JP2016150327A - Deterioration method of nox selective reduction catalyst - Google Patents

Deterioration method of nox selective reduction catalyst Download PDF

Info

Publication number
JP2016150327A
JP2016150327A JP2015030325A JP2015030325A JP2016150327A JP 2016150327 A JP2016150327 A JP 2016150327A JP 2015030325 A JP2015030325 A JP 2015030325A JP 2015030325 A JP2015030325 A JP 2015030325A JP 2016150327 A JP2016150327 A JP 2016150327A
Authority
JP
Japan
Prior art keywords
selective reduction
reduction catalyst
nox selective
nox
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015030325A
Other languages
Japanese (ja)
Other versions
JP6627225B2 (en
Inventor
賢 長谷川
Masaru Hasegawa
賢 長谷川
弘隆 高橋
Hirotaka Takahashi
弘隆 高橋
嘉久 植田
Yoshihisa Ueda
嘉久 植田
鈴木 豊
Yutaka Suzuki
豊 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2015030325A priority Critical patent/JP6627225B2/en
Publication of JP2016150327A publication Critical patent/JP2016150327A/en
Application granted granted Critical
Publication of JP6627225B2 publication Critical patent/JP6627225B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a deterioration method of a NOx selective reduction catalyst capable of deteriorating the NOx selective reduction catalyst at a low cost and in a short time.SOLUTION: A deterioration method of a NOx selective reduction catalyst is a method for deteriorating the NOx selective reduction catalyst 5 selectively reducing NOx in the exhaust of an internal combustion engine 2 and characterized by including a phosphorus poisoning step making the NOx selective reduction catalyst 5 phosphorus poisoning by using a solution 20 containing phosphoric acid. The NOx selective reduction catalyst can be deteriorated at a low cost and in a short time by the deterioration method of the NOx selective reduction catalyst.SELECTED DRAWING: Figure 2

Description

本発明は、NOx選択還元触媒の劣化方法に関し、より詳細には、リン被毒によってNOx選択還元触媒を劣化させる方法に関する。   The present invention relates to a method for degrading a NOx selective reduction catalyst, and more particularly to a method for degrading a NOx selective reduction catalyst by phosphorus poisoning.

従来、内燃機関の排気浄化触媒の劣化を評価するために、排気浄化触媒を強制的に劣化させることが行われている。また、近年では、OBD(On-Board Diagnostics;自己診断機能)用として排気浄化触媒の劣化品を作成することも要求されてきている。排気浄化触媒を劣化させる手法として、例えば特許文献1には、排気浄化触媒としての三元触媒を電気炉内において加熱することで、三元触媒を高温雰囲気下に晒して強制的に劣化させる手法が開示されている。   Conventionally, in order to evaluate the deterioration of an exhaust purification catalyst of an internal combustion engine, the exhaust purification catalyst is forcibly deteriorated. In recent years, it has also been required to produce a deteriorated exhaust purification catalyst for OBD (On-Board Diagnostics). As a technique for degrading an exhaust purification catalyst, for example, Patent Document 1 discloses a technique in which a three-way catalyst as an exhaust purification catalyst is heated in an electric furnace to expose the three-way catalyst to a high temperature atmosphere and forcibly deteriorate the three-way catalyst. Is disclosed.

特開2001−159307号公報JP 2001-159307 A

ところで、排気浄化触媒として、内燃機関の排気中のNOx(窒素酸化物)を選択的に還元するNOx選択還元触媒を用いる場合がある。そこで、特許文献1に係る劣化手法を応用して、電気炉を用いてNOx選択還元触を劣化させる場合、設備投資に高いコストがかかってしまう。また、電気炉を用いてNOx選択還元触媒を劣化させる場合、電気炉内にてNOx選択還元触媒を長時間加熱する必要があるため、劣化に長時間を要してしまう。   By the way, a NOx selective reduction catalyst that selectively reduces NOx (nitrogen oxide) in the exhaust gas of an internal combustion engine may be used as the exhaust purification catalyst. Therefore, when the deterioration method according to Patent Document 1 is applied and the NOx selective reduction catalyst is deteriorated using an electric furnace, the capital investment is expensive. Further, when the NOx selective reduction catalyst is deteriorated using an electric furnace, the NOx selective reduction catalyst needs to be heated in the electric furnace for a long time.

本発明は、上記のことを鑑みてなされたものであり、その目的は、NOx選択還元触媒を低コスト且つ短時間で劣化させることができるNOx選択還元触媒の劣化方法を提供することである。   The present invention has been made in view of the above, and an object of the present invention is to provide a NOx selective reduction catalyst deterioration method capable of degrading a NOx selective reduction catalyst in a short time at a low cost.

上記の目的を達成するための本発明のNOx選択還元触媒の劣化方法は、内燃機関の排気中のNOxを選択的に還元するNOx選択還元触媒を劣化させる方法であって、リン酸を含んだ溶液を用いて前記NOx選択還元触媒をリン被毒させるリン被毒工程を含むことを特徴とするものである。   A method for degrading a NOx selective reduction catalyst of the present invention for achieving the above object is a method for degrading a NOx selective reduction catalyst that selectively reduces NOx in exhaust gas of an internal combustion engine, and includes phosphoric acid. It includes a phosphorus poisoning step in which the NOx selective reduction catalyst is poisoned with phosphorus using a solution.

本発明に係るNOx選択還元触媒の劣化方法によれば、電気炉を用いることなくNOx選択還元触媒を劣化させることができることから、NOx選択還元触媒を低コスト且つ短時間で劣化させることができる。   According to the method for degrading a NOx selective reduction catalyst according to the present invention, the NOx selective reduction catalyst can be degraded without using an electric furnace, so that the NOx selective reduction catalyst can be degraded at a low cost and in a short time.

上記方法において、前記リン酸を含んだ溶液はリン酸水素二ナトリウムを含んだ溶液であってもよい。リン酸水素二ナトリウムはリン酸を含んだ種々の溶液の中において相対的に入手し易く且つ安価である。したがって、この方法によれば、NOx選択還元触媒を容易に且つより低コストで劣化させることができる。   In the above method, the solution containing phosphoric acid may be a solution containing disodium hydrogen phosphate. Disodium hydrogen phosphate is relatively readily available and inexpensive in various solutions containing phosphoric acid. Therefore, according to this method, the NOx selective reduction catalyst can be easily degraded at a lower cost.

上記方法において、前記リン被毒工程は、前記リン酸を含んだ溶液に前記NOx選択還元触媒を浸漬することを含んでいてもよい。この方法によれば、NOx選択還元触媒を容易に且つ確実に劣化させることができる。   In the above method, the phosphorus poisoning step may include immersing the NOx selective reduction catalyst in a solution containing the phosphoric acid. According to this method, the NOx selective reduction catalyst can be easily and reliably deteriorated.

本発明に係るNOx選択還元触媒の劣化方法によれば、NOx選択還元触媒を低コスト且つ短時間で劣化させることができる。   According to the degradation method of the NOx selective reduction catalyst according to the present invention, the NOx selective reduction catalyst can be degraded at a low cost and in a short time.

NOx選択還元触媒が適用された内燃機関システムの模式図である。1 is a schematic diagram of an internal combustion engine system to which a NOx selective reduction catalyst is applied. NOx選択還元触媒の劣化方法を説明するための模式図である。It is a schematic diagram for demonstrating the deterioration method of a NOx selective reduction catalyst.

以下、本発明に係る実施の形態のNOx選択還元触媒の劣化方法について図面を参照しつつ説明する。   Hereinafter, a method for degrading a NOx selective reduction catalyst according to an embodiment of the present invention will be described with reference to the drawings.

最初に本実施形態に係るNOx選択還元触媒の劣化方法(以下、触媒劣化方法と略称する)に用いられるNOx選択還元触媒について説明し、次いで本実施形態に係る触媒劣化方法について説明する。図1はNOx選択還元触媒5が適用された内燃機関システム1の模式図である。内燃機関システム1は、内燃機関2と、内燃機関2に吸入される吸気が通過する吸気通路3と、内燃機関2から排出された排気が通過する排気通路4とを備えている。また内燃機関システム1は、排気通路4に配置されたNOx選択還元触媒5と、排気通路4のNOx選択還元触媒5よりも上流側に配置された噴射部6とを備えている。噴射部6は、内燃機関システム1の制御装置としての機能を有するECU(Engine Control Unit)からの指示を受けて、尿素水溶液を排気通路4内に噴射する。   First, the NOx selective reduction catalyst used in the NOx selective reduction catalyst deterioration method according to this embodiment (hereinafter abbreviated as catalyst deterioration method) will be described, and then the catalyst deterioration method according to this embodiment will be described. FIG. 1 is a schematic diagram of an internal combustion engine system 1 to which a NOx selective reduction catalyst 5 is applied. The internal combustion engine system 1 includes an internal combustion engine 2, an intake passage 3 through which intake air taken into the internal combustion engine 2 passes, and an exhaust passage 4 through which exhaust exhausted from the internal combustion engine 2 passes. The internal combustion engine system 1 includes a NOx selective reduction catalyst 5 disposed in the exhaust passage 4 and an injection unit 6 disposed on the upstream side of the NOx selective reduction catalyst 5 in the exhaust passage 4. The injection unit 6 injects an aqueous urea solution into the exhaust passage 4 in response to an instruction from an ECU (Engine Control Unit) having a function as a control device of the internal combustion engine system 1.

NOx選択還元触媒5は、排気中のNOxを選択的に還元する触媒である。このような機能を有する触媒であれば、NOx選択還元触媒5の具体的な種類は特に限定されるものではなく、例えば、バナジウム、モリブデン、タングステン等の卑金属酸化物や、ゼオライト等、周知のNOx選択還元触媒(SCR触媒)を用いることができる。本実施形態においては、NOx選択還元触媒5の一例として、ゼオライトを用いる。   The NOx selective reduction catalyst 5 is a catalyst that selectively reduces NOx in the exhaust gas. As long as the catalyst has such a function, the specific type of the NOx selective reduction catalyst 5 is not particularly limited. For example, base metal oxides such as vanadium, molybdenum, and tungsten; A selective reduction catalyst (SCR catalyst) can be used. In the present embodiment, zeolite is used as an example of the NOx selective reduction catalyst 5.

噴射部6から排気通路4に噴射された尿素水溶液は加水分解されてアンモニアに変化する。このアンモニアは、NOx選択還元触媒5に吸着している排気中のNOxをNOx選択還元触媒5の触媒作用を利用して還元させる。それにより、NOxは窒素と水とに分解する。このようにして、NOxの大気への放出が抑制されている。   The aqueous urea solution injected from the injection unit 6 into the exhaust passage 4 is hydrolyzed and changed to ammonia. This ammonia reduces NOx in the exhaust gas adsorbed on the NOx selective reduction catalyst 5 by utilizing the catalytic action of the NOx selective reduction catalyst 5. Thereby, NOx is decomposed into nitrogen and water. In this way, release of NOx into the atmosphere is suppressed.

なお、上述した尿素水を用いたNOxの一連の浄化作用を化学式で示すと以下の式(1)〜式(4)のようになる。式(1)はアンモニアの加水分解を示し、式(2)〜式(4)がアンモニアによるNOxの還元反応を示している。
(NHCO+HO→2NH+CO・・・(1)
2NH+NO+NO→2N+3HO・・・(2)
4NO+4NH+O→4N+6HO・・・(3)
6NO+8NH→7N+12HO・・・(4)
In addition, when a series of purification actions of NOx using the urea water described above are represented by chemical formulas, the following formulas (1) to (4) are obtained. Formula (1) indicates the hydrolysis of ammonia, and Formulas (2) to (4) indicate the reduction reaction of NOx with ammonia.
(NH 2 ) 2 CO + H 2 O → 2NH 3 + CO 2 (1)
2NH 3 + NO + NO 2 → 2N 2 + 3H 2 O (2)
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O (3)
6NO + 8NH 3 → 7N 2 + 12H 2 O (4)

続いて本実施形態に係る触媒劣化方法について説明する。図2は本実施形態に係る触媒劣化方法を説明するための模式図である。本実施形態に係る触媒劣化方法は、リン酸を含んだ溶液20を用いてNOx選択還元触媒5をリン被毒させるリン被毒工程を含んでいる。リン被毒工程においては、容器10の中にリン酸を含んだ溶液20を入れ、溶液20中にNOx選択還元触媒5を浸漬する。具体的には図2においては、溶液20の入った容器10の底部にNOx選択還元触媒5を配置することでNOx選択還元触媒5を溶液20に浸漬している。NOx選択還元触媒5が溶液20に浸漬されることで、NOx選択還元触媒5は溶液20中のリンによって被毒(リン被毒)される。それにより、NOx選択還元触媒5は劣化する。   Next, the catalyst deterioration method according to this embodiment will be described. FIG. 2 is a schematic diagram for explaining the catalyst deterioration method according to the present embodiment. The catalyst deterioration method according to the present embodiment includes a phosphorus poisoning step in which the NOx selective reduction catalyst 5 is poisoned with phosphorus using a solution 20 containing phosphoric acid. In the phosphorus poisoning step, the solution 20 containing phosphoric acid is placed in the container 10, and the NOx selective reduction catalyst 5 is immersed in the solution 20. Specifically, in FIG. 2, the NOx selective reduction catalyst 5 is immersed in the solution 20 by disposing the NOx selective reduction catalyst 5 at the bottom of the container 10 containing the solution 20. By immersing the NOx selective reduction catalyst 5 in the solution 20, the NOx selective reduction catalyst 5 is poisoned (phosphorus poisoning) by phosphorus in the solution 20. As a result, the NOx selective reduction catalyst 5 deteriorates.

溶液20としては、例えばリン酸(H3PO4)の水溶液、リン酸ナトリウム(Na3PO4)の水溶液、リン酸水素二ナトリウム(Na2HPO4)の水溶液等、リン酸を含んだ種々の溶液を用いることができる。このうち、リン酸水素二ナトリウムは、これらのリン酸を含んだ溶液の中でも相対的に入手し易く且つ安価である。 Examples of the solution 20 include various aqueous solutions containing phosphoric acid such as an aqueous solution of phosphoric acid (H 3 PO 4 ), an aqueous solution of sodium phosphate (Na 3 PO 4 ), and an aqueous solution of disodium hydrogen phosphate (Na 2 HPO 4 ). Can be used. Of these, disodium hydrogen phosphate is relatively easy to obtain and inexpensive among solutions containing these phosphoric acids.

そこで、本実施形態においては、溶液20の一例として、リン酸水素二ナトリウムを含んだ溶液、より具体的にはリン酸水素二ナトリウム・12水(Na2HPO4・12H2O)をお湯に溶解したものを用いる。なお、リン酸水素二ナトリウム・12水は水にも溶解するが、低温の水よりもお湯(室温よりも高い温度の水)の方が容易に溶解するため、溶液20として、リン酸水素二ナトリウム・12水をお湯に溶解したものを用いることが好ましい。 Therefore, in this embodiment, as an example of the solution 20, a solution containing disodium hydrogen phosphate, more specifically, disodium hydrogen phosphate · 12 water (Na 2 HPO 4 · 12H 2 O) is used as hot water. Use the dissolved one. In addition, although disodium hydrogen phosphate and 12 water are dissolved in water, hot water (water having a temperature higher than room temperature) is more easily dissolved than low-temperature water. It is preferable to use sodium / 12 water dissolved in hot water.

溶液20中のリン酸濃度及びNOx選択還元触媒5の浸漬時間は、例えば次の観点で設定すればよい。溶液20中のリン酸濃度が高いほどNOx選択還元触媒5のリン被毒に要する時間を短縮することができる。また、NOx選択還元触媒5の浸漬時間が長いほど、NOx選択還元触媒5のリン被毒度合を大きくすることができる。そこで、以上の観点を考慮して、より短時間で目標とするリン被毒度合になるようなリン酸濃度及び浸漬時間を設定すればよい。   The phosphoric acid concentration in the solution 20 and the immersion time of the NOx selective reduction catalyst 5 may be set, for example, from the following viewpoint. The higher the phosphoric acid concentration in the solution 20, the shorter the time required for phosphorus poisoning of the NOx selective reduction catalyst 5. Further, as the immersion time of the NOx selective reduction catalyst 5 is longer, the degree of phosphorus poisoning of the NOx selective reduction catalyst 5 can be increased. Therefore, in consideration of the above viewpoint, the phosphoric acid concentration and the immersion time may be set so as to achieve the target phosphorus poisoning degree in a shorter time.

なお、具体的な数値例を挙げると、例えば本実施形態のように溶液20としてリン酸水素二ナトリウム・12水の水溶液を用いた場合、当該水溶液中におけるリン酸水素二ナトリウム・12水の濃度が3〜7wt%(重量%)であれば、NOx選択還元触媒5を30分間浸漬させるだけで、NOx選択還元触媒5の全体を十分にリン被毒させることができる。   For example, when an aqueous solution of disodium hydrogen phosphate / 12 water is used as the solution 20 as in this embodiment, the concentration of disodium hydrogen phosphate / 12 water in the aqueous solution is described. Is 3 to 7 wt% (weight%), the entire NOx selective reduction catalyst 5 can be sufficiently phosphorous poisoned only by immersing the NOx selective reduction catalyst 5 for 30 minutes.

また、リン被毒工程においては、NOx選択還元触媒5を溶液20内でひっくり返しながらリン被毒させることが好ましい。この具体例を挙げると、例えば溶液20内に配置されたNOx選択還元触媒5を10分毎にひっくり返しながら合計30分間浸漬することが好ましい。これにより、NOx選択還元触媒5の全体を効率的にリン被毒させることができる。   Further, in the phosphorus poisoning step, it is preferable that the NOx selective reduction catalyst 5 is poisoned with phosphorus while being turned over in the solution 20. For example, the NOx selective reduction catalyst 5 disposed in the solution 20 is preferably immersed for a total of 30 minutes while being turned over every 10 minutes. Thereby, the entire NOx selective reduction catalyst 5 can be efficiently poisoned with phosphorus.

なお、リン被毒工程は、上述したような、NOx選択還元触媒5を溶液20中に浸漬する手法に限定されるものではない。リン被毒工程の他の例を挙げると、NOx選択還元触媒5の排気の流通通路に溶液20を流し込むことによって、NOx選択還元触媒5をリン被毒させてもよい。あるいは、溶液20をNOx選択還元触媒5の排気の流通通路にスプレーすることによって、NOx選択還元触媒5をリン被毒させてもよい。但し、本実施形態のようにNOx選択還元触媒5を溶液20中に浸漬することでリン被毒させる手法は、その他の手法に比較して、NOx選択還元触媒5を容易に且つ確実に劣化させることができる点で好ましい。   Note that the phosphorus poisoning step is not limited to the method of immersing the NOx selective reduction catalyst 5 in the solution 20 as described above. As another example of the phosphorus poisoning process, the NOx selective reduction catalyst 5 may be poisoned by flowing the solution 20 into the exhaust passage of the NOx selective reduction catalyst 5. Alternatively, the NOx selective reduction catalyst 5 may be phosphorus poisoned by spraying the solution 20 into the exhaust passage of the NOx selective reduction catalyst 5. However, the method of phosphorous poisoning by immersing the NOx selective reduction catalyst 5 in the solution 20 as in the present embodiment easily and reliably deteriorates the NOx selective reduction catalyst 5 as compared with other methods. It is preferable in that it can be performed.

なお、リン被毒工程によって劣化させたNOx選択還元触媒5の劣化度合の評価は例えば次のように行われる。具体的には、リン被毒工程によって劣化させたNOx選択還元触媒5を図1に示すような内燃機関システム1に取り付けて、排気中のNOxをNOx選択還元触媒5によって選択的に還元させる。そして、このときのNOxの還元度合を測定することで、劣化度合を評価する。具体的には、NOxの還元度合が低いほど、劣化度合いは高いと評価される。   The evaluation of the degree of deterioration of the NOx selective reduction catalyst 5 that has been deteriorated by the phosphorus poisoning process is performed as follows, for example. Specifically, the NOx selective reduction catalyst 5 deteriorated by the phosphorus poisoning process is attached to the internal combustion engine system 1 as shown in FIG. 1, and NOx in the exhaust is selectively reduced by the NOx selective reduction catalyst 5. Then, the degree of deterioration is evaluated by measuring the degree of NOx reduction at this time. Specifically, the lower the degree of NOx reduction, the higher the degree of deterioration.

以上説明したように、本実施形態に係る触媒劣化方法によれば、リン酸を含んだ溶液20を用いてNOx選択還元触媒5をリン被毒させることができることから、電気炉を用いることなくNOx選択還元触媒5を劣化させることができる。それにより、設備投資に高いコストがかかることを抑制できるとともに、短時間で(例えば本実施形態のように30分程度)でNOx選択還元触媒5を劣化させることができる。   As described above, according to the catalyst deterioration method according to the present embodiment, the NOx selective reduction catalyst 5 can be phosphorus-poisoned using the solution 20 containing phosphoric acid, so that NOx can be used without using an electric furnace. The selective reduction catalyst 5 can be deteriorated. Thereby, it is possible to suppress a high cost for capital investment and to degrade the NOx selective reduction catalyst 5 in a short time (for example, about 30 minutes as in the present embodiment).

また本実施形態に係る触媒劣化方法によれば、リン酸を含んだ溶液20として、入手が容易で且つ安価であるリン酸水素二ナトリウムを含んだ溶液を用いていることから、NOx選択還元触媒5を容易に且つより低コストで劣化させることができる。   Further, according to the catalyst deterioration method according to the present embodiment, the NOx selective reduction catalyst is used because the solution 20 containing disodium hydrogen phosphate, which is easily available and inexpensive, is used as the solution 20 containing phosphoric acid. 5 can be easily and at a lower cost.

また本実施形態に係る触媒劣化方法によれば、図2において説明したように、リン被毒工程はリン酸を含んだ溶液20にNOx選択還元触媒5を浸漬することを含んでいることから、NOx選択還元触媒5を容易に且つ確実に劣化させることを容易に行える。   Further, according to the catalyst deterioration method according to the present embodiment, as explained in FIG. 2, the phosphorus poisoning step includes immersing the NOx selective reduction catalyst 5 in the solution 20 containing phosphoric acid. The NOx selective reduction catalyst 5 can be easily and reliably deteriorated.

以上本発明の好ましい実施形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   Although the preferred embodiments of the present invention have been described above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. Is possible.

1 内燃機関システム
2 内燃機関
3 吸気通路
4 排気通路
5 NOx選択還元触媒
6 噴射部
20 溶液
DESCRIPTION OF SYMBOLS 1 Internal combustion engine system 2 Internal combustion engine 3 Intake passage 4 Exhaust passage 5 NOx selective reduction catalyst 6 Injection part 20 Solution

Claims (3)

内燃機関の排気中のNOxを選択的に還元するNOx選択還元触媒を劣化させる方法であって、
リン酸を含んだ溶液を用いて前記NOx選択還元触媒をリン被毒させるリン被毒工程を含むことを特徴とするNOx選択還元触媒の劣化方法。
A method of degrading a NOx selective reduction catalyst that selectively reduces NOx in exhaust gas of an internal combustion engine,
A method for degrading a NOx selective reduction catalyst, comprising a phosphorus poisoning step in which the NOx selective reduction catalyst is poisoned with phosphorus using a solution containing phosphoric acid.
前記リン酸を含んだ溶液はリン酸水素二ナトリウムを含んだ溶液である請求項1記載のNOx選択還元触媒の劣化方法。   The method for degrading a NOx selective reduction catalyst according to claim 1, wherein the solution containing phosphoric acid is a solution containing disodium hydrogen phosphate. 前記リン被毒工程は、前記リン酸を含んだ溶液に前記NOx選択還元触媒を浸漬することを含む請求項1または2に記載のNOx選択還元触媒の劣化方法。   The method for degrading a NOx selective reduction catalyst according to claim 1, wherein the phosphorus poisoning step includes immersing the NOx selective reduction catalyst in a solution containing the phosphoric acid.
JP2015030325A 2015-02-19 2015-02-19 Deterioration method of NOx selective reduction catalyst Active JP6627225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015030325A JP6627225B2 (en) 2015-02-19 2015-02-19 Deterioration method of NOx selective reduction catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015030325A JP6627225B2 (en) 2015-02-19 2015-02-19 Deterioration method of NOx selective reduction catalyst

Publications (2)

Publication Number Publication Date
JP2016150327A true JP2016150327A (en) 2016-08-22
JP6627225B2 JP6627225B2 (en) 2020-01-08

Family

ID=56695092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015030325A Active JP6627225B2 (en) 2015-02-19 2015-02-19 Deterioration method of NOx selective reduction catalyst

Country Status (1)

Country Link
JP (1) JP6627225B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03254836A (en) * 1990-01-12 1991-11-13 Ngk Spark Plug Co Ltd Poisoning-preventive catalyst and carrier with poisoning-preventive layer, exhaust gas purification device and poisoning-preventive gasoline composition
JPH09235248A (en) * 1995-12-28 1997-09-09 Nippon Shokubai Co Ltd Production of alkyl ether of phenols and catalyst used therefor
JP2001159307A (en) * 1999-12-02 2001-06-12 Daihatsu Motor Co Ltd Method of deteriorating exhaust emission control catalyst, and exhaust emission control catalyst obtained by the method
JP2002028491A (en) * 2000-07-12 2002-01-29 Catalysts & Chem Ind Co Ltd Formed catalyst for hydrogenation treatment and producing method thereof
JP2012055810A (en) * 2010-09-07 2012-03-22 Babcock Hitachi Kk Nox denitrification catalyst for exhaust gas and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03254836A (en) * 1990-01-12 1991-11-13 Ngk Spark Plug Co Ltd Poisoning-preventive catalyst and carrier with poisoning-preventive layer, exhaust gas purification device and poisoning-preventive gasoline composition
JPH09235248A (en) * 1995-12-28 1997-09-09 Nippon Shokubai Co Ltd Production of alkyl ether of phenols and catalyst used therefor
JP2001159307A (en) * 1999-12-02 2001-06-12 Daihatsu Motor Co Ltd Method of deteriorating exhaust emission control catalyst, and exhaust emission control catalyst obtained by the method
JP2002028491A (en) * 2000-07-12 2002-01-29 Catalysts & Chem Ind Co Ltd Formed catalyst for hydrogenation treatment and producing method thereof
JP2012055810A (en) * 2010-09-07 2012-03-22 Babcock Hitachi Kk Nox denitrification catalyst for exhaust gas and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ENGINEERING JOURNAL, vol. 120, JPN6019021581, 2006, pages 113 - 118, ISSN: 0004054618 *

Also Published As

Publication number Publication date
JP6627225B2 (en) 2020-01-08

Similar Documents

Publication Publication Date Title
KR100490813B1 (en) NOx CLEANING APPARATUS OF INTERNAL COMBUSTION ENGINE
CN101874149B (en) Exhaust gas purification system and method
US7858060B2 (en) Current storage estimation for selective catalytic reduction catalysts
JP2009281294A (en) Exhaust emission control device for internal combustion engine
Hsieh et al. Sliding-mode observer for urea-selective catalytic reduction (SCR) mid-catalyst ammonia concentration estimation
JP5398372B2 (en) Engine exhaust purification system
Latha et al. A review on scr system for nox reduction in diesel engine
CN110925070A (en) Post-processing device for realizing ultralow emission control of gas engine
JP2017140614A (en) Catalyst and method for producing catalyst
JP5560089B2 (en) Exhaust gas purification device for internal combustion engine
EP3287617B1 (en) Power apparatus including reducing agent supply control system and reducing agent supply control method
JP2009156159A (en) Device for determining abnormal section of exhaust emission control system
JP2018178850A (en) Control device for exhaust emission control system
US10704442B2 (en) Method for optimizing the consumption of reducing agent in a motor vehicle exhaust line
CN106555645B (en) Method for injecting a reducing agent into an exhaust gas of a power system
WO2015080224A1 (en) Exhaust purification device for internal combustion engine
JP2015101968A (en) Exhaust emission control device for internal combustion engine
JP2003293738A (en) NOx CLEANING DEVICE FOR INTERNAL COMBUSTION ENGINE
JP6627225B2 (en) Deterioration method of NOx selective reduction catalyst
JP2017201134A (en) Exhaust emission control system for internal combustion engine and exhaust emission control method for internal combustion engine
JP2010121530A (en) Exhaust gas treatment device
WO2016028290A1 (en) Sulfur trioxide trap for use in preventing catalyst deactivation by ammonium sulfate/bisulfate
KR20140102794A (en) The De-NOx system for combined LNG gas turbine exhaust gas
CN102698600A (en) System for intelligently controlling flue gas denitrification of cement plant based on selective catalytic reduction (SCR) method
KR20180055553A (en) Device for purifying exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190626

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20190731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191118

R150 Certificate of patent or registration of utility model

Ref document number: 6627225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150