JP2016147253A - Powder supply device - Google Patents

Powder supply device Download PDF

Info

Publication number
JP2016147253A
JP2016147253A JP2015026872A JP2015026872A JP2016147253A JP 2016147253 A JP2016147253 A JP 2016147253A JP 2015026872 A JP2015026872 A JP 2015026872A JP 2015026872 A JP2015026872 A JP 2015026872A JP 2016147253 A JP2016147253 A JP 2016147253A
Authority
JP
Japan
Prior art keywords
rod
powder supply
powder
shaped body
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015026872A
Other languages
Japanese (ja)
Inventor
竹内 徹
Toru Takeuchi
徹 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP2015026872A priority Critical patent/JP2016147253A/en
Publication of JP2016147253A publication Critical patent/JP2016147253A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Emptying Of Bunkers, Hoppers, And Tanks (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a powder supply device capable of falling powder in a measuring recess part surely from the measuring recess part, when the measuring recess part is made downward from upward by rotation of a bar-body, after filling powder in the measuring recess part of the bar-body.SOLUTION: A powder supply device 10 comprises: a powder supply cylinder 20 having opening ends on upper and lower sides; a bar-body 30 disposed in a state of blocking the upper and lower parts of the powder supply cylinder; a measuring recess part 34 which becomes dent from a side face; and an air passage 31 which extends from an air inlet which opens on a position outside of the powder supply cylinder 20 on the bar-body 30 to an air outlet which opens a bottom of the measuring recess part 34.SELECTED DRAWING: Figure 1

Description

本発明は、粉体を所定量に計量して供給する粉体供給装置に関する。   The present invention relates to a powder supply apparatus that measures and supplies powder to a predetermined amount.

粉体を所定量に計量して定量供給する方法としては、電子天秤、ロードセルと言った重量センサを用いて重量計量して供給する方法、容器内側等の容積空間に粉体を充填して容積計量して供給する方法、回転テーブル上に堆積させた粉体を回転テーブルを回転させつつ掻き落として供給する方法、粉体をスクリューから押し出して供給する方法等がある。
しかしながら、重量センサを用いた重量計量は、計量値の揺れやバラツキが生じやすく、計量精度を担保するための計量値処理に時間が掛かる。このため、例えば、計量の短時間での繰り返し実施(例えば秒単位の繰り返し計量)には適用困難である。
粉体を容積空間に単純に投入、充填する容積計量は、容積空間内の粉体の充填密度にバラツキが生じることがあり、重量換算ではバラツキが大きいケースがある。
回転テーブル上の粉体を掻き落として定量供給する方法、粉体をスクリューから押し出して定量供給する方法は、重量センサを用いた重量計量や容積計量に比べてサイズが大きい装置を必要とし、装置の設置には充分な設置スペースの確保が必要であり、設置場所に制約があった。
As a method for measuring and supplying a fixed amount of powder, a method of weighing and supplying using an electronic balance, a weight sensor such as a load cell, or filling a volume space such as the inside of a container with powder There are a method of supplying by weighing, a method of supplying powder accumulated on the rotary table by scraping it while rotating the rotary table, a method of supplying powder by extruding it from a screw, and the like.
However, weight weighing using a weight sensor is likely to cause fluctuations and variations in measurement values, and it takes time to process the measurement values to ensure measurement accuracy. For this reason, for example, it is difficult to apply the measurement to repeated measurement in a short time (for example, repeated measurement in units of seconds).
In the volumetric measurement in which powder is simply charged and filled in the volume space, there may be variations in the packing density of the powder in the volume space, and there are cases where the variation is large in terms of weight.
The method of supplying powder by scraping the powder on the rotary table and the method of supplying powder by pushing the powder out of the screw require a device that is larger than the weight measurement or volume measurement using a weight sensor. It was necessary to secure a sufficient installation space for the installation, and there were restrictions on the installation location.

また、例えば特許文献1のように、上下に開口端を有する粉体供給管にその上下を遮断する状態に棒状体が軸回転自在に設けられ、粉体供給管の上端開口から投入された粉体を棒状体の回転によって棒状体側周面に穿設された凹所状の計量容積空間の容積に対応する量だけ粉体供給管の下端開口から供給する装置(以下、棒回転計量供給装置とも言う)も提案されている。この棒回転計量供給装置は、棒状体の計量容積空間を上向き(開口部が上側)にした状態で、計量容積空間に粉体供給管の上端開口から投入した粉体を充填した後、棒状体を回転して計量容積空間を下向き(開口部が下側)にし、計量容積空間内の粉体を粉体供給管の下端開口から落下させることで、計量容積空間の容積に対応する量の粉体を粉体供給管下端開口から供給する。棒回転計量供給装置は、計量容積空間が形成された棒状体の回転のみで所定量の粉体を供給できるものであり、重量センサを用いた重量計量に比べて計量及び供給の所要時間の短縮が可能である。また、棒回転計量供給装置は、回転テーブルや粉体押し出し用のスクリューを用いる装置に比べて小型に形成可能であり設置スペースも小さくて済む。
また、棒回転計量供給装置は、例えば特許文献1のように、粉体供給管及び棒状体に振動を与える振動発生装置を有しているものが提案されている。特許文献1の棒回転計量供給装置は、振動発生装置によって粉体供給管及び棒状体を加振しながら、粉体供給管内に粉体供給管上端開口から粉体を投入することで、粉体を棒状体の計量容積空間内に均等の密度で充填できる。
Further, as in Patent Document 1, for example, a powder supply pipe having an upper and lower opening end is provided with a rod-like body so that the upper and lower portions are axially rotatable, and powder fed from the upper end opening of the powder supply pipe A device that feeds the body from the lower end opening of the powder supply pipe by an amount corresponding to the volume of the concave metering volume space drilled on the rod-like body side circumferential surface by the rotation of the rod-shaped body (hereinafter also referred to as the rod rotation metering and feeding device) Say) is also proposed. This rod rotation metering and supply device has a rod-like body after filling the metering volume space with the powder introduced from the upper end opening of the powder supply tube in a state where the metering volume space of the rod-like body is facing upward (the opening is on the upper side). Rotate the metering volume space downward (opening is on the bottom), and drop the powder in the metering volume space from the lower end opening of the powder supply pipe. The body is supplied from the lower end opening of the powder supply pipe. The rod rotation metering supply device can supply a predetermined amount of powder only by rotating the rod-shaped body in which the metering volume space is formed, and shortens the time required for metering and supply compared to the weight metering using the weight sensor. Is possible. Further, the rod rotation metering supply device can be formed smaller than the device using the rotary table and the powder extrusion screw, and the installation space can be reduced.
Further, as a rod rotation metering supply device, for example, as disclosed in Patent Document 1, a device having a vibration generating device that applies vibration to a powder supply tube and a rod-like body has been proposed. The rod rotation metering and feeding device of Patent Document 1 is a method in which powder is introduced into the powder supply tube from the upper end opening of the powder supply tube while vibrating the powder supply tube and the rod-like body by a vibration generator. Can be filled into the measuring volume space of the rod-shaped body with equal density.

特開2002−18269号公報Japanese Patent Laid-Open No. 2002-18269

しかしながら、本発明者は、上述の棒回転計量供給装置において、計量容積空間への粉体充填後に棒状体を回転させ計量容積空間を上向きから下向きにしても、計量容積空間内の粉体がケーキングによって計量容積空間から落下しないケースが存在し、それが粉体供給管下端開口からの粉体の供給量のバラツキの原因になることを把握した。   However, the present inventor, in the above-described rod rotation metering and supply apparatus, the powder in the metering volume space is caked even if the rod-shaped body is rotated after the powder is filled into the metering volume space and the metering volume space is directed downward. As a result, it was found that there was a case where the powder did not fall from the measuring volume space, which caused variations in the amount of powder supplied from the lower end opening of the powder supply pipe.

本発明は、前記課題に鑑みて、棒状体の計量凹部への粉体充填後に、棒状体の回転によって計量凹部を上向きから下向きにしたときに、計量凹部内の粉体を確実に計量凹部から落下させることができる粉体供給装置の提供を目的としている。   In view of the above-mentioned problems, the present invention ensures that the powder in the measurement recess is reliably removed from the measurement recess when the measurement recess is turned from the upward direction to the downward direction by rotating the rod-shaped body after filling the powder into the measurement recess of the rod-shaped body. It aims at providing the powder supply apparatus which can be dropped.

上記課題を解決するために、本発明では以下の構成を提供する。
第1の発明は、上下に開口端を有する粉体供給筒と、前記粉体供給筒にその上下を遮断する状態に設けられた棒状体と、前記棒状体を軸回転させる回転機構とを有し、
前記棒状体には、その前記粉体供給筒外側に位置する部分に開口するエア入り口から前記棒状体の側周面から窪んで形成された計量凹部の底面に開口するエア出口にわたって延在するエア通路が形成され、前記計量凹部は前記棒状体の前記粉体供給筒内に位置する部分に形成されていることを特徴とする粉体供給装置を提供する。
第2の発明は、前記粉体供給筒の上端部内側に挿入された攪拌翼部材を原動機の駆動力によって回転させて前記粉体供給筒の上端部内の粉体を攪拌する粉体攪拌機構をさらに有することを特徴とする第1の発明の粉体供給装置を提供する。
第3の発明は、前記棒状体の前記計量凹部は、前記棒状体側周面に沿う方向において前記計量凹部中央部から離隔するに従い前記棒状体側周面からの深さが浅くなる形状に形成されていることを特徴とする第1又は2の発明の粉体供給装置を提供する。
第4の発明は、前記エア通路の前記エア入り口に接続され前記エア通路にエアを圧送するエア圧送装置をさらに有し、前記棒状体の回転によって前記計量凹部が上向きの状態から下向きになったときに自動で前記エア圧送装置から前記エア通路へエアを圧送することを特徴とする第1〜3のいずれか1つの発明の粉体供給装置を提供する。
第5の発明は、前記粉体供給筒はその上端部を構成するホッパ部と前記ホッパ部の下端から下方へ延在する管部とを有し、前記棒状体はその上端を前記ホッパ部内側面の下端に位置合わせして設けられていることを特徴とする第1〜4のいずれか1つの発明の粉体供給装置を提供する。
第6の発明は、前記粉体供給筒の側面に取り付けられて、前記粉体供給筒及び前記棒状体のうち少なくとも前記粉体供給筒を振動させる加振器をさらに有することを特徴とする第1〜5のいずれか1つの発明の粉体供給装置を提供する。
In order to solve the above problems, the present invention provides the following configuration.
According to a first aspect of the present invention, there is provided a powder supply cylinder having upper and lower open ends, a rod-shaped body provided in the powder supply cylinder in a state of blocking the upper and lower sides, and a rotation mechanism for rotating the rod-shaped body. And
The rod-shaped body includes an air extending from an air inlet opening at a portion located outside the powder supply cylinder to an air outlet opening at a bottom surface of a measurement recess formed by depression from a side peripheral surface of the rod-shaped body. A powder supply apparatus is provided in which a passage is formed and the measuring recess is formed in a portion of the rod-shaped body located in the powder supply cylinder.
According to a second aspect of the present invention, there is provided a powder agitation mechanism for agitating the powder in the upper end portion of the powder supply cylinder by rotating a stirring blade member inserted inside the upper end portion of the powder supply cylinder by a driving force of a prime mover. Furthermore, the powder supply apparatus of 1st invention characterized by having is provided.
According to a third aspect of the present invention, the measuring recess of the rod-shaped body is formed in a shape in which the depth from the rod-shaped body side peripheral surface becomes shallower as the distance from the central portion of the measuring recess in the direction along the rod-shaped body side peripheral surface. A powder supply apparatus according to the first or second invention is provided.
The fourth invention further includes an air pumping device connected to the air inlet of the air passage and pumping air into the air passage, and the measuring concave portion is turned downward from the upward state by the rotation of the rod-shaped body. There is provided a powder supply apparatus according to any one of the first to third aspects, characterized in that air is automatically pumped from the air pumping apparatus to the air passage.
According to a fifth aspect of the present invention, the powder supply cylinder has a hopper portion constituting an upper end portion thereof and a tube portion extending downward from a lower end of the hopper portion, and the rod-like body has an upper end thereof disposed on the inner surface of the hopper portion. The powder supply device according to any one of the first to fourth aspects is provided, wherein the powder supply device is provided in alignment with the lower end of the first to fourth inventions.
The sixth invention is characterized by further comprising a vibrator attached to a side surface of the powder supply cylinder and vibrating at least the powder supply cylinder among the powder supply cylinder and the rod-shaped body. The powder supply apparatus according to any one of 1 to 5 is provided.

本発明によれば、棒状体の計量凹部への粉体充填後に棒状体の回転によって計量凹部を上向きから下向きにしたときに、棒状体のエア通路にそのエア入り口からエアを圧送することで、計量凹部内の粉体を計量凹部から確実に落下させることができる。   According to the present invention, when the measuring concave portion is turned from the upward to the downward direction by rotating the rod-shaped body after filling the powder into the measuring concave portion of the rod-shaped body, air is pumped from the air inlet to the air passage of the rod-shaped body, The powder in the measurement recess can be reliably dropped from the measurement recess.

本発明の1実施形態の粉体供給装置の構造を示す部分正断面図である。It is a fragmentary front sectional view which shows the structure of the powder supply apparatus of one Embodiment of this invention. 図1の粉体供給装置の棒状体がその計量凹部が上向きの初期状態にあるときに、ホッパ部に粉体を投入した状態を示す図である。FIG. 2 is a view showing a state in which powder is put into a hopper portion when the rod-like body of the powder supply apparatus in FIG. 1 is in an initial state in which a measuring recess is upward. 粉体供給装置の動作を説明する図であり、棒状体を図2の状態から回転させた状態を示す図である。It is a figure explaining operation | movement of a powder supply apparatus, and is a figure which shows the state which rotated the rod-shaped body from the state of FIG. 粉体供給装置の動作を説明する図であり、図2の状態から回転させた棒状体を図3の状態からさらに回転させた状態を示す図である。It is a figure explaining operation | movement of a powder supply apparatus, and is a figure which shows the state which rotated further the rod-shaped body rotated from the state of FIG. 2 from the state of FIG. 粉体供給装置の動作を説明する図であり、図2の状態から回転させた棒状体を図4の状態からさらに回転させた状態を示す図である。It is a figure explaining operation | movement of a powder supply apparatus, and is a figure which shows the state which rotated further the rod-shaped body rotated from the state of FIG. 2 from the state of FIG. 粉体供給装置の動作を説明する図であり、図2の状態から回転した棒状体を計量凹部を下向きとした状態にて、エア圧送装置から棒状体のエア通路へのエア圧送によって、計量凹部内の粉体を計量凹部から落下させた状態を示す図である。It is a figure explaining operation | movement of a powder supply apparatus, and the measurement recessed part is carried out by the air pumping from the air pumping apparatus to the air path of a rod-shaped body in the state which made the measurement recessed part face down the rod-shaped body rotated from the state of FIG. It is a figure which shows the state which dropped the powder in the inside from the measurement recessed part. 計量軸部にエア噴射拡散部材を設けた棒状体の例を示す図であって、(a)はエア噴射拡散部材が網体、(b)は通気孔が形成されたエア噴射拡散部材を用いた例を示す。It is a figure which shows the example of the rod-shaped body which provided the air injection diffusion member in the measurement axis | shaft part, Comprising: (a) uses an air injection diffusion member with a net | network body, (b) uses the air injection diffusion member in which the vent hole was formed. Here is an example.

以下、本発明の1実施形態の粉体供給装置について、図面を参照して説明する。
図1に示すように、この実施形態の粉体供給装置10は、上下に開口端を有する粉体供給筒20と、粉体供給筒20にその上下を遮断する状態に設けられた棒状体30と、棒状体30を軸回転させる回転機構40と、粉体供給筒20上端部内の粉体1を攪拌する粉体攪拌機構50と、粉体供給筒20側面に取り付けられた加振器60と、棒状体30のエア通路31にエアを圧送するためのエア圧送装置70とを有する。
Hereinafter, a powder supply apparatus according to an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a powder supply apparatus 10 of this embodiment includes a powder supply cylinder 20 having upper and lower open ends, and a rod-shaped body 30 provided in a state in which the powder supply cylinder 20 blocks the upper and lower sides. A rotating mechanism 40 that rotates the rod-shaped body 30, a powder stirring mechanism 50 that stirs the powder 1 in the upper end portion of the powder supply cylinder 20, and a vibrator 60 attached to the side surface of the powder supply cylinder 20. And an air pumping device 70 for pumping air into the air passage 31 of the rod-shaped body 30.

粉体供給筒20は、その上端部を構成するホッパ部21と、ホッパ部21下端から下方へ延在する管部22とを有する。
粉体供給筒20のホッパ部21は、その上端開口部から下方へ行くにしたがって先細りのテーパ状の内側空間を有する。
粉体供給筒20は、仮に棒状体30が抜き去られた状態において、ホッパ部21及び管部22の内側を貫通する内側空間を有する筒体である。
The powder supply cylinder 20 includes a hopper portion 21 that constitutes an upper end portion thereof, and a tube portion 22 that extends downward from the lower end of the hopper portion 21.
The hopper portion 21 of the powder supply cylinder 20 has a tapered inner space that tapers in a downward direction from the upper end opening.
The powder supply cylinder 20 is a cylinder having an inner space penetrating the inside of the hopper portion 21 and the tube portion 22 in a state where the rod-shaped body 30 is removed.

棒状体30は円柱状の計量軸部32を有する。棒状体30の計量軸部32は、その軸線方向両端部を、粉体供給筒20の管部22のその中心軸線を介して両側に形成された軸挿通孔23に挿入して、粉体供給筒20にその上下を遮断する状態に設けられている。
管部22両側の軸挿通孔23は、管部22の中心軸線に直交する軸線を以て管部22肉厚を貫通する断面円形の孔である。管部22両側の軸挿通孔23は互いに同軸に形成されている。棒状体30は、計量軸部32が挿入された管部22両側の軸挿通孔23内面によって、軸挿通孔23中心軸線に同軸の回転軸線を以て粉体供給筒20に軸回転自在に支持されている。
The rod-shaped body 30 has a cylindrical measuring shaft portion 32. The measuring shaft portion 32 of the rod-shaped body 30 has both ends in the axial direction inserted into shaft insertion holes 23 formed on both sides via the central axis of the tube portion 22 of the powder supply cylinder 20 to supply powder. The cylinder 20 is provided in a state where the upper and lower sides are blocked.
The shaft insertion holes 23 on both sides of the tube portion 22 are holes having a circular cross section that penetrates the thickness of the tube portion 22 with an axis orthogonal to the central axis of the tube portion 22. The shaft insertion holes 23 on both sides of the tube portion 22 are formed coaxially with each other. The rod-shaped body 30 is supported by the powder supply cylinder 20 so as to be axially rotatable by the inner surfaces of the shaft insertion holes 23 on both sides of the tube portion 22 in which the measuring shaft portion 32 is inserted, with a rotation axis coaxial with the central axis of the shaft insertion hole 23. Yes.

棒状体30は、計量軸部32の軸方向片端側に計量軸部32と同軸に固定されたギア33を有する。棒状体30のギア33(以下、棒状体ギア、とも言う)には、回転機構40のギア41(以下、機構出力ギア、とも言う)が噛み合わされている。回転機構40は機構出力ギア41を回転駆動する原動機42を有する。原動機42の回転駆動力はギア41、33を介して棒状体30に伝達される。棒状体30は原動機42の回転駆動力によって、粉体供給筒20に支持された状態のまま軸挿通孔23中心軸線に同軸の回転軸線を以て軸回転される。   The rod-shaped body 30 has a gear 33 fixed coaxially with the measuring shaft portion 32 on one end side in the axial direction of the measuring shaft portion 32. A gear 41 (hereinafter also referred to as a mechanism output gear) of the rotating mechanism 40 is engaged with a gear 33 (hereinafter also referred to as a rod-shaped body gear) of the rod-shaped body 30. The rotating mechanism 40 has a prime mover 42 that rotationally drives a mechanism output gear 41. The rotational driving force of the prime mover 42 is transmitted to the rod-shaped body 30 via gears 41 and 33. The rod-shaped body 30 is axially rotated by a rotational driving force of the prime mover 42 while being supported by the powder supply cylinder 20 with a rotational axis coaxial with the central axis of the shaft insertion hole 23.

回転機構40の原動機42は電動モータ、流体圧モータ等のモータを好適に採用できる。図1に例示した原動機42はモータである。
また、図示例の回転機構40の機構出力ギア41は、具体的には、モータ42の出力軸42aにその同軸に固定して設けられている。但し、回転機構としては、機構出力ギア41がモータ42の出力軸42aに固定されている構成に限定されず、例えば、モータ42と機構出力ギア41との間に、モータ42の回転駆動力を出力ギア41に伝達するギア(中継ギア)や減速機等の駆動力伝達部材が設けられた構成も採用可能である。
また、粉体供給装置は、モータ42の出力軸を棒状体30に直結(棒状体30に同軸に直結)して、棒状体30をモータ42によって直接回転駆動する構成も採用可能である。この場合は、出力軸を含むモータ42自体が回転機構として機能する。
As the prime mover 42 of the rotation mechanism 40, a motor such as an electric motor or a fluid pressure motor can be suitably employed. The prime mover 42 illustrated in FIG. 1 is a motor.
Further, the mechanism output gear 41 of the rotating mechanism 40 in the illustrated example is specifically fixed to the output shaft 42a of the motor 42 so as to be coaxial. However, the rotation mechanism is not limited to the configuration in which the mechanism output gear 41 is fixed to the output shaft 42a of the motor 42. For example, the rotational driving force of the motor 42 is provided between the motor 42 and the mechanism output gear 41. A configuration in which a driving force transmission member such as a gear (relay gear) that transmits to the output gear 41 or a reduction gear is provided can also be employed.
In addition, the powder supply apparatus may employ a configuration in which the output shaft of the motor 42 is directly coupled to the rod-shaped body 30 (directly coupled to the rod-shaped body 30 coaxially), and the rod-shaped body 30 is directly rotated by the motor 42. In this case, the motor 42 itself including the output shaft functions as a rotation mechanism.

棒状体30の計量軸部32には、その側周面から窪む計量凹部34が形成されている。計量凹部34は、計量軸部32の粉体供給筒20内側に位置する部分(以下、筒内配置部、とも言う)に形成されている。
図1において、計量凹部34は、計量軸部32の軸線方向中央部に形成されている。
The measuring shaft portion 32 of the rod-shaped body 30 is formed with a measuring recess 34 that is recessed from the side peripheral surface thereof. The measurement recess 34 is formed in a portion (hereinafter also referred to as an in-cylinder arrangement portion) located inside the powder supply cylinder 20 of the measurement shaft portion 32.
In FIG. 1, the measurement concave portion 34 is formed in the central portion in the axial direction of the measurement shaft portion 32.

図1に例示した棒状体30の計量凹部34の計量軸部32側周面に開口する開口部は計量軸部32側周面に円形に形成されている。但し、計量凹部34の計量軸部32側周面に開口する開口部は円形に限定されず、例えば、四角形、六角形等の多角形や、楕円形であっても良い。   The opening part opened to the measurement shaft part 32 side peripheral surface of the measurement recessed part 34 of the rod-shaped body 30 illustrated in FIG. 1 is formed circularly on the measurement shaft part 32 side peripheral surface. However, the opening part opened to the measurement shaft part 32 side peripheral surface of the measurement recessed part 34 is not limited circularly, For example, polygons, such as a rectangle and a hexagon, and an ellipse may be sufficient.

また、図1に例示した計量凹部34は、計量軸部32側周面に沿う方向において計量凹部32中央部から離隔するに従い計量軸部32側周面からの深さが浅くなる形状に形成されている。
なお、計量凹部34の「計量軸部32側周面からの深さ」は、計量軸部32側周面に開口する計量凹部34開口部における計量軸部32側周面仮想延長と計量凹部34内面との間の、計量軸部32側周面仮想延長に垂直の方向での離隔距離を指す。
計量凹部34の計量軸部32側周面からの深さは、最も深い所で、計量軸部32外径の半分よりも小さい。
Further, the measuring recess 34 illustrated in FIG. 1 is formed in a shape in which the depth from the measuring shaft 32 side peripheral surface becomes shallower as the distance from the central portion of the measuring recess 32 in the direction along the measuring shaft 32 side peripheral surface. ing.
The “depth from the circumferential surface of the measurement shaft portion 32” of the measurement recess 34 is the virtual extension of the circumferential surface of the measurement shaft portion 32 and the measurement recess 34 at the opening of the measurement recess 34 that opens to the peripheral surface of the measurement shaft portion 32. The separation distance in the direction perpendicular to the virtual extension of the peripheral surface on the measuring shaft 32 side between the inner surface and the inner surface is indicated.
The depth of the measurement concave portion 34 from the peripheral surface of the measurement shaft portion 32 is smaller than half of the outer diameter of the measurement shaft portion 32 at the deepest place.

図1に例示した棒状体30の計量軸部32の側周面は、計量軸部32軸線方向全長にわたって、計量軸部32中心軸線を中心に一定径で湾曲延在する円筒面状である。
粉体供給筒20の管部22は、棒状体30を介して計量軸部32中心軸線及び管部22中心軸線に垂直の両側位置に、棒状体30の軸回転時に計量軸部32側周面が摺動する摺接部を有する。管部22両側の摺接部は、棒状体30の軸回転時に計量軸部32側周面が摺動する管部22内面である。管部22両側の摺接部は、計量軸部32の管部22内に位置する部分の側周面にその計量軸部32軸線方向全長にわたって当接可能に形成されている。
管部22両側の摺接部は、計量軸部32外径(計量軸部32側周面の径)と一致する離隔距離を以て互いに離隔させて互いに平行に形成されている。摺接部は計量軸部32側周面に線接触又は面接触可能である。
粉体供給装置10の粉体供給筒20の内側空間は、計量軸部32の筒内配置部を介して上下両側間が、計量軸部32の計量凹部34以外の部分によって遮断された状態となっている。
The side peripheral surface of the measuring shaft portion 32 of the rod-shaped body 30 illustrated in FIG. 1 is a cylindrical surface extending in a curved manner with a constant diameter around the central axis of the measuring shaft portion 32 over the entire length in the axial direction of the measuring shaft portion 32.
The tube portion 22 of the powder supply cylinder 20 is arranged on the measuring shaft portion 32 side circumferential surface when the rod-shaped body 30 is rotated at the both sides perpendicular to the measuring shaft portion 32 center axis and the tube portion 22 center axis via the rod-shaped body 30. Has a sliding contact portion that slides. The sliding contact portions on both sides of the tube portion 22 are inner surfaces of the tube portion 22 on which the measurement shaft portion 32 side peripheral surface slides when the rod-shaped body 30 rotates. The sliding contact portions on both sides of the tube portion 22 are formed so as to be able to contact the side circumferential surface of the portion of the measuring shaft portion 32 located in the tube portion 22 over the entire length in the axial direction of the measuring shaft portion 32.
The sliding contact portions on both sides of the tube portion 22 are formed in parallel with each other with a separation distance that matches the outer diameter of the measuring shaft portion 32 (the diameter of the peripheral surface on the measuring shaft portion 32 side). The sliding contact portion can be in line contact or surface contact with the peripheral surface of the measuring shaft portion 32 side.
The inner space of the powder supply cylinder 20 of the powder supply apparatus 10 is in a state where the upper and lower sides are blocked by portions other than the measurement recess 34 of the measurement shaft part 32 via the in-cylinder arrangement part of the measurement shaft part 32. It has become.

なお、棒状体30は、粉体供給筒20の管部22両側の軸挿通孔23に挿入される軸線方向寸法の計量軸部32を有する構成のもの(以下、計量軸部挿通形棒状体、とも言う)に限定されない。棒状体としては、例えば、全体が管部22内に配置される軸線方向寸法の計量軸部の軸線方向両側に、計量軸部に比べて径小の回転軸部を計量軸部に同軸に有する構成のもの(以下、両側回転軸棒状体、とも言う)も採用可能である。両側回転軸棒状体は、両側の回転軸部を管部22両側の軸挿通孔23に挿入して、粉体供給筒20に、管部22両側の軸挿通孔23の中心軸線に一致させた中心軸線(計量軸部中心軸線に一致)を中心に軸回転自在に設けられる。   The rod-shaped body 30 has a configuration including a measuring shaft portion 32 having an axial dimension inserted into the shaft insertion holes 23 on both sides of the tube portion 22 of the powder supply cylinder 20 (hereinafter, a measuring shaft portion-inserting rod-shaped body, It is not limited to. As a rod-shaped body, for example, a rotating shaft portion having a diameter smaller than that of the measuring shaft portion is coaxially provided on the measuring shaft portion on both sides in the axial direction of the measuring shaft portion having an axial direction dimension that is disposed in the tube portion 22 as a whole. The thing of a structure (henceforth a double-sided rotating shaft rod-like body) is also employable. In the both-side rotating shaft rod-like body, the rotating shaft portions on both sides are inserted into the shaft insertion holes 23 on both sides of the tube portion 22, and the powder supply cylinder 20 is made to coincide with the central axis of the shaft insertion holes 23 on both sides of the tube portion 22. It is provided so as to be rotatable about a central axis (coinciding with the central axis of the measuring shaft).

両側回転軸棒状体を採用する場合、粉体供給筒20の管部22は、計量軸部の軸線方向両側の回転軸部外径に軸挿通孔23内径を揃えた構成とする。また、管部22は、その計量軸部を収納する部分の内側の周方向全周(但し軸挿通孔23を除く)に、棒状体30の軸回転時に計量軸部に摺接する摺接部を有する構成とする。管部22の摺接部は、計量軸部の回転(軸回転)時に計量軸部の軸方向両側の端面及び計量軸部径方向両側の側周面が摺接可能に形成される。管部22内側空間の計量軸部を収納する部分は角孔状に形成される。両側回転軸棒状体は、粉体供給筒20にその内側空間を計量軸部の計量凹部34以外の部分によって上下に遮断した状態に設けられる。   When a double-sided rotating shaft rod-like body is employed, the tube portion 22 of the powder supply cylinder 20 has a configuration in which the inner diameter of the shaft insertion hole 23 is aligned with the outer diameter of the rotating shaft portion on both sides in the axial direction of the measuring shaft portion. Further, the tube portion 22 has a sliding contact portion that is slidably contacted with the measuring shaft portion when the shaft of the rod-shaped body 30 is rotated on the entire inner circumference (excluding the shaft insertion hole 23) inside the portion that accommodates the measuring shaft portion. It is set as the structure which has. The sliding contact portion of the tube portion 22 is formed so that the end surfaces on both sides in the axial direction of the measuring shaft portion and the side circumferential surfaces on both sides in the radial direction of the measuring shaft portion can be slidably contacted when the measuring shaft portion rotates (shaft rotation). A portion of the space inside the tube portion 22 that houses the measuring shaft portion is formed in a square hole shape. The both-side rotating shaft rod-like body is provided in the powder supply cylinder 20 in a state where its inner space is vertically blocked by a portion other than the measuring recess 34 of the measuring shaft portion.

図1に示す粉体攪拌機構50は、粉体供給筒20上端部のホッパ部21内側に挿入された攪拌翼部材51と、この攪拌翼部材51を回転駆動する原動機52とを有する。図1に例示した原動機52はモータ(電動モータあるいは流体圧モータ)である。以下、モータを符号52を付して説明する場合がある。   A powder stirring mechanism 50 shown in FIG. 1 includes a stirring blade member 51 inserted inside the hopper 21 at the upper end of the powder supply cylinder 20 and a prime mover 52 that rotationally drives the stirring blade member 51. The prime mover 52 illustrated in FIG. 1 is a motor (an electric motor or a fluid pressure motor). Hereinafter, the motor may be described with reference numeral 52.

攪拌翼部材51は、棒状の軸部53と、軸部53の軸線方向片端から突出する複数の翼片部54とを有する。図1に例示した攪拌翼部材51の翼片部54は、軸部53の軸線方向片端から軸部53中心軸線に対する垂直方向に延在する張出部54aと、この張出部54aの先端から軸部53軸線方向に沿う向きで延出する攪拌片54bとを有する。攪拌片54bは、軸部53軸線方向において、張出部54aを介して軸部53とは反対側に設けられている。各翼片部54の攪拌片54b先端は、軸部53中心軸線に垂直の方向において軸部53から離隔した位置に配置されている。   The stirring blade member 51 includes a rod-shaped shaft portion 53 and a plurality of blade piece portions 54 that protrude from one end in the axial direction of the shaft portion 53. The blade piece portion 54 of the stirring blade member 51 illustrated in FIG. 1 has an overhang portion 54a extending from one axial end of the shaft portion 53 in a direction perpendicular to the central axis of the shaft portion 53, and a tip of the overhang portion 54a. The shaft portion 53 has a stirring piece 54b extending in the direction along the axial direction. The stirring piece 54b is provided on the opposite side of the shaft portion 53 via the protruding portion 54a in the axial direction of the shaft portion 53. The tip of the stirring piece 54b of each blade piece 54 is disposed at a position spaced from the shaft 53 in a direction perpendicular to the central axis of the shaft 53.

攪拌翼部材51は、上下方向に延在する向きとした軸部53の翼片部54とは反対側の端部を、連結部材55を介してモータ52の出力軸52aに出力軸52aと同軸に連結して設けられている。翼片部54先端(攪拌片54b先端)は、連結部材55を介してモータ52の出力軸52aに連結された軸部53の下方に位置する。モータ52の出力軸52aには、上下方向に延在する向きとした軸部53の上端部が連結部材55を介して連結される。攪拌翼部材51は、原動機52(図示例ではモータ)の駆動力によって出力軸52aと一体的に回転される。   The agitating blade member 51 is coaxial with the output shaft 52a of the motor 52 via the connecting member 55 at the end opposite to the blade piece portion 54 of the shaft portion 53 that is oriented in the vertical direction. It is provided in connection with. The tip of the blade piece 54 (the tip of the stirring piece 54 b) is located below the shaft 53 connected to the output shaft 52 a of the motor 52 via the connecting member 55. An upper end portion of a shaft portion 53 that is oriented in the vertical direction is connected to the output shaft 52 a of the motor 52 via a connecting member 55. The stirring blade member 51 is rotated integrally with the output shaft 52a by the driving force of the prime mover 52 (motor in the illustrated example).

攪拌翼部材51は、少なくとも全ての翼片部54をホッパ部21内側に挿入して設けられる。図1に示すように攪拌翼部材51はその全体をホッパ部21内側に配置しても良い。但し、攪拌翼部材51の粉体供給筒20に対する配置位置は、攪拌翼部材51の回転を可能にするべく、攪拌翼部材51の回転に伴う翼片部54のホッパ部21との衝突を回避できる位置に設定される。
原動機52の駆動力によって回転された攪拌翼部材51は、ホッパ部21内にて回転する翼片部54によってホッパ部21内の粉体1を攪拌して、粉体1のケーキングを防ぐ。 翼片部54の回転によってホッパ部21内の粉体1を攪拌する粉体攪拌機構50の動作を、以下、粉体攪拌動作とも言う。
The stirring blade member 51 is provided by inserting at least all the blade pieces 54 inside the hopper 21. As shown in FIG. 1, the entire stirring blade member 51 may be disposed inside the hopper portion 21. However, the arrangement position of the stirring blade member 51 with respect to the powder supply cylinder 20 avoids a collision with the hopper portion 21 of the blade piece portion 54 accompanying the rotation of the stirring blade member 51 so that the stirring blade member 51 can be rotated. It is set to a position where it can.
The stirring blade member 51 rotated by the driving force of the prime mover 52 stirs the powder 1 in the hopper portion 21 by the blade piece portion 54 that rotates in the hopper portion 21 to prevent the powder 1 from caking. Hereinafter, the operation of the powder agitating mechanism 50 that agitates the powder 1 in the hopper portion 21 by the rotation of the blade piece portion 54 is also referred to as a powder agitating operation.

図1に示す粉体供給装置10において、加振器60は具体的には粉体供給筒20のホッパ部21側面(外側面)に取り付けられている。
粉体供給装置10は、棒状体30の軸回り方向の向きを計量凹部34が棒状体30上部に位置する向きとし、この状態にてホッパ部21内の粉体1を計量凹部34に入り込ませて計量凹部34に充填する(図2参照)。粉体供給装置10は、次いで、図3〜図6に示すように、回転機構40の駆動によって棒状体30を回転させて、棒状体30を計量凹部34が棒状体30下部に位置する向きとし、計量凹部34内の粉体1を粉体供給筒20の管部22の棒状体30を介してホッパ部21とは反対の側(以下、出口側、とも言う)へ落下させ、粉体1を管部22下端(開口端)から機器等へ供給する。
加振器60は、ホッパ部21及び棒状体30のうち少なくともホッパ部21を振動させて、ホッパ部21から棒状体30の計量凹部34への粉体1の入り込み、充填を円滑にする。
In the powder supply apparatus 10 shown in FIG. 1, the vibrator 60 is specifically attached to the side surface (outer surface) of the hopper portion 21 of the powder supply cylinder 20.
In the powder supply device 10, the direction of the rod-shaped body 30 around the axis is set so that the measuring recess 34 is positioned above the rod-shaped body 30, and in this state, the powder 1 in the hopper portion 21 enters the measuring recess 34. Then, the measurement recess 34 is filled (see FIG. 2). Next, as shown in FIG. 3 to FIG. 6, the powder supply apparatus 10 rotates the rod-shaped body 30 by driving the rotating mechanism 40, so that the rod-shaped body 30 is oriented so that the measuring recess 34 is positioned below the rod-shaped body 30. The powder 1 in the measuring recess 34 is dropped to the side opposite to the hopper portion 21 (hereinafter also referred to as the outlet side) through the rod-shaped body 30 of the tube portion 22 of the powder supply cylinder 20, and the powder 1 Is supplied from the lower end (opening end) of the pipe portion 22 to the device or the like.
The vibration exciter 60 vibrates at least the hopper portion 21 of the hopper portion 21 and the rod-shaped body 30 to smoothly enter and fill the powder 1 from the hopper portion 21 into the measuring concave portion 34 of the rod-shaped body 30.

図1に示す粉体供給装置10の棒状体30は、その計量軸部32の軸線方向の両端からそれぞれ粉体供給筒20外側に突出された突出端部351、352を有する。突出端部351、352は、計量軸部32と同軸の軸状に形成されている。
以下、符号351の突出端部を第1突出端部、符号352の突出端部を第2突出端部とも言う。
なお、棒状体ギア33は、第2突出端部352に固定して、粉体供給筒20外側に設けられている。
The rod-shaped body 30 of the powder supply apparatus 10 shown in FIG. 1 has projecting end portions 351 and 352 that project outward from the powder supply cylinder 20 from both ends of the measuring shaft portion 32 in the axial direction. The protruding end portions 351 and 352 are formed in a shaft shape coaxial with the measuring shaft portion 32.
Hereinafter, the protruding end portion denoted by reference numeral 351 is also referred to as a first protruding end portion, and the protruding end portion denoted by reference numeral 352 is also referred to as a second protruding end portion.
The rod-shaped body gear 33 is fixed to the second projecting end 352 and provided outside the powder supply cylinder 20.

図1に示す棒状体30の第1突出端部351は、具体的には、計量軸部32よりも径小に形成され計量軸部32軸線方向の端から突出する突軸状の首部35aと、この首部35aの計量軸部32とは反対の側に首部35aよりも径大に形成された端部大径部35bとを有する。首部35a及び端部大径部35bは、それぞれ計量軸部32と同軸に形成されている。   Specifically, the first projecting end 351 of the rod-shaped body 30 shown in FIG. 1 has a projecting shaft-like neck portion 35a that is formed smaller in diameter than the measuring shaft portion 32 and projects from the end in the axial direction of the measuring shaft portion 32. The neck portion 35a has an end portion large diameter portion 35b formed on the side opposite to the measuring shaft portion 32 and having a diameter larger than that of the neck portion 35a. The neck portion 35a and the end large-diameter portion 35b are formed coaxially with the measuring shaft portion 32, respectively.

棒状体30のエア通路31は、棒状体30内部にその軸線方向中央部から第1突出端部351側へ延在形成され第1突出端部351突端に開口する主通路31aと、この主通路31aの計量軸部32軸線方向中央部に位置する部分から該部分における主通路31a中心軸線に対する交差方向に延在する副通路31bとを有する。
副通路31bは、その延在方向の一端を主通路31aに連通させ、延在方向他端を計量凹部34に連通させて形成されている。副通路31bの延在方向他端は計量凹部34の底部内面に開口している。計量凹部34底部内面に開口する副通路31b延在方向他端を、以下、エア通路出口(エア出口)とも言う。
The air passage 31 of the rod-shaped body 30 is formed in the rod-shaped body 30 so as to extend from the axial center to the first projecting end 351 side and open to the projecting end of the first projecting end 351, and the main passage 31a. The measuring shaft portion 32a of the 31a has a sub passage 31b extending in a direction intersecting with the central axis of the main passage 31a in the portion from a portion located in the axial center portion.
The sub-passage 31 b is formed by communicating one end in the extending direction with the main passage 31 a and communicating the other end in the extending direction with the measuring recess 34. The other end in the extending direction of the sub-passage 31b opens to the bottom inner surface of the measurement recess 34. The other end in the extending direction of the sub passage 31b that opens to the inner surface of the bottom of the measuring recess 34 is hereinafter also referred to as an air passage outlet (air outlet).

図1に示す棒状体30のエア通路31の主通路31aは、第1突出端部351突端から計量軸部32軸線方向中央部まで、棒状体30にその軸線方向に沿って延在形成されている。主通路31aの第1突出端部351突端側の端部は、計量軸部32に同軸に形成されている。
図1に例示した主通路31aは、その全体が、棒状体30の回転軸線(計量軸部32の中心軸線)と同軸に延在形成されている。また、この主通路31aの計量軸部32内に位置する部分は、その延在方向(計量軸部32中心軸線に沿う方向)全長にわたって一定断面を以て延在形成されている。
図1に例示するエア通路31の副通路31bは、主通路31aの計量軸部32内に位置する部分に比べて小さい断面でその軸線方向に延在する孔状に形成されている。
The main passage 31a of the air passage 31 of the rod-shaped body 30 shown in FIG. 1 is formed to extend along the axial direction of the rod-shaped body 30 from the first projecting end portion 351 projecting end to the measuring shaft portion 32 axial center portion. Yes. An end portion of the main passage 31 a on the protruding end side of the first protruding end portion 351 is formed coaxially with the measuring shaft portion 32.
The entire main passage 31a illustrated in FIG. 1 extends coaxially with the rotation axis of the rod-shaped body 30 (the central axis of the measuring shaft portion 32). Moreover, the part located in the measurement shaft part 32 of this main channel | path 31a is extended and formed with the fixed cross section over the extension direction (direction along the center axis line of the measurement shaft part 32).
The sub-passage 31b of the air passage 31 illustrated in FIG. 1 is formed in a hole shape extending in the axial direction with a smaller cross section than the portion located in the measuring shaft portion 32 of the main passage 31a.

エア通路31出口(副通路31bの計量凹部34底部内面に開口する開口部)は、ホッパ部21から計量凹部34へ投入された粉体1のブリッジ等によって計量凹部34内の粉体1の入り込みが殆ど(あるいは全く)生じない狭いサイズに形成されている。副通路31bは、実質的に、計量凹部34の容積による粉体1計量に影響を与えない。   The outlet of the air passage 31 (the opening that opens in the bottom inner surface of the measurement recess 34 of the sub-passage 31 b) enters the powder 1 in the measurement recess 34 by a bridge or the like of the powder 1 put into the measurement recess 34 from the hopper 21. Is formed in a narrow size where little (or no) occurs. The sub-passage 31 b substantially does not affect the powder 1 measurement due to the volume of the measurement recess 34.

エア通路31には、その主流路31aの棒状体第1突出端部351側の端(エア入り口。以下、エア通路入り口とも言う)に接続、連通させた配管71を介して、エア圧送装置70からエアが圧送される。
エア圧送装置70は、配管71を介して、エア通路31(具体的にはエア通路入り口)にエア圧送可能に接続されている。
The air passage 31 is connected to and communicated with an end (air inlet; hereinafter also referred to as an air passage entrance) of the main flow passage 31a on the rod-like body first projecting end portion 351 side. Air is pumped from.
The air pressure feeding device 70 is connected to the air passage 31 (specifically, the air passage entrance) via a pipe 71 so as to be capable of air pressure feeding.

配管71は、その一端を継手72を介してエア圧送装置70に取り付け、他端を回転継手73を介して棒状体第1突出端部351に取り付けて設けられている。回転継手73は、配管71他端を棒状体第1突出端部351に対して、棒状体30回転軸線と同軸に回転自在に取り付け、棒状体30の回転に伴う配管71の捻れを防止する。   One end of the pipe 71 is attached to the air pressure feeding device 70 via the joint 72, and the other end is attached to the rod-like body first projecting end 351 via the rotary joint 73. The rotary joint 73 is attached at the other end of the pipe 71 to the rod-shaped body first projecting end portion 351 so as to be rotatable coaxially with the rotation axis of the rod-shaped body 30, and prevents the pipe 71 from being twisted due to the rotation of the rod-shaped body 30.

棒状体30について、計量凹部34が棒状体30上部に位置して上向きに開口する状態(計量凹部34中央部が棒状体30回転軸線上に位置する状態)を、以下、凹部上向き状態とも言う。また、棒状体30について、計量凹部34が棒状体30下部に位置して下向きに開口する状態(計量凹部34中央部が棒状体30回転軸線下に位置する状態)を、以下、凹部下向き状態とも言う。   Regarding the rod-shaped body 30, the state in which the measurement concave portion 34 is located on the upper portion of the rod-shaped body 30 and opens upward (the state in which the central portion of the measurement concave portion 34 is positioned on the rotation axis of the rod-shaped body 30) is hereinafter also referred to as the concave upward state. Further, regarding the rod-shaped body 30, the state in which the measurement concave portion 34 is positioned at the lower portion of the rod-shaped body 30 and opens downward (the state in which the central portion of the measurement concave portion 34 is positioned below the rotation axis of the rod-shaped body 30) is hereinafter referred to as the concave portion downward state. say.

エア圧送装置70は、凹部上向き状態にて計量凹部34に粉体1を充填した棒状体30を回転させ計量凹部34全体を粉体供給筒20の管部22内側空間の棒状体30を介して出口側に臨ませた状態にて、棒状体30のエア通路31へエアを圧送し、圧送エアをエア通路出口から計量凹部34に噴射させることで、計量凹部34内の粉体1を計量凹部34全体から管部22出口側へ確実に落下させる機能を果たす。   The air pressure feeding device 70 rotates the rod-shaped body 30 in which the measurement recess 34 is filled with the powder 1 in the upward state of the recess, and the entire measurement recess 34 is passed through the rod-shaped body 30 in the space inside the tube portion 22 of the powder supply cylinder 20. In a state of facing the outlet side, air is pressure-fed to the air passage 31 of the rod-shaped body 30, and the pressurized air is jetted from the air passage outlet to the measuring recess 34, whereby the powder 1 in the measuring recess 34 is measured. The function of reliably dropping from the entire 34 to the outlet side of the pipe portion 22 is achieved.

粉体供給装置10は、装置全体の動作を制御する制御部11と、動作スタート指令を出力して制御部に入力する動作指令入力部12とを有する。
図1に示す粉体供給装置10の動作指令入力部12は、作業者の手動操作等によって動作スタート指令を出力して制御部11へ入力する操作盤である。操作盤に符号12を付記する。
なお、制御部11及び動作指令入力部12は、図1のみに図示し、他の図においては図示を省略している。
The powder supply apparatus 10 includes a control unit 11 that controls the operation of the entire apparatus, and an operation command input unit 12 that outputs an operation start command and inputs the operation start command to the control unit.
The operation command input unit 12 of the powder supply apparatus 10 illustrated in FIG. 1 is an operation panel that outputs an operation start command and inputs it to the control unit 11 by an operator's manual operation or the like. Reference numeral 12 is added to the operation panel.
The control unit 11 and the operation command input unit 12 are illustrated only in FIG. 1 and are not illustrated in other drawings.

動作指令入力部12は制御部11に信号線を介して電気的に結線されている。但し、動作指令入力部12は制御部11に動作スタート指令を入力可能な構成であれば良く、例えば、赤外線等の光信号、電波信号などといった無線信号によって動作スタート指令を制御部11に入力する構成も採用可能である。   The operation command input unit 12 is electrically connected to the control unit 11 via a signal line. However, the operation command input unit 12 may be configured to be able to input an operation start command to the control unit 11. For example, the operation command input unit 12 inputs the operation start command to the control unit 11 by a radio signal such as an optical signal such as an infrared ray or a radio signal. A configuration can also be employed.

動作指令入力部12は、動作スタート指令を出力して制御部11に入力するものであれば良く、操作盤に限定されない。
動作指令入力部12は、例えば、ホッパ部21内の粉体1を検知するセンサ(ホッパ内粉体検知センサ)、ホッパ部21への投入時にホッパ部21入り口(上端部)又はその上方を落下する粉体1を検知するセンサ(投入粉体検知センサ)であっても良い。また、動作指令入力部12は、例えば、ホッパ部21に粉体1を投入する投入装置のホッパ部21へ粉体投入動作を検知するセンサ(以下、投入動作検知センサ)等であっても良い。
The operation command input unit 12 only needs to output an operation start command and input the operation start command to the control unit 11, and is not limited to the operation panel.
The operation command input unit 12 is, for example, a sensor (powder in the hopper detection sensor) that detects the powder 1 in the hopper unit 21, or drops at the entrance (upper end) of the hopper unit 21 or above when the hopper unit 21 is charged. It may be a sensor (input powder detection sensor) for detecting the powder 1 to be processed. Further, the operation command input unit 12 may be, for example, a sensor (hereinafter referred to as a charging operation detection sensor) that detects a powder charging operation to the hopper unit 21 of the charging device that loads the powder 1 into the hopper unit 21. .

動作指令入力部12として機能するホッパ内粉体検知センサは、ホッパ21内の粉体1量が、棒状体30の計量凹部34の容積よりも少ない(あるいはホッパ21内に粉体1が存在しない)状態から、計量凹部34容積以上の状態に遷移したことを検知したときに出力する検知信号を、動作スタート指令として制御部11に入力する。
動作指令入力部12として機能する投入粉体検知センサは、ホッパ部21入り口(上端部)又はその上方を落下する粉体1を検知したときに出力する検知信号を、動作スタート指令として制御部11に入力する。
動作指令入力部12として機能する投入動作検知センサは、投入装置のホッパ部21へ粉体投入動作を検知したときに出力する検知信号を、動作スタート指令として制御部11に入力する。
In the hopper powder detection sensor functioning as the operation command input unit 12, the amount of powder 1 in the hopper 21 is smaller than the volume of the measuring recess 34 of the rod-shaped body 30 (or the powder 1 does not exist in the hopper 21. ) A detection signal that is output when it is detected that the transition from the state to the state of the volume of the measurement recess 34 or more is input to the control unit 11 as an operation start command.
The charged powder detection sensor functioning as the operation command input unit 12 uses the detection signal output when detecting the powder 1 falling at the entrance (upper end) of the hopper 21 or above the control unit 11 as an operation start command. To enter.
The charging operation detection sensor functioning as the operation command input unit 12 inputs a detection signal output when detecting the powder charging operation to the hopper unit 21 of the charging device to the control unit 11 as an operation start command.

なお、投入動作検知センサは、投入装置の動作を制御する制御部(以下、投入装置制御部)自体であっても良い。
投入動作検知センサとして機能する投入装置制御部は、例えば、投入装置のホッパ部21へ粉体投入動作の開始時あるいは終了時に出力した動作スタート指令を制御部11に入力する。
Note that the making operation detection sensor may be a control unit (hereinafter, making device control unit) that controls the operation of the making device.
The charging device control unit that functions as a charging operation detection sensor inputs, for example, an operation start command output at the start or end of the powder charging operation to the hopper unit 21 of the charging device.

図1は、棒状体30が凹部上向き状態にて静止している状態を示す。粉体供給装置10について、図1に示す状態を、以下、初期状態とも言う。   FIG. 1 shows a state in which the rod-shaped body 30 is stationary in a state where the concave portion faces upward. With respect to the powder supply apparatus 10, the state shown in FIG. 1 is hereinafter also referred to as an initial state.

粉体供給装置10は、初期状態にて動作指令入力部12から動作スタート指令が入力(図1では制御盤12の操作)されると、まず、回転機構40を駆動させて棒状体30を回転させ(図3〜図5参照)、図6に示すように計量凹部34全体が粉体供給筒20の管部22内側空間の出口側に臨む状態(以下、凹部下側状態とも言う)とする第1回転動作を自動で開始する。次いで、粉体供給装置10は、第1回転動作によって回転された棒状体30が凹部下側状態にあるときにエア圧送装置70を駆動して棒状体30のエア通路31にエアを圧送する動作(図6参照。以下、エア圧送動作とも言う)と、凹部下側状態の棒状体30を回転機構40の駆動によって回転させて凹部上向き状態に復帰させる第2回転動作とを自動で行なう。
なお、本明細書では、棒状体30について凹部上向き状態を棒状体30が上向きの状態にあること、凹部下側状態を棒状体30が下向きの状態にあること、として扱う。
When an operation start command is input from the operation command input unit 12 in the initial state (the operation of the control panel 12 in FIG. 1), the powder supply device 10 first drives the rotation mechanism 40 to rotate the rod-shaped body 30. 6 (see FIG. 3 to FIG. 5), and as shown in FIG. 6, the entire weighing recess 34 faces the outlet side of the space inside the tube portion 22 of the powder supply cylinder 20 (hereinafter also referred to as a recess lower state). The first rotation operation is automatically started. Next, the powder supply device 10 drives the air pumping device 70 to pump the air to the air passage 31 of the rod-shaped body 30 when the rod-shaped body 30 rotated by the first rotation operation is in the state below the recess. (Refer to FIG. 6. Hereinafter, also referred to as an air pressure feeding operation) and the second rotating operation of rotating the rod-shaped body 30 in the lower concave portion state by driving the rotating mechanism 40 to return to the concave upward state is automatically performed.
In this specification, regarding the rod-shaped body 30, the concave upward state is treated as the rod-shaped body 30 is in an upward state, and the concave downward state is treated as the rod-shaped body 30 is in a downward state.

つまり、粉体供給装置10は、初期状態にて動作指令入力部12から動作スタート指令を入力することで、第1回転動作とエア圧送動作と第2回転動作とで構成される計量供給動作を自動で行なう。
ここでは、まず、粉体供給装置10の一例として、動作指令入力部12から制御部11への動作スタート指令の入力によって、計量供給動作を1回だけ実行する構成を説明する。
That is, the powder supply device 10 receives an operation start command from the operation command input unit 12 in an initial state, thereby performing a metering operation including a first rotation operation, an air pressure feeding operation, and a second rotation operation. Do it automatically.
Here, first, as an example of the powder supply apparatus 10, a configuration in which the metering operation is executed only once by an operation start command input from the operation command input unit 12 to the control unit 11 will be described.

粉体供給装置10は、例えば図2に示すように、初期状態にてホッパ部21に粉体1を投入して、粉体1をホッパ部21から棒状体30の計量凹部34へ落下、充填させた後、動作指令入力部12から動作スタート指令を入力することで、計量供給動作により、棒状体30の計量凹部34の容積に応じた量に計量した粉体1を管部22下端(出口端)から供給できる。
粉体供給装置10は、計量供給動作の第1回転動作により、凹部上向き状態にあった棒状体30が管部22の摺接部に摺動しながら回転して凹部下側状態に到達することで、計量凹部34によってその容積に応じた量の粉体1を安定計量できる。
For example, as shown in FIG. 2, the powder supply apparatus 10 puts the powder 1 into the hopper portion 21 in the initial state, and drops and fills the powder 1 from the hopper portion 21 into the measuring recess 34 of the rod-shaped body 30. Then, by inputting an operation start command from the operation command input unit 12, the powder 1 measured to an amount corresponding to the volume of the measurement recess 34 of the rod-shaped body 30 by the measurement supply operation is reduced at the lower end (exit) of the tube unit 22. Can be supplied from the end).
In the powder supply device 10, the rod-shaped body 30 that has been in the upward state of the concave portion rotates while sliding on the sliding contact portion of the tube portion 22 and reaches the lower state of the concave portion by the first rotation operation of the metering supply operation. Thus, the measuring recess 34 can stably measure the amount of the powder 1 corresponding to the volume.

また、粉体供給装置10は、図示略の装置電源スイッチをオフからオンに切り換えると、電気回路である制御部11が起動する。粉体供給装置10は、制御部11が起動した状態(装置電源スイッチがオン状態)にて操作盤12からの指令入力によって、粉体攪拌機構50の駆動(粉体攪拌動作)、及び加振器60の駆動によるホッパ部21の振動(加振)を開始する。
粉体攪拌機構50の駆動(粉体攪拌動作)、及び加振器60の駆動によるホッパ部21の振動(加振)を開始させる操作盤12から入力する指令を、以下、攪拌加振開始指令とも言う。操作盤12は、手動操作によって粉体供給装置10(具体的にはその制御部11)に攪拌加振開始指令を入力するための攪拌加振開始指令入力部として機能する(操作盤12が攪拌加振開始指令入力部を兼ねる)。
粉体供給装置10は、操作盤12が攪拌加振開始指令入力部を兼ねる構成に限定されず、操作盤12(動作指令入力部)とは別体の攪拌加振開始指令入力部を有する構成であっても良い。
Further, in the powder supply device 10, when a device power switch (not shown) is switched from OFF to ON, the control unit 11 that is an electric circuit is activated. The powder supply apparatus 10 drives the powder agitation mechanism 50 (powder agitation operation) and vibrates in response to a command input from the operation panel 12 with the control unit 11 activated (the apparatus power switch is on). The vibration (vibration) of the hopper portion 21 by driving the container 60 is started.
A command input from the operation panel 12 for starting the driving of the powder stirring mechanism 50 (powder stirring operation) and the vibration (vibration) of the hopper unit 21 by driving the vibrator 60 is hereinafter referred to as a stirring and shaking start command. Also say. The operation panel 12 functions as an agitation and vibration start command input unit for inputting an agitation and vibration start command to the powder supply apparatus 10 (specifically, the control unit 11) by manual operation (the operation panel 12 is agitated). Also serves as an excitation start command input unit).
The powder supply apparatus 10 is not limited to a configuration in which the operation panel 12 also serves as an agitation / vibration start command input unit, and has a configuration having an agitation / vibration start command input unit that is separate from the operation panel 12 (operation command input unit). It may be.

攪拌加振開始指令入力部は、その手動操作によって、粉体攪拌機構50及び加振器60の駆動を停止させる指令(攪拌加振停止指令)の入力も可能である。
粉体供給装置10の粉体攪拌機構50及び加振器60の駆動は、粉体供給装置10(具体的にはその制御部11)に攪拌加振開始指令入力部から攪拌加振開始指令を入力した後、攪拌加振開始指令入力部から攪拌加振停止指令を入力するまで継続し、攪拌加振停止指令を入力したときに停止する。
The stirring / vibration start command input unit can also input a command (stirring / vibration stop command) for stopping the driving of the powder stirring mechanism 50 and the shaker 60 by manual operation.
The powder agitation mechanism 50 and the vibrator 60 of the powder supply device 10 are driven by sending an agitation and vibration start command from the agitation and vibration start command input unit to the powder supply device 10 (specifically, the control unit 11). After the input, the operation is continued until a stirring / vibration stop command is input from the stirring / vibration start command input unit, and is stopped when the stirring / vibration stop command is input.

なお、粉体供給装置10の計量供給動作は、制御部11が起動され粉体供給装置10が初期状態にあるときのみ、動作指令入力部12からの動作スタート指令の入力によって開始される。制御部11が起動されていても粉体供給装置10が初期状態になければ、動作指令入力部12から動作スタート指令を入力しても計量供給動作は開始されない。また、粉体供給装置10の装置電源スイッチがオフであれば、動作指令入力部12から動作スタート指令を入力しても計量供給動作は開始されない。   The metering operation of the powder supply device 10 is started by the input of an operation start command from the operation command input unit 12 only when the control unit 11 is activated and the powder supply device 10 is in the initial state. Even if the control unit 11 is activated, if the powder supply device 10 is not in the initial state, the metering operation is not started even if an operation start command is input from the operation command input unit 12. Further, if the apparatus power switch of the powder supply apparatus 10 is off, the metering operation is not started even if an operation start command is input from the operation command input unit 12.

粉体供給装置10の計量供給動作は、攪拌加振開始指令入力部からの攪拌加振開始指令の入力によって粉体攪拌機構50及び加振器60を駆動させた状態(粉体攪拌機構50の粉体攪拌動作、及び加振器60によるホッパ部21の加振を実行中の状態)で、動作指令入力部12から動作スタート指令を入力して開始させる。これにより、粉体供給装置10は、動作指令入力部12から動作スタート指令を入力する前にホッパ部21に投入しておいた粉体1から計量凹部34の容積に応じた量の粉体1を計量、供給する。   The metering operation of the powder supply device 10 is performed when the powder stirring mechanism 50 and the shaker 60 are driven by the input of the stirring and shaking start command from the stirring and shaking start command input unit (the powder stirring mechanism 50 The operation start command is input from the operation command input unit 12 to start the powder stirring operation and the vibration of the hopper unit 21 by the vibrator 60). As a result, the powder supply apparatus 10 has the amount of the powder 1 corresponding to the volume of the measuring recess 34 from the powder 1 put in the hopper unit 21 before inputting the operation start command from the operation command input unit 12. Weigh and supply.

粉体供給装置10は、動作指令入力部12から動作スタート指令が入力されたときに直ちに計量供給動作を開始する。
但し、粉体供給装置10は、計量供給動作を、動作指令入力部12からの動作スタート指令の入力から予め設定しておいた待機時間(例えば数秒)を経過したときに開始する構成も採用可能である。動作指令入力部12からの動作スタート指令の入力から計量供給動作(第1回転動作)の開始までの待機時間の確保は、加振器60によって加振されたホッパ部21から凹部上向き状態の棒状体30の計量凹部34に満遍なく粉体1を充填することに有効である。
The powder supply apparatus 10 immediately starts the measurement supply operation when the operation start command is input from the operation command input unit 12.
However, the powder supply apparatus 10 can also adopt a configuration in which the metering operation is started when a preset standby time (for example, several seconds) has elapsed from the input of the operation start command from the operation command input unit 12. It is. The waiting time from the input of the operation start command from the operation command input unit 12 to the start of the metering supply operation (first rotation operation) is secured from the hopper unit 21 vibrated by the vibration exciter 60 in a bar-like state in which the concave portion faces upward. This is effective for filling the powder recess 1 of the body 30 uniformly.

図1に例示した粉体供給装置10の加振器60は、ホッパ部21のみならず棒状体30も加振する。粉体供給装置10は、棒状体30の計量凹部34への粉体1充填を、加振器60によって棒状体40を加振しながら行なう結果、計量凹部34内の粉体1の充填密度を均等化できる。計量凹部34内の粉体1の充填密度を均等化は、計量凹部34容積に応じた量の粉体1計量精度の安定化に有効に寄与する。   The vibrator 60 of the powder supply apparatus 10 illustrated in FIG. 1 vibrates not only the hopper unit 21 but also the rod-shaped body 30. The powder supply apparatus 10 fills the measuring recess 34 of the rod-shaped body 30 with the powder 1 while vibrating the rod-shaped body 40 with the vibrator 60. As a result, the powder supply device 10 can reduce the packing density of the powder 1 in the measuring recess 34. Can be equalized. The equalization of the packing density of the powder 1 in the measurement recess 34 effectively contributes to stabilization of the powder 1 measurement accuracy in an amount corresponding to the volume of the measurement recess 34.

エア圧送動作は、エア圧送装置70から棒状体30のエア通路31へエアを圧送することで、圧送エアをエア通路出口から計量凹部34へ噴射させ、計量凹部34内の粉体1を計量凹部34から管部22下端(出口端)へ落下させる。エア圧送動作は、凹部下側状態の棒状体30の計量凹部34内の粉体1にケーキングが生じていたとしても、エア通路出口から計量凹部34への圧送エアの噴射によって、計量凹部34内の粉体1を計量凹部34から確実に離脱、落下させる役割を果たす。   In the air pressure feeding operation, air is pumped from the air pressure feeding device 70 to the air passage 31 of the rod-shaped body 30 to inject the pressure feeding air from the outlet of the air passage to the measurement concave portion 34, and the powder 1 in the measurement concave portion 34 is measured. 34 is dropped to the lower end (exit end) of the pipe portion 22. Even if caking is generated in the powder 1 in the measuring recess 34 of the rod-shaped body 30 in the lower part of the recess, the air pressure feeding operation is performed in the measuring recess 34 by the injection of the pumping air from the air passage outlet to the measuring recess 34. The powder 1 is surely detached from the measurement recess 34 and plays a role of dropping.

エア圧送動作は、第2回転動作により棒状体30の凹部下側状態が解消(計量凹部34の少なくとも一部が粉体供給筒20の管部22内側空間出口側に臨まなくなること)されるまでに完了する。   The air pressure feeding operation is performed until the concave lower side state of the rod-shaped body 30 is eliminated by the second rotation operation (at least a part of the measurement concave portion 34 does not face the inner space outlet side of the tube portion 22 of the powder supply cylinder 20). To complete.

ここで、図1〜図6に例示した粉体供給装置10の計量供給動作を具体的に説明する。
粉体供給装置10の計量供給動作は、まず、第1回転動作にて凹部上向き状態の棒状体30を凹部下向き状態となるまで回転させる(図3〜図6参照)。
粉体供給装置10の計量供給動作は、第1回転動作の完了後、棒状体30を予め設定した静止時間(以下、下向き静止時間)だけ凹部下側状態(具体的には凹部下向き状態)のまま静止させる。また、計量供給動作は、エア圧送動作を、下向き静止時間の範囲にて実行する。
そして、計量供給動作は、第1回転動作の完了後、下向き静止時間が経過したとき(下向き静止時間の終了直後)に第2回転動作を開始し、第2回転動作によって棒状体30を凹部上向き状態に復帰させる。
エア圧送動作は、第1回転動作と第2回転動作との間に実行される。
粉体供給装置10は、計量供給動作を完了したとき、動作指令入力部12から制御部11への次の動作スタート指令の入力があるまで、初期状態(棒状体30が凹部上向き状態)を保つ。
Here, the metering operation of the powder supply apparatus 10 illustrated in FIGS. 1 to 6 will be specifically described.
In the metering operation of the powder supply apparatus 10, first, the rod-shaped body 30 in the concave upward state is rotated until the concave portion is in the downward downward state in the first rotation operation (see FIGS. 3 to 6).
The metering operation of the powder supply apparatus 10 is performed after the first rotation operation is completed in a state in which the rod-shaped body 30 is in a recessed portion lower side (specifically, a recessed portion downward state) for a preset stationary time (hereinafter, downward stationary time). Keep still. In the metering operation, the air pressure feeding operation is performed within the range of the downward stationary time.
The metering operation starts the second rotation operation when the downward stationary time has elapsed after the completion of the first rotational operation (immediately after the downward stationary time ends), and the rod-shaped body 30 is moved upward in the concave portion by the second rotational operation. Return to the state.
The air pressure feeding operation is executed between the first rotation operation and the second rotation operation.
When the powder supply device 10 completes the metering operation, the powder supply device 10 maintains the initial state (the rod 30 is in the concave upward state) until the next operation start command is input from the operation command input unit 12 to the control unit 11. .

第1回転動作と第2回転動作との間にエア圧送動作を実行する上例の計量供給動作において、第2回転動作における棒状体30の回転方向は、第1回転動作における棒状体30の回転方向と同じである。但し、第2回転動作における棒状体30の回転方向は、第1回転動作における棒状体30の回転方向とは逆の向きであっても良い。   In the example metering operation in which the air pressure feeding operation is performed between the first rotation operation and the second rotation operation, the rotation direction of the rod-shaped body 30 in the second rotation operation is the rotation of the rod-shaped body 30 in the first rotation operation. Same as direction. However, the rotation direction of the rod-shaped body 30 in the second rotation operation may be opposite to the rotation direction of the rod-shaped body 30 in the first rotation operation.

粉体供給装置10の計量供給動作の第1回転動作は、凹部上向き状態の棒状体30を回転機構40の駆動によって回転させて計量凹部34を下方へ変位させ、凹部下側状態とする動作である。第2回転動作は、計量凹部34が第1回転動作による下限位置に到達した棒状体30を回転機構40の駆動によって回転させて計量凹部34を上方へ変位させ、凹部上向き状態に復帰させる動作である。   The first rotation operation of the metering operation of the powder supply device 10 is an operation of rotating the rod-shaped body 30 in the concave upward state by driving the rotation mechanism 40 to displace the metering concave portion 34 downward to bring the concave portion down. is there. The second rotation operation is an operation of rotating the rod-shaped body 30 where the measurement recess 34 has reached the lower limit position by the first rotation operation by driving the rotation mechanism 40 to displace the measurement recess 34 upward and returning the recess to the upward state. is there.

計量供給動作は、第1回転動作と第2回転動作との間に、棒状体30を第1回転動作の完了時の状態(凹部下側状態)を保ったまま静止させる下向き静止時間を確保する構成を採用できる。但し、計量供給動作は、第1回転動作と第2回転動作との間に下向き静止時間が存在しない構成も採用可能である。
また、計量供給動作は、例えば、棒状体30を第1回転動作と同方向に回転する第2回転動作を第1回転動作に連続して実行する構成も採用可能である。
The metering operation secures a downward stationary time between the first rotation operation and the second rotation operation, in which the rod-shaped body 30 is kept stationary while maintaining the state at the time of completion of the first rotation operation (the state below the recess). Configuration can be adopted. However, a configuration in which no downward stationary time exists between the first rotation operation and the second rotation operation can be employed for the metering operation.
Further, for example, a configuration in which the second rotation operation for rotating the rod-shaped body 30 in the same direction as the first rotation operation is executed continuously with the first rotation operation can be employed for the metering operation.

棒状体30について、計量凹部34が第1回転動作による下限位置に到達した状態を、以下、第1回転限界状態とも言う。
凹部上向き状態の棒状体30を第1回転動作によって凹部下向き状態とする計量供給動作(例えば、第1回転動作と第2回転動作との間にエア圧送動作を実行する上例の計量供給動作など)において、棒状体30の第1回転限界状態は凹部下向き状態である。
Hereinafter, the state in which the measuring recess 34 reaches the lower limit position by the first rotation operation of the rod-shaped body 30 is also referred to as a first rotation limit state.
A metering operation for turning the rod-shaped body 30 in the concave upward state into a concave downward state by the first rotation operation (for example, the above-described metering operation in which an air pressure feeding operation is performed between the first rotation operation and the second rotation operation) ), The first rotation limit state of the rod-shaped body 30 is the concave downward state.

計量供給動作のエア圧送動作は、棒状体30が凹部下側状態にあるときであれば、いつ実行しても良い。粉体供給装置10の計量供給動作は、エア圧送動作を、第1回転動作と第2回転動作との間の下向き静止時間に実行する構成に限定されない。
エア圧送動作は、棒状体30が凹部下側状態にあるときであれば、例えば、第1回転動作の途中(第1回転動作によって回転される棒状体30が第1回転限界状態に達する前)に開始しても良く、棒状体30が第2回動作によって回転されているときに開始しても良い。
The air pressure feeding operation of the metering supply operation may be executed at any time as long as the rod-shaped body 30 is in the state below the recess. The metering operation of the powder supply apparatus 10 is not limited to the configuration in which the air pressure feeding operation is performed in the downward stationary time between the first rotation operation and the second rotation operation.
If the rod-shaped body 30 is in the state below the recess, the air pressure feeding operation is, for example, in the middle of the first rotation operation (before the rod-shaped body 30 rotated by the first rotation operation reaches the first rotation limit state). It may start when the rod-shaped body 30 is rotated by the second operation.

計量凹部34からの粉体1の落下を確実にする点では、エア圧送動作の実行時間を長くする方が有利である。その点、例えば、下向き静止時間に加えて、第1回転動作及び第2回転動作の一方又は両方においてもエア圧送動作を行なう構成とすることは、下向き静止時間のみにエア圧送動作を行なう構成に比べて、エア圧送動作の実行時間を長く確保することに有利である。また、下向き静止時間に加えて、第1回転動作及び第2回転動作の一方又は両方においてもエア圧送動作を行なう構成は、計量供給動作の所要時間を長くすることなく、エア圧送動作の実行時間を長くできるという利点もある。   In terms of ensuring that the powder 1 falls from the measurement recess 34, it is advantageous to extend the execution time of the air pressure feeding operation. In this regard, for example, the configuration in which the air pressure feeding operation is performed in one or both of the first rotation operation and the second rotation operation in addition to the downward stationary time is a configuration in which the air pressure feeding operation is performed only in the downward stationary time. In comparison, it is advantageous to ensure a long execution time of the air pressure feeding operation. Further, in addition to the downward stationary time, the configuration in which the air pressure feeding operation is performed in one or both of the first rotation operation and the second rotation operation does not increase the time required for the metering operation, and the execution time of the air pressure feeding operation There is also an advantage that can be lengthened.

また、エア圧送動作は、棒状体30が凹部下側状態にあるときであれば、1回に限定されず、複数回行なっても良い。エア圧送動作は、計量凹部34が向きが互いに異なるタイミングで複数回実行しても良い。エア圧送動作を計量凹部34が向きが互いに異なるタイミングで複数回実行することは、計量凹部34からの粉体1の落下を確実にする点で有効に寄与する。   Further, the air pressure feeding operation is not limited to one time as long as the rod-shaped body 30 is in the lower side of the recess, and may be performed a plurality of times. The air pressure feeding operation may be executed a plurality of times at timings in which the measurement concave portions 34 have different directions. Executing the air pressure feeding operation a plurality of times at timings in which the measurement concave portions 34 are different from each other effectively contributes to ensuring that the powder 1 falls from the measurement concave portion 34.

動作指令入力部12から制御部11への動作スタート指令の入力によって、計量供給動作を1回だけ実行する構成の粉体供給装置10は、計量供給動作を完了したとき、動作指令入力部12から制御部11への次の動作スタート指令の入力があるまで、初期状態(棒状体30が凹部上向き状態)を保つ。粉体供給装置10は、計量供給動作の完了後の初期状態にて動作指令入力部12から動作スタート指令が入力されれば、再び計量供給動作を実行する。   The powder supply device 10 configured to execute the metering operation only once by the input of the operation start command from the operation command input unit 12 to the control unit 11, when the metering operation is completed, from the operation command input unit 12. Until the next operation start command is input to the control unit 11, the initial state (the bar 30 is in the concave upward state) is maintained. When an operation start command is input from the operation command input unit 12 in an initial state after completion of the metering operation, the powder supply device 10 performs the metering operation again.

粉体供給装置10は、動作指令入力部12から動作スタート指令が入力されたときに計量供給動作を1回だけ実行する構成に限定されない。粉体供給装置10は、例えば、動作指令入力部12から動作スタート指令が入力された後、動作停止指令入力部(図示略)から動作停止指令が入力されるまで、計量供給動作を繰り返し複数回実行(以下、連続計量供給動作、とも言う)する構成も採用可能である。
動作停止指令入力部は、作業者の手動操作によって動作停止指令を出力し制御部11に入力する。動作停止指令入力部は、操作盤12が兼ねていても良く、操作盤とは別体のスイッチ等であっても良い。
The powder supply apparatus 10 is not limited to a configuration that performs the metering operation only once when an operation start command is input from the operation command input unit 12. For example, the powder supply apparatus 10 repeats the metering operation a plurality of times after an operation start command is input from the operation command input unit 12 until an operation stop command is input from an operation stop command input unit (not shown). A configuration for executing (hereinafter also referred to as a continuous metering operation) can be employed.
The operation stop command input unit outputs an operation stop command and inputs it to the control unit 11 by manual operation of the operator. The operation stop command input unit may also serve as the operation panel 12 or may be a switch or the like separate from the operation panel.

連続計量供給動作を行なう粉体供給装置10は、動作停止指令入力部から動作停止指令を入力することで、連続計量供給動作を停止させることができる。
連続計量供給動作を行なう粉体供給装置10は、動作停止指令入力部からの動作停止指令の入力によって、棒状体30が凹部上向き状態以外で連続計量供給動作を停止したとき、回転機構40の駆動によって棒状体30を自動で凹部上向き状態とする機能を有する。
The powder supply apparatus 10 that performs the continuous metering operation can stop the continuous metering operation by inputting an operation stop command from the operation stop command input unit.
When the rod-like body 30 stops the continuous metering operation when the rod-shaped body 30 is not in the concave upward state by the input of the operation stop command from the operation stop command input unit, the powder supply device 10 that performs the continuous metering operation is driven. Thus, the rod-shaped body 30 has a function of automatically setting the concave portion upward.

粉体供給装置10の連続計量供給動作では、計量供給動作の完了後から次の計量供給動作の開始までに、予め設定した時間だけ粉体供給装置10の初期状態を保つ待機時間(以下、再回転待機時間)が確保される。再回転待機時間の確保は、ホッパ部21内の粉体1を計量凹部34へ確実に落下、充填させること、及び粉体1を計量凹部34に満遍なく均等密度で充填すること、に有効である。計量供給動作の完了後の次の計量供給動作は、予め設定しておいた再回転待機時間を経過したときに開始される。   In the continuous metering operation of the powder supply device 10, a standby time (hereinafter referred to as “restart”) for maintaining the initial state of the powder supply device 10 for a preset time from the completion of the metering operation to the start of the next metering operation. Rotation waiting time) is secured. Ensuring the waiting time for re-rotation is effective for reliably dropping and filling the powder 1 in the hopper portion 21 into the weighing recess 34 and filling the powder 1 in the weighing recess 34 with a uniform density. . The next metering operation after the completion of the metering operation is started when a preset re-rotation waiting time has elapsed.

連続計量供給動作を行なう粉体供給装置10は、ホッパ部21への粉体1投入を連続的あるいは断続的に行ないつつ、計量供給動作を繰り返し複数回実行することで、粉体1の計量及び管部22下端(出口端)からの供給を効率良く行える。   The powder supply apparatus 10 that performs continuous measurement and supply operation repeats the measurement and supply operation a plurality of times while continuously or intermittently supplying the powder 1 to the hopper unit 21, thereby measuring the powder 1. Supply from the lower end (exit end) of the pipe part 22 can be performed efficiently.

粉体供給装置10は、エア圧送動作によって、計量凹部34内の粉体1を計量凹部34全体から管部22出口側へ確実に落下させることができる。このため、粉体供給装置10は、管部22下端(出口端)からの計量供給動作毎の粉体1供給量を安定化させることができる。   The powder supply apparatus 10 can reliably drop the powder 1 in the measurement recess 34 from the entire measurement recess 34 to the outlet side of the tube portion 22 by the air pressure feeding operation. For this reason, the powder supply apparatus 10 can stabilize the supply amount of the powder 1 for each metering operation from the lower end (exit end) of the pipe portion 22.

なお、図7(a)、(b)に示すように、棒状体は、計量凹部34底部内面、あるいはエア通路31出口(副通路31bの計量凹部34底部内面に開口する開口部)に、エア圧送装置70からエア通路31へ圧送されてエア通路31出口から噴射される圧送エアを接触させて圧送エアの噴射方向を拡げるエア噴射拡散部材81、82を取り付けた構成も採用可能である。
エア噴射拡散部材81、82は、エア通路31出口から噴射される圧送エアの噴射方向を拡散させるとともに、計量凹部34に投入された粉体1の副通路31bへの入り込みを抑制あるいは阻止する機能を果たす。
As shown in FIGS. 7A and 7B, the rod-shaped body is formed in the air at the bottom inner surface of the measurement recess 34 or at the outlet of the air passage 31 (the opening that opens at the bottom inner surface of the measurement recess 34 of the sub-passage 31b). It is also possible to employ a configuration in which air injection diffusion members 81 and 82 that expand the injection direction of the pressure-feeding air by contacting the pressure-feeding air that is pressure-fed from the pressure-feeding device 70 to the air passage 31 and injected from the outlet of the air passage 31 can be employed.
The air injection diffusing members 81 and 82 have a function of diffusing the injection direction of the pressurized air injected from the outlet of the air passage 31 and suppressing or preventing the powder 1 put into the measuring recess 34 from entering the sub passage 31b. Fulfill.

図7(a)は、計量軸部32の計量凹部34底部内面に副通路31b開口部全体を覆うように延在する網体81(エア噴射拡散部材)を取り付けた棒状体30Aを示す。網体81は、その外周部を、計量軸部32の計量凹部34底部内面に開口するエア通路31出口の口縁部に固定して計量軸部32に取り付けられている。
図7(a)に示す棒状体30Aの計量凹部34底部には、平坦な底面34aを有する凹所(以下、底部凹所)が形成されている。底部凹所の底面34aは、計量凹部34の底部内面として機能する。エア通路31出口は、底部凹所底面34a中央部に開口している。網体81は、全体を底部凹所に収納し、その外周部を、エア通路31出口周囲の底部凹所底面34a(口縁部)に固定して棒状体30Aの計量軸部32に取り付けられている。
網体81は、エア圧送装置70からエア通路31へ圧送されてエア通路31出口から噴射されたエアとの接触によって、該エアの噴射方向を拡げる機能を果たす。
また、網体81は、計量凹部34に投入された粉体1との接触によって、粉体1の副通路31bへの入り込みを、実質的に計量精度に影響しないごく僅かな量に抑制する機能を果たす。
FIG. 7A shows a rod-like body 30A in which a net body 81 (air injection diffusion member) extending so as to cover the entire opening of the sub passage 31b is attached to the inner surface of the bottom of the measurement recess 34 of the measurement shaft portion 32. The net 81 is attached to the measuring shaft 32 with its outer periphery fixed to the edge of the outlet of the air passage 31 that opens to the inner surface of the bottom of the measuring recess 34 of the measuring shaft 32.
A recess having a flat bottom surface 34a (hereinafter referred to as a bottom recess) is formed at the bottom of the measurement recess 34 of the rod-shaped body 30A shown in FIG. The bottom surface 34 a of the bottom recess functions as the bottom inner surface of the measurement recess 34. The outlet of the air passage 31 opens at the center of the bottom of the bottom of the bottom recess 34a. The entire net body 81 is housed in the bottom recess, and its outer periphery is fixed to the bottom recess bottom surface 34a (mouth edge) around the outlet of the air passage 31 and attached to the measuring shaft 32 of the rod-shaped body 30A. ing.
The net 81 has a function of expanding the injection direction of the air by contact with the air that is pumped from the air pumping device 70 to the air passage 31 and jetted from the outlet of the air passage 31.
Further, the net body 81 has a function of suppressing the entry of the powder 1 into the sub-passage 31b to a very small amount that does not substantially affect the measurement accuracy by the contact with the powder 1 put into the measurement recess 34. Fulfill.

また、図7(b)は、計量軸部32の計量凹部34底部内面に開口する副通路31b開口部内に、通気孔82aが複数形成されたエア噴射拡散部材82が固定された棒状体30Bを示す。
副通路31bのエア噴射拡散部材82と主通路31aとの間に存在する部分を、以下、副通路31b主部とも言う。エア拡散用部材82の通気孔82aは、エア噴射拡散部材82を貫通して、エア噴射拡散部材82の副通路31b主部に臨む側及び計量凹部34に臨む側に開口する貫通孔である。また、複数の通気孔82aは、その軸線方向を互いに異ならせて形成されている。
エア噴射拡散部材82は、エア圧送装置70からエア通路31へ圧送されたエアを、互いに異なる向きの通気孔82aによって互いに異なる方向に噴射させ、噴射方向を拡げる役割を果たす。また、エア噴射拡散部材82の通気孔82aは副通路31bに比べて細い(断面積が小さい)。このため、エア噴射拡散部材82は、計量凹部34に投入された粉体1の通気孔82aへの入り込みが生じにくく、粉体1の副通路31bへの入り込みを、実質的に計量精度に影響しないごく僅かな量に抑制あるいは阻止することができる。
FIG. 7B shows a rod-shaped body 30B in which an air injection diffusion member 82 having a plurality of air holes 82a is fixed in the opening portion of the auxiliary passage 31b opened in the bottom inner surface of the measurement recess 34 of the measurement shaft portion 32. Show.
The portion of the sub passage 31b that exists between the air injection diffusion member 82 and the main passage 31a is hereinafter also referred to as a main portion of the sub passage 31b. The air hole 82 a of the air diffusion member 82 is a through hole that opens through the air injection diffusion member 82 to the side facing the main portion of the sub-passage 31 b of the air injection diffusion member 82 and the side facing the measurement recess 34. Further, the plurality of vent holes 82a are formed with their axial directions different from each other.
The air injection diffusion member 82 plays a role of expanding the injection direction by injecting the air pressure-fed from the air pressure-feed device 70 to the air passage 31 in different directions by the air holes 82a in different directions. Further, the air hole 82a of the air injection diffusion member 82 is thinner (having a smaller cross-sectional area) than the sub passage 31b. For this reason, the air injection diffusion member 82 is unlikely to enter the ventilation hole 82a of the powder 1 put into the measurement recess 34, and the entry of the powder 1 into the sub passage 31b substantially affects the measurement accuracy. It can be suppressed or prevented to a very small amount.

以上、本発明を最良の形態に基づいて説明してきたが、本発明は上述の最良の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
例えば、エア通路31へエアを圧送するエア圧送装置は、配管71を介してエア通路31のエア入り口に接続された構成に限定されず、エア通路31のエア入り口に脱着可能で、エア圧送するときのみエア通路31のエア入り口に接続し、他はエア通路31から切り離されるエア圧送装置も採用可能である。
Although the present invention has been described based on the best mode, the present invention is not limited to the above-described best mode, and various modifications can be made without departing from the gist of the present invention.
For example, the air pressure feeding device that pressure-feeds air to the air passage 31 is not limited to the configuration connected to the air inlet of the air passage 31 via the pipe 71, and can be attached to and detached from the air inlet of the air passage 31 so as to air-feed. It is also possible to employ an air pressure feeding device that is connected to the air inlet of the air passage 31 only when it is disconnected from the air passage 31.

10…粉体供給装置、20…粉体供給筒、21…ホッパ部、22…管部、23…軸挿通孔、31…エア通路、31a…主通路、31b…副通路、30…棒状体、32…計量軸部、34…計量凹部、40…棒状体回転機構、50…粉体攪拌機構、60…加振器、70…エア圧送装置。   DESCRIPTION OF SYMBOLS 10 ... Powder supply apparatus, 20 ... Powder supply cylinder, 21 ... Hopper part, 22 ... Pipe part, 23 ... Shaft insertion hole, 31 ... Air passage, 31a ... Main passage, 31b ... Sub-passage, 30 ... Rod-shaped body, 32 ... Measuring shaft part, 34 ... Measuring concave part, 40 ... Bar-shaped body rotating mechanism, 50 ... Powder stirring mechanism, 60 ... Exciter, 70 ... Air pressure feeding device.

Claims (6)

上下に開口端を有する粉体供給筒と、前記粉体供給筒にその上下を遮断する状態に設けられた棒状体と、前記棒状体を軸回転させる回転機構とを有し、
前記棒状体には、その前記粉体供給筒外側に位置する部分に開口するエア入り口から前記棒状体の側周面から窪んで形成された計量凹部の底面に開口するエア出口にわたって延在するエア通路が形成され、前記計量凹部は前記棒状体の前記粉体供給筒内に位置する部分に形成されていることを特徴とする粉体供給装置。
A powder supply cylinder having upper and lower open ends, a rod-shaped body provided in a state of blocking the upper and lower sides of the powder supply cylinder, and a rotating mechanism for rotating the rod-shaped body,
The rod-shaped body includes an air extending from an air inlet opening at a portion located outside the powder supply cylinder to an air outlet opening at a bottom surface of a measurement recess formed by depression from a side peripheral surface of the rod-shaped body. A powder supply apparatus, characterized in that a passage is formed and the measuring recess is formed in a portion of the rod-shaped body located in the powder supply cylinder.
前記粉体供給筒の上端部内側に挿入された攪拌翼部材を原動機の駆動力によって回転させて前記粉体供給筒の上端部内の粉体を攪拌する粉体攪拌機構をさらに有することを特徴とする請求項1に記載の粉体供給装置。   It further has a powder stirring mechanism for stirring the powder in the upper end portion of the powder supply tube by rotating the stirring blade member inserted inside the upper end portion of the powder supply tube by a driving force of a prime mover. The powder supply apparatus according to claim 1. 前記棒状体の前記計量凹部は、前記棒状体側周面に沿う方向において前記計量凹部中央部から離隔するに従い前記棒状体側周面からの深さが浅くなる形状に形成されていることを特徴とする請求項1又は2に記載の粉体供給装置。   The measuring recess of the rod-shaped body is formed in a shape in which the depth from the rod-shaped body side peripheral surface becomes shallower as the distance from the central portion of the measuring recess in the direction along the rod-shaped body side peripheral surface. The powder supply apparatus according to claim 1 or 2. 前記エア通路の前記エア入り口に接続され前記エア通路にエアを圧送するエア圧送装置をさらに有し、前記棒状体の回転によって前記計量凹部が上向きの状態から下向きになったときに自動で前記エア圧送装置から前記エア通路へエアを圧送することを特徴とする請求項1〜3のいずれか1項に記載の粉体供給装置。   An air pumping device connected to the air inlet of the air passage and pumping air into the air passage; and when the measuring concave portion is turned downward from the upward state by the rotation of the rod-like body, The powder supply device according to any one of claims 1 to 3, wherein air is pumped from the pumping device to the air passage. 前記粉体供給筒はその上端部を構成するホッパ部と前記ホッパ部の下端から下方へ延在する管部とを有し、前記棒状体はその上端を前記ホッパ部内側面の下端に位置合わせして設けられていることを特徴とする請求項1〜4のいずれか1項に記載の粉体供給装置。   The powder supply cylinder has a hopper portion constituting an upper end portion thereof and a pipe portion extending downward from a lower end of the hopper portion, and the rod-like body aligns the upper end thereof with the lower end of the inner side surface of the hopper portion. The powder supply apparatus according to claim 1, wherein the powder supply apparatus is provided. 前記粉体供給筒の側面に取り付けられて、前記粉体供給筒及び前記棒状体のうち少なくとも前記粉体供給筒を振動させる加振器をさらに有することを特徴とする請求項1〜5のいずれか1項に記載の粉体供給装置。   6. The vibrator according to claim 1, further comprising a vibrator attached to a side surface of the powder supply cylinder and configured to vibrate at least the powder supply cylinder among the powder supply cylinder and the rod-shaped body. The powder supply apparatus of Claim 1.
JP2015026872A 2015-02-13 2015-02-13 Powder supply device Pending JP2016147253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015026872A JP2016147253A (en) 2015-02-13 2015-02-13 Powder supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015026872A JP2016147253A (en) 2015-02-13 2015-02-13 Powder supply device

Publications (1)

Publication Number Publication Date
JP2016147253A true JP2016147253A (en) 2016-08-18

Family

ID=56688146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015026872A Pending JP2016147253A (en) 2015-02-13 2015-02-13 Powder supply device

Country Status (1)

Country Link
JP (1) JP2016147253A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021054310A1 (en) 2019-09-20 2021-03-25 日立造船株式会社 Powder supply apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021054310A1 (en) 2019-09-20 2021-03-25 日立造船株式会社 Powder supply apparatus

Similar Documents

Publication Publication Date Title
EP0408360B1 (en) Apparatus for dissolving particulate solids in liquids
CA2653553C (en) A method for continuously batch mixing a cement slurry
RU2700512C2 (en) Device and method of liquid loading with gas
US20080253222A1 (en) Machine for Dosing and Mixing Liquid Products and Operating Method Thereof
KR101241568B1 (en) A required quantity feeding apparatus
JP2016147253A (en) Powder supply device
JP2014061988A (en) Particulate matter feeding device
JP2011173626A (en) Apparatus for filling minute amount of powder body
US6000446A (en) Apparatus for particulate processing
JP2006256237A (en) Concrete kneading device, and concrete kneading method
CN204159269U (en) The scorching clean proportioner of water-soluble duck slurry
TWI535483B (en) Agitating apparatus
US20130294978A1 (en) Chemical dissolving dispenser
CN104049495B (en) Fill the method for toner container, system and the equipment for printing
JP2009286451A (en) Powder filling apparatus
JP2017186162A (en) Fixed quantity feeder device of powder
RU103096U1 (en) SCREW DISPENSER FOR BULK MATERIALS
US9603514B2 (en) Liquid supplying apparatus and endoscope reprocessing apparatus
KR101620518B1 (en) Agitator for food materals
JP6346006B2 (en) Detergent automatic supply system and automatic detergent supply method using the same
US20220268616A1 (en) Powder supply apparatus
NL2013744B1 (en) Apparatus and method for the manufacture of a liquid additive.
JP5823350B2 (en) Injection molding machine
JP2015132494A (en) Operation method of fluid supply pump system and fluid supply pump
US10940446B2 (en) Multi-reservoir feeding apparatus