JP2016148347A - Heat insulation structure - Google Patents

Heat insulation structure Download PDF

Info

Publication number
JP2016148347A
JP2016148347A JP2015023774A JP2015023774A JP2016148347A JP 2016148347 A JP2016148347 A JP 2016148347A JP 2015023774 A JP2015023774 A JP 2015023774A JP 2015023774 A JP2015023774 A JP 2015023774A JP 2016148347 A JP2016148347 A JP 2016148347A
Authority
JP
Japan
Prior art keywords
layer
heat insulating
biosoluble
insulating material
antioxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015023774A
Other languages
Japanese (ja)
Other versions
JP6523701B2 (en
Inventor
裕敬 伊東
Hirotaka Ito
裕敬 伊東
由宗 山岡
Yoshimune Yamaoka
由宗 山岡
立川 孝一
Koichi Tachikawa
孝一 立川
良之 近藤
Yoshiyuki Kondo
良之 近藤
譲二 栗栖
Joji Kurisu
譲二 栗栖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2015023774A priority Critical patent/JP6523701B2/en
Publication of JP2016148347A publication Critical patent/JP2016148347A/en
Application granted granted Critical
Publication of JP6523701B2 publication Critical patent/JP6523701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Inorganic Fibers (AREA)
  • Thermal Insulation (AREA)
  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress significant deterioration or dissipation of a bio-soluble heat insulation material due to reaction with a refractory material in a high temperature area having about 1400°C or more, in a heat insulation structure containing a bio-soluble heat insulation material.SOLUTION: In a heat insulation structure, between a bio-soluble heat insulation material layer 5 and another refractory material structure 8, provided is a layer 6 for suppressing reaction with the bio-soluble heat insulation material and the other refractory material structure. The bio-soluble heat insulation material layer 5 is a layer in which bio-soluble fibrous objects are aggregated. A liquid phase ratio at 1400°C of a composition in which the bio-soluble heat insulation material and the reaction suppression layer are mixed is 22 mass% or less.SELECTED DRAWING: Figure 5

Description

本発明は、生体溶解性断熱材を含む断熱構造体、特に鋼の連続鋳造用ノズルに好適に適用される断熱構造体に関する。   The present invention relates to a heat insulating structure including a biosoluble heat insulating material, and more particularly to a heat insulating structure suitably applied to a steel continuous casting nozzle.

高温度での操業を伴う産業においては、省エネルギー、労働環境改善等の多くの目的から、断熱材の使用は不可欠である。このような目的・用途の断熱材としては、かつてはアスベストや無機系の繊維を主体とするシート状又はブランケット状の断熱材が主流であったが、人体への有害性が明らかになり、人体への有害性が低い生体溶解性を備えた断熱材が主流になりつつある。   In industries involving high temperature operation, the use of heat insulating materials is indispensable for many purposes such as energy saving and work environment improvement. In the past, as a heat insulating material for such purposes and applications, a sheet-like or blanket-like heat insulating material mainly composed of asbestos and inorganic fibers has been mainly used. Insulating materials with biosolubility that are less harmful to water are becoming mainstream.

例えば特許文献1には、生体溶解性と断熱性の両立を目的として、75〜80重量%のSiO、10〜14重量%のCaO、4〜9重量%のMgO、0.1〜2重量%のZrO、0.5〜1.5重量%のAl、及び0.1〜1.5重量%のBを含有してなる、高温断熱材用の生体溶解性セラミック繊維が提案されている。 For example, Patent Document 1 discloses that 75 to 80% by weight of SiO 2 , 10 to 14% by weight of CaO, 4 to 9% by weight of MgO, 0.1 to 2 % by weight for the purpose of achieving both biosolubility and heat insulation. % of ZrO 2, comprising 0.5 to 1.5 wt% Al 2 O 3, and 0.1 to 1.5 wt% B 2 O 3, a ceramic biosoluble for high temperature insulation material Fiber has been proposed.

このように生体溶解性断熱材は、繊維質の断熱材の生体溶解性を高める等を目的に、アルカリ金属酸化物、アルカリ土類金属酸化物等のガラス化修飾材を多量に含んだ、SiO、B系のガラス組成物を主体とすることが多い。また近年では、アルカリ金属酸化物含有量の高いガラス繊維は生体溶解性が高く、最高の生体安全性を持っている、とも謂われている。ただし、このような組成の繊維は融点が低く、用途が限定的であることから、例えば1400℃以上の高温度にも耐え得る生体溶解性断熱材の開発が進められてきた。 Thus, the biosoluble heat insulating material contains a large amount of a vitrification modifier such as an alkali metal oxide or an alkaline earth metal oxide for the purpose of enhancing the biosolubility of the fibrous heat insulating material. 2 and B 2 O 3 -based glass compositions are mainly used. In recent years, glass fibers having a high alkali metal oxide content are said to be highly biosoluble and have the highest biosafety. However, since the fiber having such a composition has a low melting point and its application is limited, development of a biosoluble heat insulating material that can withstand a high temperature of, for example, 1400 ° C. or more has been promoted.

例えば特許文献2には、生体溶解性ファイバのみを含む断熱材を1400℃以上で使用する際に繊維の一部が溶融し、著しく収縮して耐熱性がなくなることを防止するため、生体溶解性ファイバとアルミナファイバを含む断熱材、又はこれらファイバに加えてさらにジルコニア粉末、クロミア粉末及びアルミナ粉末等の無機粒子を含む断熱材が提案されている。   For example, Patent Document 2 discloses that when using a heat insulating material containing only a biosoluble fiber at a temperature of 1400 ° C. or higher, a part of the fiber is melted and significantly contracted to prevent the heat resistance from being lost. A heat insulating material including fibers and alumina fibers, or a heat insulating material including inorganic particles such as zirconia powder, chromia powder, and alumina powder in addition to these fibers has been proposed.

また、特許文献3には、生体溶解性無機繊維を含み、高温での繊維と発熱体の反応が抑制された支持体を備えた加熱装置を提供するために、発熱体と、この発熱体を保持する生体溶解性無機繊維を含む支持体とを備え、前記生体溶解性無機繊維が前記発熱体と直接接触しないか又は前記生体溶解性無機繊維と前記発熱体との接触が低減された加熱装置が提案されている。さらに同文献には、前記生体溶解性無機繊維として、SiOが50〜82重量%、CaOとMgOとの合計が10〜43重量%、若しくはSiOとZrOとAlとTiOとの合計が50〜82重量%、アルカリ金属酸化物とアルカリ土類金属酸化物との合計が18〜50重量%の生体溶解性無機繊維が提案されている。 Patent Document 3 discloses a heating device including a heating element and a heating element including a biologically soluble inorganic fiber, and a heating device including a support in which reaction between the fiber and the heating element at a high temperature is suppressed. And a support including a biosoluble inorganic fiber to be held, wherein the biosoluble inorganic fiber is not in direct contact with the heating element, or the contact between the biosoluble inorganic fiber and the heating element is reduced. Has been proposed. Further, in the same document, as the biosoluble inorganic fiber, 50 to 82% by weight of SiO 2 and 10 to 43% by weight of the total of CaO and MgO, or SiO 2 , ZrO 2 , Al 2 O 3 and TiO 2 are used. Bio-soluble inorganic fibers are proposed in which the total of the total of 50 to 82% by weight and the total of the alkali metal oxide and the alkaline earth metal oxide is 18 to 50% by weight.

ところで、鋼の連続鋳造操業においては、取鍋からタンディッシュ、タンディッシュから鋳型に溶鋼を移動する際等に、溶鋼の通過経路となるノズルや保護管(以下、これら連続鋳造用のノズルや保護管を総称して「ノズル等」という。)が使用される。そして、これらノズル等の外周には断熱材が設置される。   By the way, in the continuous casting operation of steel, when moving the molten steel from the ladle to the tundish and from the tundish to the mold, etc., a nozzle and a protective tube (hereinafter referred to as the nozzle for continuous casting and the protection) Tubes are collectively referred to as “nozzles”). And a heat insulating material is installed in the outer periphery of these nozzles.

ノズル等は、鋳造初期の熱衝撃による破壊を防止するため、鋳造に供される直前に、約900℃〜約1450℃程度の温度になるまで予熱される。しかし、予熱後鋳造までの間に加熱を停止した状態で大気中に曝されるため、温度が降下する。また、例えばタンディッシュや取鍋等の溶鋼容器1杯分の溶鋼の鋳造が終了して、次の新たな溶鋼容器中の溶鋼を連続して鋳造する際にも、ノズル等内を溶鋼が通過しない切り替え等の間にノズル等の温度降下が生じる。したがって、ノズル等の外周に断熱材を設置する第一の目的は、これら予熱後又は鋳造と鋳造との間のノズルの温度降下を抑制することにある。   The nozzle or the like is preheated to a temperature of about 900 ° C. to about 1450 ° C. immediately before being used for casting in order to prevent breakage due to thermal shock at the initial casting. However, since it is exposed to the atmosphere in a state where heating is stopped before casting after casting, the temperature drops. Also, for example, when the casting of molten steel for one cup of molten steel container such as a tundish or ladle is finished and the molten steel in the next new molten steel container is continuously cast, the molten steel passes through the nozzle or the like. A temperature drop of the nozzle or the like occurs during the switching or not. Therefore, the first purpose of installing a heat insulating material on the outer periphery of the nozzle or the like is to suppress the temperature drop of the nozzle after preheating or between castings.

さらには、溶鋼がノズル等内を通過する際に、ノズル等外周からの熱損失によって鋼が冷却され、溶鋼内のアルミナ等の介在物や冷却によって硬化しかけた鋼(地金)がノズル等の内壁に付着して溶鋼の適正な流動を阻害したり、ノズル等内の閉塞を招来することがある。したがって、ノズル等の外周に断熱材を設置する第二の目的は、このような鋳造中の溶鋼の熱損失を低減することにある。   Furthermore, when the molten steel passes through the nozzle or the like, the steel is cooled by heat loss from the outer periphery of the nozzle or the like, and inclusions such as alumina in the molten steel or steel (metal ingot) that is about to harden due to cooling is the nozzle or the like. It may adhere to the inner wall and hinder the proper flow of molten steel, or may cause clogging in the nozzle or the like. Therefore, the second purpose of installing the heat insulating material on the outer periphery of the nozzle or the like is to reduce the heat loss of the molten steel during casting.

溶鋼温度は約1500℃と高温度であり、ノズル等は急激に、また長時間に亘ってこのような高温度に直接的又は間接的に曝されることから、鋼の連続鋳造操業における断熱材には高度な断熱性能とともにその持続性も重要である。   The temperature of the molten steel is as high as about 1500 ° C., and the nozzles are exposed to such a high temperature for a long time and directly or indirectly. In addition to its high thermal insulation performance, its sustainability is also important.

一方、鋼の連続鋳造に用いるノズル等は、ほとんどの場合炭素を多量に含んでいることから、その外気に接触する面すなわちノズル等の外周囲には、断気機能を有する層を形成するためのガラス組成物を多量に含む酸化防止材(以下、このガラス組成物を多量に含む酸化防止材を単に「酸化防止材」ともいう。)の層を設置している。   On the other hand, since nozzles used for continuous casting of steel mostly contain a large amount of carbon, in order to form a layer having a gas isolating function on the surface in contact with the outside air, that is, the outer periphery of the nozzle, etc. A layer of an antioxidant containing a large amount of the glass composition (hereinafter, the antioxidant containing a large amount of the glass composition is also simply referred to as “antioxidant”) is provided.

前記のようなガラス組成物、特にアルカリ金属酸化物やアルカリ土類金属酸化物を多く含む生体溶解性断熱材を、同じくガラス組成物を多く含む又は主体とする酸化防止材の層を外周面に備えたノズル等の外周に設置すると、両者は相乗効果によってさらに低融化し、繊維質の生体溶解性断熱材はノズル等に近い側から溶融して繊維構造及びその層構造を維持できなくなり、断熱層自体が消失することとなる。   The glass composition as described above, in particular, a biosoluble heat insulating material containing a large amount of alkali metal oxides or alkaline earth metal oxides, and an antioxidant layer containing a large amount of glass composition or a main component on the outer peripheral surface. When installed on the outer periphery of a nozzle or the like provided, both of them are further melted due to a synergistic effect, and the fibrous biosoluble heat insulating material melts from the side close to the nozzle and the like so that the fiber structure and its layer structure cannot be maintained. The layer itself will disappear.

特表2013−520580号公報Special table 2013-520580 gazette 特開2013−71848号公報JP 2013-71848 A 特開2013−243071号公報JP 2013-243071 A

本発明は、耐火物に接して設置する、アルカリ金属酸化物を多く含み高度な生体溶解性を備える繊維を主体とする生体溶解性断熱材を含む断熱構造体において、約1400℃以上の高温度域での前記耐火物との反応による前記生体溶解性断熱材の著しい変質(以下、溶融、凝集、収縮等の形状・形態等の変化を含む変化を総称して変質という。)又は消失を抑制することを目的とする。   The present invention relates to a heat insulating structure including a biosoluble heat insulating material mainly composed of fibers containing a large amount of alkali metal oxide and having high biosolubility, which is installed in contact with a refractory, and has a high temperature of about 1400 ° C. or higher. Suppresses the significant alteration (hereinafter collectively referred to as alteration including shape, form, etc., such as melting, aggregation, shrinkage, etc.) or disappearance due to the reaction with the refractory in the region. The purpose is to do.

また本発明は、特に、ガラス組成物を多く含む酸化防止材の層を表面に有する連続鋳造用のノズル等の、その酸化防止材の層に接触する状態で使用される生体溶解性断熱材につき、高温度域での著しい変質又は消失を抑制することをも目的とする。   The present invention also relates to a biosoluble heat insulating material used in contact with the antioxidant material layer, such as a nozzle for continuous casting having a surface of an antioxidant material rich in glass composition on the surface. Another object is to suppress significant alteration or disappearance in a high temperature range.

本発明は、次の1〜13に記載の断熱構造体を提供する。   This invention provides the heat insulation structure as described in the following 1-13.

1.生体溶解性断熱材の層と耐火物構造体との間に、前記の生体溶解性断熱材及び前記の耐火物構造体との反応抑制層を備えた、断熱構造体。 1. The heat insulation structure provided with the reaction suppression layer with the said biosoluble heat insulating material and the said refractory structure between the layer of biosoluble heat insulating material, and the refractory structure.

2.前記の生体溶解性断熱材の層は生体溶解性の繊維状物が集合した層であって、前記の生体溶解性断熱材と前記の反応抑制層とを混合した組成物の1400℃における液相率が22質量%以下である、1に記載の断熱構造体。 2. The layer of the biosoluble heat insulating material is a layer in which biosoluble fibrous materials are gathered, and a liquid phase at 1400 ° C. of a composition obtained by mixing the biosoluble heat insulating material and the reaction suppressing layer. 2. The heat insulating structure according to 1, wherein the rate is 22% by mass or less.

3.前記の反応抑制層は、1000℃酸化雰囲気中熱処理後の化学成分としてZrO及びSiOを合計で94質量%以上含有し、残部が前記以外の耐火性成分からなる、1又は2に記載の断熱構造体。 3. 3. Said reaction suppression layer contains 94 mass% or more of ZrO 2 and SiO 2 in total as chemical components after heat treatment in an oxidizing atmosphere at 1000 ° C., and the balance is composed of refractory components other than the above. Thermal insulation structure.

4.前記の反応抑制層中の、ZrOの含有量は60質量%以上である、3に記載の断熱構造体。 4). The heat insulation structure according to 3, wherein the content of ZrO 2 in the reaction suppression layer is 60% by mass or more.

5.前記の反応抑制層中の、ZrO及びSiOの一部又は全部がジルコンを構成している、3又は4に記載の断熱構造体。 5. The heat insulation structure according to 3 or 4, wherein a part or all of ZrO 2 and SiO 2 in the reaction suppression layer constitutes zircon.

6.前記の反応抑制層中の構成粒子の平均粒子径は0.5mm以下である、1から5のいずれかに記載の断熱構造体。 6). The heat insulation structure according to any one of 1 to 5, wherein an average particle diameter of the constituent particles in the reaction suppression layer is 0.5 mm or less.

7.前記の生体溶解性断熱材は、1000℃酸化雰囲気中熱処理後の化学成分としてSiO、Al及びKOを合計で90質量%以上含有し、残部が前記以外の金属酸化物、硼化物から選択する1種以上の成分からなる、1から6のいずれかに記載の断熱構造体。 7). The biosoluble heat insulating material contains a total of 90% by mass or more of SiO 2 , Al 2 O 3 and K 2 O as chemical components after heat treatment in an oxidizing atmosphere at 1000 ° C., and the balance is a metal oxide other than the above, The heat insulating structure according to any one of 1 to 6, comprising at least one component selected from borides.

8.前記の生体溶解性断熱材中の、KOの含有量は20質量%以上30質量%以下である、7に記載の断熱構造体。 8). The heat insulating structure according to 7, wherein the content of K 2 O in the biosoluble heat insulating material is 20% by mass or more and 30% by mass or less.

9.前記の耐火物構造体は、炭素含有耐火物からなる、1から8のいずれかに記載の断熱構造体。 9. 9. The heat insulation structure according to any one of 1 to 8, wherein the refractory structure is made of a carbon-containing refractory.

10.前記の耐火物構造体の、前記反応抑制層と接する面の一部又は全部に、1000℃以下で一部又は全部が溶融して空気の通過を遮断する酸化防止材の層が設置されている、9に記載の断熱構造体。 10. A layer of an antioxidant that blocks part of or all of the surface of the refractory structure that is in contact with the reaction-suppressing layer and that is partially or wholly melted at 1000 ° C. or less and blocks the passage of air. , 9 insulation structure.

11.前記の酸化防止材の層に前記の反応抑制層が加わる際に、その加わる量が増加するのに伴って液相率が低下する、10に記載の断熱構造体。 11. 11. The heat insulating structure according to 10, wherein when the reaction suppression layer is added to the antioxidant layer, the liquid phase ratio decreases as the amount added increases.

12.前記の耐火物構造体は、鋼の連続鋳造用ノズルである、10又は11に記載の断熱構造体。 12 The said refractory structure is a heat insulation structure of 10 or 11 which is a nozzle for continuous casting of steel.

13.前記の鋼の連続鋳造用ノズルの、大気又は酸化性ガスに接触する面の一部又は全部に前記の酸化防止材の層が設置され、当該酸化防止材の層の外面に前記の反応抑制層が設置され、さらにその外面に前記の生体溶解性断熱材の層が設置され、前記の酸化防止材の層の厚さは0.3mm以上1.0mm以下、前記の反応抑制層の厚さは0.6mm以上1.5mm以下、前記の生体溶解性断熱材の層の厚さは3mm以上である、請求項12に記載の断熱構造体。 13. The layer of the antioxidant is disposed on a part or all of the surface of the nozzle for continuous casting of the steel that is in contact with the atmosphere or the oxidizing gas, and the reaction suppression layer is formed on the outer surface of the layer of the antioxidant. Is further installed on the outer surface thereof, the thickness of the antioxidant layer is 0.3 mm or more and 1.0 mm or less, and the thickness of the reaction suppression layer is The heat insulating structure according to claim 12, wherein the thickness of the layer of the biosoluble heat insulating material is not less than 0.6 mm and not more than 1.5 mm, and not less than 3 mm.

本発明の断熱構造体は、生体溶解性断熱材の層と耐火物構造体との間に、生体溶解性断熱材及び耐火物構造体との反応抑制層を備えているので、約1400℃以上の高温度域での耐火物構造体との反応による生体溶解性断熱材の著しい変質又は消失を抑制することができる。   Since the heat insulation structure of the present invention includes a reaction-inhibiting layer between the biosoluble heat insulating material and the refractory structure between the biosoluble heat insulating material layer and the refractory structure, the heat insulating structure is about 1400 ° C. or higher. It is possible to suppress significant deterioration or disappearance of the biosoluble heat insulating material due to the reaction with the refractory structure in the high temperature range.

また、本発明によれば、耐火物構造体が高い液相率の組成を備えるものであっても、生体溶解性断熱材を適用することができ、当然にその液相率以下の多様な組成の耐火物構造体にも生体溶解性断熱材を適用することができる。   In addition, according to the present invention, even if the refractory structure has a composition with a high liquid phase ratio, a biosoluble heat insulating material can be applied, and naturally various compositions having a liquid phase ratio equal to or lower than that can be applied. A biosoluble heat insulating material can also be applied to the refractory structure.

本発明に適用可能な生体溶解性断熱材の一例、及び従来の断熱材(非生体溶解性断熱材)の一例における、温度と液相率との計算による関係を示すグラフである。It is a graph which shows the relationship by calculation of temperature and a liquid phase rate in an example of the biosoluble heat insulating material applicable to this invention, and an example of the conventional heat insulating material (non-biosoluble heat insulating material). 本発明に適用可能な生体溶解性断熱材に対する本発明の反応抑制層の割合と、1400℃における液相率との関係を示すグラフである。It is a graph which shows the relationship between the ratio of the reaction suppression layer of this invention with respect to the biosoluble heat insulating material applicable to this invention, and the liquid phase rate in 1400 degreeC. 本発明に適用可能な酸化防止材に対する本発明の反応抑制層の割合と、1400℃における液相率との関係を示すグラフである。It is a graph which shows the relationship between the ratio of the reaction suppression layer of this invention with respect to the antioxidant applicable to this invention, and the liquid phase rate in 1400 degreeC. 実施例Aにおける1500℃に加熱後の、比較例1と実施例1(左右張り分け)の状態を示す外観写真である。It is an external appearance photograph which shows the state of the comparative example 1 and Example 1 (left-right extending) after heating to 1500 degreeC in Example A. 実施例Aにおける実施例1の1400℃に加熱後の、生体溶解性断熱材層、反応抑制層、酸化防止材層及び連続鋳造用ノズル本体の境界部を示す、顕微鏡による組織写真である。It is a structure | tissue photograph by a microscope which shows the boundary part of the biosoluble heat insulating material layer, the reaction suppression layer, antioxidant layer, and the nozzle body for continuous casting after heating to 1400 degreeC of Example 1 in Example A. 実施例Aにおける比較例1の1400℃に加熱後の、生体溶解性断熱材層、酸化防止材層及び連続鋳造用ノズル本体の境界部を示す、顕微鏡による組織写真である。It is the structure | tissue photograph by a microscope which shows the boundary part of the biosoluble heat insulating material layer, antioxidant material layer, and nozzle body for continuous casting after heating to 1400 degreeC of the comparative example 1 in Example A.

以下、本発明を詳述する。   The present invention is described in detail below.

アルカリ金属酸化物を多く含むことで高度な生体溶解性を備える繊維の集合体である生体溶解性断熱材は、高温度域でこれと接触する耐火物との反応により、溶融、凝集、収縮等を生じ、繊維状形態の消失、断熱層の形状・構造の著しい変化ないし層自体の消失等を来たし、断熱機能を喪失することがある。この反応性は、生体溶解性断熱材と接触する耐火物の化学成分、鉱物組成、構成粒子の構造等によって異なる。   Biosoluble heat insulating material, which is an aggregate of fibers with a high level of biosolubility by containing a large amount of alkali metal oxide, melts, aggregates, shrinks, etc. due to reaction with refractories that come into contact with it at high temperatures. May cause loss of the fibrous form, a significant change in the shape and structure of the heat insulating layer or the loss of the layer itself, and the heat insulating function may be lost. This reactivity varies depending on the chemical composition of the refractory that comes into contact with the biosoluble heat insulating material, the mineral composition, the structure of the constituent particles, and the like.

なお、生体溶解性断熱材は、アルカリ金属酸化物を多く含む系であっても、単独では用途に応じて所要の耐熱性能を備えるものである。例えば代表的な高温用生体溶解性ファイバは、Alが約35質量%、SiOが約32質量%、KOが約25質量%、ZrOが約7質量%の化学組成であって、少なくとも他の耐火物と接触しないで単独使用する、又はこれとの反応性が極めて小さい耐火物等と接触する条件で使用する場合には、約1450℃までの高温下での長時間の安定的な耐用性を示し、1500℃で溶融が生じ始める。 In addition, even if a biosoluble heat insulating material is a type | system | group containing many alkali metal oxides, it will be equipped with required heat resistance performance according to a use independently. For example, a typical biosoluble fiber for high temperature has a chemical composition of about 35% by mass of Al 2 O 3 , about 32% by mass of SiO 2 , about 25% by mass of K 2 O and about 7% by mass of ZrO 2. In the case where it is used alone at least without contact with other refractories, or when used under the condition of being in contact with refractories having a very low reactivity with this, it is a long time at a high temperature up to about 1450 ° C. The melt begins to melt at 1500 ° C.

しかし、このような組成の生体溶解性断熱材は、Al−SiO系、Al−SiO−RO(ここでRはアルカリ土類金属)系、Al−SiO−RO(ここでRはアルカリ金属)系、さらにはこれらに他の低融化を促進する酸化物を含む系等の材料と接触すると、生体溶解性断熱材が繊維状物の集合体であって反応性が高いこともあり、液相率が増加して前記耐火物内に移動し、顕著に変質・消失等を生じ易い。 However, biosoluble heat insulating materials having such a composition are Al 2 O 3 —SiO 2 type, Al 2 O 3 —SiO 2 —RO (where R is an alkaline earth metal) type, Al 2 O 3 —SiO. When contacted with a material such as a 2- R 2 O (where R is an alkali metal) system or a system containing an oxide that promotes low melting of these, the biosoluble heat insulating material is an aggregate of fibrous materials. In addition, the reactivity may be high, and the liquid phase ratio increases and moves into the refractory, so that it is likely to be noticeably altered or lost.

そこで本発明では、生体溶解性断熱材と前述のような低融化を惹き起こし易い耐火物との間に、生体溶解性断熱材の液相率を増加させず、かつ、低融化を惹き起こし易い耐火物にも低融化や消失等を生じさせない耐火物の層(以下、単に「反応抑制層」ともいう。)を設置することとした。   Therefore, in the present invention, between the biosoluble heat insulating material and the refractory that tends to cause low melting as described above, the liquid phase ratio of the biosoluble heat insulating material is not increased, and low melting is easily caused. A refractory layer (hereinafter also simply referred to as “reaction suppression layer”) that does not cause low melting or disappearance of the refractory was decided to be installed.

本発明者らが、生体溶解性断熱材が単独で安定的な耐用性を示す1450℃での液相率を調査したところ、約22質量%であることがわかった。この液相率が、繊維からなる生体溶解性断熱材の挙動に及ぼす影響は、同じ液相率であれば機械構造的な面が支配的であると考えられる。そこで本発明の反応抑制層は、生体溶解性断熱材との接触によっても、目標温度である1400℃における液相率を約22質量%以下に維持できる組成であることが好ましい。言い換えれば本発明では、生体溶解性断熱材の層と反応抑制層とを混合した組成物の1400℃における液相率が22質量%以下であることが好ましい。   When the present inventors investigated the liquid phase rate in 1450 degreeC in which a biosoluble heat insulation material shows stable durability independently, it turned out that it is about 22 mass%. The influence of this liquid phase ratio on the behavior of the biosoluble heat insulating material made of fibers is considered to be dominant in terms of mechanical structure if the liquid phase ratio is the same. Therefore, the reaction suppression layer of the present invention preferably has a composition capable of maintaining the liquid phase ratio at a target temperature of 1400 ° C. at about 22% by mass or less even by contact with a biosoluble heat insulating material. In other words, in this invention, it is preferable that the liquid phase rate in 1400 degreeC of the composition which mixed the layer of the biosoluble heat insulating material and the reaction suppression layer is 22 mass% or less.

典型的な生体溶解性断熱材の化学組成は、1000℃酸化雰囲気中熱処理後の化学成分としてSiO、Al及びKOを合計で90質量%以上、残部が前記以外の金属酸化物、硼化物から選択する1種以上の成分からなる。この生体溶解性断熱材中のKOは概ね20質量%以上30質量%以下である。1450℃での液相率が約22質量%である生体溶解性断熱材であればその成分は自ずと限定されるのであって、多少の構成成分に変動があっても、前記の反応抑制層の組成であれば1400℃における液相率を約22質量%以下にすることができる。 The chemical composition of a typical biosoluble heat insulating material is as follows: a total of 90% by mass or more of SiO 2 , Al 2 O 3 and K 2 O as chemical components after heat treatment in an oxidizing atmosphere at 1000 ° C. And one or more components selected from borides. K 2 O in the biosoluble heat insulating material is generally 20% by mass or more and 30% by mass or less. If it is a biosoluble heat insulating material having a liquid phase ratio of about 22% by mass at 1450 ° C., its components are naturally limited. If it is a composition, the liquid phase rate in 1400 degreeC can be made into about 22 mass% or less.

なお、この液相率の特定は、サーモファクト/CRCT、GTT Technologies社製のソフト「FACTSAGE」による、均一成分、定常状態と仮定した際の計算によるものとする。   The liquid phase ratio is specified by calculation based on the assumption of uniform components and steady state by the software “FACTSAGE” manufactured by Thermo Fact / CRCT, GTT Technologies.

本発明は反応抑制層として、前記の反応抑制層を設置する。これにより、前記の生体溶解性断熱材の層を設置する耐火物側が前記の生体溶解性断熱材との反応性が高い場合にも、それらの組成等にほとんど影響されずに、すなわち前記の生体溶解性断熱材の層に変質・消失等を生じずに、その断熱機能を維持させることができる。   In the present invention, the reaction suppression layer is provided as a reaction suppression layer. Thereby, even when the refractory side on which the layer of the biosoluble heat insulating material is installed is highly reactive with the biosoluble heat insulating material, the composition is hardly affected by the composition, etc. The heat insulating function can be maintained without causing alteration or disappearance of the layer of the soluble heat insulating material.

前記の反応抑制層を構成する耐火物は、1000℃酸化雰囲気中熱処理後の化学成分としてZrO及びSiOを合計で94質量%以上含有していることが好ましい。残部には前記以外の耐火性成分,具体的には,金属酸化物、炭化物、硼化物、金属から選択する1種以上の耐火性成分を含むことができる。 The refractory constituting the reaction suppression layer preferably contains 94% by mass or more of ZrO 2 and SiO 2 as chemical components after heat treatment in an oxidizing atmosphere at 1000 ° C. The balance may contain refractory components other than those mentioned above, specifically, one or more refractory components selected from metal oxides, carbides, borides, and metals.

前記の反応抑制層中のZrO含有量は60質量%以上であることがより好ましい。ZrO含有量が60質量%以上では、液相率の低下及び液相の高粘性化がより安定する傾向になるからである。このZrOは安定化、未安定化若しくは部分安定化のいずれか1種以上のジルコニア又はジルコンのいずれの鉱物組成を成すものでもよく、これら複数が併存してもよい。ZrO成分が60質量%以上であることで、生体溶解性断熱材との反応によって生成する液相の粘性が高くなり、液相の増加や生体溶解性断熱材の変形ないし消失等を抑制する効果がより一層顕著になる。なお、前記ZrOの含有量中には分離困難なHfOが含まれ得る。 The ZrO 2 content in the reaction suppression layer is more preferably 60% by mass or more. This is because when the ZrO 2 content is 60% by mass or more, the decrease in the liquid phase ratio and the increase in the viscosity of the liquid phase tend to become more stable. This ZrO 2 may be any one of one or more zirconia or zircon mineral composition of stabilized, unstabilized or partially stabilized, and a plurality of them may coexist. When the ZrO 2 component is 60% by mass or more, the viscosity of the liquid phase generated by the reaction with the biosoluble heat insulating material is increased, and the increase in the liquid phase and the deformation or disappearance of the biosoluble heat insulating material are suppressed. The effect becomes even more pronounced. In addition, HfO 2 that is difficult to separate may be included in the content of ZrO 2 .

前記のSiOの一部又は全部はジルコン又は結晶質若しくは非晶質のSiOからなる鉱物由来でもよい。 Some or all of the of SiO 2 may be derived from a mineral consisting of SiO 2 zircon or crystalline or amorphous.

前記の反応抑制層中の各構成粒子の平均粒子径は0.5mm以下であることが好ましい。粒子径が小さいほど、生体溶解性断熱材との反応による液相の生成速度は大きいが、その粘性が高くなる速度も大きい。早期に液相の粘性を高めると、初期では生体溶解性断熱材の反応抑制層との接触部分の或る領域(厚さ方向の長さと同じ)が反応によって反応抑制層側に移動するが、その後はその移動は停止して前記の移動領域(或る領域部分)部分が空隙となる。このような空隙生成によってもその後の生体溶解性断熱材と反応抑制層との反応も停止して、生体溶解性断熱材の層を維持することができる。この現象は、特に高温下での長時間の生体溶解性断熱材の層の安定的な維持に貢献する。   The average particle diameter of each constituent particle in the reaction suppression layer is preferably 0.5 mm or less. The smaller the particle size, the higher the liquid phase generation rate due to the reaction with the biosoluble heat insulating material, but the higher the viscosity is. When the viscosity of the liquid phase is increased early, a certain region (same as the length in the thickness direction) of the contact portion with the reaction suppressing layer of the biosoluble heat insulating material moves to the reaction suppressing layer side by reaction. After that, the movement stops and the moving area (a certain area portion) becomes a gap. By such void formation, the subsequent reaction between the biosoluble heat insulating material and the reaction suppressing layer can be stopped, and the layer of the biosoluble heat insulating material can be maintained. This phenomenon contributes to the stable maintenance of the layer of biosoluble insulation material for a long time, particularly at high temperatures.

前記の反応抑制層は、保護する耐火物構造体、すなわちさまざまな耐火物から成る構造体の面に接して設置することが可能である。ここで「耐火物構造体」とは、例えば、Al−SiO系、MgO系、Al−MgO系、ZrO系、これらにアルミナセメント成分、炭素、炭化物、窒化物、硼化物等を含む、一般に広く使用される耐火物からなる構造体が挙げられる。 The reaction suppression layer can be placed in contact with a surface of a refractory structure to be protected, that is, a structure made of various refractories. Here, the “refractory structure” means, for example, Al 2 O 3 —SiO 2 type, MgO type, Al 2 O 3 —MgO type, ZrO 2 type, alumina cement component, carbon, carbide, nitride, Structures made of refractories that are generally widely used, including borides and the like.

特に炭素含有耐火物等の、予熱又は使用時に酸化する成分を含む耐火物からなる耐火物構造体の場合には、その表面に酸化防止材を塗布することが多く、この場合、従来技術では、その酸化防止材の層と前記の反応抑制層が直接接触することになる。酸化防止材の層は、その組成物内の一部又は全部が、例えば1000℃以下で溶融して空気の通過を遮断する。なお、この組成物内の一部又は全部が溶融する温度は用途によって任意に設定することができる。このような酸化防止材の層には、その構造・機能等を維持・強化する等の目的で、例えば溶融状態になり難い又は溶融速度が遅い酸化物又は非酸化物等を混在させる場合がある。このような場合でも、組成物内の一部又は全部が溶融して空気の通過を遮断する部分がありさえすれば、層全体を均質と仮定して算出した液相率に関わらず酸化防止機能やその溶融部分の熱間の特性は同様である。言い換えれば、酸化防止材の層では混在する、溶融状態になり難い又は溶融速度が遅い酸化物又は非酸化物等は、接触する生体溶解性断熱材との反応が生じる際には酸化防止材の層における液相生成にほとんど関与しないので、少なくとも層全体に分布する、溶融して空気の通過を遮断する部分の液相率は、前記の液相生成に関与しない成分を除いた部分、すなわち生体溶解性断熱材の層との接触による反応が生じる際の酸化防止材の層の液相率はほぼ100%とみなし得ることになる。   Particularly in the case of a refractory structure made of a refractory containing a component that oxidizes during preheating or use, such as a carbon-containing refractory, an anti-oxidant is often applied to the surface thereof. The antioxidant layer and the reaction suppression layer are in direct contact. Part or all of the layer of the antioxidant melts at, for example, 1000 ° C. or less to block the passage of air. The temperature at which a part or all of the composition melts can be arbitrarily set depending on the application. Such an antioxidant layer may contain, for example, an oxide or a non-oxide which is difficult to be in a molten state or has a slow melting rate, for the purpose of maintaining or strengthening its structure / function. . Even in such a case, as long as some or all of the composition melts and blocks the passage of air, the antioxidant function can be achieved regardless of the liquid phase ratio calculated on the assumption that the entire layer is homogeneous. And the hot properties of the molten part are similar. In other words, oxides or non-oxides that are mixed in the antioxidant material layer, difficult to be in a molten state, or have a slow melting rate, etc. Since it hardly participates in the liquid phase generation in the layer, the liquid phase rate of the portion that is distributed at least throughout the layer and blocks the passage of air is the portion excluding the above-mentioned components that are not involved in the liquid phase generation, that is, the living body The liquid phase ratio of the antioxidant layer when the reaction due to contact with the soluble insulating layer occurs can be regarded as almost 100%.

このような酸化防止材の層に生体溶解性、しかも細い繊維状が直接接触することになる従来技術では、生体溶解性の断熱材が酸化防止材の層中の溶融部分に極めて短時間で、しかも層全体が溶融して消失すること、特に本発明が目的とする1400℃ではその傾向が顕著になることを、本発明者らは実験により確認した。これは、生体溶解性断熱材が酸化防止材の層と接触した際の酸化防止材の層の液相率の変化が小さく、前述のように生体溶解性断熱材が層構造を維持するための条件としての液相率22%以下には遠く及ばない高い液相率であることによると考えられる。   In the prior art in which a thin fiber shape is in direct contact with the antioxidant layer, the biosoluble heat insulating material is in a very short time in the melted portion in the antioxidant layer. In addition, the present inventors have confirmed through experiments that the entire layer melts and disappears, and that the tendency becomes remarkable at 1400 ° C., which is the object of the present invention. This is because the change in the liquid phase ratio of the antioxidant layer when the biosoluble insulation material comes into contact with the antioxidant layer is small, and the biosoluble insulation material maintains the layer structure as described above. This is considered to be due to the high liquid phase rate that does not reach far below the liquid phase rate of 22% or less as a condition.

このような酸化防止材の層と生体溶解性断熱材の層との間に、反応抑制層を設置することで、生体溶解性断熱材が溶融して消失することを防止することができる。特に、生体溶解性断熱材の層と反応抑制層との接触によって生成する組成物の1400℃における液相率が22質量%以下であれば、生体溶解性断熱材の層構造を確実に維持することができる(図2参照)。   By installing a reaction suppression layer between the antioxidant layer and the biosoluble heat insulating material layer, it is possible to prevent the biosoluble heat insulating material from melting and disappearing. In particular, if the liquid phase ratio at 1400 ° C. of the composition produced by contact between the biosoluble heat insulating material layer and the reaction suppressing layer is 22% by mass or less, the layer structure of the biosoluble heat insulating material is reliably maintained. (See FIG. 2).

このような酸化防止材に対しても、本発明の反応抑制層は、その混合割合が多くなるに伴って液相率を低下させるので(図3参照)、反応抑制層が溶融し続けることもなく、その層構造の消失等を抑制することができる。   Even for such an antioxidant, the reaction suppression layer of the present invention decreases the liquid phase ratio as the mixing ratio increases (see FIG. 3), so that the reaction suppression layer may continue to melt. And disappearance of the layer structure can be suppressed.

なお、産業上、断熱層(反応抑制層を含む)が直接接触する「耐火物構造体」としては、この酸化防止材が概ね最も低融点且つ高液相率と考えられ、断熱層の変質・消失に関しては最も厳しい条件であると考えられる。したがって、このような酸化防止材の層よりも反応抑制層との液相を生成し難い材料の耐火物構造体に対しては、当然に反応抑制層及び生体溶解性断熱材の層の溶融ないし消失は生じ難くなる。   In addition, industrially, as a "refractory structure" with which a heat insulating layer (including a reaction suppression layer) is in direct contact, this antioxidant is considered to have the lowest melting point and high liquid phase rate. The disappearance is considered to be the most severe condition. Therefore, for a refractory structure made of a material that is less liable to form a liquid phase with the reaction suppression layer than with such an antioxidant layer, it is natural that the reaction suppression layer and the biosoluble heat insulating material layer be melted. Loss is less likely to occur.

このような表面に酸化防止材の層を備えた「耐火物構造体」の典型例としては、炭素を数質量%〜30質量%程度含有する、鋼の連続鋳造用ノズルが挙げられる。この鋼の連続鋳造用ノズルの場合の構造は、酸化防止材層の厚さは0.3mm以上1.0mm以下、前記の反応抑制層の厚さは0.6mm以上1.5mm以下、前記の生体溶解性断熱材層の厚さは3mm以上〜約12mm程度が一般的である。すなわち、前記の反応抑制層の厚さは、酸化防止材の層との反応代と生体溶解性断熱材の層との反応代との合計以上であればよい。但し、形状・構造、使用条件等によっては、反応抑制層の厚さが厚すぎると部分的又は全体に破壊や剥落等を生じることもあるので、個別の条件によって最適化することは必要である。   A typical example of a “refractory structure” having an antioxidant layer on its surface is a steel continuous casting nozzle containing about several to 30% by mass of carbon. In the case of the nozzle for continuous casting of steel, the thickness of the antioxidant layer is from 0.3 mm to 1.0 mm, the thickness of the reaction suppression layer is from 0.6 mm to 1.5 mm, The thickness of the biosoluble heat insulating material layer is generally about 3 mm to about 12 mm. That is, the thickness of the reaction suppression layer may be equal to or greater than the sum of the reaction allowance with the antioxidant material layer and the reaction allowance with the biosoluble heat insulating material layer. However, depending on the shape, structure, usage conditions, etc., if the thickness of the reaction suppression layer is too thick, it may cause partial or complete destruction or peeling, so it is necessary to optimize it according to individual conditions. .

[計算例A]
生体溶解性断熱材、及び従来の断熱材(非生体溶解性断熱材、Al−SiO系)の液相率を図1に示す。なお、液相率は、上述のとおり、サーモファクト/CRCT、GTT Technologies社製のソフト「FACTSAGE」による、均一成分、定常状態と仮定した際の計算によるものである(以下同じ。)。
[Calculation Example A]
The liquid phase rates of the biosoluble heat insulating material and the conventional heat insulating material (non-biosoluble heat insulating material, Al 2 O 3 —SiO 2 system) are shown in FIG. As described above, the liquid phase ratio is based on the calculation when assuming the uniform component and the steady state by the software “FACTSAGE” manufactured by Thermo Fact / CRCT, GTT Technologies (the same applies hereinafter).

この計算例A、さらには以下の計算例B、実施例A、及び実施例Bに用いた各材料の化学成分は表1のとおりである。   Table 1 shows the chemical composition of each material used in this calculation example A, and further in the following calculation example B, example A, and example B.

[計算例B]
1400℃における、反応抑制層に対する生体溶解性断熱材の割合と液相率との関係を図2に示す。
[Calculation Example B]
FIG. 2 shows the relationship between the ratio of the biosoluble heat insulating material to the reaction suppression layer at 1400 ° C. and the liquid phase ratio.

図2より、反応抑制層に対し生体溶解性断熱材が接触して、反応抑制層に移動する際の、その混合物の液相率が22質量%になるときの生体溶解性断熱材の反応抑制層に対する割合は、0.38(質量比)であることがわかる。これを厚さに変換すると、反応抑制層の密度=3.6g/cm、生体溶解性断熱材の密度=0.128g/cmから、生体溶解性断熱材の厚さ1に対する反応抑制層の厚さは0.094となり、この計算では反応抑制層の厚さは生体溶解性断熱材の0.094倍以上であればよいことになる。 From FIG. 2, when the biosoluble heat insulating material comes into contact with the reaction suppression layer and moves to the reaction suppression layer, the reaction suppression of the biosoluble heat insulating material when the liquid phase ratio of the mixture becomes 22% by mass. It turns out that the ratio with respect to a layer is 0.38 (mass ratio). Converting this to a thickness, density of the reaction inhibiting layer = 3.6 g / cm 3, from a density = 0.128 g / cm 3 biosoluble insulation inhibition layer to the thickness 1 of the biosoluble insulation material Is 0.094, and in this calculation, the thickness of the reaction suppression layer may be 0.094 times or more that of the biosoluble heat insulating material.

[計算例C]
1400℃における、酸化防止材層に対する反応抑制層の割合と液相率との関係を図3に示す。
[Calculation Example C]
FIG. 3 shows the relationship between the ratio of the reaction suppression layer to the antioxidant layer at 1400 ° C. and the liquid phase ratio.

図3より、酸化防止材層に対し反応抑制層成分が加わると、またその量が増加するのに伴って、酸化防止材層の液相率は低下することがわかる。このことから、酸化防止材層がさらに低融化して流失することはないことがわかる。   From FIG. 3, it can be seen that when the reaction suppression layer component is added to the antioxidant layer, the liquid phase ratio of the antioxidant layer decreases as the amount thereof increases. From this, it can be seen that the antioxidant layer is not further melted down and lost.

[実施例A]
実施例Aは、本体外周に酸化防止材層を有する鋼の連続鋳造用ノズル(浸漬ノズル)に、生体溶解性断熱材を設置する際に、本発明の反応抑制層の有無による比較をした加熱試験結果を示す。
[Example A]
In Example A, when a biosoluble heat insulating material is installed in a continuous casting nozzle (immersion nozzle) of steel having an antioxidant layer on the outer periphery of the main body, the comparison was made by the presence or absence of the reaction suppression layer of the present invention. The test results are shown.

この実施例で使用した連続鋳造用ノズル(浸漬ノズル)は、縦方向中央付近の一部がZrO−C質、それ以外はAl−SiO−C質からなり、外径は150mm〜160mmで、その外周面に1000℃以下で酸素を遮断する程度に液相を生成し、1400℃においてもその液相を維持している(但し、その液相中に溶解しない又はその操業使用条件においては溶解する速度が極めて小さく、液相中に残留している構造物を含む。)状態の酸化防止材の層を0.6mmの厚さで均等に設置した、一般的な構造のものである。 The continuous casting nozzle (immersion nozzle) used in this example is partly ZrO 2 —C quality near the center in the longitudinal direction, and other parts are Al 2 O 3 —SiO 2 —C quality, and the outer diameter is 150 mm. ˜160 mm, a liquid phase is produced on the outer peripheral surface to an extent of blocking oxygen at 1000 ° C. or less, and the liquid phase is maintained even at 1400 ° C. (however, it does not dissolve in the liquid phase or is used for its operation) Under the conditions, the dissolution rate is extremely low, including structures that remain in the liquid phase.) With a general structure in which the layer of antioxidant in the state is evenly installed with a thickness of 0.6 mm It is.

この酸化防止材の層を備えた連続鋳造用ノズルの外周を縦方向に2分割し、一方は(1)前記酸化防止材層に直接接触するように生体溶解性断熱材(表1)を12.5mm厚さで設置し(比較例1)、(2)前記酸化防止材層と前記生体溶解性断熱材(12.5mm厚さ)との間に本発明の反応抑制層を1mmの厚さで設置した(実施例1)。   The outer periphery of the continuous casting nozzle provided with this antioxidant layer is divided into two in the longitudinal direction. One of them is (1) a biosoluble heat insulating material (Table 1) 12 so as to be in direct contact with the antioxidant layer. .5 mm thickness (Comparative Example 1), (2) The reaction suppression layer of the present invention is 1 mm thick between the antioxidant layer and the biosoluble heat insulating material (12.5 mm thickness). (Example 1).

加熱試験では、連続鋳造用ノズルの内孔からバーナーにて内孔温度を1300℃、1400℃、1500℃の各温度で加熱し、各々30分間キープした後、冷却して状態を観察した。   In the heating test, the inner hole temperature was heated from the inner hole of the continuous casting nozzle with a burner at each temperature of 1300 ° C., 1400 ° C., and 1500 ° C., kept for 30 minutes, and then cooled to observe the state.

なお、この実施例においては、前記の酸化防止材層を備えた連続鋳造用ノズルに非生体溶解性断熱材を設置した場合(比較例2)も各々の加熱試験に供して同一加熱を行って比較を行った。   In this example, even when a non-biosoluble heat insulating material was installed in the continuous casting nozzle provided with the antioxidant layer (Comparative Example 2), the same heating was performed for each heating test. A comparison was made.

この結果を表2に、実施例1及び比較例1の1500℃加熱後試料の外観写真を図4に示す。なお、本実施例においては、1400℃加熱後試料の状態も1500℃加熱後試料の状態と同じ傾向であったが、1500℃加熱後の方がより明確に違いを視認できることから図4には1500℃加熱後の試料を示した。   Table 2 shows the results, and FIG. 4 shows an appearance photograph of the sample after heating at 1500 ° C. in Example 1 and Comparative Example 1. In this example, the state of the sample after heating at 1400 ° C. also had the same tendency as the state of the sample after heating at 1500 ° C. However, since the difference after heating at 1500 ° C. can be clearly seen, FIG. A sample after heating at 1500 ° C. is shown.

ここで、表2中、◎はほぼ原形を維持した状態で最も良好、○は変形や薄肉化部位が存在するものの、全体的に原形に近い残存状態で良好、△は変形や薄肉化が全体的に観られ、長時間の使用で変化が進行すると考えられる状態、×はほぼ原形を留めていない状態で不良、を示す。   Here, in Table 2, ◎ is the best when the original shape is almost maintained, ○ is good in the remaining state close to the original shape even though there are deformations and thinning parts, and △ is the deformation and thinning as a whole The state where the change is considered to be progressed with use for a long time and the change is likely to progress, x indicates a defect in a state where the original shape is not substantially retained.

1300℃ではいずれの例も原形を維持しており、差はない。   At 1300 ° C., all examples maintain the original shape and there is no difference.

1400℃では、実施例1及び比較例2は原形を維持しており、この例間に差はほとんどない。しかし、酸化防止材の層に直接接触して生体溶解性断熱材層を設置した比較例1では1400℃、1500℃では生体溶解性断熱材層が数mm〜6mm程度の厚さに減少して原形を留めておらず不良との結果になった。   At 1400 ° C., Example 1 and Comparative Example 2 maintain the original shape, and there is almost no difference between these examples. However, in Comparative Example 1 in which the biosoluble heat insulating material layer was placed in direct contact with the antioxidant layer, the biosoluble heat insulating material layer was reduced to a thickness of about several mm to 6 mm at 1400 ° C and 1500 ° C. The original form was not kept and the result was bad.

1500℃では、実施例1は、生体溶解性断熱材自体に幾分変形や厚さの減少は観られたものの、生体溶解性断熱材層は約8〜10mm程度の厚さで残存していた。   At 1500 ° C., in Example 1, although the biosoluble heat insulating material itself was somewhat deformed and decreased in thickness, the biosoluble heat insulating material layer remained with a thickness of about 8 to 10 mm. .

この実施例1に関しては、図2からもわかるように反応抑制層に対する生体溶解性断熱材の割合が或る範囲内では液相率が22%を超える部分が存在する。しかし、溶解が進んで(溶解により生体溶解性断熱材の割合は増加する方向となる)その範囲を超えて液相率が22%以下に至ると、そこで生体溶解性断熱材の溶解(消失)は停止すると考えられる。   Regarding Example 1, as can be seen from FIG. 2, there is a portion where the liquid phase ratio exceeds 22% within a certain range of the ratio of the biosoluble heat insulating material to the reaction suppression layer. However, when dissolution progresses (the proportion of the biosoluble heat insulating material increases due to dissolution) and the liquid phase rate reaches 22% or less beyond that range, the biosoluble heat insulating material dissolves (disappears) there. Is thought to stop.

また、実施例1では、生体溶解性断熱材と反応抑制層との間には、全体に数mm程度の空間が分布していた(架橋部分の分布もある。)(図4参照)。この空間の存在は、生体溶解性断熱材が初期に反応抑制層内に溶融しながら移動したものの、或る程度の移動後にそれが停止したためと考えられる。このことも、一定時間経過後は生体溶解性断熱材の層はそれ自体の耐熱性による残存性を示すことに寄与するものと考えられる。   Further, in Example 1, a space of about several mm was distributed between the biosoluble heat insulating material and the reaction suppression layer (there is also a distribution of the cross-linked portion) (see FIG. 4). The existence of this space is considered to be because the biosoluble heat insulating material moved while melting in the reaction suppression layer in the initial stage, but stopped after a certain amount of movement. This is also considered that the biosoluble heat insulating material layer contributes to the persistence due to its own heat resistance after a certain period of time.

これに対し比較例1の1400℃加熱後試料は、生体溶解性断熱材と酸化防止材層と間に空間はなく、生体溶解性断熱材の酸化防止材層側への移動が継続的に生じていることがわかる。   On the other hand, the sample after heating at 1400 ° C. in Comparative Example 1 has no space between the biosoluble heat insulating material and the antioxidant material layer, and the biosoluble heat insulating material continuously moves to the antioxidant material layer side. You can see that

なお、比較例2は1500℃では断熱材自体に幾分変形や厚さの減少が観られ、長時間の使用で変化が進行すると考えられるが、その変形や厚さの減少程度は生体溶解性断熱材よりは小さかった。   In Comparative Example 2, it is considered that the heat insulation material itself is somewhat deformed and reduced in thickness at 1500 ° C., and the change is expected to progress with use over a long period of time. Smaller than insulation.

これら1400℃加熱後試料の各材料境界部分の顕微鏡による組織写真を、実施例1につき図5に、比較例1につき図6に示す。   Microstructure photographs of the material boundary portions of the samples after heating at 1400 ° C. are shown in FIG. 5 for Example 1 and FIG. 6 for Comparative Example 1.

実施例1では、生体溶解性断熱材と酸化防止材層及びそれらの間に設置した反応抑制層は、それぞれ密着状態であるものの、それぞれの界面で各々が明確に分離した状態となっており、反応抑制層により生体溶解性断熱材と酸化防止材層との反応が抑制されていることがわかる。しかも、それぞれはほぼ独立した状態であって、相互の溶解ないし全ての混合物の液相生成や低粘性化は認められない。   In Example 1, the biologically soluble heat insulating material and the antioxidant material layer and the reaction suppression layer placed between them are in close contact with each other, but each is clearly separated at each interface, It can be seen that the reaction suppressing layer suppresses the reaction between the biosoluble heat insulating material and the antioxidant layer. In addition, each of them is in an independent state, and mutual dissolution or formation of a liquid phase or reduction in viscosity of all the mixtures is not recognized.

この実施例1に対し、比較例1では生体溶解性断熱材の層と酸化の層への一体化が進行していることがわかる。   In contrast to Example 1, it can be seen that in Comparative Example 1, integration into the biosoluble heat insulating material layer and the oxidation layer proceeds.

[実施例B]
実施例Bは、前記実施例Aの実施例1及び比較例2をそれぞれ別個の連続鋳造用浸漬ノズルとし、実際の鋼の連続鋳造に供した例である。なお、比較例1は、前記実施例Aの結果から1400℃の予熱に耐えられないことから、供試料から除外した。
[Example B]
Example B is an example in which Example 1 and Comparative Example 2 of Example A were used as separate continuous casting immersion nozzles, and were used for actual continuous casting of steel. Comparative Example 1 was excluded from the sample because it could not withstand preheating at 1400 ° C. from the results of Example A.

予熱温度は1400℃、溶鋼温度は約1500℃、鋳造時間は約400分である。   The preheating temperature is 1400 ° C., the molten steel temperature is about 1500 ° C., and the casting time is about 400 minutes.

いずれの試料も予熱の間の断熱材の顕著な変形や消失は生じなかった。予熱終了後ないし鋳造開始時の熱衝撃による破壊も生じなかった。   None of the samples caused significant deformation or loss of the insulation during preheating. There was no breakage due to thermal shock after preheating or at the start of casting.

鋳造終了後の状態は次のとおりである。
実施例1はやや変形や薄肉化が生じたものの、断熱層をほぼ維持していた。また、生体溶解性断熱材の層と浸漬ノズル本体(酸化防止材層を含む)との間には空間が生じていた。なお、浸漬ノズル本体表面の酸化防止材層(ガラス化後)はほぼ全面で健全な状態で残存しており、浸漬ノズル本体の酸化による変質や損傷は観られなかった。
The state after the end of casting is as follows.
In Example 1, although a slight deformation and thinning occurred, the heat insulating layer was almost maintained. In addition, a space was generated between the biosoluble heat insulating material layer and the immersion nozzle body (including the antioxidant layer). In addition, the antioxidant material layer (after vitrification) on the surface of the immersion nozzle body remained in a healthy state on almost the entire surface, and no alteration or damage due to oxidation of the immersion nozzle body was observed.

比較例2も実施例1と同様に断熱層をほぼ維持しており、また、浸漬ノズル本体表面の酸化防止材層(ガラス化後)はほぼ全面で健全な状態で残存していて、浸漬ノズル本体の酸化による変質や損傷は観られなかった。なお、比較例2では断熱材の層と浸漬ノズル本体(酸化防止材層を含む)との間の空間は実施例1よりは小さい又は生じていない部分もあった。   In Comparative Example 2, the heat insulating layer is substantially maintained as in Example 1, and the antioxidant layer (after vitrification) on the surface of the immersion nozzle body remains in a healthy state on almost the entire surface. No deterioration or damage due to oxidation of the body was observed. In Comparative Example 2, the space between the heat insulating material layer and the immersion nozzle body (including the antioxidant material layer) was smaller than that in Example 1 or was not generated.

これらの結果から、生体溶解性断熱材と耐火物構造体との間に反応抑制層を設置した断熱構造体は、耐火物構造体側に液相率が極めて高い酸化防止材の層を介在した条件でも、1400℃加熱、及び耐火物構造体側が1500℃近くになる条件でも、使用可能であることがわかる。したがって、前記の酸化防止材ほどに液相率が高くない「耐火物構造体」には、1400℃の条件でも当然に、本発明の生体溶解性断熱材層と耐火物構造体との間に反応抑制層を設置した断熱構造体とすることができることがわかる。   From these results, the heat insulating structure in which the reaction suppressing layer is installed between the biosoluble heat insulating material and the refractory structure is a condition in which the layer of the antioxidant having a very high liquid phase ratio is interposed on the refractory structure side. However, it can be seen that it can be used under heating at 1400 ° C. and under conditions where the refractory structure side is close to 1500 ° C. Therefore, the “refractory structure” having a liquid phase ratio not as high as that of the antioxidant is naturally between the biosoluble heat insulating material layer of the present invention and the refractory structure even at 1400 ° C. It turns out that it can be set as the heat insulation structure which installed the reaction suppression layer.

1 連続鋳造用ノズル本体
2 実施例1の生体溶解性断熱材層
3 実施例1の生体溶解性断熱層と反応抑制層との間の空間
4 比較例1の生体溶解性断熱材層
5 生体溶解性断熱材の変質層
6 反応抑制層
7 酸化防止材の層
8 連続鋳造用ノズル本体
DESCRIPTION OF SYMBOLS 1 Nozzle body for continuous casting 2 The biosoluble heat insulating material layer of Example 1 3 The space between the biosoluble heat insulating layer of Example 1 and a reaction suppression layer 4 The biosoluble heat insulating material layer of Comparative Example 1 5 Biolytic Modified layer of heat insulating material 6 Reaction suppression layer 7 Antioxidant layer 8 Nozzle body for continuous casting

Claims (13)

生体溶解性断熱材の層と耐火物構造体との間に、前記の生体溶解性断熱材及び前記の耐火物構造体との反応抑制層を備えた、断熱構造体。   The heat insulation structure provided with the reaction suppression layer with the said biosoluble heat insulating material and the said refractory structure between the layer of biosoluble heat insulating material, and the refractory structure. 前記の生体溶解性断熱材の層は生体溶解性の繊維状物が集合した層であって、前記の生体溶解性断熱材と前記の反応抑制層とを混合した組成物の1400℃における液相率が22質量%以下である、請求項1に記載の断熱構造体。   The layer of the biosoluble heat insulating material is a layer in which biosoluble fibrous materials are gathered, and a liquid phase at 1400 ° C. of a composition obtained by mixing the biosoluble heat insulating material and the reaction suppressing layer. The heat insulation structure of Claim 1 whose rate is 22 mass% or less. 前記の反応抑制層は、1000℃酸化雰囲気中熱処理後の化学成分としてZrO及びSiOを合計で94質量%以上含有し、残部が前記以外の耐火性成分からなる、請求項1又は請求項2に記載の断熱構造体。 The reaction suppression layer of said, the ZrO 2 and SiO 2 contained a total of more than 94 wt% as chemical components after heat treatment in 1000 ° C. oxidizing atmosphere, the balance being refractory component other than the claim 1 or claim 2. The heat insulating structure according to 2. 前記の反応抑制層中の、ZrOの含有量は60質量%以上である、請求項3に記載の断熱構造体。 The heat insulation structure according to claim 3, wherein the content of ZrO 2 in the reaction suppression layer is 60 mass% or more. 前記の反応抑制層中の、ZrO及びSiOの一部又は全部がジルコンを構成している、請求項3又は請求項4に記載の断熱構造体。 The heat insulation structure of Claim 3 or Claim 4 in which a part or all of ZrO 2 and SiO 2 in the reaction suppression layer constitutes zircon. 前記の反応抑制層中の構成粒子の平均粒子径は0.5mm以下である、請求項1から請求項5のいずれかに記載の断熱構造体。   The heat insulation structure in any one of Claims 1-5 whose average particle diameter of the constituent particle in the said reaction suppression layer is 0.5 mm or less. 前記の生体溶解性断熱材は、1000℃酸化雰囲気中熱処理後の化学成分としてSiO、Al及びKOを合計で90質量%以上含有し、残部が前記以外の金属酸化物、硼化物から選択する1種以上の成分からなる、請求項1から請求項6のいずれかに記載の断熱構造体。 The biosoluble heat insulating material contains a total of 90% by mass or more of SiO 2 , Al 2 O 3 and K 2 O as chemical components after heat treatment in an oxidizing atmosphere at 1000 ° C., and the balance is a metal oxide other than the above, The heat insulating structure according to any one of claims 1 to 6, comprising at least one component selected from borides. 前記の生体溶解性断熱材中の、KOの含有量は20質量%以上30質量%以下である、請求項7に記載の断熱構造体。 The heat insulating structure according to claim 7, wherein the content of K 2 O in the biosoluble heat insulating material is 20% by mass or more and 30% by mass or less. 前記の耐火物構造体は、炭素含有耐火物からなる、請求項1から請求項8のいずれかに記載の断熱構造体。   The heat insulation structure according to any one of claims 1 to 8, wherein the refractory structure is made of a carbon-containing refractory. 前記の耐火物構造体の、前記反応抑制層と接する面の一部又は全部に、1000℃以下で一部又は全部が溶融して空気の通過を遮断する酸化防止材の層が設置されている、請求項9に記載の断熱構造体。   A layer of an antioxidant that blocks part of or all of the surface of the refractory structure that is in contact with the reaction-suppressing layer and that is partially or wholly melted at 1000 ° C. or less and blocks the passage of air. The heat insulating structure according to claim 9. 前記の酸化防止材の層に前記の反応抑制層が加わる際に、その加わる量が増加するのに伴って液相率が低下する、請求項10に記載の断熱構造体。   The heat insulating structure according to claim 10, wherein when the reaction suppression layer is added to the antioxidant layer, the liquid phase ratio decreases as the amount added increases. 前記の耐火物構造体は、鋼の連続鋳造用ノズルである、請求項10又は請求項11に記載の断熱構造体。   The said refractory structure is a heat insulation structure of Claim 10 or Claim 11 which is a nozzle for continuous casting of steel. 前記の鋼の連続鋳造用ノズルの、大気又は酸化性ガスに接触する面の一部又は全部に前記の酸化防止材の層が設置され、当該酸化防止材の層の外面に前記の反応抑制層が設置され、さらにその外面に前記の生体溶解性断熱材の層が設置され、前記の酸化防止材の層の厚さは0.3mm以上1.0mm以下、前記の反応抑制層の厚さは0.6mm以上1.5mm以下、前記の生体溶解性断熱材の層の厚さは3mm以上である、請求項12に記載の断熱構造体。   The layer of the antioxidant is disposed on a part or all of the surface of the nozzle for continuous casting of the steel that is in contact with the atmosphere or the oxidizing gas, and the reaction suppression layer is formed on the outer surface of the layer of the antioxidant. Is further installed on the outer surface thereof, the thickness of the antioxidant layer is 0.3 mm or more and 1.0 mm or less, and the thickness of the reaction suppression layer is The heat insulating structure according to claim 12, wherein the thickness of the layer of the biosoluble heat insulating material is not less than 0.6 mm and not more than 1.5 mm, and not less than 3 mm.
JP2015023774A 2015-02-10 2015-02-10 Thermal insulation structure Active JP6523701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015023774A JP6523701B2 (en) 2015-02-10 2015-02-10 Thermal insulation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015023774A JP6523701B2 (en) 2015-02-10 2015-02-10 Thermal insulation structure

Publications (2)

Publication Number Publication Date
JP2016148347A true JP2016148347A (en) 2016-08-18
JP6523701B2 JP6523701B2 (en) 2019-06-05

Family

ID=56691569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015023774A Active JP6523701B2 (en) 2015-02-10 2015-02-10 Thermal insulation structure

Country Status (1)

Country Link
JP (1) JP6523701B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122531A (en) * 2016-01-06 2017-07-13 明智セラミックス株式会社 Heat insulation structure of refractory
JP2017194191A (en) * 2016-04-19 2017-10-26 明智セラミックス株式会社 Heat insulation structure for refractory item
US9984794B1 (en) 2017-11-28 2018-05-29 Imae Industry Co., Ltd. Refractory insulating sheet
JP2018126774A (en) * 2017-02-09 2018-08-16 品川リフラクトリーズ株式会社 Method for bonding heat insulation material to steel continuous casting nozzle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042608A (en) * 1990-03-16 1992-01-07 Tosoh Corp Method for synthesizing zircon powder
JP2004244259A (en) * 2003-02-13 2004-09-02 Toshiba Ceramics Co Ltd Adhesive for immersion nozzle
JP2011504448A (en) * 2007-11-23 2011-02-10 ザ・モーガン・クルーシブル・カンパニー・ピーエルシー Inorganic fiber composition
JP2013154352A (en) * 2012-01-26 2013-08-15 Kurosaki Harima Corp Filling pipe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042608A (en) * 1990-03-16 1992-01-07 Tosoh Corp Method for synthesizing zircon powder
JP2004244259A (en) * 2003-02-13 2004-09-02 Toshiba Ceramics Co Ltd Adhesive for immersion nozzle
JP2011504448A (en) * 2007-11-23 2011-02-10 ザ・モーガン・クルーシブル・カンパニー・ピーエルシー Inorganic fiber composition
JP2013154352A (en) * 2012-01-26 2013-08-15 Kurosaki Harima Corp Filling pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122531A (en) * 2016-01-06 2017-07-13 明智セラミックス株式会社 Heat insulation structure of refractory
JP2017194191A (en) * 2016-04-19 2017-10-26 明智セラミックス株式会社 Heat insulation structure for refractory item
JP2018126774A (en) * 2017-02-09 2018-08-16 品川リフラクトリーズ株式会社 Method for bonding heat insulation material to steel continuous casting nozzle
US9984794B1 (en) 2017-11-28 2018-05-29 Imae Industry Co., Ltd. Refractory insulating sheet

Also Published As

Publication number Publication date
JP6523701B2 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
JP6027676B2 (en) Refractories and casting nozzles
TWI466844B (en) Refractory and casting nozzles
JP6523701B2 (en) Thermal insulation structure
JP4855554B2 (en) Molten steel surface thermal insulation and molten steel surface thermal insulation method
JP2019127401A (en) Castable refractory
EA017317B1 (en) A refractory article for ladle as the ladle shroud, stopper rod, submerged entry nozzle or tube
TW201141811A (en) Flame retardant substance, nozzle made of flame retardant substance and used in continuous casting, production method of nozzle used in continuous casting, and continuous casting method of using nozzle thereof
JP2010167481A (en) Nozzle for continuous casting
JP5712888B2 (en) Lined lining structure for steelmaking containers
JP4855552B2 (en) Molten steel surface insulation method
JP5920412B2 (en) Continuous casting nozzle
JP5818037B2 (en) Immersion nozzle for continuous casting
JP5354495B2 (en) Immersion nozzle for continuous casting of steel
JP2018075601A (en) Semi-immersion nozzle
JP2016148102A (en) Tuyere refractory for gas blowing plug
JP3911221B2 (en) Refractories for continuous casting
JP2007246960A (en) Molten iron trough for blast furnace
JP6112176B1 (en) Immersion nozzle
JPH11320049A (en) Long nozzle for continuous casting
JP7068255B2 (en) CaO-ZrO2 composition, CaO-ZrO2 composition manufacturing method, CaO-ZrO2-containing refractory and casting nozzle
JP2018062438A (en) Thermal insulation coating material for continuous casting nozzle
JP2020083689A (en) Protective structure of zirconia-carbon based refractory
JP2023135248A (en) Hardly adhesive refractory and nozzle for continuous casting
JP2017060983A (en) Continuously casting nozzle
JP2007253215A (en) Immersion nozzle for continuously casting steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190426

R150 Certificate of patent or registration of utility model

Ref document number: 6523701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250