JP2016150969A - Adhesive-containing silica microcapsule and method for the production thereof, adhesive material and adhesive material applicator - Google Patents

Adhesive-containing silica microcapsule and method for the production thereof, adhesive material and adhesive material applicator Download PDF

Info

Publication number
JP2016150969A
JP2016150969A JP2015028592A JP2015028592A JP2016150969A JP 2016150969 A JP2016150969 A JP 2016150969A JP 2015028592 A JP2015028592 A JP 2015028592A JP 2015028592 A JP2015028592 A JP 2015028592A JP 2016150969 A JP2016150969 A JP 2016150969A
Authority
JP
Japan
Prior art keywords
adhesive
pressure
silica
sensitive adhesive
microcapsule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015028592A
Other languages
Japanese (ja)
Other versions
JP6525188B2 (en
Inventor
藤原 正浩
Masahiro Fujiwara
正浩 藤原
大輝 岸本
Daiki Kishimoto
大輝 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokuyo Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Kokuyo Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokuyo Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Kokuyo Co Ltd
Priority to JP2015028592A priority Critical patent/JP6525188B2/en
Publication of JP2016150969A publication Critical patent/JP2016150969A/en
Application granted granted Critical
Publication of JP6525188B2 publication Critical patent/JP6525188B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)
  • Silicon Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technique whereby an adhesive is contained inside a fine particle and the fine particle is destructed to express adhesive performance.SOLUTION: An adhesive-containing silica microcapsule is obtained by containing an adhesive in a silica microcapsule which can be destructed by external force.SELECTED DRAWING: Figure 1

Description

本発明は、粘着剤内包シリカマイクロカプセルとその製造方法、接着材料および接着材料塗布具に関する。   The present invention relates to a pressure-sensitive adhesive-containing silica microcapsule, a method for producing the same, an adhesive material, and an adhesive material applicator.

粘着剤の粘着性能を発現させたい時に発現させる技術は、様々な分野で求められている。文具の分野では、封書等を糊やテープ等で貼り付ける際、一方の紙に粘着剤を塗布する段階では粘着性はなく、もう一つの紙を重ね合わせた段階で始めて粘着性が発現させることで、使用者の快適さが増す。このような機能を粘着剤にもたらすため、様々な方法が提案されているが、その一つとして感圧性粘着剤がある。この代表的な方法として、粘着剤や関連する薬剤をカプセル状材料内に封入し、当該カプセル材料を加圧し破壊することで内包された粘着剤を放出させて粘着性能を発揮させる技術が多く研究されている。例えば、粘着剤や粘着シート等において、粘着剤を目的に応じて、塩化ビニリデン・アクリロニトリル共重合体、ポリビニルアルコール、メラミン・ホルムアルデヒド樹脂、イソシアネート樹脂などの合成樹脂等に内包させたものがある(特許文献1)。また、ゼラチン−アラビアゴム系などのタンパク質と多糖類系、PVA(ポリビニルアルコール)系等を用い、加圧破壊型マイクロカプセルと加熱破壊型マイクロカプセルを組み合わせた粘着剤、粘着シートもある(特許文献2)。W/O/Wエマルジョンを用いて、水系の粘着剤をウレタン樹脂、フェノールホルムアルデヒド樹脂、スチレン樹脂、アクリル樹脂のマイクロカプセル内に封入した感圧性接着剤もある(特許文献3,4)。架橋剤や架橋反応を起こす粘着剤をマイクロカプセルに内包して、マイクロカプセルの破壊を通じて必要な場所でのみ架橋反応を行い、転写ミスを低減する技術もある(特許文献5)。可塑剤もしくは可塑剤及び粘着付与剤を内包するカプセル型粒子と通常の粘着剤を混合した樹脂組成物で、カプセル型粒子の粒子径をシート材厚みと同等程度にすることで圧力によりカプセル粒子の殻が破壊され、それまでは粘着性を示さなかったものが殻破壊後に粘着性を示す粘着シート材を、カプセル素材としてアクリル酸、アクリロニトリル等をメラミンで架橋したものを用いて合成する例もある(特許文献6)。   Techniques for expressing the adhesive performance of an adhesive are required in various fields. In the field of stationery, when stickers are pasted with glue, tape, etc., there is no stickiness at the stage of applying an adhesive to one paper, and stickiness is manifested only when the other paper is stacked. This increases user comfort. In order to bring such a function to the pressure-sensitive adhesive, various methods have been proposed, and one of them is a pressure-sensitive pressure-sensitive adhesive. As a representative method, many researches have been conducted on the technology to exert adhesive performance by encapsulating an adhesive and related drugs in a capsule-like material and releasing the contained adhesive by pressurizing and destroying the capsule material. Has been. For example, in pressure sensitive adhesives and pressure sensitive adhesive sheets, there are those in which the pressure sensitive adhesive is encapsulated in a synthetic resin such as vinylidene chloride / acrylonitrile copolymer, polyvinyl alcohol, melamine / formaldehyde resin, isocyanate resin, etc. depending on the purpose (patent) Reference 1). In addition, there are pressure-sensitive adhesives and pressure-sensitive adhesive sheets using a combination of a pressure-breaking microcapsule and a heat-breaking microcapsule using gelatin-gum arabic and other proteins, polysaccharides, PVA (polyvinyl alcohol), and the like (Patent Literature). 2). There is also a pressure-sensitive adhesive in which a water-based adhesive is enclosed in urethane resin, phenol formaldehyde resin, styrene resin, and acrylic resin microcapsules using a W / O / W emulsion (Patent Documents 3 and 4). There is also a technique in which a cross-linking agent or a pressure-sensitive adhesive that causes a cross-linking reaction is encapsulated in a microcapsule and a cross-linking reaction is performed only at a necessary place through destruction of the microcapsule to reduce a transfer mistake (Patent Document 5). A resin composition in which a plasticizer or a capsule-type particle containing a plasticizer and a tackifier is mixed with a normal pressure-sensitive adhesive, and by making the particle diameter of the capsule-type particle equal to the sheet material thickness, There is also an example of synthesizing a pressure sensitive adhesive sheet material that has been destroyed by the shell and has not been tacky until then, and that has been cross-linked with acrylic acid, acrylonitrile, etc. as a capsule material. (Patent Document 6).

また、マイクロカプセル内に、粘着剤ではなく剥離剤を加え、当該マイクロカプセルの破壊で剥離剤を放出させる例もある。例えば、でん粉、ポリビニルピロリドン、カルボキシメチルセルロース、ゼラチン等の合成高分子から成るマイクロカプセルを用いるもの(特許文献7)や、メラミン・ホルムアルデヒド樹脂やイソシアネート樹脂のような合成樹脂を壁膜剤として離型材をマイクロカプセルに内包させて再粘着性能を与えた粘着シート(特許文献8)等である。これらのカプセル材料、マイクロカプセル材料は、コアセルベーション法、界面重合法、in−situ重合法等で合成しているため、芯となる内包物と被覆となるカプセル材とのカプセル構造は同時に構築されるものであるが、芯物質のない中空で粘着性のない合成樹脂製マイクロカプセルに粘着剤を充填する例もある(特許文献9)。これらで例示したカプセルやマイクロカプセルの素材には、ポリマー系の有機物を用いる例がほとんどであり、無機系材料、例えばシリカを用いた例としては、カプセルの素材としてでは無く、内包させる顔料としてシリカを用いる例があるのみである(特許文献10)。   There is also an example in which a release agent is added in the microcapsule instead of an adhesive, and the release agent is released by breaking the microcapsule. For example, those using microcapsules made of synthetic polymers such as starch, polyvinylpyrrolidone, carboxymethylcellulose, gelatin, etc. (Patent Document 7), and synthetic resins such as melamine / formaldehyde resin and isocyanate resin as wall film agents A pressure-sensitive adhesive sheet (Patent Document 8) or the like provided with re-adhesion performance by being encapsulated in a microcapsule. Since these capsule materials and microcapsule materials are synthesized by a coacervation method, an interfacial polymerization method, an in-situ polymerization method, etc., the capsule structure of the core inclusion and the coating capsule material is built simultaneously. However, there is also an example in which a hollow and non-sticky synthetic resin microcapsule without a core substance is filled with a pressure-sensitive adhesive (Patent Document 9). Most of the capsules and microcapsules exemplified in these examples use polymer organic substances, and examples using inorganic materials such as silica include silica as a pigment to be encapsulated, not as a capsule material. There is only an example using (Patent Document 10).

一方、シリカやケイ酸化合物をカプセル素材として用いる研究は、近年急速に進展している。最近特に活発に研究されている方法としては、コアシェル材料を用いる方法がある(非特許文献1)。典型的な例として、ポリスチレンのナノ粒子を芯材料・コア材料として用い、その周りにシリカをゾル−ゲル法の手法を用いて析出させ、一度コアシェル型材料を合成する。その後、コアであるポリスチレンを焼成等で取り除くことでシリカ中空粒子、マイクロカプセルを作製する方法が多く報告されている(非特許文献2,3)。この手法を応用することで、シリコーンオイルを内包した殻がシリカである微粒子の例がある(特許文献11)。一方、芯物質を用いずにシリカ中空粒子・マイクロカプセルを合成する方法も報告されている(非特許文献4、特許文献12,13)。この方法では、マイクロカプセル材料作製時に同時にカプセル内部に他の物質を取り込むことも可能であり、タンパク質等の生体高分子材料を内包させた例がある(特許文献14、非特許文献5)。しかしながら、この方法では内包させる物質を水ガラス水溶液に混合させるため、水に溶けない、あるいは水に分配されない疎水性材料を内包させることは困難である。   On the other hand, research using silica or silicate compounds as capsule materials has been progressing rapidly in recent years. As a method that has been actively studied recently, there is a method using a core-shell material (Non-patent Document 1). As a typical example, polystyrene nanoparticles are used as a core material / core material, and silica is precipitated around the core material using a sol-gel method to synthesize a core-shell type material once. Thereafter, many methods for producing silica hollow particles and microcapsules by removing the core polystyrene by baking or the like have been reported (Non-Patent Documents 2 and 3). By applying this technique, there is an example of fine particles in which the shell containing silicone oil is silica (Patent Document 11). On the other hand, a method of synthesizing silica hollow particles / microcapsules without using a core substance has also been reported (Non-patent Document 4, Patent Documents 12 and 13). In this method, it is possible to incorporate other substances into the capsule at the same time as the preparation of the microcapsule material, and there are examples in which a biopolymer material such as protein is encapsulated (Patent Document 14, Non-Patent Document 5). However, in this method, since the substance to be encapsulated is mixed in the water glass aqueous solution, it is difficult to encapsulate a hydrophobic material that is not dissolved in water or distributed to water.

粘着剤をカプセル化する素材としては、上述の様に、ポリマー等の有機系材料のみが用いられているが、一般文具へ利用する場合は、製造時に残留するモノマーの人体への影響が懸念される。カプセルやマイクロカプセルの素材として、人体への悪影響が少なく、環境適合性も高いシリカを用いることは、当該材料の粘着文具への利用・普及という観点では、特に重要である。しかしながら、このようなシリカの実際上の利点にもかかわらず、粘着剤や接着剤等を内包したシリカのカプセル・マイクロカプセルはこれまで知られていなかった。   As mentioned above, only organic materials such as polymers are used as the material for encapsulating the adhesive. However, when used for general stationery, there is a concern about the effects of monomers remaining during production on the human body. The As a material for capsules and microcapsules, it is particularly important to use silica, which has little adverse effect on the human body and has high environmental compatibility, from the viewpoint of use and spread of the material for adhesive stationery. However, in spite of such practical advantages of silica, a silica capsule / microcapsule containing a pressure-sensitive adhesive or an adhesive has not been known so far.

特開2009-221346JP2009-221346 特開2008-248065JP2008-248065 特開2005-232390JP2005-232390 特開2005-22023JP2005-22023 特開平07-011211JP 07-011211 特開平06-172725JP 06-172725 特開2008-292873JP2008-292873 特開平09-095650JP 09-095650 特開平09-111203JP 09-111203 A 特開平09-099673JP 09-099673 特開2013-000683JP2013-000683 特許4997395号Patent 4997395 特開2010-053200JP2010-053200 特許第5051490号Patent No. 5051490

Y. Li, J. Shi, Adv. Mater., 26, 3176-3205 (2014)Y. Li, J. Shi, Adv. Mater., 26, 3176-3205 (2014) W. Leng, M. Chen, S. Zhou, L. Wu, Langmuir, 26, 14271-14275 (2010)W. Leng, M. Chen, S. Zhou, L. Wu, Langmuir, 26, 14271-14275 (2010) M. Chen, L. Wu, S. Zhou, B. You, Adv. Mater., 18, 801-806 (2006)M. Chen, L. Wu, S. Zhou, B. You, Adv. Mater., 18, 801-806 (2006) M. Fujiwara, K. Shiokawa, Y. Tanaka, Y. Nakahara, Chem. Mater., 16, 5420-5426 (2004)M. Fujiwara, K. Shiokawa, Y. Tanaka, Y. Nakahara, Chem. Mater., 16, 5420-5426 (2004) J. Biomed. Mater. Res. A, 81, 103-112 (2007)J. Biomed. Mater. Res. A, 81, 103-112 (2007)

本発明は、粘着剤を微粒子内部に包含し、その殻がシリカから成る複合微粒子の合成技術、当該微粒子を破壊することによって粘着性能が発現される技術を提供することを目的とする。   An object of the present invention is to provide a technique for synthesizing composite fine particles containing a pressure-sensitive adhesive inside fine particles and whose shell is made of silica, and a technology for expressing pressure-sensitive adhesive performance by breaking the fine particles.

本発明者は、界面重合法等で粘着性ポリマーの水中エマルジョンを作製し、シリカの原料であるアルコキシシラン化合物をアルカリ性触媒で加水分解と縮合反応を起こし、粘着剤ポリマーのエマルジョン上にシリカを析出させることで、粘着剤内包シリカ複合粒子を合成することに成功した。アルコキシシラン化合物をアルカリ性触媒で加水分解と縮合反応を起こす反応はストーバー法として知られ(W. Stober, A. Fink, J. Colloid Interface Sci., 26, 62-69 (1968))、粒径100nm以下のシリカのナノ粒子が析出することが知られている。このシリカのナノ粒子は粘着剤ポリマーのエマルジョンを稠密に被覆できるため、そのままの状態では粘着剤がマイクロカプセル外部へ露出しておらず粘着性能を持たないが、マイクロカプセルを加圧により押しつぶし粘着剤をマイクロカプセル外部へ露出させることで粘着性能を発現させることに成功し、本発明に至った(図1、図2)。   The present inventor made an emulsion of adhesive polymer in water by interfacial polymerization, etc., hydrolyzed and condensed the alkoxysilane compound, which is the raw material of silica, with an alkaline catalyst, and precipitated silica on the adhesive polymer emulsion By doing so, the adhesive-encapsulated silica composite particles were successfully synthesized. The reaction that causes hydrolysis and condensation reaction of an alkoxysilane compound with an alkaline catalyst is known as the Stover method (W. Stober, A. Fink, J. Colloid Interface Sci., 26, 62-69 (1968)), and the particle size is 100 nm. The following silica nanoparticles are known to precipitate. Since the silica nanoparticles can densely coat the emulsion of the pressure-sensitive adhesive polymer, the pressure-sensitive adhesive is not exposed to the outside of the microcapsules as it is, and does not have adhesive performance. By exposing to the outside of the microcapsule, the adhesive performance was successfully developed, leading to the present invention (FIGS. 1 and 2).

本発明は、以下の粘着剤内包シリカマイクロカプセルとその製造方法、接着材料および接着材料塗布具を提供するものである。
項1. 外力により破壊可能なシリカマイクロカプセルにより粘着剤を内包してなる粘着剤内包シリカマイクロカプセル。
項2. シリカマイクロカプセルの膜厚が0.5〜50μmである、項1に記載の粘着剤内包シリカマイクロカプセル。
項3. シリカマイクロカプセルの全粒径に対するシリカマイクロカプセルの厚さの割合が1〜30%である、項1又は2に記載の粘着剤内包シリカマイクロカプセル。
項4. 項1〜3のいずれか1項に記載の粘着剤内包シリカマイクロカプセルをエタノールに分散してなる接着材料。
項5. 項4記載の接着材料を収容する収容室を備えた本体と、この収容室内の接着材料を少量ずつ外部に導出させるためのノズルとを備えた接着材料塗布具。
項6. 粘着剤ポリマーの水性エマルジョンに界面活性剤及びアルコキシシランを添加し、アルカリ性触媒の存在下にアルコキシシランの加水分解と縮合反応を起こし、粘着剤ポリマーのエマルジョン上にシリカを析出させることを特徴とする、外力により破壊可能なシリカマイクロカプセルにより粘着剤を内包してなる粘着剤内包シリカマイクロカプセルの製造方法。
項7. 前記水性エマルジョンに界面活性剤をさらに添加する、項6に記載の粘着剤内包シリカマイクロカプセルの製造方法。
The present invention provides the following pressure-sensitive adhesive-encapsulated silica microcapsules, a method for producing the same, an adhesive material, and an adhesive material applicator.
Item 1. A pressure-sensitive adhesive-encapsulated silica microcapsule comprising a pressure-sensitive adhesive encapsulated by a silica microcapsule that can be broken by an external force.
Item 2. Item 2. The pressure-sensitive adhesive-encapsulated silica microcapsule according to item 1, wherein the silica microcapsule has a thickness of 0.5 to 50 µm.
Item 3. Item 3. The pressure-sensitive adhesive-encapsulated silica microcapsule according to Item 1 or 2, wherein the ratio of the thickness of the silica microcapsule to the total particle size of the silica microcapsule is 1 to 30%.
Item 4. The adhesive material formed by disperse | distributing the adhesive inclusion | inner_cover silica microcapsule of any one of claim | item 1 -3 to ethanol.
Item 5. An adhesive material applicator comprising a main body including a storage chamber for storing the adhesive material according to Item 4, and a nozzle for guiding the adhesive material in the storage chamber to the outside little by little.
Item 6. A surfactant and an alkoxysilane are added to an aqueous emulsion of a pressure-sensitive adhesive polymer, and the hydrolysis and condensation reaction of the alkoxysilane is caused in the presence of an alkaline catalyst to precipitate silica on the pressure-sensitive adhesive polymer emulsion. A method for producing a pressure-sensitive adhesive-encapsulated silica microcapsule comprising a pressure-sensitive adhesive encapsulated by a silica microcapsule that can be broken by an external force.
Item 7. Item 7. The method for producing pressure-sensitive adhesive-containing silica microcapsules according to Item 6, wherein a surfactant is further added to the aqueous emulsion.

本発明の粘着剤内包シリカマイクロカプセルは、シリカマイクロカプセルを破壊することで初めて粘着性を発現するため、接着材料として好適である。この接着材料は、接着材料塗布具により封筒などに塗布し、紙を重ねて押圧することでシリカマイクロカプセルが壊れて粘着性能を発現するので手指を汚すことなく接着することができる。   The pressure-sensitive adhesive-encapsulated silica microcapsule of the present invention is suitable as an adhesive material because it exhibits tackiness only after breaking the silica microcapsule. This adhesive material is applied to an envelope or the like with an adhesive material applicator, and the silica microcapsules are broken by pressing and overlapping the paper, so that the adhesive performance is exhibited.

シリカ被覆粘着剤ポリマー作製の概念図Conceptual diagram of silica-coated adhesive polymer production シリカ被覆粘着剤ポリマーの加圧による粘着性発現の概念図Conceptual diagram of pressure-sensitive adhesive appearance of silica-coated pressure-sensitive adhesive polymer 粘着剤エマルジョン表面に被覆されたシリカナノ粒子の例Example of silica nanoparticles coated on the adhesive emulsion surface 粘着剤内包シリカマイクロカプセルの赤外線スペクトルInfrared spectrum of pressure sensitive adhesive-encapsulated silica microcapsules 粘着剤内包シリカマイクロカプセルの電子顕微鏡像Electron microscope image of pressure-sensitive adhesive-encapsulated silica microcapsules 粘着剤内包シリカマイクロカプセルの赤外線スペクトルInfrared spectrum of pressure sensitive adhesive-encapsulated silica microcapsules

粘着剤ポリマーの水との水性エマルジョンは、通常の懸濁重合法等で作製すれば良い。この水性エマルジョン中の粘着剤ポリマーは、水に溶解せず、かつ十分な粘着性能を持つものならば特に限定されず、ゴム系粘着剤、アクリル系粘着剤、ウレタン系粘着剤、シリコーン系粘着剤、ビニルエーテル系粘着剤が挙げられ、アクリル系粘着剤が好ましい。アクリル系粘着剤としては、(メタ)アクリル酸エステル、より具体的には(メタ)アクリル酸エチル、(メタ)アクリル酸i−プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸i−ブチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソミリスチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ジメチルアミノエチルなどの(メタ)アクリル酸エステルが挙げられる。これらは単独または2種以上併用して用いることができる。また、これらのベースポリマーに水酸基を有するアクリル酸エステルなどを共重合させ、粘着特性や親水性を調整してもよい。ベースポリマーに共重合させる水酸基を有するエステルの一例としては、(メタ)アクリル酸ヒドロキシエチル、アクリル酸2−ヒドロキシプロピル、アクリル酸4−ヒドロキシブチルなどが挙げられ、これらは単独または2種以上併用して用いることができる。特に粘着性能と調達の容易性から、アクリル酸2−エチルヘキシルとアクリル酸2−ヒドロキシプロピルの共重合体を用いる事が好ましい。その際のエマルジョンのサイズも特に限定されないが、粘着剤を内包したカプセル材料で加圧による粘着の発現がコントロールし易く、かつ紙などの被接着物の接着に十分な粘着力を発現させるには、1〜100μmが好ましく、より好ましくは20〜80μmが良い。このエマルジョンは、ろ別等により水から一度分離してから使用しても良いが、そのまま用いても良く、エマルジョン状態が維持されるならば、使用形態は特に限定されない。   An aqueous emulsion of the pressure-sensitive adhesive polymer with water may be prepared by a usual suspension polymerization method or the like. The pressure-sensitive adhesive polymer in the aqueous emulsion is not particularly limited as long as it does not dissolve in water and has sufficient pressure-sensitive adhesive performance. Rubber pressure-sensitive adhesive, acrylic pressure-sensitive adhesive, urethane pressure-sensitive adhesive, and silicone-based pressure-sensitive adhesive And vinyl ether adhesives, and acrylic adhesives are preferred. As an acrylic adhesive, (meth) acrylic acid ester, more specifically, (meth) ethyl acrylate, (meth) acrylate i-propyl, (meth) acrylate butyl, (meth) acrylate i-butyl , 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, isomyristyl (meth) acrylate, methoxyethyl (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, ( Examples include (meth) acrylic acid esters such as lauryl (meth) acrylate and dimethylaminoethyl (meth) acrylate. These can be used alone or in combination of two or more. Further, these base polymers may be copolymerized with an acrylic ester having a hydroxyl group to adjust the adhesive properties and hydrophilicity. Examples of the ester having a hydroxyl group to be copolymerized with the base polymer include hydroxyethyl (meth) acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, and the like. These may be used alone or in combination of two or more. Can be used. In particular, it is preferable to use a copolymer of 2-ethylhexyl acrylate and 2-hydroxypropyl acrylate from the viewpoint of adhesion performance and easy procurement. The size of the emulsion at that time is not particularly limited, but it is easy to control the expression of pressure-sensitive adhesive by encapsulating the pressure-sensitive adhesive, and to develop sufficient pressure-sensitive adhesive force for adhesion of adherends such as paper. 1-100 μm is preferable, and 20-80 μm is more preferable. This emulsion may be used after being separated from water once by filtration or the like, but it may be used as it is, and the form of use is not particularly limited as long as the emulsion state is maintained.

この粘着剤エマルジョンを、界面活性剤と混合する。懸濁重合時に界面活性剤は通常添加しており、追加の界面活性剤は必須ではないが、シリカ被覆反応中でのエマルジョンの安定性を向上させるため、さらに添加することが好ましい。この際の界面活性剤としては、エマルジョンを十分に安定化するものならば特に限定されないが、SpanやTweenと言われるソルビタン系界面活性剤が良い。種類としては特に限定されないが、界面活性剤のHLB値が中程度のもの、値としては2〜10程度のものが好ましく、より好ましくは2.5〜8、さらに好ましくは3〜7のものである。しかしながら、用いる界面活性剤は粘着剤ポリマーのエマルジョンを安定化させるため、粘着剤ポリマーの種類等により適宜選択することが良い。粘着剤ポリマーがアクリル酸2−エチルヘキシルとアクリル酸2−ヒドロキシプロピルの共重合体の場合に良好な結果を示す界面活性剤としては、Span80(HLB値:4.3)を例示することができる。添加量も、エマルジョンを安定化させるならば特に限定されないが、エマルジョン中の粘着剤ポリマーに対して2〜20質量%、より好ましくは5〜15質量%が良い。このエマルジョンを撹拌して十分に馴染ませた後、さらにイオン交換水を加える。水量はエマルジョンを安定化させるならば特に限定されないが、粘着剤エマルジョンに対して、50〜200質量%程度、より好ましくは75〜150質量%程度が良い。その後、シラン化合物の縮合の触媒となるアルカリ性触媒を加える。本触媒としては特に限定されないがアンモニア水を例示できる。添加量も特に限定されないが、良好にシラン化合物が加水分解と縮合を起こす条件であれば良く、アンモニア水の場合は試薬濃度も特に限定されない。アンモニア水添加段階における全反応液中のアンモニア量は、1〜10質量%程度が好ましく、より好ましくは2〜8質量%程度である。   This adhesive emulsion is mixed with a surfactant. A surfactant is usually added at the time of suspension polymerization, and an additional surfactant is not essential, but is preferably added in order to improve the stability of the emulsion during the silica coating reaction. The surfactant in this case is not particularly limited as long as it sufficiently stabilizes the emulsion, but a sorbitan surfactant called Span or Tween is preferable. The type is not particularly limited, but the surfactant has a moderate HLB value, preferably a value of about 2 to 10, more preferably 2.5 to 8, more preferably 3 to 7. is there. However, the surfactant to be used is appropriately selected depending on the type of the pressure-sensitive adhesive polymer and the like in order to stabilize the emulsion of the pressure-sensitive adhesive polymer. An example of a surfactant exhibiting good results when the pressure-sensitive adhesive polymer is a copolymer of 2-ethylhexyl acrylate and 2-hydroxypropyl acrylate is Span80 (HLB value: 4.3). The addition amount is not particularly limited as long as the emulsion is stabilized, but it is preferably 2 to 20% by mass, more preferably 5 to 15% by mass with respect to the pressure-sensitive adhesive polymer in the emulsion. After this emulsion is agitated and fully blended, further ion-exchanged water is added. The amount of water is not particularly limited as long as the emulsion is stabilized, but is preferably about 50 to 200% by mass, more preferably about 75 to 150% by mass with respect to the adhesive emulsion. Thereafter, an alkaline catalyst serving as a catalyst for condensation of the silane compound is added. Although it does not specifically limit as this catalyst, Ammonia water can be illustrated. The amount to be added is not particularly limited as long as the silane compound is satisfactorily hydrolyzed and condensed. In the case of aqueous ammonia, the reagent concentration is not particularly limited. The amount of ammonia in the total reaction solution in the ammonia water addition stage is preferably about 1 to 10% by mass, more preferably about 2 to 8% by mass.

その後、十分に撹拌した後、シリカ源となるアルコキシシランを加える。アルコキシシランとしては、良好にシリカ被覆ができるものならば特に限定されないが、テトラメトシキシラン、テトラエトシキシラン、テトラプロポキシシラン、テトラブトシキシラン、テトラフェノキシシシラン等を例示でき、それらを単独、あるいは混合物で使用することができる。また、良好にシリカ粒子が析出し被覆できるならば、メチルトリエトキシシラン、エチルトリエトキシシラン等の有機アルコキシシランをさらに添加してもよい。アルコキシシランの添加量は、良好にシリカ被覆ができるならば特に限定されないが、粘着剤ポリマー1gに対して0.5〜10mmol程度が良く、より好ましくは1〜5mmol程度が良い。このアルコキシシランの量が多い場合、十分にシリカ被覆はできるが、粘着剤内包カプセル中の粘着剤量が減少し粘着性能が低下することがあるため、被覆する粘着剤の粘着強度により調節することが必要である。粘着剤ポリマーエマルジョン液に添加する界面活性剤、触媒、アルコキシシランの加える順番は特に限定されないが、シリカのナノ粒子として析出させるため、アルコキシシランは最後が好ましい。こうして得られた混合物を、加熱してシリカを析出させる。反応条件としては、20〜90℃が良く、より好ましくは40〜80℃が良い。反応時間はシリカ析出が起きれば特に限定されないが、1〜20時間が良く、より好ましくは2〜10時間である。こうして作製したシリカ被覆粘着剤の懸濁液を、エタノールなどの低級アルコールに加えて接着材料とすることができる。粘着剤は低級アルコールに実質的に溶解しないので、低級アルコールの分散液はさらさらした性状を有し、紙などの被接着物に適用すると低級アルコールは速やかに蒸発し、粘着剤内包シリカマイクロカプセルが被接着物上に残される。このシリカマイクロカプセルを紙などの被接着物の上から圧力をかけて壊すことにより、粘着剤が放出されて被接着物は接着される。低級アルコールとしてはエタノールが特に好ましい。エタノールの代わりにメタノールやイソプロパノール、あるいはそれらの混合物を用いても良いが、溶媒の選択は実際に使用する際の規制等を考えて行えば良い。こうして合成できるシリカ被覆微粒子の電子顕微鏡像を図3に示すが、サイズが100nm程度のシリカナノ粒子が形成されていることがわかる。エタノールの量は、懸濁液に対して過剰量がよく、通常は質量で2〜20倍、より好ましくは5〜15倍である。その際、このエタノールに添加剤を加えても良く、例えばポリビニルピロリドンを添加したエタノールを用いても良く、粒子の性能を向上させるには、ポリビニルピロリドンをエタノールに対して0.1〜5質量%、より好ましくは0.2〜2質量%加えることが良い。このエタノール溶液は、1〜5時間程度撹拌して十分に馴染ませる。こうして得られた粘着剤のカプセル粒子は、ろ別や遠心分離等で溶液から分離しても良いが、紙等への展開・塗布を考えた場合、エタノール溶液の上澄みを除去した濃厚な懸濁液を用いても良い。   Thereafter, after sufficiently stirring, an alkoxysilane serving as a silica source is added. The alkoxysilane is not particularly limited as long as it can satisfactorily coat silica, but examples include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetraphenoxysilane, and the like alone or Can be used in a mixture. If silica particles can be deposited and coated satisfactorily, an organic alkoxysilane such as methyltriethoxysilane or ethyltriethoxysilane may be further added. The amount of alkoxysilane added is not particularly limited as long as the silica can be satisfactorily coated, but is preferably about 0.5 to 10 mmol, more preferably about 1 to 5 mmol, with respect to 1 g of the pressure-sensitive adhesive polymer. When the amount of this alkoxysilane is large, the silica can be coated sufficiently, but the adhesive amount in the adhesive-encapsulated capsule may decrease and the adhesive performance may deteriorate, so adjust the adhesive strength of the adhesive to be coated. is necessary. The order of adding the surfactant, catalyst, and alkoxysilane added to the pressure-sensitive adhesive polymer emulsion liquid is not particularly limited, but the alkoxysilane is preferably the last because it is precipitated as silica nanoparticles. The mixture thus obtained is heated to precipitate silica. As reaction conditions, 20-90 degreeC is good, More preferably, 40-80 degreeC is good. Although reaction time will not be specifically limited if silica precipitation occurs, 1 to 20 hours are good, More preferably, it is 2 to 10 hours. The silica-coated pressure-sensitive adhesive suspension thus prepared can be added to a lower alcohol such as ethanol to form an adhesive material. Since the adhesive does not substantially dissolve in the lower alcohol, the dispersion of the lower alcohol has a free-flowing property. When applied to an adherend such as paper, the lower alcohol evaporates quickly, and the adhesive-encapsulated silica microcapsules It remains on the adherend. The silica microcapsules are broken by applying pressure from above the adherend such as paper, whereby the adhesive is released and the adherend is bonded. As the lower alcohol, ethanol is particularly preferred. Methanol, isopropanol, or a mixture thereof may be used in place of ethanol, but the selection of the solvent may be performed in consideration of regulations when actually used. FIG. 3 shows an electron microscopic image of the silica-coated fine particles that can be synthesized in this way, and it can be seen that silica nanoparticles having a size of about 100 nm are formed. The amount of ethanol is preferably excessive with respect to the suspension, and is usually 2 to 20 times by mass, more preferably 5 to 15 times. At that time, an additive may be added to this ethanol. For example, ethanol added with polyvinylpyrrolidone may be used. In order to improve the performance of the particles, polyvinylpyrrolidone is added in an amount of 0.1 to 5% by mass with respect to ethanol. More preferably, 0.2 to 2% by mass is added. This ethanol solution is thoroughly blended by stirring for about 1 to 5 hours. The capsule particles of the pressure-sensitive adhesive thus obtained may be separated from the solution by filtration, centrifugation, etc., but when considering application to paper or the like, a thick suspension from which the supernatant of the ethanol solution has been removed A liquid may be used.

こうして得られるシリカ被覆粘着剤エマルジョンの平均粒径は30〜800μm程度、好ましくは50〜600μm程度、より好ましくは70〜400μm程度、特に100〜300μm程度である。シリカマイクロカプセルのシリカ層の厚さは、0.5〜50μm程度、好ましくは1〜30μm、より好ましくは1〜20μmである。シリカマイクロカプセルの全粒径に対する被覆したシリカの厚さの割合は、約1〜30%程度、好ましくは2〜20%程度である。例えば、図3のシリカマイクロカプセルの平均粒径は約150μmであり、被覆されたシリカ層の厚さは2〜10μmである。このシリカ被覆粘着剤エマルジョンの全粒径に対する被覆したシリカの厚さの割合は、約2.5〜12%である。   The average particle size of the silica-coated pressure-sensitive adhesive emulsion thus obtained is about 30 to 800 μm, preferably about 50 to 600 μm, more preferably about 70 to 400 μm, and particularly about 100 to 300 μm. The thickness of the silica layer of the silica microcapsule is about 0.5 to 50 μm, preferably 1 to 30 μm, more preferably 1 to 20 μm. The ratio of the thickness of the coated silica to the total particle size of the silica microcapsules is about 1 to 30%, preferably about 2 to 20%. For example, the average particle size of the silica microcapsules of FIG. 3 is about 150 μm, and the thickness of the coated silica layer is 2 to 10 μm. The ratio of the coated silica thickness to the total particle size of the silica-coated adhesive emulsion is about 2.5-12%.

こうして得られた粘着剤エマルジョン被覆シリカマイクロカプセルは、紙類等の被接着物に展開し上部より荷重することによって、粘着性を発現する。展開する紙類等の被接着物は特に限定されないが、通常のコピー用紙、コート紙、上質紙、ケント紙、マットコート紙、光沢紙やポリスチレン、ポリエチレン、ポリプロピレン等のビニル系フィルム素材、紙とポリマーフィルムとを複合させた合成紙等を例示することができる。粘着性を発現するための上部からの荷重は特に限定されないが、20kPa〜200kPaがよく、より好ましくは50〜150kPaである。こうして粘着された粘着物の引き剥がし抵抗力は、約1〜5N/cmとなる。この粘着性能は、製品の目的、例えば付箋紙のような一時的な粘着性能や封書の糊止めのような強い粘着性能によって異なるため、特に限定されないが、それらは、内包された粘着剤そのものの粘着性やシリカの被覆度で調節することができる。   The pressure-sensitive adhesive emulsion-coated silica microcapsule thus obtained develops pressure-sensitive adhesiveness by being developed on an adherend such as paper and loaded from above. There are no particular restrictions on the materials to be developed such as paper, but ordinary copy paper, coated paper, high quality paper, Kent paper, matte coated paper, glossy paper, vinyl film materials such as polystyrene, polyethylene, and polypropylene, paper and polymer Examples include synthetic paper combined with a film. Although the load from the upper part for expressing adhesiveness is not specifically limited, 20 kPa-200 kPa is good, More preferably, it is 50-150 kPa. The peel resistance of the adhesive thus adhered is about 1 to 5 N / cm. This adhesive performance varies depending on the purpose of the product, for example, temporary adhesive performance such as a sticky note or strong adhesive performance such as adhesive sticking to a sealed letter, and is not particularly limited. It can be adjusted by stickiness or silica coverage.

シリカマイクロカプセルの低級アルコール、特にエタノールの懸濁液からなる接着材料を塗布具本体の収容室に収容し、塗布具本体に備えたノズルから接着材料を少量ずつ外部に導出させて紙などの被接着物に塗布し、上部から荷重をかけてシリカマイクロカプセルを壊すことで、被接着物を接着することができる。   An adhesive material made of a suspension of lower alcohol, especially ethanol, in silica microcapsules is housed in a storage chamber of the applicator main body, and the adhesive material is led out from the nozzle provided in the applicator main body to the outside little by little to cover an object such as paper The adherend can be bonded by applying to the adhesive and applying a load from above to break the silica microcapsules.

本発明の接着材料塗布具は、接着材料の収容室を備えた本体と、この収容室内の接着材料を少量ずつ外部に導出させるためのノズルとを備えた、例えば筒状の形状を有し、ノズルの先端を紙などの被接着物に押しあてると収容室内の接着材料がノズルを通って被接着物に少量ずつ供給されるようになっている。   The adhesive material applicator of the present invention has, for example, a cylindrical shape including a main body having an adhesive material storage chamber and a nozzle for guiding the adhesive material in the storage chamber to the outside little by little. When the tip of the nozzle is pressed against an adherend such as paper, the adhesive material in the storage chamber is supplied to the adherend little by little through the nozzle.

以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例のみに限定されるものではない。
実施例1 粘着剤エマルジョン表面に被覆されたシリカナノ粒子の作成−1
アクリル酸2−エチルヘキシル100g(0.542mol)とアクリル酸2−ヒドロキシプロピル25g(0.192mol)、75%過酸化ベンゾイル1g(0.003mol)を十分に混合し、界面活性剤としてドデシル硫酸アンモニウム5.21g(0.044mol)をイオン交換水374gに混合した溶液を、窒素雰囲気下、400回転で30分間撹拌した。その後、オイルバスを用いてバス温68℃にして、反応液が65℃になった後に5時間撹拌しながら重合反応を行った。反応終了後、反応液は放冷した。こうして得られる粘着剤エマルジョンの粒径は数十〜数百μmであり、平均粒径は約150μmであった。この粒径は撹拌速度を変えることで、100〜300μmの範囲で平均粒径を一定程度制御することが可能で、例えば、撹拌速度を上げることで粒径を小さくすることができる。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited only to these Examples.
Example 1 Preparation of silica nanoparticles coated on the surface of an adhesive emulsion-1
4. 100 g (0.542 mol) of 2-ethylhexyl acrylate, 25 g (0.192 mol) of 2-hydroxypropyl acrylate, and 1 g (0.003 mol) of 75% benzoyl peroxide are mixed thoroughly, and ammonium dodecyl sulfate as a surfactant. A solution obtained by mixing 21 g (0.044 mol) with 374 g of ion-exchanged water was stirred at 400 rpm for 30 minutes in a nitrogen atmosphere. Thereafter, the bath temperature was set to 68 ° C. using an oil bath, and the polymerization reaction was carried out with stirring for 5 hours after the reaction solution reached 65 ° C. After completion of the reaction, the reaction solution was allowed to cool. The particle size of the pressure-sensitive adhesive emulsion thus obtained was several tens to several hundreds μm, and the average particle size was about 150 μm. By changing the stirring speed, the average particle diameter can be controlled to a certain extent in the range of 100 to 300 μm. For example, the particle diameter can be reduced by increasing the stirring speed.

こうして得られた粘着剤エマルジョン40mL(粘着剤量、約10g)を、1gの界面活性剤であるSpan80と混合し数分撹拌の後、50mLのイオン交換水を入れて、さらに5分間撹拌した。その後、25%アンモニア水30mLを添加し5分間撹拌、テトラメトキシシラン(TMOS)3.00g(19.71mmol)を添加し、このエマルジョンを75℃のウォーターバス中で6時間撹拌した。その後、このエマルジョンをエタノール1.2Lに加え、1時間撹拌した後に静置した。この際、エタノールに対し0.5〜1.5重量%のポリビニルピロリドンはあらかじめ加えておいた。十分に静置後、透明な上澄み液を除去して、シリカマイクロカプセル内包粘着剤を得た。こうして得られたマイクロカプセル中の粘着剤の量は、熱分析での200〜600℃の重量減少の結果より、89.90%であった。図4に示す赤外線スペクトルより、この微粒子は粘着剤ポリマー由来の1736cm-1のカルボニルの吸収とシリカ由来の473cm-1の吸収が観測でき両者の複合体であることがわかった。また、図5に示すように、この粒子は約50ミクロンの粘着剤エマルジョン(左)の周りを、シリカのナノ粒子で被覆している(右)。
実施例2 粘着剤エマルジョン表面に被覆されたシリカナノ粒子の粘着特性の評価
実施例1で得られたシリカナノ粒子によって被覆された粘着剤エマルジョンを、下記の方法により性能を測定した。
40 mL of the pressure-sensitive adhesive emulsion thus obtained (pressure-sensitive adhesive amount, about 10 g) was mixed with 1 g of surfactant Span 80 and stirred for several minutes, and then 50 mL of ion-exchanged water was added and further stirred for 5 minutes. Thereafter, 30 mL of 25% aqueous ammonia was added and stirred for 5 minutes, 3.00 g (19.71 mmol) of tetramethoxysilane (TMOS) was added, and the emulsion was stirred in a water bath at 75 ° C. for 6 hours. Thereafter, this emulsion was added to 1.2 L of ethanol and stirred for 1 hour, and then allowed to stand. At this time, 0.5 to 1.5% by weight of polyvinylpyrrolidone with respect to ethanol was previously added. After standing still sufficiently, the transparent supernatant was removed to obtain a silica microcapsule-containing pressure-sensitive adhesive. The amount of the pressure-sensitive adhesive in the microcapsules thus obtained was 89.90% based on the result of weight loss of 200 to 600 ° C. in thermal analysis. From the infrared spectrum shown in Figure 4, the fine particles was found that absorption of 473cm -1 absorption and silica derived from carbonyl 1736 cm -1 derived from the pressure-sensitive adhesive polymer is a composite of both can be observed. Further, as shown in FIG. 5, the particles are coated with silica nanoparticles (right) around an adhesive emulsion (left) of about 50 microns.
Example 2 Evaluation of Adhesive Properties of Silica Nanoparticles Coated on the Surface of the Adhesive Emulsion The performance of the adhesive emulsion coated with the silica nanoparticles obtained in Example 1 was measured by the following method.

第一に、各サンプルのタックの発現性について評価を実施した。
(1)コピー用紙短冊(KB39N:コクヨ製、297mm×50mm、約1g)に実施例1で作製したサンプルを3mgセットした。このサンプルは短冊状で、直径約2mm程度の塊状になった。
(2)こうしてセットしたサンプルの上から同様のコピー用紙に短冊を被せ、さらに接触面積が1cm2の試験冶具(約200g)を3秒間置いて19.6k Paで加圧し、被せた短冊を持ち上げることにより、低加重時のタックの発現を確認した。この際、下の短冊が同時に持ち上がれば「タック有」とみなすこととした。
(3)(2)と同様の試験体にて、錘(約1000g)を、接触面積1cm2の上に3秒間置いて98.0 kPaで加圧し、被せた短冊を持ち上げることにより、高加重時のタックの発現を確認した。
上記手順で測定を実施した結果、19.6 kPaでの加圧時はタックが発現しなかったが、98.0 kPaでの加圧時にはタックの発現が確認された。
First, evaluation was performed on the expression of tack of each sample.
(1) 3 mg of the sample prepared in Example 1 was set on a copy paper strip (KB39N: KOKUYO, 297 mm × 50 mm, about 1 g). This sample was strip-shaped and became a lump with a diameter of about 2 mm.
(2) Put a strip on the same copy paper from above the set sample, and put a test jig (about 200g) with a contact area of 1cm 2 for 3 seconds, pressurize at 19.6k Pa, and lift the covered strip Thus, the occurrence of tack at low load was confirmed. At this time, if the lower strips are lifted at the same time, it is considered as “tacked”.
(3) Using the same specimen as in (2), place a weight (approximately 1000 g) on a contact area of 1 cm 2 for 3 seconds, pressurize at 98.0 kPa, and lift the covered strip. Tack expression was confirmed.
As a result of performing the measurement according to the above procedure, no tack was developed when pressurized at 19.6 kPa, but tack was confirmed when pressurized at 98.0 kPa.

第二に、粘着力の測定を実施した。この試験は、JIS Z 0237-8に準拠し、試験条件等を適宜変更した方法で行った。
(1)実施例1で作製したサンプル0.1gを、規定のコピー用紙短冊(KB39N:コクヨ製、297mm×50mm、約1g)に塗布面積10mm幅×100cmとなる様に塗り広げた。
(2)こうしてセットしたサンプルの上から同様のコピー用紙短冊を被せ、その上から重量1kgのゴムローラー(直径Φ90mm、厚み50mm、鉄製芯の上に厚さ約2mmのブタジエンスチレンゴムをまき付けたもの)を50mm/secの速度で2往復転がして加圧した。
(3)加圧後、常態(温度23℃、湿度50%)で、実験により最適とされた時間である40分間養生し、オートグラフ(AGS-X、島津製)を用いて、300mm/minの速度にて引き剥がし抵抗力を測定した。測定回数は5回にて実施し、測定チャートの最大凸点5点の平均値を測定値とした。
Second, the adhesive strength was measured. This test was performed in accordance with JIS Z 0237-8 and by changing the test conditions and the like as appropriate.
(1) 0.1 g of the sample prepared in Example 1 was spread on a prescribed copy paper strip (KB39N: KOKUYO, 297 mm × 50 mm, about 1 g) so that the coating area was 10 mm wide × 100 cm.
(2) A similar copy paper strip was placed on the sample set in this manner, and a 1 kg weight rubber roller (diameter: 90 mm, thickness: 50 mm, butadiene styrene rubber with a thickness of about 2 mm was placed on the iron core. 1) was reciprocated twice at a speed of 50 mm / sec and pressurized.
(3) After pressurization, in normal condition (temperature 23 ° C, humidity 50%), cured for 40 minutes which is the optimum time by experiment, using autograph (AGS-X, manufactured by Shimadzu), 300mm / min The peel resistance was measured at a speed of. The measurement was carried out 5 times, and the average value of 5 maximum convex points on the measurement chart was taken as the measurement value.

上記手順で測定を実施した結果、サンプルの引き剥がし抵抗力は約1.7N/cmであった。この粘着性能は、同様の方法でコクヨS&T社製小型テープのり(タ−D470-07)を評価した場合とほぼ同等であった。   As a result of carrying out the measurement according to the above procedure, the peel resistance of the sample was about 1.7 N / cm. This adhesive performance was almost the same as the case where a small tape glue (T-D470-07) manufactured by KOKUYO S & T was evaluated by the same method.

以上の結果によって、このシリカナノ粒子で被覆された粘着剤エマルジョンは、低荷重では粘着性を持たないが、98.0 kPaの加圧によって潰されて内部の粘着剤がはみ出すことで粘着性が発現されるマイクロカプセルであることが確認された。
実施例3 粘着剤エマルジョン表面に被覆されたシリカナノ粒子の作成−2
実施例1と同様の方法で、テトラメトキシシランの代わりにテトラエトキシシラン(TEOS)4.11g(19.71mmol)を用いて、同様の方法で粘着剤内包シリカマイクロカプセルを合成した。粘着性能は、実施例1と同じ方法で行った。こうして得られたマイクロカプセル中の粘着剤の量は、熱分析での200〜600℃の重量減少の結果より、88.33%であった。図6より、この微粒子は粘着剤ポリマーとシリカが含まれており(図6左)、電子顕微鏡像より50ミクロン程度のエマルジョンがシリカに被覆されていることがわかった(図6右)。
Based on the above results, the pressure-sensitive adhesive emulsion coated with silica nanoparticles does not have adhesiveness under low load, but the adhesiveness is expressed by being crushed by the pressure of 98.0 kPa and the internal adhesive protruding. It was confirmed to be a microcapsule.
Example 3 Preparation of silica nanoparticles coated on the surface of an adhesive emulsion-2
In the same manner as in Example 1, 4.11 g (19.71 mmol) of tetraethoxysilane (TEOS) was used instead of tetramethoxysilane, and pressure-sensitive adhesive-encapsulated silica microcapsules were synthesized in the same manner. The adhesion performance was performed in the same manner as in Example 1. The amount of the pressure-sensitive adhesive in the microcapsules thus obtained was 88.33% from the result of the weight loss of 200 to 600 ° C. in the thermal analysis. From FIG. 6, it was found that the fine particles contained an adhesive polymer and silica (left in FIG. 6), and an emulsion of about 50 microns was coated on silica from the electron microscopic image (right in FIG. 6).

このシリカナノ粒子によって被覆された粘着剤エマルジョンを、実施例1と同様の方法で性能を測定したところ、19.6 kPa加圧時はタックが発現しなかったが、98.0 kPa加圧時にはタックの発現が確認された。また、1kgのゴムローラーを用いて加圧した時の粘着力は、1.5N/cmであり、TEOSを用いて製造したサンプルについても、低荷重では粘着性を持たないが、98.0 kPaの加圧によって潰されて内部の粘着剤がはみ出すことで粘着性が発現された。   When the performance of the pressure-sensitive adhesive emulsion coated with the silica nanoparticles was measured in the same manner as in Example 1, no tack was exhibited when pressurized to 19.6 kPa, but the occurrence of tack was confirmed when pressurized to 98.0 kPa. It was done. In addition, the adhesive strength when pressurized using a 1 kg rubber roller is 1.5 N / cm, and the sample manufactured using TEOS does not have adhesiveness under low load, but the pressure is 98.0 kPa. The adhesiveness was expressed by being crushed by the internal pressure and the internal adhesive protruding.

本発明は、粘着剤の粘着性能発現を、加圧という物理的作用をトリガーとして発現させる材料を提供するものであり、例えば糊付け工程と組立工程が別で行われる作業への応用が想定できる。具体的には、大量の封書を糊止めする際に、まずは第一作業者が封筒の一面に当該材料を展開するが、この際には粘着性はなく、手や衣服等を汚すことはない。続いて第二作業者が封筒に書類を内封する際には、封筒に展開された当該材料によって内包物を汚すことはなく、さらに加圧という単純な動作により糊止めを行う事ができるので、作業効率を向上することができる。   The present invention provides a material that expresses the adhesive performance of an adhesive by using a physical action of pressurization as a trigger. For example, it can be applied to work in which a gluing process and an assembling process are performed separately. Specifically, when gluing a large number of envelopes, the first worker first develops the material on one side of the envelope, but at this time it is not sticky and does not stain hands, clothes, etc. . Subsequently, when the second worker encloses the document in the envelope, the inclusions are not soiled by the material developed in the envelope, and can be glued by a simple operation of pressing. , Work efficiency can be improved.

Claims (7)

外力により破壊可能なシリカマイクロカプセルにより粘着剤を内包してなる粘着剤内包シリカマイクロカプセル。 A pressure-sensitive adhesive-encapsulated silica microcapsule comprising a pressure-sensitive adhesive encapsulated by a silica microcapsule that can be broken by an external force. シリカマイクロカプセルの膜厚が0.5〜50μmである、請求項1に記載の粘着剤内包シリカマイクロカプセル。 The pressure-sensitive adhesive-encapsulated silica microcapsule according to claim 1, wherein the thickness of the silica microcapsule is 0.5 to 50 μm. シリカマイクロカプセルの全粒径に対するシリカマイクロカプセルの厚さの割合が1〜30%である、請求項1又は2に記載の粘着剤内包シリカマイクロカプセル。 The pressure-sensitive adhesive-encapsulated silica microcapsule according to claim 1 or 2, wherein the ratio of the thickness of the silica microcapsule to the total particle size of the silica microcapsule is 1 to 30%. 請求項1〜3のいずれか1項に記載の粘着剤内包シリカマイクロカプセルをエタノールに分散してなる接着材料。 The adhesive material formed by disperse | distributing the adhesive inclusion | inner_cover silica microcapsule of any one of Claims 1-3 to ethanol. 請求項4記載の接着材料を収容する収容室を備えた本体と、この収容室内の接着材料を少量ずつ外部に導出させるためのノズルとを備えた接着材料塗布具。 An adhesive material applicator comprising a main body including a storage chamber for storing the adhesive material according to claim 4 and a nozzle for guiding the adhesive material in the storage chamber to the outside little by little. 粘着剤ポリマーの水性エマルジョンに界面活性剤及びアルコキシシランを添加し、アルカリ性触媒の存在下にアルコキシシランの加水分解と縮合反応を起こし、粘着剤ポリマーのエマルジョン上にシリカを析出させることを特徴とする、外力により破壊可能なシリカマイクロカプセルにより粘着剤を内包してなる粘着剤内包シリカマイクロカプセルの製造方法。 A surfactant and an alkoxysilane are added to an aqueous emulsion of a pressure-sensitive adhesive polymer, and the hydrolysis and condensation reaction of the alkoxysilane is caused in the presence of an alkaline catalyst to precipitate silica on the pressure-sensitive adhesive polymer emulsion. A method for producing a pressure-sensitive adhesive-encapsulated silica microcapsule comprising a pressure-sensitive adhesive encapsulated by silica microcapsules that can be broken by external force. 前記水性エマルジョンに界面活性剤をさらに添加する、請求項6に記載の粘着剤内包シリカマイクロカプセルの製造方法。 The method for producing a pressure-sensitive adhesive-encapsulated silica microcapsule according to claim 6, wherein a surfactant is further added to the aqueous emulsion.
JP2015028592A 2015-02-17 2015-02-17 Adhesive-encapsulated silica microcapsule, method for producing the same, adhesive material and adhesive material applicator Active JP6525188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015028592A JP6525188B2 (en) 2015-02-17 2015-02-17 Adhesive-encapsulated silica microcapsule, method for producing the same, adhesive material and adhesive material applicator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015028592A JP6525188B2 (en) 2015-02-17 2015-02-17 Adhesive-encapsulated silica microcapsule, method for producing the same, adhesive material and adhesive material applicator

Publications (2)

Publication Number Publication Date
JP2016150969A true JP2016150969A (en) 2016-08-22
JP6525188B2 JP6525188B2 (en) 2019-06-05

Family

ID=56695205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015028592A Active JP6525188B2 (en) 2015-02-17 2015-02-17 Adhesive-encapsulated silica microcapsule, method for producing the same, adhesive material and adhesive material applicator

Country Status (1)

Country Link
JP (1) JP6525188B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198961A1 (en) * 2017-04-28 2018-11-01 住友化学株式会社 Particulate adhesive and production method therefor
WO2018198962A1 (en) * 2017-04-28 2018-11-01 住友化学株式会社 Particulate adhesive and production method therefor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946125A (en) * 1982-09-07 1984-03-15 Nippon Sanso Kk Preparation of microcapsule
JPS60124679A (en) * 1983-12-10 1985-07-03 Nippon Sanso Kk Pressure-sensitive adhesive material
JPS60212219A (en) * 1984-04-09 1985-10-24 Nippon Sanso Kk Preparation of microcapsule
JPH02102280A (en) * 1988-10-07 1990-04-13 Matsumoto Yushi Seiyaku Co Ltd Microencapsulated self-adhesive
JPH05240A (en) * 1991-06-25 1993-01-08 Osaka Gas Co Ltd Production inorganic uniform microsphere
JPH08507567A (en) * 1993-03-09 1996-08-13 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー Method of magnetically and / or electrostatically arranging pressure-sensitive adhesive beads and pressure-sensitive adhesive beads which can be magnetically arranged
JPH09316416A (en) * 1996-05-24 1997-12-09 Minnesota Mining & Mfg Co <3M> Adhesive composition, its production and hand-pump type spray adhesive
WO2008129749A1 (en) * 2007-04-05 2008-10-30 Kokuyo Co., Ltd. Adhesive material, coating device for adhesive material and transfer sheet
JP2012505752A (en) * 2008-10-15 2012-03-08 ダウ コーニング コーポレーション Method for producing silicate shell microcapsules
US20140306187A1 (en) * 2013-04-15 2014-10-16 Samsung Display Co., Ltd. Adhesive having adhesive capsule and organic light emitting display device comprising adhesive layer formed by the adhesive
US20140341958A1 (en) * 2011-12-01 2014-11-20 Les Innovations Materium Inc. Silica microcapsules, process of making the same and uses thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946125A (en) * 1982-09-07 1984-03-15 Nippon Sanso Kk Preparation of microcapsule
JPS60124679A (en) * 1983-12-10 1985-07-03 Nippon Sanso Kk Pressure-sensitive adhesive material
JPS60212219A (en) * 1984-04-09 1985-10-24 Nippon Sanso Kk Preparation of microcapsule
JPH02102280A (en) * 1988-10-07 1990-04-13 Matsumoto Yushi Seiyaku Co Ltd Microencapsulated self-adhesive
JPH05240A (en) * 1991-06-25 1993-01-08 Osaka Gas Co Ltd Production inorganic uniform microsphere
JPH08507567A (en) * 1993-03-09 1996-08-13 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー Method of magnetically and / or electrostatically arranging pressure-sensitive adhesive beads and pressure-sensitive adhesive beads which can be magnetically arranged
JPH09316416A (en) * 1996-05-24 1997-12-09 Minnesota Mining & Mfg Co <3M> Adhesive composition, its production and hand-pump type spray adhesive
WO2008129749A1 (en) * 2007-04-05 2008-10-30 Kokuyo Co., Ltd. Adhesive material, coating device for adhesive material and transfer sheet
JP2012505752A (en) * 2008-10-15 2012-03-08 ダウ コーニング コーポレーション Method for producing silicate shell microcapsules
US20140341958A1 (en) * 2011-12-01 2014-11-20 Les Innovations Materium Inc. Silica microcapsules, process of making the same and uses thereof
US20140306187A1 (en) * 2013-04-15 2014-10-16 Samsung Display Co., Ltd. Adhesive having adhesive capsule and organic light emitting display device comprising adhesive layer formed by the adhesive

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018198961A1 (en) * 2017-04-28 2018-11-01 住友化学株式会社 Particulate adhesive and production method therefor
WO2018198962A1 (en) * 2017-04-28 2018-11-01 住友化学株式会社 Particulate adhesive and production method therefor
JPWO2018198962A1 (en) * 2017-04-28 2020-05-14 株式会社スリーボンド Granular adhesive and method for producing the same
JPWO2018198961A1 (en) * 2017-04-28 2020-05-14 株式会社スリーボンド Granular adhesive and method for producing the same
JP7177354B2 (en) 2017-04-28 2022-11-24 株式会社スリーボンド Granular adhesive and its manufacturing method
JP7177353B2 (en) 2017-04-28 2022-11-24 株式会社スリーボンド Granular adhesive and its manufacturing method

Also Published As

Publication number Publication date
JP6525188B2 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
EP3112435B1 (en) Granular adhesive
US4487801A (en) Fragrance-releasing pull-apart sheet
US4606956A (en) On page fragrance sampling device
KR940009077B1 (en) On page fragrance sampling device
JPH02212735A (en) Sampling apparatus for liquid substance
JPH06287525A (en) Self-adhesive film containing elastic microsphere
JP6551659B2 (en) Method for producing polymer-encapsulated silica microcapsules
KR20070009449A (en) Activatable compositions
JP6525188B2 (en) Adhesive-encapsulated silica microcapsule, method for producing the same, adhesive material and adhesive material applicator
JP2008266415A (en) Removable adhesive sheet
TW202340638A (en) Laminate, optical member, and optical device
JP6989784B2 (en) Granular adhesive
JPH073239A (en) Delayed tack type tacky adhesive and tacky adhesive sheet
JP7181189B2 (en) Activatable adhesive composition and linerless labels and tapes containing same
JPH06172725A (en) Resin composition and pressure-sensitive sheet material
JP3591640B2 (en) Recyclable water-based adhesive
JP3229008B2 (en) Removable adhesive sheet
TW202327863A (en) Laminate, optical member, and optical device
JPS5818959B2 (en) Pressure sensitive adhesive tape or sheet
JPS62164777A (en) Heat-sensitive self-adhesive composition
JPH01313581A (en) Self-adhesive sheet
TW202028396A (en) Light detectable thermal-release pressure-sensitive adhesive and its application
JPH0349952B2 (en)
JPH04178479A (en) Peelable sealing material
JP2016199683A (en) Adhesive product, adhesive agent and manufacturing method of adhesive product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190424

R150 Certificate of patent or registration of utility model

Ref document number: 6525188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250