JP2016150909A - Method for producing diol - Google Patents

Method for producing diol Download PDF

Info

Publication number
JP2016150909A
JP2016150909A JP2015028233A JP2015028233A JP2016150909A JP 2016150909 A JP2016150909 A JP 2016150909A JP 2015028233 A JP2015028233 A JP 2015028233A JP 2015028233 A JP2015028233 A JP 2015028233A JP 2016150909 A JP2016150909 A JP 2016150909A
Authority
JP
Japan
Prior art keywords
reaction
aldehyde
formaldehyde
formula
diol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015028233A
Other languages
Japanese (ja)
Inventor
貴裕 細野
Takahiro Hosono
貴裕 細野
拓大 ▲鶴▼田
拓大 ▲鶴▼田
Takuhiro Tsuruta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2015028233A priority Critical patent/JP2016150909A/en
Publication of JP2016150909A publication Critical patent/JP2016150909A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a diol having an aliphatic ring skeleton in high yield, while avoiding viscosity increase of a reaction system, sudden heat generation and thermal runaway chemical reaction.SOLUTION: There is provided a method for producing a diol having an aliphatic ring skeleton including the steps of: dripping Broensted base such as an alkali metal hydroxide, an alkaline earth metal hydroxide or a carbonate in the presence of formaldehyde and an aldehyde represented by formula (1) at a reaction temperature of 10 to 80°C; and bringing the resultant product into contact with water in the temperature range of 50 to 70°C. In the formula, R represents a C2-10 alkylene group optionally substituted by a C1-4 alkyl group.SELECTED DRAWING: None

Description

本発明は脂環骨格を有するジオールの製造方法に関する。   The present invention relates to a method for producing a diol having an alicyclic skeleton.

シクロヘキサンジメタノールに代表される脂環骨格を有するジオールは、主にポリエステルに誘導され、コーティング剤、塗料、成形材料、粘接着剤などに用いられている。従来、脂環骨格を有するジオールの製造方法としては、脂環骨格を有するアルデヒドとホルムアルデヒドによるアルドール反応およびカニッツァーロ反応を利用する方法が知られている(特許文献1)。   Diols having an alicyclic skeleton typified by cyclohexanedimethanol are mainly derived from polyester and used for coating agents, paints, molding materials, adhesives and the like. Conventionally, as a method for producing a diol having an alicyclic skeleton, a method utilizing an aldol reaction and a Cannizzaro reaction using an aldehyde having an alicyclic skeleton and formaldehyde is known (Patent Document 1).

特開2011−79793号公報JP 2011-79793 A

特許文献1では、原料の脂環骨格を有するアルデヒドとホルムアルデヒド、炭酸カリウムを一度に仕込み、撹拌しながら還流温度まで昇温することで、脂環骨格を有するジオールを合成している。しかしながら当該方法では、反応温度が十分でない場合、粘着性の高い中間体である脂環骨格を有するβ−ヒドロキシアルデヒドの濃度上昇に伴う反応系中の粘度増大が問題となる。一方、当該中間体の溶解度を高め、濃度上昇を防ぐために反応温度を上昇させると、副反応による急な発熱や温度暴走の危険性がある。
本発明の目的は、上記事情に鑑み、反応系中の粘度上昇が生じず、かつ急な発熱や温度暴走が生じない、脂環骨格を有するジオールの高収率な製造方法を提供することにある。
In Patent Document 1, an aldehyde having an alicyclic skeleton is synthesized by charging an aldehyde having an alicyclic skeleton, formaldehyde, and potassium carbonate at a time and raising the temperature to a reflux temperature while stirring. However, in this method, when the reaction temperature is not sufficient, an increase in viscosity in the reaction system accompanying an increase in the concentration of β-hydroxyaldehyde having an alicyclic skeleton, which is an intermediate having high tackiness, becomes a problem. On the other hand, if the reaction temperature is increased in order to increase the solubility of the intermediate and prevent the concentration from increasing, there is a risk of sudden heat generation or temperature runaway due to side reactions.
In view of the above circumstances, an object of the present invention is to provide a high-yield production method of a diol having an alicyclic skeleton that does not cause an increase in viscosity in a reaction system and does not cause sudden heat generation or temperature runaway. is there.

本発明者らは鋭意検討した結果、脂環骨格を有するアルデヒドとホルムアルデヒドを先に混合し、その後にブレンステッド塩基を添加する方法によれば、反応温度を上昇させても急な発熱や温度暴走が起こらないことを見出し、本発明を完成した。
すなわち、本発明は、下記[1]〜[5]を提供する。
[1]下記一般式(1)
As a result of intensive studies, the inventors of the present invention first mixed an aldehyde having an alicyclic skeleton with formaldehyde, and then added a Bronsted base, and even if the reaction temperature was increased, sudden exotherm or temperature runaway occurred. As a result, the present invention has been completed.
That is, the present invention provides the following [1] to [5].
[1] The following general formula (1)

Figure 2016150909
Figure 2016150909

(式中、Rは炭素数1〜4のアルキル基により置換されていてもよい炭素数2〜10のアルキレン基を表す。)
で表されるアルデヒドとホルムアルデヒドの存在下、反応温度10〜80℃でブレンステッド塩基を添加する工程を含む、下記一般式(2)
(In the formula, R represents an alkylene group having 2 to 10 carbon atoms which may be substituted by an alkyl group having 1 to 4 carbon atoms.)
In the presence of aldehyde represented by the formula and formaldehyde, a step of adding a Bronsted base at a reaction temperature of 10 to 80 ° C.

Figure 2016150909
Figure 2016150909

(式中、Rは前記定義の通りである。)
で表されるジオールの製造方法。
[2]アルデヒドが下記一般式(3)
(Wherein R is as defined above.)
The manufacturing method of diol represented by these.
[2] The aldehyde is represented by the following general formula (3)

Figure 2016150909
Figure 2016150909

(式中、R〜R10はそれぞれ独立して炭素数1〜4のアルキル基又は水素原子を表す。)
で表されるアルデヒドである、[1]の製造方法。
[3]反応温度が35〜65℃である、[1]、[2]の製造方法。
[4]ブレンステッド塩基として、アルカリ金属水酸化物、アルカリ土類金属水酸化物または炭酸塩を用いる、[1]〜[3]の製造方法。
[5]さらに、得られた生成物を50〜70℃で水と接触させる工程を含む、[1]〜[4]の製造方法。
(Wherein, R 1 to R 10 each independently represents an alkyl group or a hydrogen atom having 1 to 4 carbon atoms.)
The production method of [1], which is an aldehyde represented by the formula:
[3] The production method of [1] and [2], wherein the reaction temperature is 35 to 65 ° C.
[4] The production method of [1] to [3], wherein an alkali metal hydroxide, alkaline earth metal hydroxide or carbonate is used as the Bronsted base.
[5] The production method of [1] to [4], further comprising a step of contacting the obtained product with water at 50 to 70 ° C.

本発明によれば、反応系中の粘度増大を抑制するために反応温度を上昇させても、急な発熱や温度暴走なしに、脂環骨格を有するアルデヒドから高収率で脂環骨格を有するジオールを製造できる。   According to the present invention, even if the reaction temperature is increased in order to suppress an increase in viscosity in the reaction system, the alicyclic skeleton is obtained in a high yield from the aldehyde having the alicyclic skeleton without sudden heat generation or temperature runaway. Diol can be produced.

本発明に係る製造方法では、下記一般式(1)   In the production method according to the present invention, the following general formula (1)

Figure 2016150909
Figure 2016150909

(式中、Rは炭素数1〜4のアルキル基により置換されていてもよい炭素数2〜10のアルキレン基を表す。)
で表される脂環骨格を有するアルデヒド(以下、アルデヒド(1)と称する。)とホルムアルデヒドを混合した後、反応温度10〜80℃でブレンステッド塩基を添加することで脂環骨格を有するジオールを製造する。その際、脂環骨格を有するβ−ヒドロキシアルデヒドが生成する段階(a)と、該脂環骨格を有するβ−ヒドロキシアルデヒドとホルムアルデヒドのカニッツァーロ反応により、脂環骨格を有するジオールが生成する段階(b)の二段階の反応が連続して進行する。
(In the formula, R represents an alkylene group having 2 to 10 carbon atoms which may be substituted by an alkyl group having 1 to 4 carbon atoms.)
After mixing an aldehyde having an alicyclic skeleton represented by the formula (hereinafter referred to as aldehyde (1)) and formaldehyde, a diol having an alicyclic skeleton is added by adding a Bronsted base at a reaction temperature of 10 to 80 ° C. To manufacture. At that time, a step (a) in which a β-hydroxyaldehyde having an alicyclic skeleton is generated, and a step in which a diol having an alicyclic skeleton is generated by a Cannizzaro reaction of the β-hydroxyaldehyde having the alicyclic skeleton and formaldehyde (b) ) The two-stage reaction proceeds continuously.

Figure 2016150909
Figure 2016150909

(式中、Rは炭素数1〜4のアルキル基により置換されていてもよい炭素数2〜10のアルキレン基を表す。) (In the formula, R represents an alkylene group having 2 to 10 carbon atoms which may be substituted by an alkyl group having 1 to 4 carbon atoms.)

[アルデヒド(1)]
アルデヒド(1)のRを構成する炭素数2〜10のアルキレン基としては、炭素数1〜4のアルキル基により置換されていてもよいn−ブチレン基、n−ペンチレン基、n−ヘキシレン基が好ましく、炭素数1〜4のアルキル基により置換されていてもよいn−ペンチレン基が特に好ましい。
すなわち、アルデヒド(1)としては、下記一般式(3)で表される化合物が特に好ましい。
[Aldehyde (1)]
Examples of the alkylene group having 2 to 10 carbon atoms constituting R of the aldehyde (1) include an n-butylene group, an n-pentylene group and an n-hexylene group which may be substituted with an alkyl group having 1 to 4 carbon atoms. An n-pentylene group which may be substituted with an alkyl group having 1 to 4 carbon atoms is particularly preferable.
That is, as the aldehyde (1), a compound represented by the following general formula (3) is particularly preferable.

Figure 2016150909
Figure 2016150909

(式中、R〜R10はそれぞれ独立して炭素数1〜4のアルキル基又は水素原子を表す。)
〜R10としてはメチル基または水素原子が好ましく、水素原子が特に好ましい。
(Wherein, R 1 to R 10 each independently represents an alkyl group or a hydrogen atom having 1 to 4 carbon atoms.)
R 1 to R 10 are preferably a methyl group or a hydrogen atom, and particularly preferably a hydrogen atom.

アルデヒド(1)の入手方法に特に制限はない。工業的に入手してもよいし、公知の方法(例えば、シクヘキサンメタノールを酸化する方法、シクロヘキセンをヒドロホルミル化する方法等)またはそれに準ずる方法によって合成することもできる。   There is no restriction | limiting in particular in the acquisition method of aldehyde (1). It may be obtained industrially, or may be synthesized by a known method (for example, a method of oxidizing cyclohexane methanol, a method of hydroformylating cyclohexene, or the like) or a method analogous thereto.

[ホルムアルデヒド]
本発明で使用するホルムアルデヒドは、工業的に入手可能な5〜60質量%のホルムアルデヒド水溶液をそのまま使用できる。生成物の溶液損失や排水処理量を低減させる観点からは15〜50質量%が好ましく、30〜40質量%がより好ましい。60質量%より高濃度のものを用いると、ホルムアルデヒドの揮発が問題となる。
[Formaldehyde]
As the formaldehyde used in the present invention, an industrially available 5 to 60% by mass aqueous formaldehyde solution can be used as it is. From the viewpoint of reducing the solution loss of the product and the amount of wastewater treatment, 15 to 50% by mass is preferable, and 30 to 40% by mass is more preferable. When a concentration higher than 60% by mass is used, volatilization of formaldehyde becomes a problem.

ホルムアルデヒドの使用量は、1モルのアルデヒド(1)に対して理論量ないし過剰量、すなわち、2.0〜4.0モルが好ましく、2.5〜3.5モルがより好ましい。4.0モルを超えて使用すると、反応終了時にホルムアルデヒドが残存し、排水処理にかかるコストが増大する。   The amount of formaldehyde used is preferably a theoretical amount or an excess amount, that is, 2.0 to 4.0 mol, more preferably 2.5 to 3.5 mol, relative to 1 mol of aldehyde (1). If the amount exceeds 4.0 mol, formaldehyde remains at the end of the reaction, and the cost for wastewater treatment increases.

[ブレンステッド塩基]
本発明で用いるブレンステッド塩基としては、例えば水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物;水酸化カルシウム、水酸化バリウムなどのアルカリ土類金属水酸化物;炭酸ナトリウム、炭酸カリウムなどの炭酸塩などが挙げられる。中でも、反応成績および価格を考慮すると水酸化ナトリウムが好ましい。
ブレンステッド塩基は1種を単独で用いてもよく、2種以上を併用してもよい。
[Bronsted base]
Examples of the Bronsted base used in the present invention include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide; alkaline earth metal hydroxides such as calcium hydroxide and barium hydroxide; sodium carbonate, And carbonates such as potassium carbonate. Among these, sodium hydroxide is preferable in view of reaction results and price.
One Bronsted base may be used alone, or two or more may be used in combination.

ブレンステッド塩基は水溶液として使用するのが好ましい。ブレンステッド塩基の濃度に特に制限はないが、通常1質量%から飽和溶液までであり、生成物の溶液損失や排水処理量を低減させる観点からは1〜60質量%が好ましく、5〜55質量%がより好ましく、10〜50質量%がさらに好ましい。
ブレンステッド塩基の使用量は1モルのアルデヒド(1)に対して理論量ないし過剰量、すなわち1.0〜2.0モルが好ましく、1.25〜1.75モルがより好ましい。
ブレンステッド塩基の添加時間は1〜20時間が好ましく、特に2〜12時間が好ましい。添加時間が1時間より短いと反応温度の制御が困難となり、20時間より長いと製造効率が悪くなる。
ブレンステッド塩基の添加方法は特に制限されないが、添加時間が上記時間に収まるよう、できるだけ等速で添加する方法、例えば滴下などが好ましい。
The Bronsted base is preferably used as an aqueous solution. Although there is no restriction | limiting in particular in the density | concentration of a Bronsted base, Usually, it is from 1 mass% to a saturated solution, and 1-60 mass% is preferable from a viewpoint of reducing the solution loss of a product and a waste-water treatment amount, 5-55 mass. % Is more preferable, and 10 to 50% by mass is more preferable.
The amount of Bronsted base used is preferably a theoretical amount or an excess amount, that is, 1.0 to 2.0 mol, more preferably 1.25 to 1.75 mol, relative to 1 mol of aldehyde (1).
The addition time of the Bronsted base is preferably 1 to 20 hours, particularly preferably 2 to 12 hours. When the addition time is shorter than 1 hour, it is difficult to control the reaction temperature, and when it is longer than 20 hours, the production efficiency is deteriorated.
The method for adding the Bronsted base is not particularly limited, but a method of adding at a constant speed, for example, dropping, is preferable so that the addition time is within the above time.

[その他の反応条件]
反応溶媒は基本的には水であるが、必要に応じて有機溶媒を添加してもよい。有機溶媒としては、反応を阻害しなければ特に制限はなく、例えばベンゼン、トルエン、エチルベンゼン、o−キシレン、m−キシレン、p−キシレン、1,2,3−トリメチルベンゼン、1,2,4−トリメチルベンゼン、メシチレンなどの芳香族系溶媒;メタノール、エタノール、プロパノール、イソプロピルアルコール、ブタノール、s−ブチルアルコール、イソブチルアルコール、t−ブチルアルコール、エチレングリコールなどのアルコール系溶媒;テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチルテトラヒドロフラン、テトラヒドロピラン、2−メチルテトラヒドロピラン、3−メチルテトラヒドロピラン、4−メチルテトラヒドロピラン、1,4−ジオキサン、シクロペンチルメチルエーテル、1,2−ジメトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールジメチルエーテルなどのエーテル系溶媒などが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
[Other reaction conditions]
The reaction solvent is basically water, but an organic solvent may be added as necessary. The organic solvent is not particularly limited as long as it does not inhibit the reaction. For example, benzene, toluene, ethylbenzene, o-xylene, m-xylene, p-xylene, 1,2,3-trimethylbenzene, 1,2,4- Aromatic solvents such as trimethylbenzene and mesitylene; alcohol solvents such as methanol, ethanol, propanol, isopropyl alcohol, butanol, s-butyl alcohol, isobutyl alcohol, t-butyl alcohol, and ethylene glycol; tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyltetrahydrofuran, tetrahydropyran, 2-methyltetrahydropyran, 3-methyltetrahydropyran, 4-methyltetrahydropyran, 1,4-dioxane, cyclopentylmethyl ether, 1,2-dimethyl Kishietan, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, propylene glycol dimethyl ether, dipropylene glycol dimethyl ether, and ether solvents such as tripropylene glycol dimethyl ether. These may be used alone or in combination of two or more.

反応温度は通常10〜80℃の範囲であり、35〜65℃の範囲が好ましい。反応温度が10℃より低いと反応速度が極端に遅くなる上、粘着性の高い中間体である脂環骨格を有するβ−ヒドロキシアルデヒドの濃度が上昇し、反応系中の粘度が増大しやすくなる。また80℃より高いとホルムアルデヒドが揮発する恐れがある。   The reaction temperature is usually in the range of 10 to 80 ° C, preferably in the range of 35 to 65 ° C. When the reaction temperature is lower than 10 ° C., the reaction rate becomes extremely slow, and the concentration of β-hydroxyaldehyde having an alicyclic skeleton, which is a highly adhesive intermediate, increases, and the viscosity in the reaction system tends to increase. . If it is higher than 80 ° C., formaldehyde may be volatilized.

反応圧力に特に制限はなく、常圧下でも加圧下でも実施できる。反応装置・設備の簡略化の観点から、常圧下が好ましい。また、反応は窒素雰囲気下で行うのが好ましい。   There is no restriction | limiting in particular in reaction pressure, It can implement even under a normal pressure or pressurization. Normal pressure is preferable from the viewpoint of simplification of the reaction apparatus / equipment. The reaction is preferably performed in a nitrogen atmosphere.

[分離および洗浄]
反応終了後、静置して油水分離し、ギ酸塩が含まれる水層を除去する。その後、湿結晶などを含む有機層に水を加え、撹拌水洗を行うことで、残存するギ酸塩、ブレンステッド塩基およびホルムアルデヒドを除去することができる。水量は通常有機層の0.01〜10質量倍であり、0.05〜5質量倍が好ましい。水洗時の温度は通常10〜100℃であり、50〜70℃が好ましい。特に水洗時の温度を50〜70℃とした場合、ギ酸塩、ブレンステッド塩基およびホルムアルデヒドを非常に効率よく除去できる。水洗時間に特に限定はないが、通常10分以上行うことで十分にギ酸塩、ブレンステッド塩基およびホルムアルデヒドを除去できる。さらに念入りに行う場合には、30分以上が好ましく、1時間以上がさらに好ましく、3時間以上が特に好ましい。水洗は必要に応じて複数回行ってもよい。
水洗の効果は、例えばControlled Polymerization rate value(CPR)値の測定により評価することができる。CPR値は試料30g中に含まれる塩基性物質のマイクロ当量値を表し、試料30gを溶解させたメタノール50mlに、0.005mol/Lの希塩酸を滴下していき、その滴定曲線の変曲点から算出する(JIS K1557−4)。
水洗を終了した反応液を蒸留または晶析により精製し、高純度のジオールを得ることができる。
[Separation and washing]
After completion of the reaction, the mixture is allowed to stand to separate oil and water, and the aqueous layer containing formate is removed. Thereafter, the remaining formate, Bronsted base and formaldehyde can be removed by adding water to the organic layer containing wet crystals and washing with stirring. The amount of water is usually 0.01 to 10 times by mass of the organic layer, preferably 0.05 to 5 times by mass. The temperature at the time of water washing is 10-100 degreeC normally, and 50-70 degreeC is preferable. In particular, when the temperature during washing with water is 50 to 70 ° C., formate, Bronsted base and formaldehyde can be removed very efficiently. Although there is no particular limitation on the washing time, the formate, Bronsted base and formaldehyde can be sufficiently removed by usually performing the washing for 10 minutes or more. Further, in the case of carrying out carefully, it is preferably 30 minutes or longer, more preferably 1 hour or longer, particularly preferably 3 hours or longer. Washing with water may be performed a plurality of times as necessary.
The effect of washing with water can be evaluated, for example, by measuring the Controlled Polymerization rate value (CPR) value. The CPR value represents the micro equivalent value of the basic substance contained in 30 g of the sample. 0.005 mol / L dilute hydrochloric acid is added dropwise to 50 ml of methanol in which 30 g of the sample is dissolved, and from the inflection point of the titration curve. Calculate (JIS K1557-4).
The reaction solution that has been washed with water can be purified by distillation or crystallization to obtain a high-purity diol.

以下、実施例により本発明を詳細に説明するが、本発明は以下の例により何ら限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by the following examples.

(実施例1)
内容積300mlの三口フラスコに、シクロヘキサンカルボキシアルデヒド(CHCA)39.4g(0.35mol)、37質量%ホルムアルデヒド水溶液96.1g(1.18mol)を仕込み、窒素雰囲気下、40℃に加熱した。攪拌下、滴下ロートを用いて25質量%水酸化ナトリウム水溶液85.4g(0.53mol)を3時間30分かけて添加した。添加終了後、60℃でさらに2時間撹拌を続けた。反応終了後15℃に冷却し、撹拌を停止し、生じた固体を濾過して水層を除去した。得られた湿結晶69.6gに対し水を139.2g加え60℃にて30分撹拌水洗した。洗浄後、固体を濾過して水層を除去し、湿結晶を68.2g得た。この湿結晶に対しアセトニトリルを90.7g加え、60℃まで加熱し溶解させた後5℃に冷却して固体を析出させ晶析精製を行った。湿結晶を乾燥させることで精製1,1−シクロヘキサンジメタノール(CHD)を37.1g得た(収率72.1%)。
H−NMR分析(400MHz,CDCl,TMS,ppm) δ 1.34〜1.35(m,−CH−,4H),1.44〜1.47(m,−CH−,6H),2.75(t,−OH,2H),3.61(d,−CH−O,4H)
Example 1
A three-necked flask having an internal volume of 300 ml was charged with 39.4 g (0.35 mol) of cyclohexanecarboxaldehyde (CHCA) and 96.1 g (1.18 mol) of a 37% by mass aqueous formaldehyde solution and heated to 40 ° C. in a nitrogen atmosphere. Under stirring, 85.4 g (0.53 mol) of 25 mass% aqueous sodium hydroxide solution was added using a dropping funnel over 3 hours and 30 minutes. After the addition was complete, stirring was continued for an additional 2 hours at 60 ° C. After completion of the reaction, the reaction mixture was cooled to 15 ° C., stirring was stopped, and the resulting solid was filtered to remove the aqueous layer. 139.2 g of water was added to 69.6 g of the obtained wet crystals, and the mixture was stirred and washed with water at 60 ° C. for 30 minutes. After washing, the solid was filtered to remove the aqueous layer to obtain 68.2 g of wet crystals. 90.7 g of acetonitrile was added to the wet crystals, heated to 60 ° C. and dissolved, and then cooled to 5 ° C. to precipitate a solid for crystallization purification. The wet crystals were dried to obtain 37.1 g of purified 1,1-cyclohexanedimethanol (CHD) (yield 72.1%).
1 H-NMR analysis (400 MHz, CDCl 3 , TMS, ppm) δ 1.34 to 1.35 (m, —CH 2 —, 4H), 1.44 to 1.47 (m, —CH 2 —, 6H) ), 2.75 (t, -OH, 2H), 3.61 (d, -CH 2 -O, 4H)

(比較例1)
内容積500mlの三口フラスコに、37質量%ホルムアルデヒド水溶液151.95g(1.87mol)を仕込み、窒素雰囲気にて撹拌下、20℃で滴下ロートを用いて25質量%水酸化ナトリウム水溶液149.8g(0.94mol)を2時間かけて添加した。その後、窒素雰囲気にて撹拌下、20℃で滴下ロートを用いてCHCA70.0g(0.62mol)を1時間30分かけて添加した。添加終了後、反応温度が23℃まで上昇し系中の粘度が増大した。その後60℃に加熱しさらに4時間撹拌を続けた。反応終了後15℃に冷却し、撹拌を停止し、生じた固体を濾過して水層を除去した。得られた湿結晶92.9gに対し水を185.5g加え60℃にて30分撹拌水洗した。洗浄後、固体を濾過して水層を除去し、湿結晶を78.1g得た。この湿結晶に対しアセトニトリルを103.9g加え、60℃まで加熱し溶解させた後5℃に冷却して固体を析出させ晶析精製を行った。湿結晶を乾燥させることで精製CHDを61.5g得た(収率68.3%)。
(Comparative Example 1)
A three-necked flask with an internal volume of 500 ml was charged with 151.95 g (1.87 mol) of a 37% by weight aqueous formaldehyde solution and stirred at 20 ° C. using a dropping funnel at 14 ° C. 0.94 mol) was added over 2 hours. Then, CHCA 70.0g (0.62mol) was added over 1 hour 30 minutes using the dropping funnel at 20 degreeC under stirring in nitrogen atmosphere. After completion of the addition, the reaction temperature rose to 23 ° C. and the viscosity in the system increased. Thereafter, the mixture was heated to 60 ° C. and further stirred for 4 hours. After completion of the reaction, the reaction mixture was cooled to 15 ° C., stirring was stopped, and the resulting solid was filtered to remove the aqueous layer. 185.5 g of water was added to 92.9 g of the obtained wet crystals, and the mixture was stirred and washed with water at 60 ° C. for 30 minutes. After washing, the solid was filtered to remove the aqueous layer to obtain 78.1 g of wet crystals. To this wet crystal, 103.9 g of acetonitrile was added and heated to 60 ° C. to dissolve, then cooled to 5 ° C. to precipitate a solid for crystallization purification. The wet crystals were dried to obtain 61.5 g of purified CHD (yield 68.3%).

(比較例2)
内容積500mlの三口フラスコに、37質量%ホルムアルデヒド水溶液151.95g(1.87mol)を仕込み、窒素雰囲気にて撹拌下、40℃で滴下ロートを用いて25質量%水酸化ナトリウム水溶液149.8g(0.94mol)を2時間かけて添加した。この時内温が74℃まで上昇したことを確認し、反応を中止した。
(Comparative Example 2)
A three-necked flask with an internal volume of 500 ml was charged with 151.95 g (1.87 mol) of a 37% by weight aqueous formaldehyde solution, and stirred with a nitrogen atmosphere at 40 ° C. using a dropping funnel at 149.8 g of a 25% by weight aqueous sodium hydroxide solution ( 0.94 mol) was added over 2 hours. At this time, it was confirmed that the internal temperature rose to 74 ° C., and the reaction was stopped.

(製造例1)
反応器にCHCA66.10kg(589mol)、37質量%ホルムアルデヒド水溶液153.90kg(1898mol)を仕込み、窒素雰囲気下、40℃に加熱した。攪拌下、25質量%水酸化ナトリウム水溶液141.80kg(886mol)を12時間かけて添加した。滴下終了後、60℃でさらに4時間撹拌を続けた。反応終了後15℃に冷却し、撹拌を停止し、生じた固体を濾過して水層を除去し、粗CHDを82.14kg得た。
(Production Example 1)
The reactor was charged with 66.10 kg (589 mol) of CHCA and 153.90 kg (1898 mol) of a 37% by mass aqueous formaldehyde solution, and heated to 40 ° C. in a nitrogen atmosphere. Under stirring, 141.80 kg (886 mol) of a 25% by mass aqueous sodium hydroxide solution was added over 12 hours. After completion of the dropwise addition, stirring was further continued at 60 ° C. for 4 hours. After completion of the reaction, the reaction mixture was cooled to 15 ° C., the stirring was stopped, the resulting solid was filtered to remove the aqueous layer, and 82.14 kg of crude CHD was obtained.

(実施例2)
製造例1で得られた粗CHD71.3kgを、水350.0kgを用いて60℃で9時間撹拌水洗した後に、アセトニトリル231.3kgを用いて晶析した結果、純度99.8%の精製CHDを53.0kg得た。含有ナトリウム量は75.5ppbであり、CPR値は0.11であった。
(Example 2)
After 71.3 kg of crude CHD obtained in Production Example 1 was stirred and washed with 350.0 kg of water at 60 ° C. for 9 hours and crystallized using 231.3 kg of acetonitrile, purified CHD having a purity of 99.8% was obtained. 53.0 kg was obtained. The sodium content was 75.5 ppb and the CPR value was 0.11.

(比較例3)
製造例1で得られたCHD82.1kgを、水225.4kgを用いて15℃で3時間撹拌水洗した後に、アセトニトリル229.5kgを用いて晶析した結果、純度99.86%の精製CHDを60.3kg得た。含有ナトリウム量は66462ppbであり、CPR値は105.56であった。
(Comparative Example 3)
82.1 kg of CHD obtained in Production Example 1 was stirred and washed with 225.4 kg of water at 15 ° C. for 3 hours, and then crystallized with 229.5 kg of acetonitrile. As a result, purified CHD having a purity of 99.86% was obtained. 60.3 kg was obtained. The amount of sodium contained was 66462 ppb, and the CPR value was 105.56.

本発明により得られる脂環骨格を有するジオールは、コーティング剤、塗料、成形材料、粘接着剤等に用いられるポリエステルの原料等として有用な化合物である。   The diol having an alicyclic skeleton obtained by the present invention is a useful compound as a raw material for polyesters used for coating agents, paints, molding materials, adhesives and the like.

Claims (5)

下記一般式(1)
Figure 2016150909
(式中、Rは炭素数1〜4のアルキル基により置換されていてもよい炭素数2〜10のアルキレン基を表す。)
で表されるアルデヒドとホルムアルデヒドの存在下、反応温度10〜80℃でブレンステッド塩基を添加する工程を含む、下記一般式(2)
Figure 2016150909
(式中、Rは前記定義の通りである。)
で表されるジオールの製造方法。
The following general formula (1)
Figure 2016150909
(In the formula, R represents an alkylene group having 2 to 10 carbon atoms which may be substituted by an alkyl group having 1 to 4 carbon atoms.)
In the presence of aldehyde represented by the formula and formaldehyde, a step of adding a Bronsted base at a reaction temperature of 10 to 80 ° C.
Figure 2016150909
(Wherein R is as defined above.)
The manufacturing method of diol represented by these.
アルデヒドが下記一般式(3)
Figure 2016150909
(式中、R〜R10はそれぞれ独立して炭素数1〜4のアルキル基又は水素原子を表す。)
で表されるアルデヒドである、請求項1に記載の製造方法。
The aldehyde is represented by the following general formula (3)
Figure 2016150909
(Wherein, R 1 to R 10 each independently represents an alkyl group or a hydrogen atom having 1 to 4 carbon atoms.)
The manufacturing method of Claim 1 which is an aldehyde represented by these.
反応温度が35〜65℃である、請求項1、2に記載の製造方法。   The manufacturing method of Claim 1, 2 whose reaction temperature is 35-65 degreeC. ブレンステッド塩基として、アルカリ金属水酸化物、アルカリ土類金属水酸化物または炭酸塩を用いる、請求項1〜3に記載の製造方法。   The manufacturing method of Claims 1-3 using an alkali metal hydroxide, an alkaline-earth metal hydroxide, or carbonate as a Bronsted base. さらに、得られた生成物を50〜70℃で水と接触させる工程を含む、請求項1〜4の製造方法。   Furthermore, the manufacturing method of Claims 1-4 including the process of making the obtained product contact with water at 50-70 degreeC.
JP2015028233A 2015-02-17 2015-02-17 Method for producing diol Pending JP2016150909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015028233A JP2016150909A (en) 2015-02-17 2015-02-17 Method for producing diol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015028233A JP2016150909A (en) 2015-02-17 2015-02-17 Method for producing diol

Publications (1)

Publication Number Publication Date
JP2016150909A true JP2016150909A (en) 2016-08-22

Family

ID=56695281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015028233A Pending JP2016150909A (en) 2015-02-17 2015-02-17 Method for producing diol

Country Status (1)

Country Link
JP (1) JP2016150909A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004455A1 (en) * 2018-06-27 2020-01-02 Khネオケム株式会社 Alicyclic diol and method for producing same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE922648C (en) * 1952-07-25 1955-01-20 Basf Ag Process for the preparation of cycloalkane-1, 1-dicarboxylic acids
US2993912A (en) * 1961-07-25 Process for the production of
JPS4843085B1 (en) * 1969-09-11 1973-12-17
JPS5365808A (en) * 1976-11-23 1978-06-12 Bayer Ag Process for preparing propanee1*33diol diisubstituted at 22position
JPS62129233A (en) * 1985-11-11 1987-06-11 Chisso Corp Production of purified 2-n-butyl-2-ethyl-1,3-propanediol
JPS62129232A (en) * 1985-11-11 1987-06-11 Chisso Corp Production of purified 2,2-diethyl-1,3-propanediol
JPH0592948A (en) * 1991-02-06 1993-04-16 Yoshitomi Pharmaceut Ind Ltd Propionic acid amide derivative and its medicine use
JP2001506969A (en) * 1996-08-19 2001-05-29 ネステ・ユルキネン・オサケユキテュア Method for producing 2-butyl-2-ethyl-1,3-propanediol
JP2011079793A (en) * 2009-10-09 2011-04-21 Nippon Kayaku Co Ltd Diolefin compound, epoxy resin, curable resin composition, and cured product thereof
JP2012500874A (en) * 2008-08-26 2012-01-12 ビーエーエスエフ ソシエタス・ヨーロピア Use of 1,1-dimethylolcycloalkane or 1,1-dimethylolcycloalkene to produce a polymer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2993912A (en) * 1961-07-25 Process for the production of
DE922648C (en) * 1952-07-25 1955-01-20 Basf Ag Process for the preparation of cycloalkane-1, 1-dicarboxylic acids
JPS4843085B1 (en) * 1969-09-11 1973-12-17
JPS5365808A (en) * 1976-11-23 1978-06-12 Bayer Ag Process for preparing propanee1*33diol diisubstituted at 22position
JPS62129233A (en) * 1985-11-11 1987-06-11 Chisso Corp Production of purified 2-n-butyl-2-ethyl-1,3-propanediol
JPS62129232A (en) * 1985-11-11 1987-06-11 Chisso Corp Production of purified 2,2-diethyl-1,3-propanediol
JPH0592948A (en) * 1991-02-06 1993-04-16 Yoshitomi Pharmaceut Ind Ltd Propionic acid amide derivative and its medicine use
JP2001506969A (en) * 1996-08-19 2001-05-29 ネステ・ユルキネン・オサケユキテュア Method for producing 2-butyl-2-ethyl-1,3-propanediol
JP2012500874A (en) * 2008-08-26 2012-01-12 ビーエーエスエフ ソシエタス・ヨーロピア Use of 1,1-dimethylolcycloalkane or 1,1-dimethylolcycloalkene to produce a polymer
JP2011079793A (en) * 2009-10-09 2011-04-21 Nippon Kayaku Co Ltd Diolefin compound, epoxy resin, curable resin composition, and cured product thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004455A1 (en) * 2018-06-27 2020-01-02 Khネオケム株式会社 Alicyclic diol and method for producing same
JPWO2020004455A1 (en) * 2018-06-27 2021-08-26 Khネオケム株式会社 Alicyclic diols and their manufacturing methods
JP7301831B2 (en) 2018-06-27 2023-07-03 Khネオケム株式会社 Alicyclic diol and method for producing same

Similar Documents

Publication Publication Date Title
JP5846126B2 (en) Method for producing aromatic alcohol or heterocyclic aromatic alcohol
JP2010265193A (en) Method for producing alkyl chlorohydrin ether and method for producing alkyl glycidyl ether
JP6687281B2 (en) Method for producing conjugated diene
CN107848928B (en) Process for preparing 1, 4-bis (ethoxymethyl) cyclohexane
JP6292124B2 (en) Method for producing carbamate compound
JP2015523993A (en) Method for producing alkyl fluoroacrylate
JP2016150909A (en) Method for producing diol
JP6200417B2 (en) Method for producing hydroxyphenylcyclohexanol compound
JP4722327B2 (en) Method for producing acetylenic diol compound
JP2007126447A (en) Process of producing dioxane glycol
JPH11140022A (en) Jasmonic acid-based compound and its production
KR20160040204A (en) Method for producing tris-aziridinomethane
KR20140039306A (en) Method for producing alkyldiol monoglycidyl ether
TWI333944B (en) Process for preparing (s)-(+)-2-(substituted phenyl)-2-hydroxy-ethyl carbamates
KR101602428B1 (en) Method for preparing glycidol through successive catalytic reaction
JP6106103B2 (en) Method for producing narrowly dispersed polyalkylene glycol derivative having amino group at terminal, and novel acetal group-containing alcohol compound and alkali metal salt thereof used therefor
JP5893008B2 (en) 4,4-bis [(ethenyloxy) methyl] cyclohexene and process for producing the same
JP5223748B2 (en) Alcohol composition containing tritrimethylolpropane
JP7161849B2 (en) Method for producing primary amine
JP2015137255A (en) Method for producing carbamate compound
RU2612956C1 (en) Method for producing 1-adamantyl acetaldehyde
JP6503228B2 (en) Purification method of 4-hydroxybenzoic acid long chain ester
EP4225723A1 (en) Process for the preparation of alpha-alkyl-2-(trifluoromethyl)-benzyl alcohols
JP5564088B2 (en) Process for producing trans-1,4-diaminocyclohexane
JP6262079B2 (en) 4- (2,2,2-trifluoroethoxy) -5- (trifluoromethyl) pyrimidine derivative and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180608

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190416