,前記相対移動方向に直交する最大幅が1μm以上である請求項1又は2に記載の成形方法。   The molding method according to claim 1, wherein the protrusion has a height in the relative movement direction of 1 μm or more and a maximum width orthogonal to the relative movement direction of 1 μm or more. 型の転写面における表面エネルギーは、前記エネルギー硬化性樹脂が付着する前記基材の表面エネルギーよりも小さい請求項1〜3のいずれかに記載の成形方法。   The molding method according to claim 1, wherein a surface energy on a transfer surface of the mold is smaller than a surface energy of the base material to which the energy curable resin adheres. 前記凹凸は周期的な繰り返し構造である請求項1〜4のいずれかに記載の成形方法。   The molding method according to claim 1, wherein the unevenness has a periodic repeating structure. 型と基材との間にエネルギー硬化性樹脂を供給して、成形品を成形する成形方法であって、
前記型と前記基材とのうち一方に前記エネルギー硬化性樹脂を供給し、他方の撓ませた部位を前記エネルギー硬化性樹脂に接触させ、その後他方の撓みを展伸することにより、前記型と前記基材との間で生じる前記エネルギー硬化性樹脂の流動を制御するようになっている成形方法。
A molding method in which an energy curable resin is supplied between a mold and a substrate to mold a molded product,
By supplying the energy curable resin to one of the mold and the base material, bringing the other bent portion into contact with the energy curable resin, and then extending the other bending, A molding method adapted to control the flow of the energy curable resin generated between the substrate and the substrate.
前記他方は、可撓性のあるシリコーン製の型、又はフィルム状の樹脂製の型である請求項6に記載の成形方法。   The molding method according to claim 6, wherein the other is a flexible silicone mold or a film-shaped resin mold. 請求項1〜7に記載の成形方法により成形された成形品。   A molded product molded by the molding method according to claim 1.
JP2015034801A 2015-02-25 2015-02-25 Molding method and molded product Expired - Fee Related JP6447817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015034801A JP6447817B2 (en) 2015-02-25 2015-02-25 Molding method and molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015034801A JP6447817B2 (en) 2015-02-25 2015-02-25 Molding method and molded product

Publications (2)

Publication Number Publication Date
JP2016155307A true JP2016155307A (en) 2016-09-01
JP6447817B2 JP6447817B2 (en) 2019-01-09

Family

ID=56824761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015034801A Expired - Fee Related JP6447817B2 (en) 2015-02-25 2015-02-25 Molding method and molded product

Country Status (1)

Country Link
JP (1) JP6447817B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019212155A1 (en) * 2018-05-03 2019-11-07 노을 주식회사 Method and device for controlling positioning of patch

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56167419A (en) * 1980-05-30 1981-12-23 Toppan Printing Co Ltd Manufacturing device for high-density information recording carrier
JP2007305895A (en) * 2006-05-15 2007-11-22 Apic Yamada Corp Imprinting method, and nano-imprinting apparatus
JP2007326330A (en) * 2006-06-09 2007-12-20 Canon Inc Mold for molding composite optical element, and composite optical element
JP2010240928A (en) * 2009-04-03 2010-10-28 Hitachi High-Technologies Corp Fine structure transfer stamper and fine structure transfer device
JP2012230272A (en) * 2011-04-27 2012-11-22 Taika:Kk Stamper and method for manufacturing optical sheet using the same
JP2013146487A (en) * 2012-01-23 2013-08-01 Toyota Boshoku Corp Vehicle seat
JP2014122868A (en) * 2012-12-21 2014-07-03 Samsung Electro-Mechanics Co Ltd Bonding strength evaluation method, bonding strength evaluation apparatus, and sample for bonding strength evaluation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56167419A (en) * 1980-05-30 1981-12-23 Toppan Printing Co Ltd Manufacturing device for high-density information recording carrier
JP2007305895A (en) * 2006-05-15 2007-11-22 Apic Yamada Corp Imprinting method, and nano-imprinting apparatus
JP2007326330A (en) * 2006-06-09 2007-12-20 Canon Inc Mold for molding composite optical element, and composite optical element
JP2010240928A (en) * 2009-04-03 2010-10-28 Hitachi High-Technologies Corp Fine structure transfer stamper and fine structure transfer device
JP2012230272A (en) * 2011-04-27 2012-11-22 Taika:Kk Stamper and method for manufacturing optical sheet using the same
JP2013146487A (en) * 2012-01-23 2013-08-01 Toyota Boshoku Corp Vehicle seat
JP2014122868A (en) * 2012-12-21 2014-07-03 Samsung Electro-Mechanics Co Ltd Bonding strength evaluation method, bonding strength evaluation apparatus, and sample for bonding strength evaluation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019212155A1 (en) * 2018-05-03 2019-11-07 노을 주식회사 Method and device for controlling positioning of patch

Also Published As

Publication number Publication date
JP6447817B2 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
JP5478854B2 (en) system
JP2004322641A (en) Embossing machine
WO2006109425A1 (en) Seterolithography method
JP6032492B2 (en) Fine pattern forming method and fine pattern forming apparatus
KR20070118024A (en) Processing apparatus and device manufacturing method
JP5637785B2 (en) Original plate and method of manufacturing article using the same
US11320591B2 (en) Methods and apparatuses for casting polymer products
JP6991198B2 (en) Equipment and methods for embossing micro-patterns and / or nano-patterns
JP6921353B2 (en) Replica master
WO2007023724A1 (en) Stereolithography apparatus and stereolithography method
JP6343814B2 (en) Mold, imprint apparatus and imprint method
JP6447817B2 (en) Molding method and molded product
JP2013000944A (en) Optical sheet and method for manufacturing the same
WO2018191383A1 (en) System and method of manufacturing a cylindrical nanoimprint lithography master
JP2011187649A (en) Transfer method
JP6671010B2 (en) Imprint method and imprint apparatus
JP2013022807A (en) Microstructure transfer device and stamper transport method
WO2014175059A1 (en) Optical element manufacturing method and optical element manufacturing device
JP2008036817A (en) Manufacturing method of composite optical element
JP5768300B2 (en) Stamp manufacturing method and stamp manufacturing apparatus
JP6380913B2 (en) Optical element manufacturing method
JP6162048B2 (en) Method for producing imprint mold
JP2019046819A (en) Molding apparatus for molding composition on substrate using mold and article manufacturing method
JP2020506546A (en) Composition of optical layer in imprint lithography process
US20210235588A1 (en) Method for transferring micro device on curved surface and apparatus for transferring micro device on curved surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181120

R150 Certificate of patent or registration of utility model

Ref document number: 6447817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees