JP2016145555A - Turbo-molecular pump device - Google Patents

Turbo-molecular pump device Download PDF

Info

Publication number
JP2016145555A
JP2016145555A JP2015023253A JP2015023253A JP2016145555A JP 2016145555 A JP2016145555 A JP 2016145555A JP 2015023253 A JP2015023253 A JP 2015023253A JP 2015023253 A JP2015023253 A JP 2015023253A JP 2016145555 A JP2016145555 A JP 2016145555A
Authority
JP
Japan
Prior art keywords
cooling
magnetic bearing
molecular pump
amplifiers
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015023253A
Other languages
Japanese (ja)
Inventor
守 芝
Mamoru Shiba
守 芝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2015023253A priority Critical patent/JP2016145555A/en
Publication of JP2016145555A publication Critical patent/JP2016145555A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Abstract

PROBLEM TO BE SOLVED: To resolve some disadvantages that the most-suitable position for cooling operation against an actual installation of an exciting amplifier for supplying excitation current to a magnetic bearing is not considered, so that, when a turbo-molecular pump device is installed in a horizontal orientation, for example, a certain load is applied to a magnetic bearing near the center of gravity of a rotating member and the exciting amplifier for driving the magnetic bearing is overheated.SOLUTION: Although a component to be cooled in medium degree requires cooling, it is sometimes found that a component such as one not to be cooled in high degree, for example, as shown in Fig.3, exciting amplifiers 91a, 91b controlling each of X-axis and Y-axis are practically installed in response to a magnetic bearing 50. In addition, a high heat transfer sheet metal 103 vertically set at the lower surface of a cooling device 70 is abutted against the exciting amplifiers 91a, 91b. With this arrangement as above, it is possible to cool effectively the exciting amplifiers 91a, 91b while the cooled state of the cooling device 70 is being transferred to the exciting amplifiers 91a, 91b through the sheet metal 103.SELECTED DRAWING: Figure 3

Description

本発明は、ターボ分子ポンプ装置に関する。   The present invention relates to a turbo molecular pump device.

ターボ分子ポンプ装置は、回転翼を備えたロータと回転軸(シャフト)とから構成される回転体と、回転翼と協働する固定翼と、回転体を回転駆動するモータとを備えている。回転体は、5軸磁気軸受を構成する電磁石によって非接触支持される。磁気軸受によって回転自在に磁気浮上された回転体は、モータにより高速回転駆動され、回転翼を固定翼に対して高速回転させることにより気体分子を排気するもので、各種の真空処理装置に接続されて使用される。   The turbo-molecular pump device includes a rotating body including a rotor including rotating blades and a rotating shaft (shaft), a fixed blade that cooperates with the rotating blades, and a motor that rotationally drives the rotating body. The rotating body is supported in a non-contact manner by an electromagnet constituting a 5-axis magnetic bearing. A rotating body magnetically levitated freely by a magnetic bearing is driven to rotate at high speed by a motor and exhausts gas molecules by rotating the rotor blade at high speed with respect to the fixed blade, and is connected to various vacuum processing devices. Used.

この種のターボ分子ポンプ装置として、ターボ分子ポンプ本体と、ターボ分子ポンプ本体を駆動する電源装置と、ターボ分子ポンプ本体と電源装置との間に介装される水冷装置とを有するものがある。電源装置の筐体内に設けられる部品は、強冷却が要求される要強冷却部品と、中程度の冷却が要求される要中冷却部品と、殆ど冷却が要求されない冷却不要部品とに分類され、要強冷却部品は、水冷装置に接触する第1高伝熱性基板上に実装され、要中冷却部品は、筐体の内面に接触する第2高伝熱性基板上に実装され、冷却不要部品は、第1高伝熱性基板と第2高伝熱性基板の間の空間に配置される基板に実装される(特許文献1参照)。   As this kind of turbo molecular pump device, there is one having a turbo molecular pump main body, a power supply device for driving the turbo molecular pump main body, and a water cooling device interposed between the turbo molecular pump main body and the power supply device. The components provided in the housing of the power supply device are classified into a strong cooling component that requires strong cooling, a medium cooling component that requires medium cooling, and a cooling unnecessary component that hardly requires cooling. The strong cooling component is mounted on the first highly heat conductive substrate that contacts the water cooling device, the middle cooling component is mounted on the second highly heat conductive substrate that contacts the inner surface of the housing, and the cooling unnecessary component is And mounted on a substrate disposed in a space between the first high heat transfer substrate and the second high heat transfer substrate (see Patent Document 1).

特開2014−148977号公報JP 2014-148977 A

上述した特許文献1に記載のターボ分子ポンプ装置では、磁気軸受に励磁電流を供給する励磁アンプの実装について冷却のための最適な位置が考慮されていない。そのため、例えば、ターボ分子ポンプ装置を水平に設置した場合に、回転体の重心に近い磁気軸受に負荷がかかり、当該磁気軸受を駆動する励磁アンプが過熱する虞がある。   In the turbo molecular pump device described in Patent Document 1 described above, the optimal position for cooling is not taken into account for mounting the excitation amplifier that supplies the excitation current to the magnetic bearing. For this reason, for example, when the turbo molecular pump device is installed horizontally, a load is applied to the magnetic bearing near the center of gravity of the rotating body, and the excitation amplifier that drives the magnetic bearing may be overheated.

本発明の好ましい実施形態によるターボ分子ポンプ装置は、回転翼が形成されたロータおよび該ロータに固定されたシャフトを有する回転体と、固定翼と、シャフトを非接触支持する複数の磁気軸受と、複数の磁気軸受を制御する複数の励磁アンプを有する電源装置と、電源装置を冷却する冷却装置と、を備え、回転体の重心に近い位置に設けられた磁気軸受を制御する励磁アンプは、他の磁気軸受を制御する励磁アンプの位置と比較して、冷却装置による冷却効果が高い位置に実装される、ターボ分子ポンプ装置。   A turbo-molecular pump device according to a preferred embodiment of the present invention includes a rotor having a rotor blade and a rotating body having a shaft fixed to the rotor, a fixed blade, and a plurality of magnetic bearings that support the shaft in a non-contact manner. An excitation amplifier that includes a power supply device having a plurality of excitation amplifiers that control a plurality of magnetic bearings and a cooling device that cools the power supply device, and that controls a magnetic bearing provided at a position close to the center of gravity of the rotating body. The turbo molecular pump device is mounted at a position where the cooling effect by the cooling device is higher than the position of the excitation amplifier that controls the magnetic bearing of the motor.

本発明によれば、磁気軸受を駆動する励磁アンプを効果的に冷却することができる。   According to the present invention, an excitation amplifier that drives a magnetic bearing can be effectively cooled.

ターボ分子ポンプ装置の概略構成を示す図。The figure which shows schematic structure of a turbo-molecular pump apparatus. 電源装置の回路構成を示すブロック図。The block diagram which shows the circuit structure of a power supply device. 電源装置の概略構成を示す縦断面図。The longitudinal cross-sectional view which shows schematic structure of a power supply device. 電源装置の第2の実施形態の概略構成を示す縦断面図。The longitudinal cross-sectional view which shows schematic structure of 2nd Embodiment of a power supply device.

(第1の実施形態)
以下、図を参照して本発明の第1の実施形態について説明する。図1は本実施形態のターボ分子ポンプ装置1の概略構成を示す図である。ターボ分子ポンプ装置1は磁気軸受式のターボ分子ポンプであり、図1に示すようにポンプ本体20と冷却装置70と電源装置80とがボルト固定されている。なお、図1ではポンプ本体20のみを断面図で表した。
(First embodiment)
The first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of a turbo molecular pump device 1 of the present embodiment. The turbo molecular pump device 1 is a magnetic bearing type turbo molecular pump, and a pump body 20, a cooling device 70, and a power supply device 80 are bolted as shown in FIG. In FIG. 1, only the pump body 20 is shown in a cross-sectional view.

先ず、ポンプ本体20について説明する。ロータ2が取り付けられたシャフト3は、ポンプベース4に設けられた磁気軸受50,51,52によって非接触支持されている。シャフト3の浮上位置は、ポンプベース4に設けられたラジアル変位センサ61およびアキシャル変位センサ62によって検出される。シャフト3の上部の磁気軸受50とシャフト3の下部の磁気軸受51はラジアル磁気軸受を構成し、磁気軸受52はアキシャル磁気軸受を構成する。磁気軸受50,51,52による5軸制御型磁気軸受である。なお、磁気軸受50,51,52が作動していない状態では、シャフト3はメカニカルベアリング27,28によって支持される。   First, the pump body 20 will be described. The shaft 3 to which the rotor 2 is attached is supported in a non-contact manner by magnetic bearings 50, 51, 52 provided on the pump base 4. The flying position of the shaft 3 is detected by a radial displacement sensor 61 and an axial displacement sensor 62 provided on the pump base 4. The magnetic bearing 50 at the upper part of the shaft 3 and the magnetic bearing 51 at the lower part of the shaft 3 constitute a radial magnetic bearing, and the magnetic bearing 52 constitutes an axial magnetic bearing. This is a 5-axis control type magnetic bearing using magnetic bearings 50, 51 and 52. Note that the shaft 3 is supported by the mechanical bearings 27 and 28 when the magnetic bearings 50, 51 and 52 are not in operation.

シャフト3の下端には円形のロータディスク41が設けられており、磁気軸受52は、このロータディスク41を上下に挟むように電磁石が設けられ、この電磁石によりロータディスク41を吸引することによりシャフト3がアキシャル方向に浮上する。ロータディスク41はナット部材42によりシャフト3の下端部に固定されている。ポンプベース4の底面には裏蓋43がボルト固定されている。裏蓋43とポンプベース4との隙間はOリングにより密封されている。裏蓋43には電源装置80から冷却装置70を貫通して挿通されたケーブルのコネクタ(図示省略)が設けられ、電源装置80と電気的に接続される。   A circular rotor disk 41 is provided at the lower end of the shaft 3, and the magnetic bearing 52 is provided with an electromagnet so that the rotor disk 41 is sandwiched between the upper and lower sides. Emerges in the axial direction. The rotor disk 41 is fixed to the lower end portion of the shaft 3 by a nut member 42. A back cover 43 is bolted to the bottom surface of the pump base 4. A gap between the back cover 43 and the pump base 4 is sealed by an O-ring. The back cover 43 is provided with a cable connector (not shown) inserted from the power supply device 80 through the cooling device 70 and is electrically connected to the power supply device 80.

ロータ2には、回転軸方向に複数段の回転翼8が形成されている。上下に並んだ回転翼8の間には固定翼9がそれぞれ配設されている。これらの回転翼8と固定翼9とにより、ポンプ本体20のタービン翼段が構成される。各固定翼9は、スペーサ10によって上下に挟持されるように保持されている。スペーサ10は、固定翼9を保持する機能とともに、固定翼9間のギャップを所定間隔に維持する機能を有している。   The rotor 2 is formed with a plurality of stages of rotating blades 8 in the direction of the rotation axis. Fixed wings 9 are respectively disposed between the rotating wings 8 arranged vertically. These rotor blades 8 and fixed blades 9 constitute a turbine blade stage of the pump body 20. Each fixed wing 9 is held by a spacer 10 so as to be sandwiched up and down. The spacer 10 has a function of holding the fixed wing 9 and a function of maintaining a gap between the fixed wings 9 at a predetermined interval.

さらに、固定翼9の後段(図示下方)にはドラッグポンプ段を構成するネジステータ11が設けられており、ネジステータ11の内周面とロータ2の円筒部12との間にはギャップが形成されている。ロータ2と、スペーサ10によって保持された固定翼9とは、吸気口13aが形成されたポンプケーシング13内に納められている。回転翼8を有するロータ2が取り付けられたシャフト3は一体に形成されて回転体を成し、シャフト3を磁気軸受50,51,52により非接触支持しつつモータ6により回転駆動すると、回転体が回転されて吸気口13a側のガスは背圧側に排気され、背圧側に排気されたガスは排気口26に接続された補助ポンプにより排出される。ロータ2(回転体)の回転数は回転数センサ19により検出される。ここで、回転翼8、ロータ2、シャフト3からなる回転体の重心αを図1に示す。図示のように、シャフト3が鉛直方向になるようにターボ分子ポンプ装置1を垂直に設置した場合は、重心αはラジアル磁気軸受50,51のうち、シャフト3上部のラジアル磁気軸受50の近くに存在する。一方、シャフト3が水平方向になるようにターボ分子ポンプ装置1を水平に設置した場合には、回転体の重心αに近い磁気軸受50により多くの負荷がかかることになる。   Further, a screw stator 11 constituting a drag pump stage is provided at the rear stage (downward in the drawing) of the fixed blade 9, and a gap is formed between the inner peripheral surface of the screw stator 11 and the cylindrical portion 12 of the rotor 2. Yes. The rotor 2 and the fixed blade 9 held by the spacer 10 are housed in a pump casing 13 in which an air inlet 13a is formed. The shaft 3 to which the rotor 2 having the rotor blades 8 is attached is formed integrally to form a rotating body. When the shaft 3 is rotationally driven by the motor 6 while being supported in a non-contact manner by the magnetic bearings 50, 51, 52, the rotating body is obtained. Is rotated, the gas on the intake port 13a side is exhausted to the back pressure side, and the gas exhausted to the back pressure side is exhausted by an auxiliary pump connected to the exhaust port 26. The rotational speed of the rotor 2 (rotating body) is detected by a rotational speed sensor 19. Here, the center of gravity α of the rotating body composed of the rotor blade 8, the rotor 2, and the shaft 3 is shown in FIG. As shown in the figure, when the turbo molecular pump device 1 is installed vertically so that the shaft 3 is in the vertical direction, the center of gravity α is close to the radial magnetic bearing 50 above the shaft 3 of the radial magnetic bearings 50 and 51. Exists. On the other hand, when the turbo molecular pump device 1 is installed horizontally so that the shaft 3 is in the horizontal direction, a larger load is applied to the magnetic bearing 50 near the center of gravity α of the rotating body.

ポンプ本体20を構成するポンプベース4の下部には、冷却装置70が複数のボルト40により固定されている。冷却装置70は、ポンプ本体20と電源装置80との間に介装され、電源装置80内の発熱部材、例えばモータ駆動制御部を構成する電子部品等を冷却する。冷却装置70は、内部に冷却水通路が形成されており、冷却水通路に図示しないポンプから冷却水を循環するための冷却水入口70aおよび冷却水出口70bとを有する。   A cooling device 70 is fixed to the lower part of the pump base 4 constituting the pump body 20 by a plurality of bolts 40. The cooling device 70 is interposed between the pump main body 20 and the power supply device 80, and cools a heat generating member in the power supply device 80, for example, an electronic component constituting a motor drive control unit. The cooling device 70 has a cooling water passage formed therein, and has a cooling water inlet 70a and a cooling water outlet 70b for circulating the cooling water from a pump (not shown) in the cooling water passage.

ポンプ本体20を構成するポンプベース4の下部には、電源装置80が冷却装置70を介して複数のボルト44により固定されている。冷却装置70の下面は電源装置80の筐体81の上端面に当接している。冷却装置70の下面は、アルミ材等の熱伝導性に優れた材料が用いられる。筐体81は、冷却装置70の下面に当接され、熱伝導性に優れた金属製である。ポンプ本体20を駆動制御する電源装置80には、モータ駆動制御部、磁気軸受駆動制御部、主制御部等を構成する電子部品が設けられており、それらの電子部品は筐体81内に収納されている。そして、筐体81は、塵等が外部から入り込めない密閉構造となっている。   A power supply device 80 is fixed to the lower part of the pump base 4 constituting the pump body 20 by a plurality of bolts 44 via a cooling device 70. The lower surface of the cooling device 70 is in contact with the upper end surface of the casing 81 of the power supply device 80. A material having excellent thermal conductivity such as an aluminum material is used for the lower surface of the cooling device 70. The casing 81 is in contact with the lower surface of the cooling device 70 and is made of metal having excellent thermal conductivity. The power supply device 80 that drives and controls the pump body 20 is provided with electronic components that constitute a motor drive control unit, a magnetic bearing drive control unit, a main control unit, and the like. Has been. The casing 81 has a sealed structure in which dust and the like cannot enter from the outside.

図2を参照して電源装置80の回路構成を示すブロック図を説明する。電源装置80には一次電源82から交流電力が供給され、AC/DCコンバータ83に入力される。入力される交流電力の電圧は電圧センサ84によって検出される。AC/DCコンバータ83は、一次電源82から供給された交流電力を直流電力に変換する。AC/DCコンバータ83から出力された直流電力は、モータ6を駆動する3相インバータ85とDC/DCコンバータ86に入力される。DC/DCコンバータ86に入力される直流電力の電圧は、電圧センサ87によって検出される。DC/DCコンバータ86の出力は、3相インバータ85をPWM制御等で制御するインバータ制御回路88、および磁気軸受50,51,52による磁気浮上の制御を行う磁気軸受制御部89のそれぞれに入力される。   A block diagram showing a circuit configuration of the power supply device 80 will be described with reference to FIG. AC power is supplied from the primary power supply 82 to the power supply device 80 and input to the AC / DC converter 83. The voltage of the input AC power is detected by the voltage sensor 84. The AC / DC converter 83 converts AC power supplied from the primary power source 82 into DC power. The DC power output from the AC / DC converter 83 is input to the three-phase inverter 85 and the DC / DC converter 86 that drive the motor 6. The voltage of the DC power input to the DC / DC converter 86 is detected by the voltage sensor 87. The output of the DC / DC converter 86 is input to an inverter control circuit 88 that controls the three-phase inverter 85 by PWM control or the like, and a magnetic bearing control unit 89 that performs magnetic levitation control by the magnetic bearings 50, 51, 52. The

磁気軸受制御部89は、軸受制御を行う制御部90と、制御部90で算出された制御信号に基づいて励磁電流を磁気軸受50,51,52の電磁石に供給する励磁アンプ91とを備えている。なお、磁気軸受50,51はラジアル磁気軸受であり、夫々ラジアルX軸、Y軸を支持する。このため、励磁アンプ91は、磁気軸受50に対応して2個、磁気軸受51に対応して2個設けられている。さらに、磁気軸受52はアキシャル磁気軸受であり、Z軸を支持するため、励磁アンプ91は1個である。すなわち、5軸制御型磁気軸受では励磁アンプ91を5個有する。   The magnetic bearing control unit 89 includes a control unit 90 that performs bearing control, and an excitation amplifier 91 that supplies an excitation current to the electromagnets of the magnetic bearings 50, 51, 52 based on the control signal calculated by the control unit 90. Yes. The magnetic bearings 50 and 51 are radial magnetic bearings and support the radial X axis and the Y axis, respectively. For this reason, two excitation amplifiers 91 are provided corresponding to the magnetic bearings 50 and two corresponding to the magnetic bearings 51. Further, the magnetic bearing 52 is an axial magnetic bearing and supports only the Z axis, so that there is one excitation amplifier 91. That is, the five-axis control type magnetic bearing has five excitation amplifiers 91.

インバータ制御回路88には回転数センサ19により検出されたロータ2の回転数が入力され、インバータ制御回路88は、ロータ回転数に基づいて3相インバータ85を制御する。また、回生余剰電力消費用の回生ブレーキ抵抗(シーズヒータ)92は、ロータ減速時の回生電力をこの回生ブレーキ抵抗92で消費する。トランジスタ制御回路93によりトランジスタ94のオンオフを制御することにより、回生ブレーキ抵抗92に流れる電流のオンオフを制御する。ダイオード95は、回生時の電力逆流を防止する。   The rotation speed of the rotor 2 detected by the rotation speed sensor 19 is input to the inverter control circuit 88, and the inverter control circuit 88 controls the three-phase inverter 85 based on the rotor rotation speed. A regenerative brake resistor (seeds heater) 92 for consuming regenerative surplus power consumes the regenerative power at the time of rotor deceleration by the regenerative brake resistor 92. By controlling on / off of the transistor 94 by the transistor control circuit 93, on / off of the current flowing through the regenerative brake resistor 92 is controlled. The diode 95 prevents power backflow during regeneration.

図3は電源装置80の筐体81内の基板や電子部品の具体的な配置を示す縦断面図である。図3に示すように、各種部品が複数の基板100〜102に分けて配設されている。本実施形態では、これらの部品を発熱量や高温に対する耐性に応じて要強冷却部品、要中冷却部品、冷却不要部品に分類し、それらをそれぞれ基板100〜102に実装している。   FIG. 3 is a longitudinal sectional view showing a specific arrangement of substrates and electronic components in the casing 81 of the power supply device 80. As shown in FIG. 3, various components are arranged on a plurality of substrates 100 to 102. In the present embodiment, these components are classified into a strong cooling component, a middle cooling component, and a cooling unnecessary component according to heat generation and resistance to high temperatures, and these components are mounted on the boards 100 to 102, respectively.

基板100は、要強冷却部品を実装するもので、冷却装置70の直下に配置される。要強冷却部品が実装される基板100は、高伝熱性基板であり、その実装面には絶縁膜が施され、その上に部品や配線パターンが配置される。この基板100は、その裏面(部品実装面と反対側の面)が冷却装置70の下面にほぼ全面接触するよう固定される。したがって、冷却装置70により、高伝熱性の基板100を介して要強冷却部品を強力に冷却することができる。また、特に強冷却が要求される部品に対しては、その部品と基板100の実装面との間に熱伝導性のコンパウンドを介装し、冷却効率を更に高めている。要強冷却部品は、強い冷却が要求される部品で、例えば図3に示すように、回生ブレーキ抵抗92、3相インバータ85や電力用コイル・トランス、大型の電解コンデンサなどを含む。   The substrate 100 mounts a strong cooling component and is disposed immediately below the cooling device 70. The substrate 100 on which the strong cooling components are mounted is a highly heat conductive substrate, and an insulating film is applied on the mounting surface, and components and wiring patterns are disposed thereon. The substrate 100 is fixed so that the back surface (the surface opposite to the component mounting surface) is in almost full contact with the lower surface of the cooling device 70. Therefore, the cooling device 70 can strongly cool the required cooling component via the highly heat conductive substrate 100. In addition, for a component that requires particularly strong cooling, a thermal conductive compound is interposed between the component and the mounting surface of the substrate 100 to further increase the cooling efficiency. The strong cooling components are components that require strong cooling, and include, for example, a regenerative brake resistor 92, a three-phase inverter 85, a power coil / transformer, a large electrolytic capacitor, and the like, as shown in FIG.

基板101は、高伝熱性基板であり、その実装面には絶縁膜が施され、その上に部品や配線パターンが実装される。この基板101は、その裏面(部品実装面と反対側の面)が電源装置80の筐体81の底面にほぼ全面接触するよう固定される。また、電源装置80の筐体81の上部は冷却装置70に当接されている。したがって、要中冷却部品から発した熱は、高伝熱性の基板101および電源装置80の筐体81を介して冷却装置70や外部空気に効率よく逃がされる。上述した要強冷却部品と比べて絶対的な冷却効率は劣るものの、要中冷却部品としては十分な冷却が図れる。   The substrate 101 is a highly heat conductive substrate, and an insulating film is applied to the mounting surface, and components and wiring patterns are mounted thereon. The substrate 101 is fixed so that the back surface (the surface opposite to the component mounting surface) is substantially in full contact with the bottom surface of the casing 81 of the power supply device 80. The upper part of the casing 81 of the power supply device 80 is in contact with the cooling device 70. Therefore, the heat generated from the main cooling components is efficiently released to the cooling device 70 and the external air through the highly heat-conductive substrate 101 and the casing 81 of the power supply device 80. Although the absolute cooling efficiency is inferior to that of the strong cooling component described above, sufficient cooling can be achieved as the cooling component.

要中冷却部品は、冷却は要求されるが、要強冷却部品のような強冷却は要求されない部品で、例えば図3に示すように、磁気軸受50に対応してラジアルX軸、Y軸を夫々制御する励磁アンプ91a,91bが実装される。さらに、磁気軸受51に対応してラジアルX軸、Y軸を夫々制御する励磁アンプ91c,91dが実装され、磁気軸受52に対応してアキシャルZ軸を制御する励磁アンプ91eが実装され、その他、消費電力がある程度以上の電子回路部品が実装される。また、冷却装置70の下面に立設された高伝熱性の板金103が、励磁アンプ91a,91bに当接している。これにより、冷却装置70の冷温状態が板金103を介して励磁アンプ91a,91bに伝達されてより効果的に励磁アンプ91a,91bを冷却することができる。ところで、ターボ分子ポンプ装置1の設置姿勢を垂直から水平に変更した場合、重心αに近い磁気軸受50の負荷増加は他の磁気軸受51,52に比べて大きい。そのため、磁気軸受50に関する励磁アンプ91a,91bの発熱が大きくなる。本実施の形態では、励磁アンプ91a,91bに高伝熱性の板金103を当接させて、冷却装置70の下面に熱を逃がして他の励磁アンプ91c,91d,91eよりも冷却性能を大きくしているので、発熱の大きな励磁アンプ91a,91bを効果的に冷却することができる。なお、板金103は、励磁アンプ91a,91bに当接している例で説明したが、励磁アンプ91c,91d,91eにも当接するように設けてもよく、少なくとも励磁アンプ91a,91bに当接していればよい。また、高伝熱性の板金103は、冷却装置70の下面に立設した例で説明したが、板金103を筐体81に立設して、励磁アンプ91a,91bに当接するようにしてもよい。この場合も、筐体81の冷温状態が板金103を介して励磁アンプ91a,91bに伝達されてより効果的に励磁アンプ91a,91bを冷却することができる。   The required cooling component is a component that requires cooling but does not require strong cooling, such as a strong cooling component. For example, as shown in FIG. 3, the radial X axis and the Y axis are set in correspondence with the magnetic bearing 50. Excitation amplifiers 91a and 91b to be controlled are mounted. Further, excitation amplifiers 91c and 91d for controlling the radial X-axis and Y-axis respectively corresponding to the magnetic bearing 51 are mounted, and an excitation amplifier 91e for controlling the axial Z-axis corresponding to the magnetic bearing 52 is mounted. An electronic circuit component that consumes a certain amount of power is mounted. Further, a highly heat conductive sheet metal 103 standing on the lower surface of the cooling device 70 is in contact with the excitation amplifiers 91a and 91b. Thereby, the cold temperature state of the cooling device 70 is transmitted to the excitation amplifiers 91a and 91b via the sheet metal 103, and the excitation amplifiers 91a and 91b can be cooled more effectively. By the way, when the installation posture of the turbo molecular pump device 1 is changed from vertical to horizontal, the load increase of the magnetic bearing 50 near the center of gravity α is larger than those of the other magnetic bearings 51 and 52. Therefore, the heat generation of the excitation amplifiers 91a and 91b related to the magnetic bearing 50 increases. In the present embodiment, the excitation amplifiers 91a and 91b are brought into contact with the highly heat-conductive sheet metal 103 to release heat to the lower surface of the cooling device 70, so that the cooling performance is made larger than those of the other excitation amplifiers 91c, 91d, and 91e. Therefore, the excitation amplifiers 91a and 91b that generate a large amount of heat can be effectively cooled. Although the example in which the sheet metal 103 is in contact with the excitation amplifiers 91a and 91b has been described, it may be provided so as to also contact the excitation amplifiers 91c, 91d, and 91e, and at least contact with the excitation amplifiers 91a and 91b. Just do it. Further, although the example in which the highly heat-conductive sheet metal 103 is erected on the lower surface of the cooling device 70 has been described, the sheet metal 103 may be erected on the casing 81 and may be in contact with the excitation amplifiers 91a and 91b. . Also in this case, the cold temperature state of the housing 81 is transmitted to the excitation amplifiers 91a and 91b via the sheet metal 103, and the excitation amplifiers 91a and 91b can be cooled more effectively.

基板102は、冷却不要部品を実装するもので、例えばガラスエポキシまたはフェノール製とされる。この基板102は、両高伝熱性基板100,101の間の空間に、両高伝熱性基板100,101から離して配置される。例えば図3に示すように、スタッドボルトなどの支持部材104により基板102を高伝熱性基板100に支持することができる。基板102は高伝熱性基板ではなく、また位置的にも冷却不要部品の放熱は殆ど望めないが、冷却不要部品であるため何ら問題はない。なお、冷却不要部品は、周囲の部材との間で温度勾配があれば、輻射または局所的対流により伝熱され、冷却される。冷却不要部品は、冷却が殆ど要求されない消費電力の小さいトランジスタや、抵抗・コンデンサ、ICなどである。なお、筐体81内にファンを設けて筐体81内の空気を循環させてもよい。   The substrate 102 mounts components that do not require cooling, and is made of, for example, glass epoxy or phenol. The substrate 102 is disposed in a space between the two high heat transfer substrates 100 and 101 and separated from the two high heat transfer substrates 100 and 101. For example, as shown in FIG. 3, the substrate 102 can be supported on the high heat transfer substrate 100 by a support member 104 such as a stud bolt. Although the substrate 102 is not a highly heat conductive substrate and can hardly dissipate heat from the components that do not require cooling even in terms of position, there is no problem because it is a component that does not require cooling. If there is a temperature gradient with surrounding members, the cooling-unnecessary component is cooled by being transferred by radiation or local convection. Cooling unnecessary components are transistors, resistors / capacitors, ICs, and the like that require little cooling and have low power consumption. Note that a fan may be provided in the housing 81 to circulate the air in the housing 81.

(第2の実施形態)
以下、図を参照して本発明の第2の実施形態について説明する。図1に示したターボ分子ポンプ装置1の概略構成は本第2の実施形態でも同様であるのでその説明を省略する。さらに、図2に示した電源装置80の回路構成は本第2の実施形態でも同様であるのでその説明を省略する。
(Second Embodiment)
Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. Since the schematic configuration of the turbo molecular pump device 1 shown in FIG. 1 is the same in the second embodiment, the description thereof is omitted. Furthermore, since the circuit configuration of the power supply device 80 shown in FIG. 2 is the same as that of the second embodiment, the description thereof is omitted.

図4は電源装置80の筐体81内の基板や電子部品の具体的な配置を示す縦断面図である。図3と同一の部分には同一の符号を附してその説明を省略する。基板101は、図3で示したものと同様の高伝熱性基板であり、その上に要中冷却部品が実装される。例えば図4に示すように、磁気軸受50に対応してラジアルX軸、Y軸を夫々制御する励磁アンプ91a,91bが実装され、その他、消費電力がある程度以上の電子回路部品が実装される。一方、励磁アンプ91c,91d,91eは、その他の冷却不要部品と共に基板102に実装される。これは前述したように、ターボ分子ポンプ装置1を水平に設置した場合に、回転体の重心αに近い磁気軸受50に負荷がかかり、そのため励磁アンプ91a,91bの発熱が励磁アンプ91c,91d,91eに比較して大きくなるが、この発熱を冷却するためである。なお、筐体81内にファンを設けて筐体81内の空気を循環させてもよい。   FIG. 4 is a longitudinal sectional view showing a specific arrangement of substrates and electronic components in the casing 81 of the power supply device 80. The same parts as those in FIG. 3 are denoted by the same reference numerals, and the description thereof is omitted. The substrate 101 is a high heat transfer substrate similar to that shown in FIG. 3, and a cooling medium required component is mounted thereon. For example, as shown in FIG. 4, excitation amplifiers 91a and 91b for controlling the radial X-axis and the Y-axis are mounted corresponding to the magnetic bearing 50, and other electronic circuit components that consume power to some extent are mounted. On the other hand, the excitation amplifiers 91c, 91d, and 91e are mounted on the substrate 102 together with other cooling unnecessary components. As described above, when the turbo molecular pump device 1 is installed horizontally, a load is applied to the magnetic bearing 50 near the center of gravity α of the rotating body, and therefore the heat generated by the excitation amplifiers 91a and 91b is generated by the excitation amplifiers 91c, 91d, Although it becomes larger than 91e, it is for cooling this heat generation. Note that a fan may be provided in the housing 81 to circulate the air in the housing 81.

上記のように電源装置80の各部品を要強冷却部品、要中冷却部品、冷却不要部品に分類し、要強冷却部品は、冷却装置70への伝熱により冷却される第1空間に配置し、要中冷却部品は、筐体81の内面への伝熱により冷却される第2空間に配置し、冷却不要部品は、筐体81内で周囲部材への輻射または局所的対流による伝熱で冷却される第3空間に配置するようにした。したがって、冷却が要求される部品をその要求度に応じて効率よく冷却することができる。   As described above, each component of the power supply device 80 is classified into a strong cooling component, a medium cooling component, and a cooling unnecessary component, and the strong cooling component is arranged in the first space cooled by heat transfer to the cooling device 70. However, the cooling component is arranged in the second space cooled by the heat transfer to the inner surface of the casing 81, and the cooling unnecessary component is the heat transfer by radiation to the surrounding members or local convection in the casing 81. It was made to arrange in the 3rd space cooled by. Therefore, it is possible to efficiently cool a component that requires cooling in accordance with the required level.

特に、本実施の形態では、ターボ分子ポンプ装置1の設置姿勢が水平とされた場合の励磁アンプ91a,91bの発熱増大を考慮し、励磁アンプ91a,91bの冷却を他の励磁アンプ91c,91d,91eよりも大きくして、励磁アンプ91a,91bの過大な温度上昇を防止している。   In particular, in the present embodiment, considering the increase in heat generation of the excitation amplifiers 91a and 91b when the installation posture of the turbo molecular pump device 1 is horizontal, the excitation amplifiers 91a and 91b are cooled to the other excitation amplifiers 91c and 91d. , 91e to prevent an excessive temperature rise of the excitation amplifiers 91a, 91b.

また、上記実施形態の電源装置80においては、要強冷却部品と要中冷却部品とを高伝熱性基板に実装し、基板を冷却装置70や筐体81の内面に接触させて伝熱により冷却するようにした。したがって、予め部品が実装された基板を冷却装置70や筐体81の底面に接触して配設するだけでよく、組立性も向上する。   In the power supply device 80 of the above embodiment, the strong cooling component and the middle cooling component are mounted on the high heat transfer substrate, and the substrate is brought into contact with the inner surface of the cooling device 70 or the casing 81 to cool by heat transfer. I tried to do it. Therefore, it is only necessary to arrange the substrate on which the components are mounted in advance in contact with the bottom surface of the cooling device 70 or the casing 81, and the assemblability is improved.

以上説明した実施の形態によれば、次の作用効果が得られる。
(1)回転翼8が形成されたロータ2および該ロータ2に固定されたシャフト3を有する回転体と、固定翼9と、シャフト3を非接触支持する複数の磁気軸受50〜52と、複数の磁気軸受50〜52を制御する複数の励磁アンプ91a,91b,91c,91d,91eを有する電源装置80と、電源装置80を冷却する冷却装置70と、を備え、回転体の重心に近い位置に設けられた磁気軸受50を制御する励磁アンプ91a,91bは、他の磁気軸受を制御する励磁アンプ91c,91d,91eの位置と比較して、冷却装置70による冷却効果が高い位置に実装される。これにより、例えば、ターボ分子ポンプ装置1を水平に設置した場合に、回転体の重心に近い位置の磁気軸受50に負荷がかかり、当該磁気軸受50を駆動する励磁アンプ91a,91bが過熱するが、これを効果的に冷却することが可能になる。
According to the embodiment described above, the following operational effects can be obtained.
(1) A rotor having a rotor 2 on which a rotor blade 8 is formed and a shaft 3 fixed to the rotor 2, a stator blade 9, a plurality of magnetic bearings 50 to 52 that support the shaft 3 in a non-contact manner, and a plurality of A power source device 80 having a plurality of excitation amplifiers 91a, 91b, 91c, 91d, 91e for controlling the magnetic bearings 50 to 52 of the motor and a cooling device 70 for cooling the power source device 80, and a position near the center of gravity of the rotating body The excitation amplifiers 91a and 91b for controlling the magnetic bearings 50 provided in are mounted at positions where the cooling effect by the cooling device 70 is higher than the positions of the excitation amplifiers 91c, 91d and 91e for controlling the other magnetic bearings. The Thereby, for example, when the turbo molecular pump device 1 is installed horizontally, a load is applied to the magnetic bearing 50 near the center of gravity of the rotating body, and the excitation amplifiers 91a and 91b that drive the magnetic bearing 50 are overheated. It becomes possible to cool this effectively.

(2)ロータ2はシャフト3の一端側に固定され、複数の磁気軸受50〜52は、回転体の重心に近い位置のシャフト3の一端側を非接触支持する第1ラジアル磁気軸受50と、シャフト3の他端側を非接触支持する第2ラジアル磁気軸受51とを備え、第1ラジアル磁気軸受50を制御する励磁アンプ91a,91bは冷却装置70による冷却効果が他の励磁アンプ91c,91d,91eより高い位置に実装される。これにより、ターボ分子ポンプ装置1を水平に設置した場合に、第1ラジアル磁気軸受50に負荷がかかり、当該磁気軸受を制御する励磁アンプ91a,91bが過熱するが、これを効果的に冷却することが可能になる。 (2) The rotor 2 is fixed to one end side of the shaft 3, and the plurality of magnetic bearings 50 to 52 includes a first radial magnetic bearing 50 that supports the one end side of the shaft 3 at a position close to the center of gravity of the rotating body in a non-contact manner, The excitation amplifiers 91a and 91b are provided with a second radial magnetic bearing 51 that supports the other end of the shaft 3 in a non-contact manner, and the first radial magnetic bearing 50 is controlled by the excitation amplifiers 91a and 91d that are cooled by the cooling device 70. , 91e and higher. As a result, when the turbo molecular pump device 1 is installed horizontally, a load is applied to the first radial magnetic bearing 50, and the excitation amplifiers 91a and 91b that control the magnetic bearing are overheated, but this is effectively cooled. It becomes possible.

(3)回転体の重心に近い位置に設けられた磁気軸受50を制御する励磁アンプ91a,91bには、高伝熱性の部材103を当接させる。これにより、励磁アンプ91a,91bを効果的に冷却することができる。 (3) The highly heat-conductive member 103 is brought into contact with the excitation amplifiers 91a and 91b that control the magnetic bearing 50 provided near the center of gravity of the rotating body. Thereby, excitation amplifier 91a, 91b can be cooled effectively.

(変形例)
本発明は、以上説明した第1および第2の実施形態を次のように変形して実施することができる。
(1)冷却装置70は水冷を例に説明したが、ファンによって空気を循環して冷却する空冷であってもよい。空冷の場合は、要中冷却部品が実装される基板101上にあって、励磁アンプ91a,91bを空冷の風上側に実装する。さらに、水冷および空冷の両者を備えたものであってもよい。
(Modification)
The present invention can be implemented by modifying the first and second embodiments described above as follows.
(1) Although the cooling device 70 has been described by taking water cooling as an example, it may be air cooling in which air is circulated and cooled by a fan. In the case of air cooling, the excitation amplifiers 91a and 91b are mounted on the windward side of the air cooling on the board 101 on which the cooling components are mounted. Further, it may be provided with both water cooling and air cooling.

(2)ポンプ本体20に冷却装置70と電源装置80とが一体的に構成される例で説明したが、ポンプ本体20に対して冷却装置70と電源装置80とが別体に離れた位置に設けられたものであってもよい。また、ポンプ本体20および冷却装置70と電源装置80とが別体にされた場合においても、上述の場合と同様に、励磁アンプ91a,91bの冷却を他の励磁アンプ91c,91d,91eよりも大きくする。 (2) The example in which the cooling device 70 and the power supply device 80 are integrally configured in the pump main body 20 has been described. However, the cooling device 70 and the power supply device 80 are separated from the pump main body 20. It may be provided. Even when the pump body 20, the cooling device 70, and the power supply device 80 are separated, the excitation amplifiers 91a and 91b are cooled more than the other excitation amplifiers 91c, 91d, and 91e, as in the case described above. Enlarge.

本発明は、上記の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の実施形態と複数の変形例を組み合わせた構成としてもよい。   The present invention is not limited to the above-described embodiment, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention as long as the characteristics of the present invention are not impaired. . Moreover, it is good also as a structure which combined the above-mentioned embodiment and a some modification.

1 ターボ分子ポンプ装置
20 ポンプ本体
70 冷却装置
80 電源装置
91a,91b 励磁アンプ
DESCRIPTION OF SYMBOLS 1 Turbo molecular pump apparatus 20 Pump main body 70 Cooling apparatus 80 Power supply apparatus 91a, 91b Excitation amplifier

Claims (3)

回転翼が形成されたロータおよび該ロータに固定されたシャフトを有する回転体と、
固定翼と、
前記シャフトを非接触支持する複数の磁気軸受と、
前記複数の磁気軸受を制御する複数の励磁アンプを有する電源装置と、
前記電源装置を冷却する冷却装置と、を備え、
前記回転体の重心に近い位置に設けられた前記磁気軸受を制御する励磁アンプは、他の磁気軸受を制御する励磁アンプの位置と比較して、前記冷却装置による冷却効果が高い位置に実装される、ターボ分子ポンプ装置。
A rotor having a rotor formed with rotor blades and a shaft fixed to the rotor;
Fixed wings,
A plurality of magnetic bearings for non-contact support of the shaft;
A power supply device having a plurality of excitation amplifiers for controlling the plurality of magnetic bearings;
A cooling device for cooling the power supply device,
The excitation amplifier that controls the magnetic bearing provided near the center of gravity of the rotating body is mounted at a position where the cooling effect by the cooling device is higher than the position of the excitation amplifier that controls other magnetic bearings. Turbo molecular pump device.
請求項1に記載のターボ分子ポンプ装置において、
前記ロータは前記シャフトの一端側に固定され、
前記複数の磁気軸受は、前記回転体の重心に近い位置の前記シャフトの一端側を非接触支持する第1ラジアル磁気軸受と、前記シャフトの他端側を非接触支持する第2ラジアル磁気軸受とを備え、
前記第1ラジアル磁気軸受を制御する励磁アンプは前記冷却装置による冷却効果が他の励磁アンプより高い位置に実装される、ターボ分子ポンプ装置。
In the turbo-molecular pump device according to claim 1,
The rotor is fixed to one end of the shaft;
The plurality of magnetic bearings include a first radial magnetic bearing that non-contact supports one end of the shaft at a position close to the center of gravity of the rotating body, and a second radial magnetic bearing that non-contact supports the other end of the shaft. With
The turbo molecular pump device, wherein the excitation amplifier for controlling the first radial magnetic bearing is mounted at a position where the cooling effect of the cooling device is higher than that of other excitation amplifiers.
請求項1または2に記載のターボ分子ポンプ装置において、
前記回転体の重心に近い位置に設けられた磁気軸受を制御する励磁アンプには、高伝熱性の部材を当接させる、ターボ分子ポンプ装置。
In the turbo-molecular pump device according to claim 1 or 2,
A turbo-molecular pump device in which a highly heat-conductive member is brought into contact with an excitation amplifier that controls a magnetic bearing provided at a position close to the center of gravity of the rotating body.
JP2015023253A 2015-02-09 2015-02-09 Turbo-molecular pump device Pending JP2016145555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015023253A JP2016145555A (en) 2015-02-09 2015-02-09 Turbo-molecular pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015023253A JP2016145555A (en) 2015-02-09 2015-02-09 Turbo-molecular pump device

Publications (1)

Publication Number Publication Date
JP2016145555A true JP2016145555A (en) 2016-08-12

Family

ID=56685335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015023253A Pending JP2016145555A (en) 2015-02-09 2015-02-09 Turbo-molecular pump device

Country Status (1)

Country Link
JP (1) JP2016145555A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193944A1 (en) * 2017-04-20 2018-10-25 エドワーズ株式会社 Vacuum pump, magnetic bearing device, and rotor
CN109891100A (en) * 2016-11-04 2019-06-14 埃地沃兹日本有限公司 The assemble method of vacuum pump control device and vacuum pump and vacuum pump control device
JP2021090310A (en) * 2019-12-05 2021-06-10 株式会社島津製作所 Vacuum pump
JP2021102926A (en) * 2019-12-24 2021-07-15 株式会社島津製作所 Vacuum pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133388A (en) * 1991-11-08 1993-05-28 Daikin Ind Ltd Dry vacuum pump
JP2014148977A (en) * 2014-04-24 2014-08-21 Shimadzu Corp Turbo-molecular pump device
JP2014152829A (en) * 2013-02-06 2014-08-25 Shimadzu Corp Magnetic bearing device and vacuum pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05133388A (en) * 1991-11-08 1993-05-28 Daikin Ind Ltd Dry vacuum pump
JP2014152829A (en) * 2013-02-06 2014-08-25 Shimadzu Corp Magnetic bearing device and vacuum pump
JP2014148977A (en) * 2014-04-24 2014-08-21 Shimadzu Corp Turbo-molecular pump device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109891100A (en) * 2016-11-04 2019-06-14 埃地沃兹日本有限公司 The assemble method of vacuum pump control device and vacuum pump and vacuum pump control device
US11215186B2 (en) 2016-11-04 2022-01-04 Edwards Japan Limited Vacuum pump control apparatus and vacuum pump, and assembly method of vacuum pump control apparatus
US11536280B2 (en) 2017-04-20 2022-12-27 Edwards Japan Limited Vacuum pump, magnetic bearing device, and rotor
CN110520627A (en) * 2017-04-20 2019-11-29 埃地沃兹日本有限公司 Vacuum pump, magnetic bearing device and rotor
KR20190141134A (en) * 2017-04-20 2019-12-23 에드워즈 가부시키가이샤 Vacuum pumps, magnetic bearing devices and rotors
EP3613987A4 (en) * 2017-04-20 2020-12-23 Edwards Japan Limited Vacuum pump, magnetic bearing device, and rotor
JP2018179262A (en) * 2017-04-20 2018-11-15 エドワーズ株式会社 Vacuum pump, magnetic bearing device and rotor
WO2018193944A1 (en) * 2017-04-20 2018-10-25 エドワーズ株式会社 Vacuum pump, magnetic bearing device, and rotor
KR102530771B1 (en) * 2017-04-20 2023-05-10 에드워즈 가부시키가이샤 Vacuum pumps, magnetic bearing units and rotors
JP2021090310A (en) * 2019-12-05 2021-06-10 株式会社島津製作所 Vacuum pump
JP7367498B2 (en) 2019-12-05 2023-10-24 株式会社島津製作所 Vacuum pump
JP2021102926A (en) * 2019-12-24 2021-07-15 株式会社島津製作所 Vacuum pump
JP7294119B2 (en) 2019-12-24 2023-06-20 株式会社島津製作所 Vacuum pump

Similar Documents

Publication Publication Date Title
JP5545358B2 (en) Turbo molecular pump device
US8628309B2 (en) Turbomolecular pump device and controlling device thereof
JP5673497B2 (en) Integrated turbomolecular pump
JP7022265B2 (en) Vacuum pump
US20060262499A1 (en) Cooling fan with external circuit board
JP2016145555A (en) Turbo-molecular pump device
KR101552747B1 (en) Motor driver circuit and vacuum pump equipped with motor driver circuit
JP7088688B2 (en) Vacuum pump and vacuum pump controller
EP3557070B1 (en) Vacuum pump and control device provided to vacuum pump
WO2018042151A1 (en) Pump with bidirectional heat transfer between pump housing and control housing
CN108506225B (en) Power supply integrated vacuum pump
CN108730205B (en) Power supply integrated vacuum pump
JP2007027257A (en) Cooling system and electronic equipment
JP5700158B2 (en) Turbo molecular pump device
JP7096006B2 (en) Vacuum pump and vacuum pump controller
JP6882626B2 (en) Vacuum pump controller
JP6834814B2 (en) Control device for vacuum pump and vacuum pump
WO2018159213A1 (en) Control device, substrate installed in said control device, and vacuum pump to which said control device is applied
JP2010106782A (en) Axial flow fan and electronic equipment mounted with axial flow fan
US20060202576A1 (en) Cooling fan with outboard bearings
JPWO2020017038A1 (en) Outdoor unit of air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180823

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190329

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190419

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20190607