JP2016149485A - Superconducting apparatus - Google Patents

Superconducting apparatus Download PDF

Info

Publication number
JP2016149485A
JP2016149485A JP2015026267A JP2015026267A JP2016149485A JP 2016149485 A JP2016149485 A JP 2016149485A JP 2015026267 A JP2015026267 A JP 2015026267A JP 2015026267 A JP2015026267 A JP 2015026267A JP 2016149485 A JP2016149485 A JP 2016149485A
Authority
JP
Japan
Prior art keywords
tank container
support member
inner tank
container
outer tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015026267A
Other languages
Japanese (ja)
Inventor
尾山 仁
Hitoshi Oyama
仁 尾山
剛 新里
Takeshi Niisato
剛 新里
荒川 聡
Satoshi Arakawa
聡 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2015026267A priority Critical patent/JP2016149485A/en
Publication of JP2016149485A publication Critical patent/JP2016149485A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Superconductive Dynamoelectric Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a superconducting apparatus which inhibits heat intrusion into a superconducting coil.SOLUTION: A superconducting apparatus includes a superconducting coil, an inner tank container 1, an outer tank container 2 and a support member 3. The inner tank container 1 holds the superconducting coil. The outer tank container 2 is disposed at an outer side of the inner tank container 1. The support member 3 supports the inner tank container 1 on the outer tank container 2. The support member 3 is formed by a first material in which a first fiber 31 having heat conductivity lower than that of a first base material 32 is disposed in the first base material 32. The outer tank container 2 is formed by a second material in which a second fiber having heat conductivity higher than that of a second base material is disposed in the second base material.SELECTED DRAWING: Figure 11

Description

この発明は、超電導機器に関し、より特定的には、容器の内部に超電導コイルを保持している超電導機器に関する。   The present invention relates to a superconducting device, and more particularly to a superconducting device holding a superconducting coil inside a container.

従来、超電導線材を巻回して構成される超電導コイルを容器の内部に保持した超電導機器が知られている(たとえば、特開2013−222928号公報参照)。超電導コイルを保持する容器は、たとえば超電導コイルを保持する内槽容器と、当該内槽容器の外周を囲むように配置された外槽容器とを含む。この内槽容器を外槽容器に対して位置決めするため、内槽容器都外槽容器の双方に接触するよう配置される支持部材が用いられる。   2. Description of the Related Art Conventionally, a superconducting device in which a superconducting coil configured by winding a superconducting wire is held inside a container is known (see, for example, JP-A-2013-222928). The container holding the superconducting coil includes, for example, an inner tank container holding the superconducting coil and an outer tank container arranged so as to surround the outer periphery of the inner tank container. In order to position the inner tub container with respect to the outer tub container, a support member is used which is disposed so as to contact both the inner tub container and the outer tub container.

特開2013−222928号公報JP2013-2222928A

ここで、内槽容器、外槽容器、および外槽容器に対して内槽容器を位置決めするための支持部材などの材料としては、十分な機械的強度を得るためFRP(Fiber Reinforced Plastic)を用いる場合がある。   Here, as a material for the inner tank container, the outer tank container, and the support member for positioning the inner tank container with respect to the outer tank container, FRP (Fiber Reinforced Plastic) is used in order to obtain sufficient mechanical strength. There is a case.

上記のように超電導コイルを保持する容器の材料としてFRPを用いる場合、当該FRPを構成する繊維(たとえばグラスファイバーやカーボンファイバーなど)の熱伝導率が比較的高いため、外部から超電導コイルへの熱侵入が問題となる。とくに、内槽容器と外槽容器との間を実質的に真空として断熱容器を構成する場合には、上記支持部材が外部からの熱の侵入経路となる。このような熱侵入の影響を打ち消すため、超電導コイルの運転時に超電導コイルを冷却するため多大な電力が必要となる。そのため、当該支持部材を介した超電導コイルへの熱侵入を抑制することが求められていた。   When FRP is used as a material for a container for holding a superconducting coil as described above, the heat from the outside to the superconducting coil is relatively high because the fiber (for example, glass fiber or carbon fiber) constituting the FRP has a relatively high thermal conductivity. Intrusion becomes a problem. In particular, when the heat insulating container is configured by substantially vacuuming the inner tank container and the outer tank container, the support member serves as a heat intrusion path from the outside. In order to counteract the influence of such heat penetration, a great amount of electric power is required to cool the superconducting coil during operation of the superconducting coil. Therefore, it has been required to suppress heat intrusion into the superconducting coil via the support member.

そこで、上記のような課題を解決するために、超電導コイルへの熱侵入を抑制することが可能な超電導機器を提供することを目的とする。   Then, in order to solve the above subjects, it aims at providing the superconducting apparatus which can suppress the heat | fever penetration | invasion to a superconducting coil.

本発明の一態様に係る超電導機器は、超電導コイルと、内槽容器と、外槽容器と、支持部材とを備える。内槽容器は、超電導コイルを保持する。外槽容器は、内槽容器の外側に配置される。支持部材は、内槽容器を外槽容器に対して支持する。支持部材は、第1の母材中に、第1の母材より熱伝導率の低い第1の繊維が配置された第1の材料を含む。外槽容器は、第2の母材中に、第2の母材より熱伝導率の高い第2の繊維が配置された第2の材料を含む。   A superconducting device according to an aspect of the present invention includes a superconducting coil, an inner tank container, an outer tank container, and a support member. The inner tank container holds the superconducting coil. The outer tank container is disposed outside the inner tank container. The support member supports the inner tank container with respect to the outer tank container. The support member includes a first material in which first fibers having lower thermal conductivity than the first base material are arranged in the first base material. An outer tank container contains the 2nd material by which the 2nd fiber whose heat conductivity is higher than the 2nd base material is arranged in the 2nd base material.

上記によれば、支持部材を介した超電導コイルへの熱侵入を抑制することができる。   According to the above, heat penetration into the superconducting coil via the support member can be suppressed.

本実施の形態に係る超電導機器の断面を示す概略図である。It is the schematic which shows the cross section of the superconducting apparatus which concerns on this Embodiment. 本実施の形態に係る超電導機器の内槽容器および外槽容器の内部を示す概略図である。It is the schematic which shows the inside of the inner tank container and outer tank container of the superconducting apparatus which concerns on this Embodiment. 図2に示す外槽容器の外観の斜視図である。It is a perspective view of the external appearance of the outer tank container shown in FIG. 本実施の形態に係る超電導機器の内槽容器および外槽容器の概略斜視図である。It is a schematic perspective view of the inner tank container and the outer tank container of the superconducting device according to the present embodiment. 図4に示す矢印Vの方向から見た概略図である。It is the schematic seen from the direction of the arrow V shown in FIG. 図4における領域VIの部分拡大図である。It is the elements on larger scale of the area | region VI in FIG. 図1〜図6に示した超電導機器の変形例を示す部分拡大図である。It is the elements on larger scale which show the modification of the superconducting apparatus shown in FIGS. 図1〜図6に示した超電導機器の他の変形例を示す部分拡大図である。It is the elements on larger scale which show the other modification of the superconducting apparatus shown in FIGS. 図1〜図6に示した超電導機器の別の変形例を示す概略図である。It is the schematic which shows another modification of the superconducting apparatus shown in FIGS. 図1〜図6に示した超電導機器のさらに別の変形例を示す概略図である。It is the schematic which shows another modification of the superconducting apparatus shown in FIGS. 図10に示した超電導機器の部分拡大図である。It is the elements on larger scale of the superconducting apparatus shown in FIG. 図10に示した超電導機器を構成する部材の斜視模式図である。It is a perspective schematic diagram of the member which comprises the superconducting apparatus shown in FIG. 支持部材の変形例を示す斜視模式図である。It is a perspective schematic diagram which shows the modification of a supporting member.

[本発明の実施形態の説明]
最初に本発明の実施態様を列記して説明する。
[Description of Embodiment of the Present Invention]
First, embodiments of the present invention will be listed and described.

本発明の一態様に係る超電導機器100は、超電導コイル10と、内槽容器1と、外槽容器2と、支持部材3とを備える。内槽容器1は、超電導コイル10を保持する。外槽容器2は、内槽容器1の外側に配置される。支持部材3は、内槽容器1を外槽容器2に対して支持する。支持部材3は、第1の母材32中に、第1の母材32より熱伝導率の低い第1の繊維31が配置された第1の材料を含む。外槽容器2は、第2の母材中に、第2の母材より熱伝導率の高い第2の繊維が配置された第2の材料を含む。   A superconducting device 100 according to one aspect of the present invention includes a superconducting coil 10, an inner tank container 1, an outer tank container 2, and a support member 3. The inner tank container 1 holds a superconducting coil 10. The outer tank container 2 is disposed outside the inner tank container 1. The support member 3 supports the inner tank container 1 with respect to the outer tank container 2. The support member 3 includes a first material in which first fibers 31 having a lower thermal conductivity than the first base material 32 are disposed in the first base material 32. The outer tub container 2 includes a second material in which second fibers having higher thermal conductivity than the second base material are arranged in the second base material.

このようにすれば、内槽容器1と外槽容器2との間をつなぐ支持部材3を、熱伝導率を相対的に低くした第1の材料により構成するので、たとえば内槽容器1や外槽容器2と同じ材料により支持部材3を構成した場合より、支持部材3を介した内槽容器1への熱の侵入を抑制できる。このため、超電導コイル10の運転時に当該超電導コイル10を冷却するための電力消費を抑制できる。   In this case, the support member 3 that connects the inner tank container 1 and the outer tank container 2 is formed of the first material having a relatively low thermal conductivity. Compared with the case where the support member 3 is made of the same material as the tank container 2, it is possible to suppress the heat from entering the inner tank container 1 via the support member 3. For this reason, the power consumption for cooling the superconducting coil 10 during operation of the superconducting coil 10 can be suppressed.

上記超電導機器100において、第1の母材32および第2の母材を構成する材料はエポキシ樹脂であってもよく、第1の繊維31はパラ型アラミド繊維であってもよい。第2の繊維は、ガラス繊維、ポリエチレン繊維、およびポリパラフェニレンベンズオキサゾール繊維からなる群から選択される少なくとも1つであってもよい。   In the superconducting device 100, the material constituting the first base material 32 and the second base material may be an epoxy resin, and the first fiber 31 may be a para-type aramid fiber. The second fiber may be at least one selected from the group consisting of glass fiber, polyethylene fiber, and polyparaphenylene benzoxazole fiber.

この場合、パラ型アラミド繊維は十分低い熱伝導率を有しているとともに強度も十分高いため、熱伝導率が相対的に小さくまた十分な強度を有する支持部材3を得ることができる。一方、外槽容器2を構成する第2の材料として、エポキシ樹脂に上記のような繊維を配置した材料(FRP)を用いることで、支持部材3より相対的に熱伝導率が高くなり、外槽容器2における温度勾配の発生を抑制できる。このため、外槽容器2における霜付きの発生や、温度勾配に起因する熱応力の発生を抑制できる。   In this case, since the para-type aramid fiber has a sufficiently low thermal conductivity and a sufficiently high strength, the support member 3 having a relatively low thermal conductivity and sufficient strength can be obtained. On the other hand, by using a material (FRP) in which the above-described fibers are arranged in an epoxy resin as the second material constituting the outer tub container 2, the thermal conductivity becomes relatively higher than that of the support member 3, and the outer Generation | occurrence | production of the temperature gradient in the tank container 2 can be suppressed. For this reason, generation | occurrence | production of the frost in the outer tank container 2 and generation | occurrence | production of the thermal stress resulting from a temperature gradient can be suppressed.

上記超電導機器100において、支持部材3の熱伝導率は0.07W/m・K以上0.3W/m・K以下であってもよく、外槽容器2の熱伝導率は、0.35W/m・K以上54W/m・K以下であってもよい。   In the superconducting device 100, the thermal conductivity of the support member 3 may be 0.07 W / m · K or more and 0.3 W / m · K or less, and the thermal conductivity of the outer vessel 2 is 0.35 W / m. It may be m · K or more and 54 W / m · K or less.

この場合、支持部材3を介した超電導コイル10への熱侵入を十分抑制できるとともに、外槽容器2における霜付きや熱応力の発生を十分に抑制できる。   In this case, heat intrusion into the superconducting coil 10 via the support member 3 can be sufficiently suppressed, and generation of frost and thermal stress in the outer tank container 2 can be sufficiently suppressed.

上記超電導機器100では、第1の材料における第1の繊維31の含有率は、30体積%以上90体積%以下であってもよく、第2の材料における第2の繊維の含有率は、30体積%以上90体積%以下であってもよい。   In the superconducting device 100, the content of the first fiber 31 in the first material may be 30% by volume or more and 90% by volume or less, and the content of the second fiber in the second material is 30%. It may be not less than volume% and not more than 90 volume%.

この場合、支持部材3において十分低い熱導電率と十分な強度とを両立できる。また、外槽容器2においても、相対的に高い熱伝導率と十分な強度とを両立できる。   In this case, the support member 3 can have both a sufficiently low thermal conductivity and a sufficient strength. Moreover, also in the outer tank container 2, a relatively high thermal conductivity and sufficient strength can be achieved.

上記超電導機器100において、内槽容器1は内槽角部を含んでいてもよい。外槽容器2は内槽容器の内装角部と対向する位置に外槽角部を含んでいてもよい。支持部材3は、内槽角部と外槽角部との間に配置されていてもよい。   In the superconducting device 100, the inner tank container 1 may include an inner tank corner. The outer tank container 2 may include an outer tank corner at a position facing the inner corner of the inner tank container. The support member 3 may be disposed between the inner tank corner and the outer tank corner.

この場合、超電導機器100の組み立て時などにおいて、支持部材3の位置決めを容易に行うことができる。   In this case, when the superconducting device 100 is assembled, the support member 3 can be easily positioned.

上記超電導機器100では、支持部材3における第1の繊維31の延在方向は、支持部材3が内槽容器1を外槽容器2に対して支持するときに支持部材3に加えられる力の印加方向に対して交差する方向であってもよい。   In the superconducting device 100, the extending direction of the first fibers 31 in the support member 3 is such that the force applied to the support member 3 when the support member 3 supports the inner tank container 1 with respect to the outer tank container 2 is applied. The direction may intersect with the direction.

この場合、支持部材3の第1の繊維31の延在方向に交差する方向に沿って、支持部材3に応力が加えられるので、当該第1の繊維31の延在方向に沿って応力が加えられる場合より支持部材3の耐久性を高めることができる。   In this case, since stress is applied to the support member 3 along the direction intersecting the extending direction of the first fibers 31 of the support member 3, stress is applied along the extending direction of the first fibers 31. As a result, the durability of the support member 3 can be increased.

上記超電導機器100において、支持部材3は、内槽容器1の周囲を囲むように複数配置されてもよい。   In the superconducting device 100, a plurality of support members 3 may be disposed so as to surround the inner tank container 1.

この場合、外槽容器2に対して内槽容器1を安定して支持することができる。
上記超電導機器100において、内槽容器1は、外槽容器2と同じ材料により構成されていてもよい。この場合、超電導コイル10の冷却時などに内槽容器1と外槽容器2との温度変化に起因する変形量の差異が極端に大きくなることを防止できる。
In this case, the inner tank container 1 can be stably supported with respect to the outer tank container 2.
In the superconducting device 100, the inner tank container 1 may be made of the same material as the outer tank container 2. In this case, when the superconducting coil 10 is cooled, it is possible to prevent the difference in deformation caused by the temperature change between the inner tank container 1 and the outer tank container 2 from becoming extremely large.

上記超電導機器100において、内槽容器1の熱伝導率は、支持部材3の熱伝導率より高くてもよい。また、外槽容器2の熱伝導率は、支持部材3の熱伝導率より高くてもよい。この場合、内槽容器1や外槽容器2において温度分布に起因する歪や変形などの発生を抑制できる。   In the superconducting device 100, the thermal conductivity of the inner tank container 1 may be higher than the thermal conductivity of the support member 3. Further, the thermal conductivity of the outer tub container 2 may be higher than the thermal conductivity of the support member 3. In this case, the occurrence of distortion or deformation due to the temperature distribution in the inner tank container 1 or the outer tank container 2 can be suppressed.

上記超電導機器100において、支持部材3は、内槽容器1を外槽容器2に対して相対的に移動可能に支持してもよい。この場合、内槽容器1と外槽容器2とで温度変化に起因する変形が起きたときに、支持部材3と内槽容器1および外槽容器2との接触部に過大な応力が発生することを抑制できる。   In the superconducting device 100, the support member 3 may support the inner tank container 1 so as to be movable relative to the outer tank container 2. In this case, when a deformation caused by a temperature change occurs between the inner tank container 1 and the outer tank container 2, excessive stress is generated at the contact portion between the support member 3, the inner tank container 1 and the outer tank container 2. This can be suppressed.

[本発明の実施形態の詳細]
以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。
[Details of the embodiment of the present invention]
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof will not be repeated.

以下、図1〜図4を参照して、本発明の実施の形態について説明する。まず、本実施の形態に係る超電導機器の構成を説明する。図1〜図4に、本実施の形態に係る超電導機器が、超電導モータとして構成された場合を例示する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS. First, the configuration of the superconducting device according to the present embodiment will be described. 1 to 4 illustrate a case where the superconducting device according to the present embodiment is configured as a superconducting motor.

図1を参照して、本実施の形態による超電導機器100は、超電導コイルを内部に保持する内槽容器1が支持部材3を介して外槽容器2の内部に保持された構成を有する超電導モータであって、回転子であるロータ40と、ロータ40の周囲に配置された固定子であるステータ50とを備える。ロータ40は、図1の紙面に垂直な長軸方向に延びる回転軸118と、当該回転軸118と接続され、この回転軸118の周囲に配置されたロータ軸116と、ロータ軸116の外表面に等間隔で配置された4つの永久磁石120とを含む。ロータ軸116の外表面は、その断面形状が円弧状になっている。ロータ軸116の外表面の周方向において等間隔に配置された永久磁石120は、その断面形状が四角形状となっている。永久磁石120は、図1の紙面に垂直な方向に、回転軸118の延在方向に沿って伸びるように配置されている。永久磁石120としては、たとえばネオジウム系磁石、サマリウム系磁石、フェライト系磁石などを用いることができる。   Referring to FIG. 1, superconducting device 100 according to the present embodiment includes a superconducting motor having a configuration in which inner tank container 1 holding a superconducting coil is held inside outer tank container 2 via support member 3. The rotor 40 is a rotor and the stator 50 is a stator disposed around the rotor 40. The rotor 40 includes a rotating shaft 118 extending in a major axis direction perpendicular to the paper surface of FIG. 1, a rotor shaft 116 connected to the rotating shaft 118 and disposed around the rotating shaft 118, and an outer surface of the rotor shaft 116. And four permanent magnets 120 arranged at equal intervals. The outer surface of the rotor shaft 116 has an arc shape in cross section. The permanent magnets 120 arranged at equal intervals in the circumferential direction of the outer surface of the rotor shaft 116 have a quadrangular cross-sectional shape. The permanent magnet 120 is arranged so as to extend along the extending direction of the rotating shaft 118 in a direction perpendicular to the paper surface of FIG. As the permanent magnet 120, for example, a neodymium magnet, a samarium magnet, a ferrite magnet, or the like can be used.

ロータ40の周囲には、図1に示すように超電導機器100の固定子としてのステータ50が配置されている。ステータ50は、ステータヨーク121と、このステータヨーク121の内周側からロータ40に向けて突出するように形成されたステータコア123と、このステータコア123の外周を囲むように配置された超電導コイル10と、この超電導コイル10を内部に保持する冷却容器20とを含む。   Around the rotor 40, a stator 50 as a stator of the superconducting device 100 is disposed as shown in FIG. The stator 50 includes a stator yoke 121, a stator core 123 formed so as to protrude from the inner peripheral side of the stator yoke 121 toward the rotor 40, and the superconducting coil 10 disposed so as to surround the outer periphery of the stator core 123. And a cooling container 20 that holds the superconducting coil 10 therein.

ステータヨーク121は、ロータ軸116の外周を取囲むように配置されている。ステータヨーク121の内側表面はその断面形状(回転軸118の延在方向に対して垂直な平面における断面形状)が円弧状になっている。超電導コイル10はステータヨーク121の円弧状の内表面に沿うように配置されている。冷却容器20は、ステータコア123の一部が挿入された状態とできるように、超電導コイル10の中心部に位置する領域に開口部を有している。すなわち、超電導コイル10は、ステータコア123の外周を囲むように配置されている。   The stator yoke 121 is disposed so as to surround the outer periphery of the rotor shaft 116. The inner surface of the stator yoke 121 has an arcuate cross-sectional shape (cross-sectional shape in a plane perpendicular to the extending direction of the rotating shaft 118). Superconducting coil 10 is arranged along the arcuate inner surface of stator yoke 121. The cooling container 20 has an opening in a region located at the center of the superconducting coil 10 so that a part of the stator core 123 can be inserted. That is, the superconducting coil 10 is disposed so as to surround the outer periphery of the stator core 123.

冷却容器20は、冷媒117と超電導コイル10とを内部に保持する内槽容器1と、この内槽容器1の外周を囲むように配置された外槽容器2とを含む。外槽容器2と内槽容器1との間には間隙が設けられ、当該間隙の内部は実質的に真空状態になっている。つまり冷却容器20は断熱容器となっている。   The cooling container 20 includes an inner tank container 1 that holds the refrigerant 117 and the superconducting coil 10 therein, and an outer tank container 2 that is disposed so as to surround the outer periphery of the inner tank container 1. A gap is provided between the outer tank container 2 and the inner tank container 1, and the inside of the gap is substantially in a vacuum state. That is, the cooling container 20 is a heat insulating container.

異なる観点から言えば、図1を参照して、超電導機器100は、超電導コイル10を格納し、冷媒117が満たされた内槽容器1と、該内槽容器1を真空中に保持して、内槽容器1の外周囲に真空断熱層を形成する外槽容器2との二層構造を備える。内槽容器1および外槽容器2の材料としては、例えば、金属やFRPを用いてもよいが、特にFRPを用いることが好ましい。内槽容器1および外槽容器2の材料を、電気絶縁性を有するFRPとした場合には、超電導コイル10に交流電流を通電させたときにも、内槽容器1および外槽容器2に誘導電流が流れて発熱することはなく、超電導機器100の冷却効率を向上できる。   From a different point of view, referring to FIG. 1, the superconducting device 100 stores the superconducting coil 10, holds the inner tank container 1 filled with the refrigerant 117, and the inner tank container 1 in a vacuum, It has a two-layer structure with an outer tank container 2 that forms a vacuum heat insulating layer around the outer periphery of the inner tank container 1. As a material of the inner tank container 1 and the outer tank container 2, for example, metal or FRP may be used, but it is particularly preferable to use FRP. When the material of the inner tank container 1 and the outer tank container 2 is FRP having electrical insulation, it is guided to the inner tank container 1 and the outer tank container 2 even when an alternating current is applied to the superconducting coil 10. The current does not flow to generate heat, and the cooling efficiency of the superconducting device 100 can be improved.

内槽容器1は、冷媒117に浸漬させた超電導コイル10を内部に格納可能とする任意の構造を採用できるが、図1〜図3に示すように、超電導機器100が超電導モータとして構成される場合には、ステータ50を構成する超電導コイル10を格納する内槽容器1と外槽容器2とを、ステータ50内に配置することができる。該ステータ50は、ステータヨーク121と、このステータヨーク121の内周側からロータ40に向けて突出するように形成されたステータコア123とを含み、超電導コイル10は、上述のようにステータコア123の外周を囲むように配置できる。図1の超電導機器100には、6つの超電導コイル10が、6つのステータコア123の外周をそれぞれ取り囲むように配置されている。ステータコア123は内槽容器1および外槽容器2の外部に配置されている。   Although the inner tank container 1 can employ any structure that allows the superconducting coil 10 immersed in the refrigerant 117 to be stored therein, as shown in FIGS. 1 to 3, the superconducting device 100 is configured as a superconducting motor. In this case, the inner tank container 1 and the outer tank container 2 that store the superconducting coil 10 constituting the stator 50 can be arranged in the stator 50. The stator 50 includes a stator yoke 121 and a stator core 123 formed so as to protrude from the inner peripheral side of the stator yoke 121 toward the rotor 40, and the superconducting coil 10 includes the outer periphery of the stator core 123 as described above. Can be arranged to surround. In the superconducting device 100 of FIG. 1, six superconducting coils 10 are arranged so as to surround the outer circumferences of the six stator cores 123, respectively. The stator core 123 is disposed outside the inner tank container 1 and the outer tank container 2.

図2に、内槽容器1および外槽容器2の内部構造の概略図を示す。内槽容器1は、6つの超電導コイル10を格納するとともに、各超電導コイル10の中空部、かつ内槽容器1の外部にステータコア123を配置するように、構成することができる。このとき、外槽容器2は、内槽容器1と外槽容器外部とを真空断熱可能なように、構成できる。つまり、外槽容器2は内部を真空に保った状態で、内槽容器1を支持できる。これにより、外部の温度変化に対して内槽容器1内の温度制御を容易にすることができる。   In FIG. 2, the schematic of the internal structure of the inner tank container 1 and the outer tank container 2 is shown. The inner tank container 1 can be configured to store the six superconducting coils 10 and to dispose the stator core 123 outside the inner tank container 1 in the hollow portion of each superconducting coil 10. At this time, the outer tank container 2 can be configured such that the inner tank container 1 and the outside of the outer tank container can be thermally insulated by vacuum. That is, the outer tank container 2 can support the inner tank container 1 in a state where the inside is kept in a vacuum. Thereby, the temperature control in the inner tank container 1 can be facilitated with respect to an external temperature change.

内槽容器1と外槽容器2とを接続するように配置された部材としては、例えば、超電導コイル10と外槽容器2外部とを電気的に接続するための電流リード、内槽容器1と外部冷凍機との間で冷媒を循環させるための冷媒配管、内槽容器1と外槽容器2との相対的な位置を規定するための支持部材などが挙げられる。図3を参照して、たとえば外槽容器2の端部には、上記電流リードと電気的に接続された端子41や、上記冷媒配管から延びた外管67、68が配置される。   As a member arranged so as to connect the inner tank container 1 and the outer tank container 2, for example, a current lead for electrically connecting the superconducting coil 10 and the outside of the outer tank container 2, the inner tank container 1 and Examples include a refrigerant pipe for circulating the refrigerant between the external refrigerator and a support member for defining a relative position between the inner tank container 1 and the outer tank container 2. Referring to FIG. 3, for example, at an end portion of the outer tub container 2, a terminal 41 electrically connected to the current lead and outer tubes 67 and 68 extending from the refrigerant pipe are disposed.

このとき、電流リードおよび冷却配管は、内槽容器1または外槽容器2の相対的な変形を許容可能なように構成されるのが好ましい。これは、超電導機器100の運転開始時には、内槽容器1に冷媒を注入することにより内槽容器1は収縮し、超電導機器100外部の環境温度の変化によっては外槽容器2が熱膨張あるいは収縮するためである。よって、例えば、冷却配管としてはベローズ配管等のフレキシブル管を採用するのが好ましい。また、電流リードと内槽容器1または外槽容器2との接続部には変形可能な接続構造を採用することが考えられる。この場合、電流リードおよび冷却配管は内槽容器1を支持することが可能な強度および構成を有さない。   At this time, the current lead and the cooling pipe are preferably configured so as to allow relative deformation of the inner tank container 1 or the outer tank container 2. This is because at the start of operation of the superconducting device 100, the inner tank container 1 is contracted by injecting a refrigerant into the inner tank container 1, and the outer tank container 2 is thermally expanded or contracted depending on a change in the environmental temperature outside the superconducting device 100. It is to do. Therefore, for example, it is preferable to employ a flexible pipe such as a bellows pipe as the cooling pipe. Further, it is conceivable to adopt a deformable connection structure for the connecting portion between the current lead and the inner tank container 1 or the outer tank container 2. In this case, the current lead and the cooling pipe do not have the strength and the configuration capable of supporting the inner tank container 1.

その結果、支持部材は、上述のような容器の変形時にも十分な支持強度を有するのが好ましい。さらに、支持部材は超電導コイル10への外部からの熱侵入の経路にもなり得るため、できるだけ熱伝導率が低いことが好ましい。図4〜図7を参照して、本実施の形態に係る超電導機器100において、支持部材3は、円柱状の形状であって、第1の母材中に、第1の母材より熱伝導率の低い第1の繊維が配置された第1の材料により構成される。第1の繊維はパラ型アラミド繊維である。第1の母材を構成する材料は、第1の繊維より熱伝導率の高い任意の材料を用いることができるが、たとえば樹脂、特にエポキシ樹脂を用いる。支持部材3における第1の繊維の含有率は、30体積%以上90体積%以下とすることができる。当該第1の繊維の含有率の下限は、好ましくは40体積%以上、さらに好ましくは45体積%以上であり、第1の繊維の含有率の上限は、好ましくは80体積%以下、さらに好ましくは70体積%以下である。   As a result, the support member preferably has sufficient support strength even when the container is deformed as described above. Furthermore, since the support member can also be a path for heat penetration from the outside into the superconducting coil 10, it is preferable that the thermal conductivity be as low as possible. 4 to 7, in superconducting device 100 according to the present embodiment, support member 3 has a columnar shape, and conducts heat in the first base material more than the first base material. It is comprised by the 1st material by which the 1st fiber with a low rate is arranged. The first fiber is a para-aramid fiber. As the material constituting the first base material, any material having higher thermal conductivity than that of the first fiber can be used. For example, a resin, particularly an epoxy resin is used. The content rate of the 1st fiber in the supporting member 3 can be 30 volume% or more and 90 volume% or less. The lower limit of the content of the first fiber is preferably 40% by volume or more, more preferably 45% by volume or more, and the upper limit of the content of the first fiber is preferably 80% by volume or less, more preferably. 70% by volume or less.

また、上記支持部材3の熱伝導率は、0.07W/m・K以上0.3W/m・K以下となっている。さらに、支持部材3の熱伝導率は、好ましくは0.1W/m・K以上0.25W/m・K以下、より好ましくは0.15W/m・K以上0.2W/m・K以下である。このように、支持部材3をパラ型アラミド繊維を含有するFRPにより構成することで、十分な強度と共に低い熱伝導率を有する支持部材3を得ることができる。   The support member 3 has a thermal conductivity of 0.07 W / m · K or more and 0.3 W / m · K or less. Furthermore, the thermal conductivity of the support member 3 is preferably 0.1 W / m · K or more and 0.25 W / m · K or less, more preferably 0.15 W / m · K or more and 0.2 W / m · K or less. is there. Thus, the support member 3 which has low heat conductivity with sufficient intensity | strength can be obtained by comprising the support member 3 by FRP containing a para-type aramid fiber.

一方、外槽容器2は、第2の母材中に、第2の母材より熱伝導率の高い第2の繊維が配置された第2の材料により構成される。第2の繊維は、ガラス繊維、ポリエチレン繊維、およびポリパラフェニレンベンズオキサゾール繊維からなる群から選択される少なくとも1つであってもよい。第2の母材を構成する材料は、第2の繊維より熱伝導率の低い任意の材料を用いることができるが、たとえば樹脂、たとえば支持部材3と同じ樹脂であるエポキシ樹脂を用いる。すなわち、外槽容器2は第2の材料としてのFRPにより構成されてもよい。外槽容器2を構成する第2の材料における第2の繊維の含有率は、30体積%以上90体積%以下とすることができる。当該第2の繊維の含有率の下限は、好ましくは40体積%以上、さらに好ましくは45体積%以上であり、第2の繊維の含有率の上限は、好ましくは80体積%以下、さらに好ましくは70体積%以下である。また、上記外槽容器2の熱伝導率は0.35W/m・K以上54W/m・K以下である。さらに、外槽容器2の熱伝導率は、好ましくは0.5W/m・K以上35W/m・K以下である。このようにすれば、外槽容器2の熱伝導率をある程度大きくすることで、外槽容器2での霜付や熱応力の発生を抑制できる。さらに、内槽容器1についても、上記外槽容器2と同様の材料により構成されていてもよい。   On the other hand, the outer tank container 2 is composed of a second material in which second fibers having higher thermal conductivity than the second base material are arranged in the second base material. The second fiber may be at least one selected from the group consisting of glass fiber, polyethylene fiber, and polyparaphenylene benzoxazole fiber. As the material constituting the second base material, any material having a lower thermal conductivity than the second fiber can be used. For example, a resin, for example, an epoxy resin that is the same resin as the support member 3 is used. That is, the outer tank container 2 may be configured by FRP as the second material. The content rate of the 2nd fiber in the 2nd material which comprises the outer tank container 2 can be 30 volume% or more and 90 volume% or less. The lower limit of the content of the second fiber is preferably 40% by volume or more, more preferably 45% by volume or more, and the upper limit of the content of the second fiber is preferably 80% by volume or less, more preferably. 70% by volume or less. The thermal conductivity of the outer tub container 2 is 0.35 W / m · K or more and 54 W / m · K or less. Furthermore, the thermal conductivity of the outer tank container 2 is preferably 0.5 W / m · K or more and 35 W / m · K or less. If it does in this way, generation | occurrence | production of the frost and thermal stress in the outer tank container 2 can be suppressed by enlarging the thermal conductivity of the outer tank container 2 to some extent. Further, the inner tank container 1 may be made of the same material as that of the outer tank container 2.

また、支持部材3は、内槽容器1と外槽容器2とを、相対的に移動可能とするように支持することができる。具体的には、支持部材3は内槽容器1と外槽容器2とのそれぞれと摺動可能に接触した状態で配置されている。支持部材3は、その外観が実質的に円柱状である。支持部材3は、その中心軸(円柱状の支持部材3の延在方向に延びる中心軸)が、内槽容器1の重心に向かう方向に沿うように配置されている。また、支持部材3の上記中心軸が、内槽容器1および外槽容器2の摺動面(支持部材3と接触する面)と平行になるように、支持部材3は配置されている。   Further, the support member 3 can support the inner tank container 1 and the outer tank container 2 so as to be relatively movable. Specifically, the support member 3 is disposed in a slidable contact with each of the inner tank container 1 and the outer tank container 2. The external appearance of the support member 3 is substantially cylindrical. The support member 3 is arranged such that its central axis (a central axis extending in the extending direction of the columnar support member 3) is along the direction toward the center of gravity of the inner tank container 1. Further, the support member 3 is arranged so that the central axis of the support member 3 is parallel to the sliding surfaces (surfaces in contact with the support member 3) of the inner tank container 1 and the outer tank container 2.

これにより、内槽容器1に冷媒を注入して内槽容器1が熱収縮した場合や、環境温度の変化によって外槽容器2が熱膨張した場合にも、支持部材3は内槽容器1と外槽容器2とを相対的に移動可能(摺動可能)に支持することで、容器変形に伴う歪みが支持部材3に蓄積されるのを防ぐことができる。また、内槽容器1および外槽容器2と支持部材3とは固着することなく摺動可能に接触しているので、内槽容器1および外槽容器2と支持部材3とが固定されている場合のように、内槽容器1および外槽容器2と支持部材3との接続部に、上記熱収縮などに起因する応力が集中するといった問題の発生を防止できる。   Accordingly, the support member 3 is connected to the inner tank container 1 even when the inner tank container 1 is thermally contracted by injecting a refrigerant into the inner tank container 1 or when the outer tank container 2 is thermally expanded due to a change in environmental temperature. By supporting the outer tub container 2 so as to be relatively movable (slidable), it is possible to prevent the distortion accompanying the container deformation from being accumulated in the support member 3. Further, since the inner tank container 1 and the outer tank container 2 and the support member 3 are slidably in contact with each other without being fixed, the inner tank container 1 and the outer tank container 2 and the support member 3 are fixed. As in the case, it is possible to prevent the occurrence of the problem that the stress due to the heat shrinkage or the like is concentrated on the connection portion between the inner tank container 1 and the outer tank container 2 and the support member 3.

さらに、内槽容器1と外槽容器2とは、支持部材3と接触して摺動する摺動面を含み、該摺動面は内槽容器1の重心に向かって延びるように設けられるのが好ましい。例えば内槽容器1が収縮した場合に、収縮する方向は重心に向かう方向となる。このとき、内槽容器1が収縮する方向である重心に向かう方向に沿って摺動面が形成されていれば、当該摺動面に沿って内槽容器1と支持部材3(および外槽容器2)とが容易に移動できる。このように内槽容器1を支持部材3および外槽容器2に対して摺動可能とすることで、支持部材3への歪みの蓄積を効果的に抑制できる。なお、内槽容器1および外槽容器2の摺動面は、内槽容器1上および外槽容器2の表面上に直接形成されてもよいし、いずれかの容器と接続される別体の部材(たとえば図5に示した摺動面部材5)によって形成されてもよい。本発明の実施の形態においては、別体の部材によって形成された摺動面も、その別体の部材が内槽容器1に接続していれば、「内槽容器1の摺動面」と呼び、外槽容器2に接続していれば、「外槽容器2の摺動面」と呼ぶ。   Furthermore, the inner tank container 1 and the outer tank container 2 include a sliding surface that slides in contact with the support member 3, and the sliding surface is provided to extend toward the center of gravity of the inner tank container 1. Is preferred. For example, when the inner tank container 1 contracts, the contracting direction is a direction toward the center of gravity. At this time, if the sliding surface is formed along the direction toward the center of gravity, which is the direction in which the inner tank container 1 contracts, the inner tank container 1 and the support member 3 (and the outer tank container) along the sliding surface. 2) can be moved easily. As described above, by allowing the inner tank container 1 to be slidable with respect to the support member 3 and the outer tank container 2, accumulation of strain on the support member 3 can be effectively suppressed. In addition, the sliding surface of the inner tank container 1 and the outer tank container 2 may be directly formed on the inner tank container 1 and the surface of the outer tank container 2, or a separate body connected to one of the containers. It may be formed by a member (for example, the sliding surface member 5 shown in FIG. 5). In the embodiment of the present invention, the sliding surface formed by a separate member is also referred to as “the sliding surface of the inner tank container 1” if the separate member is connected to the inner tank container 1. If it is connected to the outer tank container 2, it is referred to as “the sliding surface of the outer tank container 2”.

また、上記支持部材3は、内槽容器1および外槽容器2のそれぞれの摺動面を挟んで内槽容器1の角部(内槽角部)と外槽容器2の角部(外槽角部)とが対向する位置に設けることができる。つまり、上記摺動面は、内槽容器1の重心に向かって延びるように、かつ、内槽容器1と外槽容器2との対向する角部に設けることができる。これにより、摺動面が内槽容器1および外槽容器2の角部以外に設けられた場合よりも、構造および組立方法を簡易にすることができる。このとき、上記のように摺動面を構成できる位置は、図1〜図5に示すような構造の内槽容器1および外槽容器2を用いる場合には、2箇所存在する。   The support member 3 includes a corner (inner tank corner) of the inner tank container 1 and a corner (outer tank) of the outer tank container 2 across the sliding surfaces of the inner tank container 1 and the outer tank container 2. (Corner) can be provided at a position facing the corner. That is, the sliding surface can be provided so as to extend toward the center of gravity of the inner tank container 1 and at the opposite corners of the inner tank container 1 and the outer tank container 2. Thereby, a structure and an assembly method can be simplified rather than the case where a sliding surface is provided except for the corner | angular part of the inner tank container 1 and the outer tank container 2. FIG. At this time, there are two positions where the sliding surface can be configured as described above when the inner tank container 1 and the outer tank container 2 having the structure shown in FIGS. 1 to 5 are used.

すなわち、上記摺動面を配置できる位置の一つは、図4および図5を参照して、外槽容器2の端面65、66と、外槽容器2の内周側側壁との接合部である角部であり、もう一つは、図8および図9を参照して、外槽容器2の外周筺体64と、ステータコア123(図1参照)を配置するための開口部の側壁71との接合部である角部である。   That is, one of the positions where the sliding surface can be arranged is a joint portion between the end surfaces 65 and 66 of the outer tank container 2 and the inner peripheral side wall of the outer tank container 2 with reference to FIGS. 4 and 5. 8 and FIG. 9, the other is an outer casing 64 of the outer tub container 2 and a side wall 71 of the opening for arranging the stator core 123 (see FIG. 1). It is a corner which is a junction.

支持部材3と摺動面とを、図4および図5の構成としたときの、支持部材3の組立方法は、例えば次の方法を採ることができる。まず、内槽容器1と、内槽容器1の外周囲に真空断熱領域を有するように構成され、組み立てられた外槽容器2とを準備する。このとき、外槽容器2の両端面65,66は封止されていない状態である。次に、内槽容器1と外槽容器2とを、外槽容器2の一方の端面を底面として直立させ、頂面となった側の内槽容器1の内周角部に支持部材3を配置する。次に、支持部材3を挟んで、内槽容器1の摺動面と対向する外槽容器2の摺動面を形成するように、摺動面部材5を配置する。摺動面部材5を配置した後、端面(たとえば端面65または端面66)を封止する。このとき、支持部材3は、内槽容器1の摺動面または外槽容器2の摺動面の一方と固着してもよい。さらに、他方の端面に対しても同様の方法で支持部材3を組み立てることができる。   As the method of assembling the support member 3 when the support member 3 and the sliding surface are configured as shown in FIGS. 4 and 5, for example, the following method can be adopted. First, an inner tank container 1 and an assembled outer tank container 2 configured to have a vacuum heat insulation region around the outer periphery of the inner tank container 1 are prepared. At this time, both end surfaces 65 and 66 of the outer tub container 2 are not sealed. Next, the inner tank container 1 and the outer tank container 2 are erected with one end face of the outer tank container 2 as a bottom surface, and the support member 3 is attached to the inner peripheral corner of the inner tank container 1 on the top surface side. Deploy. Next, the sliding surface member 5 is disposed so as to form a sliding surface of the outer tank container 2 facing the sliding surface of the inner tank container 1 with the support member 3 interposed therebetween. After the sliding surface member 5 is disposed, the end surface (for example, the end surface 65 or the end surface 66) is sealed. At this time, the support member 3 may be fixed to one of the sliding surface of the inner tank container 1 or the sliding surface of the outer tank container 2. Further, the support member 3 can be assembled with the other end surface in the same manner.

一方、支持部材3と摺動面とを、図8および図9の構成としたときの、支持部材3の組立方法は、例えば次の方法を採ることができる。まず、内槽容器1と、内槽容器1の外周囲に真空断熱領域を有するように構成され、組み立てられた外槽容器2とを準備する。このとき、外槽容器2の外周筺体64は封止されていない状態である。次に、内槽容器1と外槽容器2とを外槽容器2の一方の端面を底面として直立させ、外槽容器2の外周筺体64側でかつ超電導機器100の重心側角部(外周筺体64と側壁71との接合部である角部)に摺動面部材5を配置する。摺動面部材5は内槽容器1の摺動面と対向する外槽容器2の摺動面を形成する。例えば、組み合わせることで円環状となる半円状の2つの摺動面部材5を用いることができる。次に、内槽容器1の摺動面と、摺動面部材5の摺動面との間に、支持部材3を配置する。支持部材3を配置した後、外槽容器2の外周筺体64を封止する。このときも、支持部材3は、内槽容器1の摺動面または外槽容器2の摺動面の一方と固着してもよい。さらに、他方の端面に対しても同様の方法で支持部材3を組み立てることができる。   On the other hand, when the support member 3 and the sliding surface are configured as shown in FIGS. 8 and 9, for example, the following method can be used for assembling the support member 3. First, an inner tank container 1 and an assembled outer tank container 2 configured to have a vacuum heat insulation region around the outer periphery of the inner tank container 1 are prepared. At this time, the outer casing 64 of the outer tank container 2 is not sealed. Next, the inner tank container 1 and the outer tank container 2 are made upright with one end face of the outer tank container 2 as a bottom surface, and the outer peripheral casing 64 side of the outer tank container 2 and the center of gravity side corner (outer peripheral casing) of the superconducting device 100 The sliding surface member 5 is disposed at a corner portion which is a joint portion between the side wall 71 and the side wall 71. The sliding surface member 5 forms a sliding surface of the outer tank container 2 that faces the sliding surface of the inner tank container 1. For example, it is possible to use two semicircular sliding surface members 5 that form an annular shape when combined. Next, the support member 3 is disposed between the sliding surface of the inner tank container 1 and the sliding surface of the sliding surface member 5. After the support member 3 is arranged, the outer peripheral casing 64 of the outer tank container 2 is sealed. Also at this time, the support member 3 may be fixed to one of the sliding surface of the inner tank container 1 or the sliding surface of the outer tank container 2. Further, the support member 3 can be assembled with the other end surface in the same manner.

なお、摺動面部材5の材料としては、任意の材料を採用できるが、好ましくは、外槽容器2と熱膨張係数が同等な材料とする。これにより、上述のような容器の熱収縮または熱膨張が起きた際に、外槽容器2と摺動面部材5との界面での応力発生を抑制することができる。   In addition, although arbitrary materials can be employ | adopted as a material of the sliding surface member 5, Preferably, it is set as the material whose thermal expansion coefficient is equivalent to the outer tank container 2. FIG. Thereby, when thermal contraction or thermal expansion of the container as described above occurs, it is possible to suppress the generation of stress at the interface between the outer tank container 2 and the sliding surface member 5.

支持部材3は、好ましくは、上述のように円柱状の形状を有する。この場合、円柱の軸方向は、すでに述べたように上記摺動面と並行に、かつ、超電導機器100の重心に向かう方向に向くよう設けられることが好ましい。また、図7を参照して、支持部材3は、球状の形状を有してもよい。これにより、支持部材3と、内槽容器1および外槽容器2との接触面積を小さく抑え、支持部材3を介して外槽容器2から内槽容器1への熱侵入を抑制することができる。   The support member 3 preferably has a cylindrical shape as described above. In this case, it is preferable that the axial direction of the cylinder is provided in parallel with the sliding surface as described above and in a direction toward the center of gravity of the superconducting device 100. Referring to FIG. 7, support member 3 may have a spherical shape. Thereby, the contact area between the support member 3 and the inner tank container 1 and the outer tank container 2 can be suppressed to be small, and heat intrusion from the outer tank container 2 to the inner tank container 1 can be suppressed via the support member 3. .

さらに、図6および図7を参照して、上記摺動面は、支持部材3を保持する凹部4を有してもよい。凹部4は、内槽容器1の摺動面および外槽容器2の摺動面の少なくとも一方に設けてもよい。凹部4は、支持部材3の形状に合わせて、内槽容器1の重心方向への内槽容器1と外槽容器2との相対的な摺動を妨げず、かつ、摺動可能な方向に対し垂直方向には支持部材3が移動できないように設けることができる。特に、本実施の形態のように、超電導機器100としての超電導モータに本発明の一態様に係る超電導機器を適用したときには内槽容器1にトルクがかかるが、凹部4を設けることにより、ロータ軸116の回転方向への、外槽容器2に対する内槽容器1の相対的位置ずれを抑制できる。   Furthermore, referring to FIGS. 6 and 7, the sliding surface may have a recess 4 that holds the support member 3. The recess 4 may be provided on at least one of the sliding surface of the inner tank container 1 and the sliding surface of the outer tank container 2. In accordance with the shape of the support member 3, the recess 4 does not prevent relative sliding of the inner tank container 1 and the outer tank container 2 in the direction of the center of gravity of the inner tank container 1, and in a slidable direction. On the other hand, the support member 3 can be provided so as not to move in the vertical direction. In particular, when the superconducting device according to one aspect of the present invention is applied to the superconducting motor as the superconducting device 100 as in the present embodiment, torque is applied to the inner vessel 1, but by providing the recess 4, the rotor shaft The relative positional shift of the inner tank container 1 with respect to the outer tank container 2 in the rotation direction of 116 can be suppressed.

さらに、図10〜図12に示すように、内槽容器1の周囲を環状に囲むように複数の支持部材3を配置するため、環状のリング部材15を外槽容器2の角部に配置してもよい。当該リング部材15の内周側には、間隔を隔てて複数の凸部16が形成されている。当該凸部16の表面上にそれぞれ摺動面部材5が配置されている。摺動面部材5上には支持部材3がそれぞれ配置されている。支持部材3は摺動面部材5と接触する側とは反対側において内槽容器1の摺動面と接触している。このようなリング部材15を用いることで、支持部材3の組み付けを容易に行うことができる。また、組み付けを容易にするという観点から、摺動面部材5と支持部材3とを接着部材などにより接合しておいてもよい。また、図1〜図9に示した超電導機器においても、支持部材3を内槽容器1側の摺動面または外槽容器2側の摺動面の少なくともいずれかと接合しておいてもよい。   Further, as shown in FIGS. 10 to 12, an annular ring member 15 is arranged at the corner of the outer tank container 2 in order to arrange the plurality of support members 3 so as to surround the inner tank container 1 in an annular shape. May be. A plurality of convex portions 16 are formed on the inner peripheral side of the ring member 15 at intervals. The sliding surface member 5 is arranged on the surface of the convex portion 16. Support members 3 are respectively disposed on the sliding surface member 5. The support member 3 is in contact with the sliding surface of the inner tank container 1 on the side opposite to the side in contact with the sliding surface member 5. By using such a ring member 15, the support member 3 can be easily assembled. Further, from the viewpoint of facilitating the assembly, the sliding surface member 5 and the support member 3 may be joined by an adhesive member or the like. 1 to 9, the support member 3 may be joined to at least one of the sliding surface on the inner tank container 1 side or the sliding surface on the outer tank container 2 side.

また、図11に示すように、支持部材3においては、第1の母材32中に配置された第1の繊維31(パラ型アラミド繊維)の延在方向は、支持部材3が内槽容器1を外槽容器2に対して支持するときに支持部材3に加えられる力の印加方向に対して交差する方向(すなわち、内槽容器1の摺動面から外槽容器2の摺動面に向かう方向に対して交差する方向)であることが好ましい。ここでは、たとえば第1の繊維31は支持部材3の中心軸の周りを周回するように同心円状に配置されていてもよい。このようにすれば、第1の繊維31の表面に交差する方向に圧縮応力が加えられることになり、第1の繊維31の延在方向に沿った方向から圧縮応力を加えられる場合より支持部材3の耐久性を高めることができる。   Moreover, as shown in FIG. 11, in the supporting member 3, the extending direction of the 1st fiber 31 (para-type aramid fiber) arrange | positioned in the 1st preform | base_material 32 is as follows. A direction that intersects the direction in which the force applied to the support member 3 is applied when 1 is supported with respect to the outer tank container 2 (that is, from the sliding surface of the inner tank container 1 to the sliding surface of the outer tank container 2). It is preferable that the direction intersects with the direction toward. Here, for example, the first fibers 31 may be arranged concentrically so as to go around the central axis of the support member 3. If it does in this way, compressive stress will be applied to the direction which cross | intersects the surface of the 1st fiber 31, and it will be a support member rather than the case where compressive stress is applied from the direction along the extension direction of the 1st fiber 31. 3 durability can be improved.

また、支持部材3としては、上述のように円筒状や球状などの形状であってもよいが、図13に示すように直方体状の形状であってもよい。この場合、支持部材3の第1の表面33が外槽容器2の摺動面に接触し、第2の表面34が内槽容器1の摺動面に接触するように、支持部材3を配置することができる。当該第1の表面33または第2の表面34は、外槽容器2または内槽容器1の摺動面に接合されていてもよい。また、このような第1の表面33および第2の表面34が形成されていれば、支持部材3における他の部分の表面は平面ではなく曲面状であってもよい。支持部材3の形状は、上記のような円筒状、球状、直方体状など、任意の形状とすることができる。また、図13に示した支持部材3においては、第1の表面33に沿った方向に延びるように(層状に)第1の繊維が配置されていてもよい。   The support member 3 may have a cylindrical shape or a spherical shape as described above, but may have a rectangular parallelepiped shape as shown in FIG. In this case, the support member 3 is arranged so that the first surface 33 of the support member 3 is in contact with the sliding surface of the outer tank container 2 and the second surface 34 is in contact with the sliding surface of the inner tank container 1. can do. The first surface 33 or the second surface 34 may be joined to the sliding surface of the outer tank container 2 or the inner tank container 1. Further, as long as the first surface 33 and the second surface 34 are formed, the surface of the other part of the support member 3 may be a curved surface instead of a flat surface. The shape of the support member 3 can be any shape such as a cylindrical shape, a spherical shape, or a rectangular parallelepiped shape as described above. Moreover, in the supporting member 3 shown in FIG. 13, the 1st fiber may be arrange | positioned so that it may extend in the direction along the 1st surface 33 (in layer form).

また、支持部材3の第1の母材はエポキシ以外の樹脂、例えばPEEK(ポリエーテルエーテルケトン)、PPS(ポリフェニレンサルファイド)、66ナイロン等の熱可塑性樹脂を用いてもよい。その場合は射出成形による成形を用いて支持部材3を作製しても良く、第1の繊維はフィラー状のパラ型アラミド短繊維であってもよい。外槽容器2の第2の母材はエポキシ以外の樹脂、例えばPEEK、PPS、66ナイロン等の熱可塑性樹脂を用いてもよい。その場合は射出成形による成形を用いて外槽容器2を作製しても良く、第2の繊維はフィラー状のガラス短繊維、ポリエチレン短繊維、およびポリパラフェニレンベンズオキサゾール短繊維であっても良い。   The first base material of the support member 3 may be a resin other than epoxy, for example, a thermoplastic resin such as PEEK (polyether ether ketone), PPS (polyphenylene sulfide), 66 nylon, or the like. In that case, the support member 3 may be produced by molding by injection molding, and the first fiber may be a filler-like para-aramid short fiber. The second base material of the outer tub container 2 may be a resin other than epoxy, for example, a thermoplastic resin such as PEEK, PPS, 66 nylon. In that case, the outer tub container 2 may be produced by molding by injection molding, and the second fibers may be filler-like glass short fibers, polyethylene short fibers, and polyparaphenylene benzoxazole short fibers. .

以上のように、本実施の形態に係る超電導機器は、内槽容器1を外槽容器2に対して支持する支持部材3を構成する材料として、外槽容器2を構成する材料より低い熱伝導率を有する材料(具体的にはパラ型アラミド繊維を含有するFRP)を用いているので、内槽容器1と外槽容器2との相対的な位置を保持するのに十分な強度の支持部材3を得られるとともに、外槽容器2から支持部材3を介して内槽容器1側への熱の侵入を効果的に抑制できる。   As described above, the superconducting device according to the present embodiment has a lower thermal conductivity than the material constituting the outer tank container 2 as the material constituting the support member 3 that supports the inner tank container 1 with respect to the outer tank container 2. Since the material (specifically FRP containing para-type aramid fiber) is used, a supporting member having sufficient strength to hold the relative position between the inner tank container 1 and the outer tank container 2 3 and the penetration of heat from the outer tank container 2 to the inner tank container 1 side through the support member 3 can be effectively suppressed.

また、上述した超電導機器では、内槽容器1と外槽容器2とを摺動可能に支持する支持部材を備えることにより、支持部材の変形を抑制し、支持部材の強度低下を抑制できる。さらに、内槽容器1と外槽容器2の摺動面は、内槽容器1の重心方向に延びているため、熱変形に起因して支持部材や内槽容器1、外槽容器2などに応力が加えられることを抑制できる。   Moreover, in the superconducting apparatus mentioned above, by providing the support member which supports the inner tank container 1 and the outer tank container 2 so that sliding is possible, a deformation | transformation of a support member can be suppressed and the strength reduction of a support member can be suppressed. Furthermore, the sliding surfaces of the inner tank container 1 and the outer tank container 2 extend in the direction of the center of gravity of the inner tank container 1, so that the support member, the inner tank container 1, the outer tank container 2, etc. Application of stress can be suppressed.

今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time is to be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above-described embodiment but by the scope of claims, and is intended to include meanings equivalent to the scope of claims and all modifications within the scope.

本発明の超電導機器は、たとえば超電導モータに、特に有利に適用される。   The superconducting device of the present invention is particularly advantageously applied to, for example, a superconducting motor.

1 内槽容器
2 外槽容器
3 支持部材
4 凹部
5 摺動面部材
10 超電導コイル
15 リング部材
16 凸部
20 冷却容器
31 第1の繊維
32 第1の母材
40 ロータ
50 ステータ
64 外周筺体
65,66 端面
67,68 外管
71 側面
116 ロータ軸
117 冷媒
118 回転軸
120 永久磁石
121 ステータヨーク
123 ステータコア
DESCRIPTION OF SYMBOLS 1 Inner tank container 2 Outer tank container 3 Support member 4 Concave part 5 Sliding surface member 10 Superconducting coil 15 Ring member 16 Convex part 20 Cooling container 31 First fiber 32 First base material 40 Rotor 50 Stator 64 Outer casing 65, 66 End surfaces 67, 68 Outer pipe 71 Side surface 116 Rotor shaft 117 Refrigerant 118 Rotating shaft 120 Permanent magnet 121 Stator yoke 123 Stator core

Claims (7)

超電導コイルと、
前記超電導コイルを保持する内槽容器と、
前記内槽容器の外側に配置された外槽容器と、
前記内槽容器を前記外槽容器に対して支持する支持部材とを備え、
前記支持部材は、第1の母材中に、前記第1の母材より熱伝導率の低い第1の繊維が配置された第1の材料を含み、
前記外槽容器は、第2の母材中に、前記第2の母材より熱伝導率の高い第2の繊維が配置された第2の材料を含む、超電導機器。
A superconducting coil;
An inner vessel holding the superconducting coil;
An outer tank container disposed outside the inner tank container;
A support member for supporting the inner tank container with respect to the outer tank container,
The support member includes a first material in which a first fiber having a thermal conductivity lower than that of the first base material is disposed in the first base material,
The outer tub container is a superconducting device including a second material in which a second fiber having higher thermal conductivity than the second base material is disposed in a second base material.
前記第1の母材および前記第2の母材を構成する材料はエポキシ樹脂であり、
前記第1の繊維はパラ型アラミド繊維であり、
前記第2の繊維は、ガラス繊維、ポリエチレン繊維、およびポリパラフェニレンベンズオキサゾール繊維からなる群から選択される少なくとも1つである、請求項1に記載の超電導機器。
The material constituting the first base material and the second base material is an epoxy resin,
The first fiber is a para-aramid fiber,
2. The superconducting device according to claim 1, wherein the second fiber is at least one selected from the group consisting of glass fiber, polyethylene fiber, and polyparaphenylene benzoxazole fiber.
前記支持部材の熱伝導率は0.07W/m・K以上0.3W/m・K以下であり、
前記外槽容器の熱伝導率は、0.35W/m・K以上54W/m・K以下である、請求項1または請求項2に記載の超電導機器。
The support member has a thermal conductivity of 0.07 W / m · K to 0.3 W / m · K,
The superconducting device according to claim 1 or 2, wherein the outer tank container has a thermal conductivity of 0.35 W / m · K or more and 54 W / m · K or less.
前記第1の材料における前記第1の繊維の含有率は、30体積%以上90体積%以下であり、
前記第2の材料における前記第2の繊維の含有率は、30体積%以上90体積%以下である、請求項1〜請求項3のいずれか1項に記載の超電導機器。
The content of the first fiber in the first material is 30% by volume or more and 90% by volume or less,
The content rate of the said 2nd fiber in a said 2nd material is a superconducting apparatus of any one of Claims 1-3 which are 30 volume% or more and 90 volume% or less.
前記内槽容器は内槽角部を含み、
前記外槽容器は前記内槽容器の前記内槽角部と対向する位置に外槽角部を含み、
前記支持部材は、前記内槽角部と前記外槽角部との間に配置されている、請求項1〜請求項4のいずれか1項に記載の超電導機器。
The inner tank container includes an inner tank corner,
The outer tank container includes an outer tank corner at a position facing the inner tank corner of the inner tank container,
The superconducting device according to any one of claims 1 to 4, wherein the support member is disposed between the inner tank corner and the outer tank corner.
前記支持部材における前記第1の繊維の延在方向は、前記支持部材が前記内槽容器を前記外槽容器に対して支持するときに前記支持部材に加えられる力の印加方向に対して交差する方向である、請求項1〜請求項5のいずれか1項に記載の超電導機器。   The extending direction of the first fibers in the support member intersects the direction in which the force applied to the support member is applied when the support member supports the inner tank container with respect to the outer tank container. The superconducting device according to any one of claims 1 to 5, which is a direction. 前記支持部材は、前記内槽容器の周囲を囲むように複数配置されている、請求項1〜請求項6のいずれか1項に記載の超電導機器。   The superconducting apparatus according to any one of claims 1 to 6, wherein a plurality of the support members are arranged so as to surround the inner tank container.
JP2015026267A 2015-02-13 2015-02-13 Superconducting apparatus Pending JP2016149485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015026267A JP2016149485A (en) 2015-02-13 2015-02-13 Superconducting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015026267A JP2016149485A (en) 2015-02-13 2015-02-13 Superconducting apparatus

Publications (1)

Publication Number Publication Date
JP2016149485A true JP2016149485A (en) 2016-08-18

Family

ID=56691306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015026267A Pending JP2016149485A (en) 2015-02-13 2015-02-13 Superconducting apparatus

Country Status (1)

Country Link
JP (1) JP2016149485A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101913011B1 (en) 2016-12-19 2018-10-29 창원대학교 산학협력단 Flexible support apparatus for superconducting magnet in superconducting rotating machine
RU2735953C1 (en) * 2020-05-15 2020-11-11 Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ Method for cryostatting of superconducting windings of a brushless dc motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101913011B1 (en) 2016-12-19 2018-10-29 창원대학교 산학협력단 Flexible support apparatus for superconducting magnet in superconducting rotating machine
RU2735953C1 (en) * 2020-05-15 2020-11-11 Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ Method for cryostatting of superconducting windings of a brushless dc motor

Similar Documents

Publication Publication Date Title
JP5062263B2 (en) Superconducting coil device, superconducting device, and method of manufacturing superconducting coil device
US10454325B2 (en) Axial air gap rotating electric machine and rotating electric machine bobbin
CN101310431B (en) Primary part of a linear motor and linear motor therewith
CN109565206A (en) Rotating electric machine
JP2012143040A (en) Superconducting motor
CN109983665A (en) Motor
JP2016149485A (en) Superconducting apparatus
JP6249905B2 (en) Cryogenic liquid pump
JP5646476B2 (en) Actuator
JP5606049B2 (en) Linear synchronous motor
JP2009254025A (en) Cylindrical linear motor and its manufacturing method
JP2013222928A (en) Superconducting apparatus
JP2018113749A (en) Energy Converter
JP2015505662A (en) Molded segments of energy conversion systems and the manufacture of such segments
JP2020080628A (en) Rotary machine
JP5375039B2 (en) Direct acting generator
KR101497825B1 (en) Super conducting electric power generation system
JP5598320B2 (en) Superconducting equipment
JP5337179B2 (en) Superconducting device
JP2013507753A (en) Method and apparatus for electrical, mechanical and thermal isolation of superconducting magnets
JP2009170724A (en) Cooling vessel of superconductive coil
JP5516665B2 (en) Superconducting coil device, superconducting device, and method of manufacturing superconducting coil device
JP6498921B2 (en) Superconducting coil module and rotating device
JP2018195736A (en) Superconducting coil, superconducting magnet and superconducting equipment
JP7437579B2 (en) Field coil support structure and modular field coil design in superconducting machines