JP2016152144A - Manufacturing method of membrane electrode assembly for solid oxide fuel cell having anode with pore arrangement structure - Google Patents
Manufacturing method of membrane electrode assembly for solid oxide fuel cell having anode with pore arrangement structure Download PDFInfo
- Publication number
- JP2016152144A JP2016152144A JP2015029312A JP2015029312A JP2016152144A JP 2016152144 A JP2016152144 A JP 2016152144A JP 2015029312 A JP2015029312 A JP 2015029312A JP 2015029312 A JP2015029312 A JP 2015029312A JP 2016152144 A JP2016152144 A JP 2016152144A
- Authority
- JP
- Japan
- Prior art keywords
- anode
- fuel cell
- solid oxide
- oxide fuel
- electrode assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
Description
本発明は、燃料電池用膜電極接合体に関し、特に気孔配列構造を持つアノードを有する固体酸化物型燃料電池用膜電極接合体の製造方法に関する。 The present invention relates to a fuel cell membrane electrode assembly, and more particularly to a method for producing a solid oxide fuel cell membrane electrode assembly having an anode having a pore arrangement structure.
固体酸化物型燃料電池(SOFC: Solid Oxide Fuel Cell)は電気化学反応によって燃料を電力へと転換して出力するエネルギー転換装置であり、YSZを電解質支持基板とする従来の固体酸化物型燃料電池(ESC: Electrolyte Supported Cell)の作動温度は800〜1000℃であって、その電解質支持基板の厚さは約150〜300μmであるため、電解質の厚み故に高温下で作動しなければならない。現在の主流がアノード(NiO+YSZ)支持型セル(Anode Supported Cell、ASC)であって、その電解質層を厚さ10μm以下にするのが特徴なので、作動温度を800〜1000℃の間に抑えることができる。通常のアノード支持型セルの膜電極接合体(Membrane Electrode Assembly、MEA)の製造工程は大体アノードを合成し、電解質とカソードを順番に焼結する工程を含むので、少なくとも三つの高温焼結工程が必要である。この多段階の焼結工程によりセラミック電極の緻密化が生じて、電池のガス拡散抵抗率を増加することになる。したがって、本発明は従来の膜電極製造工程に気孔配列構造を持つアノードを使用することで、ガス拡散抵抗率を有効に減少し、電池の電力出力密度を高めながら、長時間の安定な電力出力を維持できる。これにより、焼結工程による電極への悪影響を解決し、固体酸化物燃料電池の発電効率を向上させる。 A solid oxide fuel cell (SOFC) is an energy conversion device that outputs fuel by converting it into electric power through an electrochemical reaction. The conventional solid oxide fuel cell uses YSZ as an electrolyte support substrate. Since the operating temperature of (ESC: Electrolyte Supported Cell) is 800 to 1000 ° C. and the thickness of the electrolyte supporting substrate is about 150 to 300 μm, it must operate at a high temperature because of the thickness of the electrolyte. Since the current mainstream is an anode (NiO + YSZ) supported cell (Anode Supported Cell, ASC), and its feature is that its electrolyte layer is 10 μm or less in thickness, the operating temperature is kept between 800-1000 ° C. be able to. Since the manufacturing process of a membrane electrode assembly (MEA) of a normal anode-supported cell generally includes a process of synthesizing an anode and sequentially sintering an electrolyte and a cathode, there are at least three high-temperature sintering processes. is necessary. This multi-stage sintering process causes densification of the ceramic electrode and increases the gas diffusion resistivity of the battery. Therefore, the present invention uses an anode having a pore arrangement structure in the conventional membrane electrode manufacturing process, effectively reducing the gas diffusion resistivity and increasing the power output density of the battery while maintaining a stable power output for a long time. Can be maintained. Thereby, the bad influence to the electrode by a sintering process is solved, and the power generation efficiency of a solid oxide fuel cell is improved.
従来のアノード支持型固体酸化物型燃料電池の製造工程は、テープキャスティング法を用いてグリーンテープを形成し、ラミネート処理を通してグリーンテープ基板の厚さ及び幾何的構造を調整し、か焼/焼結によって電解質層及びアノード支持型半電池基板を形成し、最後にシルクスクリーン印刷法でカソードをその半電池基板の上にプリントすることによって全電池の製造を完成する。この製造方法によって作られた電池の主要な欠点は、安定性及び耐久性(酸化還元サイクル抵抗性、Redox Cycling)/温度サイクリング抵抗性(Thermal cycling)が良くないことである。カソードとアノードに気孔率(気相−固相反応メカニズム上)が必要であるという基本要件を考慮すれば、機械的強度の犠牲も止むを得ないのだが、後続のセルスタックの組立と包装工程で破損しがちで失敗しやすくなる。この欠点は固体酸化物型燃料電池の構造完備性の阻害になるので、これらの欠点を解消して固体酸化物型燃料電池単セルの性能を有効に向上させる方法が望ましい。 The conventional anode-supported solid oxide fuel cell manufacturing process involves forming a green tape using a tape casting method, adjusting the thickness and geometric structure of the green tape substrate through a laminating process, and calcining / sintering. To form an electrolyte layer and an anode-supported half-cell substrate, and finally a cathode is printed on the half-cell substrate by a silk screen printing method to complete the manufacture of the whole cell. The main drawback of batteries made by this manufacturing method is poor stability and durability (Redox Cycling) / Thermal cycling resistance. Considering the basic requirement that the cathode and anode must have porosity (due to the gas-solid reaction mechanism), the sacrifice of mechanical strength is unavoidable, but the subsequent cell stack assembly and packaging process It tends to break down and is easy to fail. Since this drawback hinders the completeness of the structure of the solid oxide fuel cell, a method for solving these disadvantages and effectively improving the performance of the solid oxide fuel cell single cell is desirable.
本発明は、固体酸化物型燃料電池用膜電極接合体(SOFC-MEA)の製造方法に関し、テープキャスティング法を用いてアノード支持基板を構成するグリーンテープを作り、一つまたは複数のグリーンテープに気孔配列構造を施してから、焼結によってアノード支持基板を形成し、シルクスクリーン印刷法及び/またはスパッタリング法及び/またはスプレー法の製造工程を通して、低いガス拡散抵抗率でアノードの導電性を向上した固体酸化物型燃料電池を得る。更にアノードに精密な研磨工程を施すことでニッケル欠乏層を除去し、優れた性能を備える固体酸化物型燃料電池単セルを得る。 The present invention relates to a method for producing a solid oxide fuel cell membrane electrode assembly (SOFC-MEA), and uses a tape casting method to produce a green tape constituting an anode support substrate, and to form one or a plurality of green tapes. After applying the pore arrangement structure, the anode support substrate was formed by sintering, and the conductivity of the anode was improved with low gas diffusion resistivity through the manufacturing process of silk screen printing method and / or sputtering method and / or spray method. A solid oxide fuel cell is obtained. Further, a precise polishing step is performed on the anode to remove the nickel-deficient layer, thereby obtaining a solid oxide fuel cell single cell having excellent performance.
本発明は、気孔配列構造を持つアノードを有する固体酸化物型燃料電池用膜電極接合体(SOFC-MEA)に関し、特殊なアノードの造孔処理工程において、薄肉ステンレスチューブをグリーンテープに押圧して配列構造をする気孔を作ることで、変形または不規則な気孔周縁の形成を防げ、電池の作動過程中に低いガス拡散抵抗率によって三相界面の反応能力を高め、電池出力の電力密度を改善しながら長期の安定的な電力出力を提供することで、固体酸化物型燃料電池用膜電極接合体もしくは単セル(SOFC-MEAまたはUnit Cell)の電気的性能を向上させる。 The present invention relates to a solid oxide fuel cell membrane electrode assembly (SOFC-MEA) having an anode having a pore arrangement structure, and in a special anode pore forming process, a thin stainless steel tube is pressed against a green tape. By creating pores with an array structure, the formation of irregular or irregular pore perimeters can be prevented, and the reaction capacity of the three-phase interface can be increased by low gas diffusion resistivity during the battery operation process, improving the power density of the battery output While providing long-term stable power output, it improves the electrical performance of solid oxide fuel cell membrane electrode assemblies or single cells (SOFC-MEA or Unit Cell).
本発明のもう一つの目的は気孔配列構造を持つアノードを有する固体酸化物型燃料電池用膜電極接合体(SOFC-MEA)の製造方法に関し、外側の一つ又は複数のグリーンテープに配列構造をなす気孔を作り、完成した単セルの電気的性能を25%以上向上しただけでなく、ガス拡散抵抗率も40%以上減少できる。 Another object of the present invention relates to a method of manufacturing a solid oxide fuel cell membrane electrode assembly (SOFC-MEA) having an anode having a pore arrangement structure, and the arrangement structure is arranged on one or more green tapes on the outside. In addition to improving the electrical performance of the completed single cell by more than 25%, the gas diffusion resistivity can also be reduced by more than 40%.
図1に、高導電率及び低抵抗率(8YSZ / SDC / LSGM)を備える平板固体酸化物型燃料電池用膜電極接合体の製造方法の一実施形態の概要図を示し、その方法は以下の工程を含む。 FIG. 1 shows a schematic diagram of an embodiment of a method for producing a membrane electrode assembly for a flat solid oxide fuel cell having high conductivity and low resistivity (8YSZ / SDC / LSGM). Process.
まず、テープキャスティング法を用いて平板固体酸化物型燃料電池のアノード支持基板を構成するグリーンテープを形成し、直径0.1〜0.5cmの薄肉ステンレスチューブでグリーンテープの表面側に配列構造をなす気孔を形成し、その気孔配列構造を持つグリーテープと造孔処理されないグリーンテープとを積層し、サーマルラミネート及びウエットラミネート加工を通して、全体的に厚さ300〜800μmとするアノード支持基板を形成し、1250℃が最適温度として、1200〜1500℃において数時間の焼結を行い、初期段階の固体酸化物型燃料電池の予焼したアノード支持基材を得る。この段階の基材はNiO/YSZ、NiO/SDC、NiO/LSGMの中から1種類を使用することができる。 First, a green tape forming an anode support substrate of a flat solid oxide fuel cell is formed using a tape casting method, and an array structure is formed on the surface side of the green tape with a thin stainless steel tube having a diameter of 0.1 to 0.5 cm. The anode support substrate having a total thickness of 300 to 800 μm is formed by laminating the green tape having the pore arrangement structure and the green tape that is not subjected to the pore forming process, and laminating the thermal tape and the wet laminate. Sintering is carried out at 1200-1500 ° C. for several hours, with 1250 ° C. being the optimum temperature, to obtain a pre-fired anode support substrate for the solid oxide fuel cell in the initial stage. As the substrate at this stage, one of NiO / YSZ, NiO / SDC, and NiO / LSGM can be used.
次に、振動式超音波洗浄機でアノード支持基材を洗浄し、乾燥してからスパッタリング法とスピンコート法とスクリーン印刷法で電解質を薄膜化して厚さを10μm以下とする電解質層を形成し、1200〜1500℃において数時間のか焼を行い、半電池の製造工程を完成する。電子顕微鏡(Scanning Electron Microscope、略称SEM)で半電池の微細構造分析を行い、電解質層は開放気孔なしの完全緻密な状態に至ることを確認する。電解質層にまだ開放気孔が存在する場合、スピンコート法などの薄膜形成技術で補修し、焼結条件を再調整して行い、完全緻密な電解質層になるまで繰り返し、気孔配列構造を持つアノードと電解質層との界面に良好な接合性を備えるようにする。 Next, the anode support substrate is washed with a vibration ultrasonic cleaner, dried, and then the electrolyte is thinned by sputtering, spin coating, and screen printing to form an electrolyte layer having a thickness of 10 μm or less. And calcining at 1200 to 1500 ° C. for several hours to complete the half-cell manufacturing process. Microstructure analysis of the half-cell is performed with a scanning electron microscope (abbreviated as SEM), and it is confirmed that the electrolyte layer reaches a completely dense state without open pores. If there are still open pores in the electrolyte layer, repair with thin film forming technology such as spin coating, readjust the sintering conditions, and repeat until the electrolyte layer is completely dense. Provide good bondability at the interface with the electrolyte layer.
最後に半電池の電解質層の上にスクリーン印刷法で多孔質のカソード(一般的にLSMまたはLSCFを材料とする)を形成し、再び900〜1200℃においてか焼を約3時間行い、完成した固体酸化物型燃料電池を得る。この全電池のアノード側の表面から約10〜20μmの厚さを除去する研磨処理を施す。 Finally, a porous cathode (generally made of LSM or LSCF) is formed on the electrolyte layer of the half-cell by screen printing, and calcined again at 900 to 1200 ° C. for about 3 hours to complete the process. A solid oxide fuel cell is obtained. Polishing is performed to remove a thickness of about 10 to 20 μm from the anode side surface of all the batteries.
前記本発明の方法に従って、テープキャスティング法を用いてアノードを構成するグリーンテープを製造し、気孔配列構造をグリーンテープの上に形成して初期燃料気体の拡散経路とし、ラミネート加工とか焼及び/又は焼結工程によってアノード支持基板を完成する。更に、スパッタリング法、スピンコート法又はスクリーン印刷法で電解質をアノード支持基板に積層し、アノード層と電解質層とを焼結して半電池となし、スクリーン印刷法でカソードを半電池の上に形成し、再び焼結して固体酸化物型燃料電池の全電池を得る。全電池のアノードに研磨処理を施すことで多段階焼結工程がもたらすニッケル欠乏層を除去する。この気孔配列構造及び研磨処理が施された全電池が顕著的な性能向上を示すのは、膜電極接合体と電流収集層との間に生じる電気抵抗及びアノード内部に発生するガス拡散抵抗の大幅な低下によるものである。従って、高導電率及び低抵抗率の固体酸化物型燃料電池を得ることになる。 According to the method of the present invention, a green tape constituting an anode is manufactured using a tape casting method, and a pore array structure is formed on the green tape to form an initial fuel gas diffusion path, which is laminated and calcined, and / or An anode support substrate is completed by a sintering process. Furthermore, the electrolyte is laminated on the anode support substrate by sputtering, spin coating, or screen printing, and the anode layer and electrolyte layer are sintered to form a half-cell, and the cathode is formed on the half-cell by screen printing. Then, it is sintered again to obtain a whole solid oxide fuel cell. By polishing the anodes of all the batteries, the nickel-deficient layer caused by the multi-step sintering process is removed. All the cells with the pore arrangement structure and the polishing treatment show remarkable performance improvement because of the large electric resistance generated between the membrane electrode assembly and the current collecting layer and the gas diffusion resistance generated inside the anode. This is due to a significant decrease. Therefore, a solid oxide fuel cell with high conductivity and low resistivity is obtained.
図6に、気孔配列構造を持つアノードを有する固体酸化物型燃料電池の長時間性能評価試験の結果を示し、定電流400mA/cm2の条件下で作動すれば、単セルのランプ電圧(voltage ramp rate)が持続的に増加するので、気孔配列構造は燃料ガスに有効な拡散通路を提供し、アノードと電解質層との界面における三相点のガス濃度を増加して電気化学反応の効率を向上させる。 FIG. 6 shows the results of a long-term performance evaluation test of a solid oxide fuel cell having an anode having a pore arrangement structure. When operated under the condition of a constant current of 400 mA / cm 2 , a single cell lamp voltage (voltage As the ramp rate increases continuously, the pore structure provides an effective diffusion path for the fuel gas and increases the gas concentration at the three-phase point at the interface between the anode and the electrolyte layer to increase the efficiency of the electrochemical reaction. Improve.
図2A〜2Dに気孔配列構造に関する様々な実施態様を示し、以下のステップで本発明の一実施例を説明する。 2A to 2D show various embodiments related to the pore arrangement structure, and an embodiment of the present invention will be described in the following steps.
ステップ1:テープキャスティング法を用いて、50wt%NiO+50wt%8YSZ並びに特定量の造孔剤で構成する基本材料で、膜電極接合体のアノード支持基板を構成するグリーンテープを作る(図1のa)。 Step 1: Using a tape casting method, a green tape constituting an anode support substrate of a membrane electrode assembly is made with a basic material composed of 50 wt% NiO + 50 wt% 8YSZ and a specific amount of pore former (a in FIG. 1). .
ステップ2:前記ステップ1で得た一つ又は複数のグリーンテープの表面側に気孔配列構造を施し、変形または不規則な気孔周縁となることを防ぐために、直径約0.3cmの薄肉ステンレスチューブでグリーンテープの表面側に、隣接する間隔距離が1.4cmの気孔配列構造を施し(図2のb)、前記気孔配列構造を持つグリーンテープと造孔処理されないグリーンテープとを積層して、サーマルラミネート及びウエットラミネート加工を通して全体的に厚さを300〜800μmとしたアノード支持基板を形成する。全電池の完成品の寸法は5×5cm2〜10×10cm2の範囲にあるので、焼結による収縮がアノード支持基板の寸法への影響も併せて考慮すれば、アノード支持基板の寸法を7×7cm2〜12×12 cm2とするのが適当である(図2のc)。 Step 2: Apply a pore arrangement structure to the surface of one or more green tapes obtained in Step 1 above, and use a thin stainless steel tube with a diameter of about 0.3 cm to prevent deformation or irregular peripheral edges of the pores. On the surface side of the green tape, a pore arrangement structure with an adjacent interval distance of 1.4 cm is applied (b in FIG. 2), and the green tape having the pore arrangement structure and a green tape not subjected to the hole forming treatment are laminated, An anode supporting substrate having a thickness of 300 to 800 μm as a whole is formed through laminating and wet laminating. Since the size of the finished product of all the batteries is in the range of 5 × 5 cm 2 to 10 × 10 cm 2 , if the shrinkage due to sintering also takes into account the influence on the size of the anode support substrate, the size of the anode support substrate is 7 it is appropriate to the × 7cm 2 ~12 × 12 cm 2 (c in FIG. 2).
ステップ3:前記ステップ2で得たアノード支持基板を約1250℃において、温度の上昇率/降下率を約3℃/min以下として約4時間の焼結を行い、初期段階の固体酸化物型燃料電池の予焼したアノード支持基板となり、粗目の紙やすりで粗目から細目まで順番に研磨して、電解質層を積層させる為にアノード支持基基板の表面の平滑性を確保する。
Step 3: The anode support substrate obtained in
ステップ4:前記ステップ3で得たアノード支持基板の表面に、スピンコート法で厚さ10μm以下の電解質層をアノード支持基板に積層し、約1400℃が最適で温度昇降速度を約3℃/min以下として1200〜1600℃において約6時間の焼結を行い、初期段階の固体酸化物型燃料電池の半電池とする。電子顕微鏡で前記半電池の微細構造分析を行い、アノードと電解質層との界面結合性及び前記電解質層は開放気孔なしの完全緻密な状態に至ることを確認し、電解質層にまだ開放気孔が存在する場合、スピンコート法などの薄膜形成技術で補修し、或は1200〜1400℃の温度下に約6時間の再度焼結を行い、アノードと電解質層との良き界面結合性を確認できる完全緻密な電解質層になるまで補修と焼結工程を繰り返す(図2のd)。 Step 4: An electrolyte layer having a thickness of 10 μm or less is laminated on the surface of the anode support substrate obtained in the above step 3 by a spin coating method, about 1400 ° C. is optimum, and the temperature raising / lowering speed is about 3 ° C./min. In the following, sintering is performed at 1200 to 1600 ° C. for about 6 hours to obtain a half-cell of the solid oxide fuel cell in the initial stage. Microstructure analysis of the half-cell with an electron microscope confirmed that the interface between the anode and the electrolyte layer and that the electrolyte layer reached a completely dense state without open pores, and there were still open pores in the electrolyte layer In this case, the film is repaired by a thin film forming technique such as a spin coating method, or re-sintered at a temperature of 1200 to 1400 ° C. for about 6 hours to confirm a good interface bond between the anode and the electrolyte layer. The repairing and sintering processes are repeated until an appropriate electrolyte layer is obtained (d in FIG. 2).
ステップ5:前記ステップ4で得た半電池の電解質層の上にスクリーン印刷法でLSMを材料とする多孔質のカソード層を作り、温度昇降速度は約3℃/min以下として約1200℃において約3時間のか焼工程を行って全電池を得る(図2のe)。この単セルに電気性能試験を行い、造孔処理されない単セルと比較した結果は図4〜5に示し、回路電圧(open circuit voltage)は論理的な標準値(>1.1V)に近く、発電効率も25%以上に向上し、ガス拡散抵抗率も40%以上減少できる。 Step 5: A porous cathode layer made of LSM is made by screen printing on the half-cell electrolyte layer obtained in Step 4 above, and the temperature rise / fall rate is about 3 ° C./min or less at about 1200 ° C. A 3 hour calcination step is performed to obtain all the batteries (e in FIG. 2). The electric performance test was performed on this single cell, and the results compared with the single cell that was not subjected to the hole forming process are shown in FIGS. 4 to 5. The circuit voltage (open circuit voltage) is close to the logical standard value (> 1.1V). Efficiency can be improved to 25% or more, and gas diffusion resistivity can be reduced by 40% or more.
本発明のもう一つの実施例では、図2Aに示す気孔配列構造を持つアノードグリーンテープを図2Cか図2Dが示す交差的な配置にすることもできる。多層のラミネート工程を通して、気孔を立体的な配置にして燃料ガスの流動率を高める一方、異なるグリーンテープに分布する気孔配置で応力を減少し、グリーンテープ各層の支持強度を増強させる。 In another embodiment of the present invention, the anode green tape having the pore arrangement structure shown in FIG. 2A may be arranged in a cross configuration as shown in FIG. 2C or 2D. Through the multi-layer laminating process, the pores are arranged in three dimensions to increase the flow rate of the fuel gas, while the pore arrangement distributed in different green tapes reduces the stress and enhances the supporting strength of each layer of the green tape.
本発明のグリーンテープのラミネート数は2〜6層であることを特徴とする請求項1に記載の気孔配列構造を持つアノードを有する固体酸化物型燃料電池用膜電極接合体の製造方法。 2. The method for producing a membrane electrode assembly for a solid oxide fuel cell according to claim 1, wherein the number of laminates of the green tape of the present invention is 2 to 6 layers.
以上述べたことは、本発明の実施例にすぎず、本発明の実施の範囲を限定するものではなく、本発明の特許請求の範囲に基づきなし得る同等の変化と修飾は、いずれも本発明の権利のカバーする範囲内に属するものとする。
The above description is only an example of the present invention, and does not limit the scope of the present invention. Any equivalent changes and modifications that can be made based on the scope of the claims of the present invention are all described in the present invention. Shall belong to the scope covered by the rights.
Claims (6)
ステップa:テープキャスティング法を用いて、アノード支持基板を構成するグリーンテープを作り、
ステップb:前記ステップaで得た一つ又は複数の前記グリーンテープの表面側に特定な孔径をする気孔配列構造を施し、気孔配列構造を持つ前記グリーテープと造孔処理されない前記グリーンテープとを積層し、サーマルラミネート及びウェットラミネート加工を通して、全体的に厚さ300〜800μmとするアノード支持基板を形成し、温度の上昇率/降下率を約3℃/min以下として、前記アノード支持基板を約1250℃において約4時間の予備焼結を行い、初期段階の固体酸化物型燃料電池のアノード支持基板とし、
ステップc:前記ステップbで得た前記アノード支持基板を粗目から細めまでの紙やすりで順番に研磨処理を施して整えた前記アノード支持基板の表面に電解質層を積層してアノード層/電解質層複合基材とし、
ステップd:前記ステップcで得た前記アノード層/電解質層複合基材を約1400℃において、温度昇降速度を約3℃/min以下として約6時間焼結して半電池とし、前記電解質層に開放気孔が存在する場合、薄膜形成技術で補修し、或は1200〜1400℃の温度下に約6時間の再度焼結を行い、完全緻密な電解質層になるまで補修と焼結工程を繰り返し、
ステップe:前記ステップdで得た前記半電池の電解質層の上にスクリーン印刷法で多孔質のカソード層を作り、約1200℃において、温度昇降速度を約3℃/min以下として約3時間のか焼工程を行い、固体酸化物型燃料電池用膜電極接合体とし、
ステップf:前記ステップeで得た前記固体酸化物型燃料電池用膜電極接合体のアノード面を粗目から細めまでの紙やすりで順番に研磨処理を施して、単セルを完成する、
以上のステップを含むことを特徴とする気孔配列構造を持つアノードを有する固体酸化物型燃料電池用膜電極接合体の製造方法。 A method for producing a membrane electrode assembly for a solid oxide fuel cell having an anode having a pore arrangement structure,
Step a: Using a tape casting method, make a green tape constituting the anode support substrate,
Step b: Applying a pore arrangement structure having a specific hole diameter to the surface side of one or a plurality of the green tapes obtained in the step a, and the green tape having the pore arrangement structure and the green tape not subjected to the hole forming treatment. The anode support substrate having a total thickness of 300 to 800 μm is formed by laminating and thermal laminating and wet laminating processes, and the rate of temperature increase / decrease is about 3 ° C./min or less. Pre-sintering at 1250 ° C. for about 4 hours to form an anode support substrate for the solid oxide fuel cell in the initial stage,
Step c: An anode layer / electrolyte layer composite obtained by laminating an electrolyte layer on the surface of the anode support substrate prepared by polishing the anode support substrate obtained in step b with sandpaper from coarse to thin in order. As a base material,
Step d: The anode layer / electrolyte layer composite base material obtained in Step c is sintered at about 1400 ° C. at a temperature raising / lowering speed of about 3 ° C./min or less for about 6 hours to form a half-cell. If there are open pores, repair with thin film formation technology, or re-sinter for about 6 hours at a temperature of 1200-1400 ° C., repeat the repair and sintering process until a complete dense electrolyte layer,
Step e: A porous cathode layer is formed on the electrolyte layer of the half-cell obtained in Step d by screen printing, and at about 1200 ° C., the temperature rise / fall rate is about 3 ° C./min or less for about 3 hours. A firing process is performed to obtain a membrane electrode assembly for a solid oxide fuel cell,
Step f: Polishing the anode surface of the membrane electrode assembly for the solid oxide fuel cell obtained in Step e in order with sandpaper from coarse to narrow to complete a single cell.
The manufacturing method of the membrane electrode assembly for solid oxide fuel cells which has an anode with a pore arrangement | sequence structure characterized by including the above step.
2. The solid oxide type having an anode with a pore arrangement structure according to claim 1, wherein the depth of the polishing treatment applied to the anode surface of the membrane electrode assembly according to step f is 10 to 20 μm. Manufacturing method of fuel cell membrane electrode assembly.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015029312A JP6486138B2 (en) | 2015-02-18 | 2015-02-18 | Method of manufacturing membrane electrode assembly for solid oxide fuel cell having anode with pore arrangement structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015029312A JP6486138B2 (en) | 2015-02-18 | 2015-02-18 | Method of manufacturing membrane electrode assembly for solid oxide fuel cell having anode with pore arrangement structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016152144A true JP2016152144A (en) | 2016-08-22 |
JP6486138B2 JP6486138B2 (en) | 2019-03-20 |
Family
ID=56696700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015029312A Active JP6486138B2 (en) | 2015-02-18 | 2015-02-18 | Method of manufacturing membrane electrode assembly for solid oxide fuel cell having anode with pore arrangement structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6486138B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110154204A (en) * | 2019-06-25 | 2019-08-23 | 深圳陶陶科技有限公司 | Prepare the method and system of ceramic base material |
WO2019203465A1 (en) * | 2018-04-18 | 2019-10-24 | 주식회사 엘지화학 | Fuel battery cell and manufacturing method therefor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003168448A (en) * | 2001-11-30 | 2003-06-13 | Nissan Motor Co Ltd | Unit cell for solid electrolyte type fuel cell |
JP2009187847A (en) * | 2008-02-08 | 2009-08-20 | Toyota Motor Corp | Manufacturing method for support of fuel cell and manufacturing method for fuel cell |
JP2011228280A (en) * | 2010-03-31 | 2011-11-10 | Dainippon Printing Co Ltd | Solid oxide fuel cell and its manufacturing method |
US20120082920A1 (en) * | 2010-10-05 | 2012-04-05 | Delphi Technologies Inc. | Co-fired metal interconnect supported sofc |
JP2013033615A (en) * | 2011-08-01 | 2013-02-14 | Dainippon Printing Co Ltd | Solid oxide fuel cell and manufacturing method thereof |
JP2015064948A (en) * | 2013-09-24 | 2015-04-09 | 株式会社日本自動車部品総合研究所 | Fuel cell and manufacturing method therefor |
-
2015
- 2015-02-18 JP JP2015029312A patent/JP6486138B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003168448A (en) * | 2001-11-30 | 2003-06-13 | Nissan Motor Co Ltd | Unit cell for solid electrolyte type fuel cell |
JP2009187847A (en) * | 2008-02-08 | 2009-08-20 | Toyota Motor Corp | Manufacturing method for support of fuel cell and manufacturing method for fuel cell |
JP2011228280A (en) * | 2010-03-31 | 2011-11-10 | Dainippon Printing Co Ltd | Solid oxide fuel cell and its manufacturing method |
US20120082920A1 (en) * | 2010-10-05 | 2012-04-05 | Delphi Technologies Inc. | Co-fired metal interconnect supported sofc |
JP2013033615A (en) * | 2011-08-01 | 2013-02-14 | Dainippon Printing Co Ltd | Solid oxide fuel cell and manufacturing method thereof |
JP2015064948A (en) * | 2013-09-24 | 2015-04-09 | 株式会社日本自動車部品総合研究所 | Fuel cell and manufacturing method therefor |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019203465A1 (en) * | 2018-04-18 | 2019-10-24 | 주식회사 엘지화학 | Fuel battery cell and manufacturing method therefor |
CN110154204A (en) * | 2019-06-25 | 2019-08-23 | 深圳陶陶科技有限公司 | Prepare the method and system of ceramic base material |
Also Published As
Publication number | Publication date |
---|---|
JP6486138B2 (en) | 2019-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5315476B1 (en) | Current collecting member and fuel cell | |
JP5608813B2 (en) | Method for producing solid oxide fuel cell unit cell | |
US9806367B2 (en) | Fabrication process for production of SOFC-MEA with a pore array anode structure for improving output power density | |
US7815843B2 (en) | Process for anode treatment of solid oxide fuel cell—membrane electrode assembly to upgrade power density in performance test | |
TWI509869B (en) | A fabrication process for production of SOFC-MEA with a pore array anode structure for improving output power density | |
JP2002175814A (en) | Manufacturing method of fuel electrode for solid electrolyte type fuel cell, the solid electrolyte type fuel cell and its manufacturing method | |
JP2012212541A (en) | Electrolyte/electrode assembly and manufacturing method therefor | |
JP6486138B2 (en) | Method of manufacturing membrane electrode assembly for solid oxide fuel cell having anode with pore arrangement structure | |
JP5284876B2 (en) | Method for producing flat solid oxide fuel cell | |
KR101150836B1 (en) | The structure of solid oxide fuel cell and manufacturing method thereof | |
JP3963122B2 (en) | Cell plate for solid oxide fuel cell and method for producing the same | |
JP5547188B2 (en) | Manufacturing method of electrolyte / electrode assembly | |
JP2010238437A (en) | Solid electrolyte for flat-plate solid oxide fuel cell, and flat-plate solid oxide fuel cell | |
JP2009218126A (en) | Manufacturing method for completely-dense electrolyte layer laminated on high-performance solid oxide type fuel-cell membrane-electrode assembly (sofc-mea) | |
JP2012142241A (en) | Method for manufacturing single cell for solid oxide fuel cell | |
US10283799B2 (en) | Membrane electrode assembly structure of fuel cell and the method of fabricating the same | |
JP5166080B2 (en) | Anodizing method for improving power density of solid oxide fuel cell membrane electrode assembly (SOFC-MEA) | |
JP2011009173A (en) | Method of manufacturing electrolyte-electrode assembly | |
EP2107630B1 (en) | Process for anode treatment of a membrane electrode assembly of a solid oxide fuel cell | |
JP5362979B2 (en) | Method for producing solid oxide fuel cell | |
EP3016191B1 (en) | A fabrication process for production of SOFC-MEA with a pore array anode structure for improving output power density | |
TWI631757B (en) | Membrane electrode assembly structure of fuel cell and the method of manufacturing the same | |
JP2011009174A (en) | Method of manufacturing electrolyte-electrode assembly | |
KR20190100610A (en) | Method for fabricating solid oxide fuel cell | |
JP2013004483A (en) | Electrolyte-electrode assembly and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180105 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181126 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190118 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190219 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6486138 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |