JP2016144824A - Press workability evaluation device and press workability evaluation method - Google Patents

Press workability evaluation device and press workability evaluation method Download PDF

Info

Publication number
JP2016144824A
JP2016144824A JP2015023666A JP2015023666A JP2016144824A JP 2016144824 A JP2016144824 A JP 2016144824A JP 2015023666 A JP2015023666 A JP 2015023666A JP 2015023666 A JP2015023666 A JP 2015023666A JP 2016144824 A JP2016144824 A JP 2016144824A
Authority
JP
Japan
Prior art keywords
press
deformation
strain
die
principal strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015023666A
Other languages
Japanese (ja)
Other versions
JP6173369B2 (en
Inventor
淳史 須釜
Junji Sugama
淳史 須釜
教昌 三浦
Norimasa Miura
教昌 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2015023666A priority Critical patent/JP6173369B2/en
Publication of JP2016144824A publication Critical patent/JP2016144824A/en
Application granted granted Critical
Publication of JP6173369B2 publication Critical patent/JP6173369B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an evaluation device and an evaluation method for correctly grasping a strain state of various processing elements during composite molding without obtaining a desired composite molding.SOLUTION: A press workability evaluation device 1 comprises: a punch 13 having a salient 132 of a multi-branched shape including three or more branches 132A, 132B, 132C, etc.; a die 23 having a recess 231 which can be fitted to the salient 132, and a die side plane part 232 which surrounds the recess 231; and a plate presser 32 which has a plate presser side plane part 321 which is substantially parallel to the die side plane part 232, and can sandwich an object material of press molding between the die side plane part 232 and the plate presser side plane part 321.SELECTED DRAWING: Figure 1

Description

本発明は、プレス加工性評価装置及びプレス加工性評価方法に関する。   The present invention relates to a press workability evaluation apparatus and a press workability evaluation method.

鋼材又は非鉄材を使用したプレス成形品は、各部位に所定の塑性変形を生じることで所望の形状となる。   A press-formed product using a steel material or a non-ferrous material has a desired shape by causing a predetermined plastic deformation in each part.

プレス成形の塑性変形の加工要素は、最大主歪及び最小主歪を用いて、引張り方向の変形、圧縮方向の変形、変形無しの各組合せにより、大きく4種類に分類される。変形後も直交を保つような3つの直交軸を歪の主軸といい、その主軸方向の垂直歪が主歪であって、そのうちの最大値、最小値が最大主歪、最小主歪と呼ばれている。図8は、それらの加工要素を図示したものである。最大主歪をε、最小主歪をε、そして最大主歪εと最小主歪εのどちらとも直交する板厚方向歪をεと表記している。
最大主歪εが引張り変形であって、最小主歪εが変形なしである加工要素を「平面歪引張変形」(図8のA)と称し、最大主歪εと最小主歪εがいずれも引張り変形である加工要素を「二軸引張変形」(図8のC)と称し、最大主歪εが引張り変形であって、最小主歪εが圧縮変形である加工要素を「縮みフランジ変形」(図8のD)と称し、最大主歪εが引張り変形、最小主歪εが圧縮変形であり、圧縮が引張りの1/2相当の歪量である加工要素を「単軸引張変形」又は「伸びフランジ変形」(図8のB)と称している。
Processing elements for plastic deformation in press molding are roughly classified into four types according to combinations of deformation in the tensile direction, deformation in the compression direction, and no deformation using the maximum principal strain and the minimum principal strain. The three orthogonal axes that maintain orthogonality after deformation are called the main axes of distortion. The vertical distortion in the main axis direction is the main distortion, and the maximum and minimum values are called the maximum main distortion and the minimum main distortion. ing. FIG. 8 illustrates these processing elements. The maximum principal strain is represented by ε 1 , the minimum principal strain is represented by ε 2 , and the plate thickness direction strain orthogonal to both the maximum principal strain ε 1 and the minimum principal strain ε 2 is represented by ε t .
A machining element in which the maximum principal strain ε 1 is tensile deformation and the minimum principal strain ε 2 is not deformed is referred to as “planar strain tensile deformation” (A in FIG. 8), and the maximum principal strain ε 1 and the minimum principal strain ε. A working element in which 2 is a tensile deformation is called a “biaxial tensile deformation” (C in FIG. 8), a working element in which the maximum principal strain ε 1 is a tensile deformation and the minimum principal strain ε 2 is a compressive deformation. Is referred to as “shrink flange deformation” (D in FIG. 8), the maximum principal strain ε 1 is tensile deformation, the minimum principal strain ε 2 is compression deformation, and the compression is a strain equivalent to half the tension. Is referred to as “uniaxial tensile deformation” or “stretch flange deformation” (FIG. 8B).

ところで、鋼材又は非鉄材の加工性を評価する方法は多数存在するが、ほとんどは加工要素が一つである単一成形の評価である。例えば、穴広げ試験や鞍型試験のような単一成形による加工性の評価方法が行われている。また、金属板の伸びフランジ成形性を評価する手法として、パンチ、ダイス及びパッドを用いて、V字状に切断したコーナーを有する金属製のブランクをプレス成形して金属板の伸びフランジ成形性を評価する試験方法が知られている(特許文献1)。   By the way, there are many methods for evaluating the workability of a steel material or a non-ferrous material, but most are evaluations of a single molding with one processing element. For example, a method for evaluating workability by single molding such as a hole expansion test and a saddle type test is performed. In addition, as a method for evaluating stretch flange formability of a metal plate, a metal blank having a corner cut into a V shape is press-molded by using a punch, a die and a pad to increase the stretch flange formability of the metal plate. A test method for evaluation is known (Patent Document 1).

特開2008−264829号公報JP 2008-264829 A

しかしながら、実際のプレス加工では、1つの成形加工品の中に複数個の加工要素が含まれる複合成形が主である。例えば、図16に示すように、管が1本から複数本へ分岐する構造を有するプレス成形部品は、1つの成形加工品の中に上記した代表的な4つの加工要素(平面歪引張変形、二軸引張変形、縮みフランジ変形及び単軸引張変形)をいずれも含む複合成形品である。複合成形品の加工安定度を評価するためには各種加工要素の歪状態を正確に把握することが必要であり、複合成形時の各種加工要素の歪状態を正確に把握することにより、1次加工における割れ危険部位や2次加工を行う前の各部位の加工度を正確に特定することが可能となる。   However, in actual pressing, composite molding in which a plurality of processing elements are included in one molded product is mainly used. For example, as shown in FIG. 16, a press-formed part having a structure in which a tube branches from one to a plurality of pipes has four typical processing elements (plane strain tensile deformation, It is a composite molded article including all of biaxial tensile deformation, shrinking flange deformation, and uniaxial tensile deformation. In order to evaluate the processing stability of a composite molded product, it is necessary to accurately grasp the strain state of various processing elements. By accurately grasping the strain state of various processing elements during composite molding, the primary It becomes possible to accurately specify the cracking risk part in processing and the degree of processing of each part before performing secondary processing.

しかしながら、これまでの加工性評価方法は、歪状態の評価を単一の加工要素ごとに行い、これを実際の複合成形品と比較して、最終的な評価としてきた。しかし、複合成形は、1つの成形加工品の中で隣り合う別の加工要素の影響を多分に受けるため、単一成形での評価結果と、複合成形での評価結果との間で齟齬が生じる場合があった。   However, the workability evaluation methods so far have evaluated the strain state for each single work element, and compared this with the actual composite molded product, which has been the final evaluation. However, since composite molding is largely influenced by other processing elements adjacent to each other in one molded product, there is a flaw between the evaluation result in single molding and the evaluation result in composite molding. There was a case.

本発明は、上記の課題を解決するためになされたものであり、1つの成形加工品により複合成形時の各種加工要素の歪状態を正確に把握できるための評価装置及び評価方法を提供することである。   The present invention has been made to solve the above-described problems, and provides an evaluation apparatus and an evaluation method for accurately grasping the strain state of various processing elements at the time of composite molding with a single molded product. It is.

本発明者らは、上記の課題を解決するために鋭意研究を重ねた。その結果、特定の形状のパンチ及びダイスを備える装置を用いることで、上記の課題を解決できることを見出し、本発明の完成に至った。具体的に、本発明は以下のものを提供する。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, it has been found that the above-described problems can be solved by using an apparatus including a punch and a die having a specific shape, and the present invention has been completed. Specifically, the present invention provides the following.

(1)本発明は、3以上の枝からなる多枝形状の凸部を有するパンチと、前記凸部と嵌合可能な3以上の枝からなる多枝形状の凹部、及び前記凹部を囲むダイス側平面部を有するダイスと、前記ダイス側平面部と略平行な板押え側平面部を有し、プレス成形の対象となる対象材料を前記ダイス側平面部及び前記板押え側平面部で挟み込み可能な板押えとを備える、前記対象材料のプレス加工性を評価するプレス加工性評価装置である。   (1) The present invention provides a punch having a multi-branch-shaped convex portion comprising three or more branches, a multi-branch-shaped concave portion comprising three or more branches that can be fitted to the convex portion, and a die surrounding the concave portion. A die having a side plane part and a plate presser side plane part substantially parallel to the die side plane part, and the target material to be pressed can be sandwiched between the die side plane part and the plate presser side plane part. A press workability evaluation apparatus for evaluating press workability of the target material.

(2)本発明は、前記多枝形状の枝が3つである場合、隣り合う枝どうしがなす角は互いに鈍角であり、前記多枝形状の枝が4つである場合、隣り合う枝どうしがなす角は略直角であり、前記多枝形状の枝が5つ以上である場合、隣り合う枝どうしがなす角は互いに鋭角である、上記(1)に記載のプレス加工性評価装置である。   (2) In the present invention, when there are three multi-branched branches, the angles between adjacent branches are obtuse, and when there are four multi-branched branches, adjacent branches are The press workability evaluation apparatus according to (1), wherein an angle formed by the two branches is substantially a right angle, and when there are five or more multi-branched branches, the angles formed by adjacent branches are acute angles with each other. .

(3)本発明は、前記多枝形状の枝が4つであり、前記凸部及び前記凹部が略十字形状である、上記(1)又は(2)に記載のプレス加工性評価装置である。   (3) The present invention is the press workability evaluation apparatus according to the above (1) or (2), wherein the multi-branched branch has four branches, and the convex part and the concave part have a substantially cross shape. .

(4)本発明は、前記ダイスを平面視する場合、前記凹部の角部は曲線をなしており、前記ダイスの前記枝の幅をWdとし、前記ダイスの前記枝の角部における曲率半径をRcとするとき、前記Wdの前記Rcに対する比Wd/Rcは、2以上15未満であり、前記パンチを正面視する場合、前記凸部の頂部における肩部は、曲線をなしており、前記肩部における曲率半径をRpとし、前記凸部の厚さをHpとし、さらに、前記ダイスを断面視する場合、前記凹部の底部は曲線をなしており、前記底部の曲率半径をRdとするとき、Hp≧(Rp+Rd)/2である、上記(1)から(3)のいずれかに記載のプレス加工性評価装置である。   (4) In the present invention, when the die is viewed in plan, the corner portion of the recess is curved, the width of the branch of the die is Wd, and the radius of curvature at the corner portion of the branch of the die is When Rc is set, the ratio Wd / Rc of the Wd to the Rc is 2 or more and less than 15, and when the punch is viewed from the front, the shoulder at the top of the convex portion is curved, and the shoulder When the radius of curvature at the portion is Rp, the thickness of the convex portion is Hp, and when the die is viewed in cross section, the bottom portion of the concave portion is curved, and the curvature radius of the bottom portion is Rd. The press workability evaluation apparatus according to any one of (1) to (3), wherein Hp ≧ (Rp + Rd) / 2.

(5)本発明は、3以上の枝からなる多枝形状の凹部を有するパンチと、前記凹部と嵌合可能な3以上の枝からなる多枝形状の凸部、及び前記凸部を囲むダイス側平面部を有するダイスと、前記ダイス側平面部と略平行な板押え側平面部を有し、プレス成形の対象となる対象材料を前記ダイス側平面部及び前記板押え側平面部で挟み込み可能な板押えとを備える、前記対象材料のプレス加工性を評価するプレス加工性評価装置である。   (5) The present invention provides a punch having a multi-branch-shaped concave portion composed of three or more branches, a multi-branch-shaped convex portion including three or more branches that can be fitted to the concave portion, and a die surrounding the convex portion. A die having a side plane part and a plate presser side plane part substantially parallel to the die side plane part, and the target material to be pressed can be sandwiched between the die side plane part and the plate presser side plane part. A press workability evaluation apparatus for evaluating press workability of the target material.

(6)本発明は、プレス成形の対象となる対象材料を、上記(1)から(5)のいずれかに記載のプレス加工性評価装置を用いてプレス成形し、プレス成形体を得るプレス成形工程と、前記プレス成形体の平面歪引張変形、単軸引張変形、二軸引張変形及び縮みフランジ変形の中から少なくとも二種以上の変形量を測定する変形量測定工程とを含む、プレス加工性の評価方法である。   (6) This invention press-forms the target material used as the object of press molding using the press workability evaluation apparatus in any one of said (1) to (5), and obtains a press-molded body. Press workability, including a process, and a deformation amount measuring step of measuring at least two kinds of deformation amounts among plane strain tensile deformation, uniaxial tensile deformation, biaxial tensile deformation and shrinkage flange deformation of the press-formed body. This is an evaluation method.

(7)本発明は、前記変形量測定工程は、前記対象材料に複数の印を予め転写し、プレス成形の前後での前記印の最大主歪及び最小主歪を測定し、前記プレス成形体の前記凸部の隅部に隣接する底部を含む領域に相当する箇所であって、最大主歪が最も大きく、最小主歪が略変形なしである箇所の変形量を、前記平面歪引張変形が主体で関与する変形量とし、前記プレス成形体の枝における長さ方向の側面の領域に相当する箇所であって、最大主歪が最も大きく、最小主歪が圧縮変形である箇所の変形量を、前記単軸引張変形が主体で関与する変形量とし、前記プレス成形体の前記凸部の角部であり、かつ、肩部である領域に相当する箇所であって、最大主歪が最も大きく、最小主歪が引張変形である箇所の変形量を、前記二軸引張変形が主体で関与する変形量とし、前記プレス成形体の凸部を囲む平面部の領域に相当する箇所であって、最大主歪が最も大きく、最小主歪が最も小さい箇所の変形量を、前記縮みフランジ変形が主体で関与する変形量とする工程である、上記(6)に記載のプレス加工性の評価方法である。   (7) In the present invention, in the deformation amount measuring step, a plurality of marks are transferred in advance to the target material, the maximum principal strain and the minimum principal strain of the marks before and after press molding are measured, and the press molded body The plane strain tensile deformation is a portion corresponding to a region including the bottom adjacent to the corner of the convex portion, where the maximum principal strain is the largest and the minimum principal strain is substantially undeformed. The amount of deformation involved in the main body, the portion corresponding to the region of the side surface in the length direction in the branch of the press-formed body, the deformation amount of the portion where the maximum principal strain is the largest and the minimum principal strain is the compression deformation , The amount of deformation mainly involving the uniaxial tensile deformation, the corner portion of the convex portion of the press-molded body, and the portion corresponding to the region that is the shoulder portion, the largest principal strain is the largest , The amount of deformation at the location where the minimum principal strain is tensile deformation, And the deformation amount of the portion corresponding to the region of the flat portion surrounding the convex portion of the press-formed body, where the maximum principal strain is the largest and the smallest principal strain is the smallest. The press workability evaluation method according to the above (6), which is a step of setting a deformation amount mainly involving deformation.

(8)本発明は、前記複数の印の最大主歪及び最小主歪の関係をプロットし、このプロットの結果から前記プレス成形体の割れを予測する割れ予測工程をさらに含む、上記(7)に記載のプレス加工性の評価方法である。   (8) The present invention further includes a crack prediction step of plotting a relationship between the maximum principal strain and the minimum principal strain of the plurality of marks and predicting a crack of the press-formed body from the result of the plot. The press workability evaluation method described in 1.

(9)本発明は、前記対象材料として、四角形状、八角形状、楕円形状、又は円形状であるブランクを用いる、上記(5)から(8)のいずれかに記載のプレス加工性の評価方法である。   (9) The present invention uses a blank having a quadrangular shape, an octagonal shape, an elliptical shape, or a circular shape as the target material, and the press workability evaluation method according to any one of the above (5) to (8) It is.

本発明に係るプレス加工性評価装置を用いて、プレス成形の対象となる対象材料をプレス成形すると、プレス成形体が得られる。このプレス成形体は、3以上の枝からなる多枝形状の凸部と、この凸部を囲む略平面な平面部とを有する。   When the target material to be press-molded is press-molded using the press workability evaluation apparatus according to the present invention, a press-molded body is obtained. This press-molded body has a multi-branch-shaped convex portion composed of three or more branches and a substantially flat plane portion surrounding the convex portion.

このプレス成形において、プレス成形体の凸部を囲む平面部のうち、前記凸部の隅部に隣接する底部を含む領域に相当する箇所であって、最大主歪が最も大きく、最小主歪が略変形なしである箇所のプレス前後の変形量を測定することで、プレス成形体の平面歪引張変形が主体で関与する変形量を測定できる。   In this press molding, the portion corresponding to the region including the bottom adjacent to the corner of the convex portion of the flat portion surrounding the convex portion of the press-molded body, the largest principal strain being the largest, the smallest principal strain being By measuring the amount of deformation before and after pressing at a location where there is no substantial deformation, it is possible to measure the amount of deformation mainly involving the plane strain tensile deformation of the press-formed body.

また、プレス成形体の枝における長さ方向の側面の領域に相当する箇所であって、最大主歪が最も大きく、最小主歪が圧縮変形である箇所のプレス前後の変形量を測定することで、プレス成形体の単軸引張変形が主体で関与する変形量を測定できる。   In addition, by measuring the amount of deformation before and after pressing at a portion corresponding to the region of the side surface in the length direction in the branch of the press-formed body, where the largest principal strain is the largest and the smallest principal strain is compression deformation. The amount of deformation mainly involving uniaxial tensile deformation of the press-molded product can be measured.

そして、プレス成形体の凸部の角部であり、かつ、肩部である領域に相当する箇所であって、最大主歪が最も大きく、最小主歪が引張変形である箇所のプレス前後の変形量を測定することで、プレス成形体の二軸引張変形が主体で関与する変形量を測定できる。   And the deformation before and after the press at the corner of the convex part of the press-molded body and corresponding to the region which is the shoulder, where the largest principal strain is the largest and the smallest principal strain is the tensile deformation By measuring the amount, it is possible to measure the amount of deformation mainly involving the biaxial tensile deformation of the press-formed body.

さらに、プレス成形体の凸部を囲む平面部の領域に相当する箇所であって、最大主歪が最も大きく、最小主歪が最も小さい箇所のプレス前後の変形量を測定することで、プレス成形体の縮みフランジ変形が主体で関与する変形量を測定できる。   Furthermore, by measuring the amount of deformation before and after pressing at a location corresponding to the region of the flat portion surrounding the convex portion of the press-formed body, where the maximum principal strain is the largest and the smallest principal strain is the smallest, It is possible to measure the amount of deformation in which the body shrinkage flange deformation is mainly involved.

本発明によると、所望の複合成形品を得ることなく、プレス成形の対象となる対象材料を複合プレス成形したときの各種加工要素(平面歪引張変形、二軸引張変形、縮みフランジ変形及び単軸引張変形)の歪状態を正確に把握できる。   According to the present invention, various processing elements (planar strain tensile deformation, biaxial tensile deformation, shrinkage flange deformation, and uniaxial) when the target material to be press-molded is subjected to composite press molding without obtaining a desired composite molded product. The strain state (tensile deformation) can be accurately grasped.

本発明に係るプレス加工性評価装置1を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating the press workability evaluation apparatus 1 which concerns on this invention. 一実施形態に係るパンチ13を説明するための図である。It is a figure for demonstrating the punch 13 which concerns on one Embodiment. 他の実施形態に係るパンチ13を説明するための図である。It is a figure for demonstrating the punch 13 which concerns on other embodiment. ダイス23を説明するための図である。It is a figure for demonstrating the dice | dies 23. FIG. 板押え32を説明するための図である。It is a figure for demonstrating the board presser. 本発明に係るプレス成形方法を使用して得られるプレス成形体40の一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example of the press molded object 40 obtained using the press molding method which concerns on this invention. ダイス23における枝の幅Wdと角部の曲率半径Rcとの比Wd/Rcに関してプレス成形体の状態を説明するための図である。It is a figure for demonstrating the state of a press molding regarding ratio Wd / Rc of the width Wd of the branch in the die | dye 23, and the curvature radius Rc of a corner | angular part. プレス成形の塑性変形の加工要素を説明するための図である。It is a figure for demonstrating the processing element of the plastic deformation of press molding. 上記の各加工要素における最小主歪と最大主歪との関係を示す図である。It is a figure which shows the relationship between the minimum principal strain in each said process element, and the largest principal strain. 試験例1及び2において使用したダイス及びパンチの寸法を示す図である。It is a figure which shows the dimension of the die | dye and punch which were used in Test Example 1 and 2. FIG. 試験例に係るプレス成形体の加工前後での歪分布を示す図である。It is a figure which shows the distortion distribution before and behind the process of the press molding which concerns on a test example. 試験例に係るプレス成形体の歪み状態を示す図である。It is a figure which shows the distortion state of the press-molded body which concerns on a test example. 図12に図11のa〜dを重ね合わせた図である。FIG. 12 is a diagram obtained by superimposing ad in FIG. 11 on FIG. 図13における位置a〜dでの板厚変化率を示す図である。It is a figure which shows the plate | board thickness change rate in the position ad in FIG. 図13における位置a〜cでの最大主歪方向の引張歪状態を示す図である。It is a figure which shows the tensile strain state of the largest principal strain direction in the position ac of FIG. 管が1本から複数本へ分岐する構造を有するプレス成形部品の一例を示す図である。It is a figure which shows an example of the press molding component which has a structure where a pipe | tube branches from one to several.

以下、本発明の具体的な実施形態について、詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。   Hereinafter, specific embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and may be implemented with appropriate modifications within the scope of the object of the present invention. can do.

<プレス加工性評価装置1>
図1は、本発明に係るプレス加工性評価装置1を説明するための模式図である。プレス加工性評価装置1は、パンチ部10と、このパンチ部10と嵌合可能なダイス部20と、パンチ部10及びダイス部20の両側に設けられるガイド部30A、30Bとを備える。
<Press workability evaluation apparatus 1>
FIG. 1 is a schematic diagram for explaining a press workability evaluation apparatus 1 according to the present invention. The press workability evaluation apparatus 1 includes a punch portion 10, a die portion 20 that can be fitted to the punch portion 10, and guide portions 30 </ b> A and 30 </ b> B provided on both sides of the punch portion 10 and the die portion 20.

パンチ部10は、底板11と、この底板11の表面に設けられたパンチホルダー12と、このパンチホルダーの表面で支持されるパンチ13と有する。ダイス部20は、上板21と、この上板の底面に設けられたダイスホルダー22と、このダイスホルダー22の底面で支持されるダイス23とを有する。ガイド部30A、30Bは、ダイス部20の両側に設けられ、ダイス部20の移動方向を定めるガイドピン31A、31Bと、パンチ部10の両側に設けられ、プレス成形の対象となる対象材料(以下、「プレス成形対象材料」と略称する。)をダイス部20とともに挟み込み可能な板押え32A、32Bと、板押え32A、32Bの底部に設けられ、板押え32A、32Bを支えるクッションピン33A、33Bとを有する。図1には、プレス成形対象材料の板材50をパンチ10とダイス23との間に配置した態様が示されている。当該板材50は、プレス加工中にパンチ13とダイス23との間に引き込まれて、その外周が収縮するため、板材50の幅は、パンチ13の幅よりも十分に大きなものが使用される。   The punch unit 10 includes a bottom plate 11, a punch holder 12 provided on the surface of the bottom plate 11, and a punch 13 supported on the surface of the punch holder. The die portion 20 includes an upper plate 21, a die holder 22 provided on the bottom surface of the upper plate, and a die 23 supported on the bottom surface of the die holder 22. The guide portions 30A and 30B are provided on both sides of the die portion 20 and are provided on both sides of the punch pins 10 and guide pins 31A and 31B that define the moving direction of the die portion 20, and target materials (hereinafter referred to as press forming objects). , Abbreviated as “material to be press-molded”) and the plate retainers 32A and 32B that can be sandwiched together with the die part 20, and cushion pins 33A and 33B that are provided at the bottom of the plate retainers 32A and 32B and support the plate retainers 32A and 32B. And have. FIG. 1 shows a mode in which a plate material 50 as a material to be press-molded is arranged between the punch 10 and the die 23. The plate member 50 is drawn between the punch 13 and the die 23 during the press work, and the outer periphery thereof contracts. Therefore, the plate member 50 having a sufficiently larger width than the punch 13 is used.

〔パンチ13〕
図2の(a)は、パンチ13の一例を示す概略斜視図であり、多枝形状の枝が4つである場合の一例である。パンチ13は、凸部132を有する。凸部132は、4つの凸部132A、132B、132C、132Dからなる多枝形状を呈している。
[Punch 13]
FIG. 2A is a schematic perspective view showing an example of the punch 13 and is an example in the case where there are four multi-branched branches. The punch 13 has a convex portion 132. The convex part 132 has a multi-branch shape composed of four convex parts 132A, 132B, 132C, 132D.

図2の(b)は、パンチ13の平面図であり、図2の(c)は、パンチ13の正面図である。   FIG. 2B is a plan view of the punch 13, and FIG. 2C is a front view of the punch 13.

凸部132は、3以上の枝132A,132B,132C,132Dからなる多枝形状で構成される。パンチ13の凸部132は、多枝形状で構成されていないと、プレス成形したときに、プレス成形体の隣り合う枝どうしが交差する交差部を形成することができず、プレス成形体の平面歪引張変形を好適に測定できないため、好ましくない。   The convex portion 132 has a multi-branch shape including three or more branches 132A, 132B, 132C, and 132D. If the convex portion 132 of the punch 13 is not formed in a multi-branch shape, when the press molding is performed, it is not possible to form an intersecting portion where adjacent branches of the press molded body intersect with each other. Since strain tensile deformation cannot be measured suitably, it is not preferable.

枝の数は、特に限定されるものでないが、プレス成形体の形状が比較的単純であり、プレス成形体の平面歪引張変形、単軸引張変形、二軸引張変形及び縮みフランジ変形の中から少なくとも二種以上の変形量を比較的容易に測定できる点で、枝の数は、3以上8以下であることが好ましく、3以上5以下であることがより好ましい。また、枝先端又は枝交差部における材料の圧延方向の影響を検討するに際し、一般的な引張試験において行われる、プレス成形の対象材料の圧延方向に対して、0°、45°、90°の各方向における正確な歪み量のデータを採取するためには、枝の数は、4であることが特に好ましい。   The number of branches is not particularly limited, but the shape of the press-molded body is relatively simple. From among the plane strain tensile deformation, uniaxial tensile deformation, biaxial tensile deformation, and shrinkage flange deformation of the press molded body. The number of branches is preferably 3 or more and 8 or less, more preferably 3 or more and 5 or less, in that at least two or more deformation amounts can be measured relatively easily. Further, when examining the effect of the rolling direction of the material at the branch tip or branch intersection, it is 0 °, 45 °, 90 ° with respect to the rolling direction of the material to be press-formed, which is performed in a general tensile test. In order to collect accurate distortion amount data in each direction, the number of branches is particularly preferably four.

隣り合う枝どうしがなす好ましい角度は、多枝形状の枝の数によって異なる。多枝形状の枝が3つである場合、隣り合う枝どうしがなす角は互いに鈍角であることが好ましい。多枝形状の枝が4つである場合、隣り合う枝どうしがなす角は略直角であることが好ましい。また、多枝形状の枝が5つ以上である場合、隣り合う枝どうしがなす角は互いに鋭角であることが好ましい。なお、隣り合う枝どうしがなす角は、鈍角と鋭角との両方を含むようにすることもできる。   The preferred angle between adjacent branches varies depending on the number of multi-branched branches. When there are three multi-branched branches, it is preferable that the angles formed by adjacent branches are obtuse. When there are four multi-branched branches, it is preferable that the angle formed between adjacent branches is substantially a right angle. When there are five or more multi-branched branches, it is preferable that the angles formed by adjacent branches are acute angles. It should be noted that the angle formed between adjacent branches may include both an obtuse angle and an acute angle.

図3の(a)は、多枝形状の枝が3つであるパンチ13’の一例を示す平面図であり、図3の(b)は、多枝形状の枝が5つであるパンチ13’’の一例を示す平面図である。各種加工要素(平面歪引張変形、二軸引張変形、縮みフランジ変形及び単軸引張変形)の変形状態をより正確に把握できるようにするため、図2及び図3に示すとおり、隣り合う枝どうしがなす好ましい角度は、互いに略等しいことがより好ましい。すなわち、隣り合う枝どうしがなす角は、(枝の数)/360°程度であることがより好ましい。具体的には、多枝形状の枝が3つである場合、隣り合う枝どうしがなす角は、互いに略120°であり、凸部12が略三ツ矢状に形成されていることが好ましい。多枝形状の枝が3つである場合、隣り合う枝どうしがなす角は、互いに略直角であり、凸部12が略十字状に形成されていることが好ましい。また、多枝形状の枝が5つである場合、隣り合う枝どうしがなす角は、略72°であり、互いに略星状であることが好ましい。   3A is a plan view showing an example of a punch 13 ′ having three multi-branched branches, and FIG. 3B is a punch 13 having five multi-branched branches. It is a top view which shows an example of ''. Adjacent branches as shown in FIGS. 2 and 3 in order to more accurately grasp the deformation state of various processing elements (plane strain tensile deformation, biaxial tensile deformation, contraction flange deformation and uniaxial tensile deformation). More preferably, the angles formed by are substantially equal to each other. That is, the angle formed by adjacent branches is more preferably about (number of branches) / 360 °. Specifically, when there are three multi-branched branches, it is preferable that the angles formed by adjacent branches are approximately 120 ° with each other, and the convex portion 12 is formed in a substantially three-pointed shape. When there are three multi-branched branches, it is preferable that the angles formed by adjacent branches are substantially perpendicular to each other, and the convex portion 12 is formed in a substantially cross shape. Further, when there are five multi-branched branches, the angle between adjacent branches is approximately 72 °, and it is preferable that they are substantially star-shaped.

パンチ13は、図2(b)に示すように、パンチの凸部132を平面視する場合、凸部132のパンチ角部eは、パンチ13の径方向内側に湾曲しており、凸部132のパンチ隅部fは、パンチ13の径方向外側に湾曲している。本明細書において、凸部132のパンチ角部eとは、凸部132の周縁(エッジ)のうち、枝が周囲に突出して凸方向に形成された部分をいい、凸部132のパンチ隅部fとは、凸部132の周縁(エッジ)のうち、隣り合う枝どうしがなす凹方向に形成された部分をいう。 As shown in FIG. 2B, when the punch 13 has a plan view of the convex portion 132 of the punch, the punch corner portion e 1 of the convex portion 132 is curved inward in the radial direction of the punch 13. A punch corner f 1 of 132 is curved outward in the radial direction of the punch 13. In this specification, the punch corners e 1 of the protrusion 132, of the periphery of the convex portion 132 (edge), refers to a branch is formed in a convex direction protrudes peripheral portion, the punch corner of the protrusion 132 The part f 1 refers to a part formed in the concave direction formed by adjacent branches in the peripheral edge (edge) of the convex part 132.

また、図2の(c)に示すように、パンチの凸部132を正面視する場合、凸部132の周縁(エッジ)のうち、枝132A、132B、132C、132Dの頂部におけるパンチ肩部gは、パンチ13の径方向内側に曲率半径Rpで湾曲させるR(曲線)をなしており、パンチ肩部gから凸部132の基部に向かう外形は、ほぼ縦方向に延びる形状をなしている。本明細書において、凸部132の頂部とは、凸部132におけるプレス成形対象材料と当接する側をいい、凸部132の基部とは、凸部132おけるパンチホルダー12の上に配設される側をいう。 In addition, as shown in FIG. 2C, when the punch protrusion 132 is viewed from the front, the punch shoulder g at the top of the branches 132A, 132B, 132C, 132D among the peripheral edges (edges) of the protrusion 132. 1 has an R (curve) that is curved with a radius of curvature Rp on the radially inner side of the punch 13, and the outer shape from the punch shoulder g 1 toward the base of the convex portion 132 has a shape extending substantially in the vertical direction. Yes. In this specification, the top part of the convex part 132 refers to the side of the convex part 132 that comes into contact with the material to be pressed, and the base part of the convex part 132 is disposed on the punch holder 12 in the convex part 132. Say the side.

加えて、パンチの凸部132の頂部から基部までの厚さをHpとするとき、Hp≧(Rp+Rd)/2であることが好ましい。Hpが(Rp+Rd)/2以上であることにより、対象材料をプレス成形して得られるプレス成形体の平面歪引張変形及び単軸引張変形を好適に測定できる。   In addition, when the thickness from the top to the base of the convex portion 132 of the punch is Hp, it is preferable that Hp ≧ (Rp + Rd) / 2. When Hp is (Rp + Rd) / 2 or more, the plane strain tensile deformation and uniaxial tensile deformation of a press-molded product obtained by press-molding the target material can be suitably measured.

〔ダイス23〕
図4の(a)は、ダイス23の一例を示す概略斜視図であり、4つの枝を有するパンチ13と組み合わせて使用されるダイス例である。図4の(b)は、ダイス23の平面図であり、図4の(c)は、図4(a)のX−X線における断面図である。
[Dice 23]
FIG. 4A is a schematic perspective view showing an example of the die 23, which is an example of the die used in combination with the punch 13 having four branches. 4B is a plan view of the die 23, and FIG. 4C is a cross-sectional view taken along line XX of FIG. 4A.

図4の(a)に示すように、ダイス23は、パンチ13と嵌合可能に形成される。ダイス23は、パンチ13の凸部132と嵌合可能な4つの凹部231、及びこの凹部231を囲むダイス側平面部232を有する。   As shown to (a) of FIG. 4, the die | dye 23 is formed so that fitting with the punch 13 is possible. The die 23 has four concave portions 231 that can be fitted to the convex portion 132 of the punch 13, and a die-side flat portion 232 that surrounds the concave portion 231.

図4の(b)に示すように、ダイス23は、凹部231を平面視する場合、凹部231の枝231A、231B、231C、231Dのダイス角部eは、ダイス23の径方向内側に曲率半径Rcで湾曲させるR(曲線)をなしており、凹部132の枝231A、231B、231C、231Dのダイス隅部fは、ダイス23の径方向外側に曲率半径Rcで湾曲させるR(曲線)をなしている。本明細書において、凹部231の枝231A、231B、231C、231Dのダイス角部eとは、凹部231の周縁(エッジ)のうち、凸方向に形成された部分をいい、凹部231の枝231A、231B、231C、231Dのダイス隅部fとは、凹部231の周縁(エッジ)のうち、凹方向に形成された部分をいう。 As shown in FIG. 4B, when the dice 23 has a plan view of the recess 231, the dice corners e 2 of the branches 231 A, 231 B, 231 C, and 231 D of the recess 231 are curved radially inward of the dice 23. and none of R (curve) for curving radius Rc, branches of the recess 132 231A, 231B, 231C, die corners f 2 of 231D causes the bending radius of curvature Rc in the radially outer side of the die 23 R (curve) I am doing. In this specification, the dice corners e 2 of the branches 231A, 231B, 231C, and 231D of the recess 231 refer to portions formed in the convex direction on the periphery (edge) of the recess 231, and the branch 231A of the recess 231. The die corners f 2 of 231B, 231C, and 231D are portions formed in the concave direction among the peripheral edges (edges) of the concave portion 231.

また、図4の(c)に示すように、ダイスの凹部231を凹部断面(図4(a)のX−X面)で断面視する場合、凹部231のプレス成形対象材料に当接する側における底部hは、ダイス23の径方向外側に曲率半径Rdで湾曲させるR(曲線)をなしている。ダイス底部hから凹部231の基部に向かう外形は、ほぼ縦方向に延びる形状をなしている。本明細書において、凹部231の基部とは、凹部231におけるダイスホルダー22に配設される側をいう。 Further, as shown in FIG. 4 (c), when the concave portion 231 of the die is viewed in a cross section of the concave portion (XX plane in FIG. 4 (a)), the side of the concave portion 231 on the side in contact with the material to be pressed. The bottom h 2 forms an R (curve) that is curved with a radius of curvature Rd on the outside in the radial direction of the die 23. Contour extending from the die bottom part h 2 at the base of the recess 231 has a shape extending substantially longitudinally. In this specification, the base of the recess 231 refers to the side of the recess 231 that is disposed on the die holder 22.

対象材料をプレス成形して得られるプレス成形体の二軸引張及び縮みフランジを好適に測定できるようにするため、ダイス凹部231の枝231A、231B、231C、231Dの幅をWdとし、枝231A、231B、231C、231Dのダイス角部eにおける曲率半径をRcとするとき、WdのRcに対する比Wd/Rcは、2以上15未満であることが好ましく、3以上12未満であることがより好ましい。 In order to be able to suitably measure the biaxial tension and shrinkage flange of the press-molded body obtained by press-molding the target material, the width of the branches 231A, 231B, 231C, 231D of the die recess 231 is Wd, and the branches 231A, When the radius of curvature at the die corner portion e 2 of 231B, 231C, 231D is Rc, the ratio Wd / Rc of Wd to Rc is preferably 2 or more and less than 15, and more preferably 3 or more and less than 12. .

図7の(a)に示すとおり、Wd/Rcが小さすぎると(Rcが大きすぎると)、プレス成形体において、枝の角部eの境界に応力が局部的に集中し、プレス成形体の割れを生じ得る。図7の(b)に示すとおり、Wd/Rcが大きすぎると(Rcが小さすぎると)、プレス成形体において、枝の角部eの周方向で塑性歪域が縮小し、角部eで割れが発生し得るため、好ましくない。なお、本明細書において、曲率半径は、輪郭形状測定器(型式:Contracer CV−2000、株式会社ミツトヨ製)によって求めた値をいうものとする。 As shown in FIG. 7A, if Wd / Rc is too small (Rc is too large), in the press-molded body, stress is locally concentrated at the boundary of the branch corner e 3 , and the press-molded body Can cause cracking. As shown in (b) of FIG. 7, Wd / Rc is too large (when Rc is too small), the pressed bodies, plastic strain region is reduced in the circumferential direction of the corner portion e 3 of the branch, corner e 3 is not preferable because cracks may occur. In addition, in this specification, a curvature radius shall mean the value calculated | required with the contour shape measuring device (model: Contracer CV-2000, product made by Mitutoyo Corporation).

〔板押え32〕
図5は、板押え32を説明するための図である。板押え32は、ダイス側平面部232と略平行な板押え側平面部321を有し、プレス成形対象材料をダイス側平面部232及び板押え側平面部321で挟み込み可能に構成される。プレス加工性評価装置1が板押え32を備えていない場合、プレス成形対象材料をプレス成形したときに、プレス成形体の多枝形状領域を囲む略平面領域を形成できず、プレス成形体の縮みフランジ変形を好適に測定できないため、好ましくない。
[Plate presser 32]
FIG. 5 is a view for explaining the plate presser 32. The plate retainer 32 has a plate retainer side planar portion 321 substantially parallel to the die side planar portion 232, and is configured to be able to sandwich a press molding target material between the die side planar portion 232 and the plate retainer side planar portion 321. When the press workability evaluation apparatus 1 does not include the plate presser 32, when the material to be press-molded is press-molded, the substantially planar region surrounding the multi-branched region of the press-molded body cannot be formed, and the press-molded body shrinks. This is not preferable because the flange deformation cannot be measured appropriately.

〔変形例〕
なお、図1〜図5では、パンチ13が凸状の多枝形状を有し、ダイス23が凹状の多枝形状を有するものとして説明しているが、これに限るものではない。パンチ13が凹状の多枝形状を有し、ダイス23が凸状の多枝形状を有する場合であっても、同様の効果を奏する。
[Modification]
1 to 5, the punch 13 has a convex multi-branch shape and the die 23 has a concave multi-branch shape. However, the present invention is not limited to this. Even when the punch 13 has a concave multi-branch shape and the die 23 has a convex multi-branch shape, the same effect can be obtained.

具体的には、プレス加工性評価装置は、3以上の枝からなる多枝形状の凹部を先端に有するパンチと、上記凹部と嵌合可能な3以上の枝からなる多枝形状の凸部、及びこの凸部を囲むダイス側平面部を有するダイスと、上記ダイス側平面部と略平行な板押え側平面部を有し、プレス成形対象材料を上記ダイス側平面部及び上記板押え側平面部で挟み込み可能な板押えとを備えるものであってもよい。   Specifically, the press workability evaluation apparatus includes a punch having a multi-branch-shaped concave portion including three or more branches at the tip, and a multi-branched convex portion including three or more branches that can be fitted to the concave portion, And a die having a die side plane part surrounding the convex part, and a plate presser side plane part substantially parallel to the die side plane part, and the material to be press-molded is the die side plane part and the plate presser side plane part. It may be provided with a plate presser that can be sandwiched between.

なお、この変形例に係るプレス加工性評価装置であっても、パンチとダイスの凹凸を交換すれば、隣り合う枝どうしがなす角、上記Wd、Rc、Hp、Rp、Rd等のパラメータの好適な範囲は、上述と同様である。   Even in the press workability evaluation apparatus according to this modified example, if the unevenness of the punch and the die is exchanged, the angle between adjacent branches and the parameters such as Wd, Rc, Hp, Rp, and Rd are suitable. This range is the same as described above.

<プレス加工性の評価方法>
以下、本発明に係るプレス加工性の評価方法について説明する。この方法は、プレス成形対象材料を上記のプレス加工性評価装置1を用いてプレス成形し、プレス成形体を得るプレス成形工程と、プレス成形体の平面歪引張変形、単軸引張変形、二軸引張変形及び縮みフランジ変形の中から少なくとも二種以上の変形量を測定する変形量測定工程とを含む。また、本発明の方法は、変形量測定工程で測定した二種以上の変形量のそれぞれについて、最大主歪及び最小主歪の関係をプロットし、このプロットの結果からプレス成形体の割れを予測する割れ予測工程をさらに含むことが好ましい。
<Method for evaluating press workability>
Hereinafter, the press workability evaluation method according to the present invention will be described. In this method, a material to be press-molded is press-molded by using the above-described press workability evaluation apparatus 1 to obtain a press-molded body, plane strain tensile deformation, uniaxial tensile deformation, biaxial of the press-molded body A deformation amount measuring step of measuring at least two kinds of deformation amounts among the tensile deformation and the contraction flange deformation. The method of the present invention plots the relationship between the maximum principal strain and the minimum principal strain for each of the two or more types of deformation measured in the deformation amount measurement step, and predicts cracks in the press-formed product from the results of the plot. It is preferable to further include a crack prediction step.

〔プレス成形工程〕
プレス成形工程は、プレス成形対象材料を上記のプレス加工性評価装置1を用いてプレス成形する工程である。所定形状のパンチ13及びダイス23からなる金型を用いて、プレス成形対象材料の板材にプレス加工が施され、パンチ形状及びダイス形状に対応する形状を備えたプレス加工体が成形される。当該板材は、パンチ13とダイス23との間に引き込まれるため、パンチ13の幅よりも十分に大きな幅を有する板材が使用される。
[Press forming process]
The press molding step is a step of press molding a press molding target material using the press workability evaluation apparatus 1 described above. Using a die composed of a punch 13 and a die 23 having a predetermined shape, the plate material to be press-molded is subjected to press work, and a press-worked body having a shape corresponding to the punch shape and the die shape is formed. Since the plate material is drawn between the punch 13 and the die 23, a plate material having a width sufficiently larger than the width of the punch 13 is used.

図6は、上記プレス成形工程で得られるプレス成形体40の一例を示す概略図である。図6の(a)は、画像で示したもの、図6の(b)は、それを模式的に示した斜視図であり、図6(c)は、その平面図を、図6(d)は、図6(c)にZと記した方向からの正面図をそれぞれ示したものである。プレス成形体40は、凸部41と、この凸部41を囲む略平面な平面部42とを有する。また、凸部41は、枝43A、43B、43C、43Dからなる多枝形状を呈している。   FIG. 6 is a schematic view showing an example of a press-formed body 40 obtained in the press-forming step. 6 (a) is an image, FIG. 6 (b) is a perspective view schematically showing it, and FIG. 6 (c) is a plan view thereof, and FIG. 6 (d). ) Shows a front view from the direction marked Z in FIG. The press-molded body 40 has a convex portion 41 and a substantially flat plane portion 42 surrounding the convex portion 41. Moreover, the convex part 41 is exhibiting the multi-branch shape which consists of the branches 43A, 43B, 43C, and 43D.

プレス成形対象材料は、パンチ13の枝132とダイス23の凹部231との間で加工されて変形するので、プレス成形体40の凸部41(枝43A、43B等)は、パンチ132A、132B等の形状及びダイス23の231A、231B等の形状に対応した凸形状となるように成形され、平面部42は、ダイス23の頂部側の上面及び板押さえ32の平面に対応した形状となるように成形される。すなわち、プレス成形体の凸部41は、図2(b)、(c)に示すようなパンチ13のパンチ角部e、パンチ隅部f、パンチ肩部gに対応する形状と、図4(a)〜(c)に示すようなダイス23のダイス角部e、ダイス隅部f、ダイス底部hに対応する形状として、角部e、隅部f、肩部g、底部hのような部位を備えている。 Since the material to be press-molded is deformed by being processed between the branch 132 of the punch 13 and the concave portion 231 of the die 23, the convex portion 41 (branches 43A, 43B, etc.) of the press-formed body 40 is formed by the punch 132A, 132B, etc. The flat portion 42 is shaped so as to correspond to the top surface of the die 23 and the flat surface of the plate presser 32. Molded. That is, the convex part 41 of the press-molded body has a shape corresponding to the punch corner part e 1 , the punch corner part f 1 , and the punch shoulder part g 1 of the punch 13 as shown in FIGS. As the shapes corresponding to the die corner part e 2 , the die corner part f 2 , and the die bottom part h 2 of the die 23 as shown in FIGS. 4A to 4C, the corner part e 3 , the corner part f 3 , and the shoulder part. Sites such as g 3 and bottom h 3 are provided.

〔変形量測定工程〕
変形量測定工程は、プレス成形体の平面歪引張変形、単軸引張変形、二軸引張変形及び縮みフランジ変形の中から少なくとも二種以上の変形量を測定する工程である。
[Deformation measurement process]
The deformation amount measuring step is a step of measuring at least two or more types of deformation amounts among the plane strain tensile deformation, uniaxial tensile deformation, biaxial tensile deformation, and shrinkage flange deformation of the press-formed body.

変形量を測定する手法として、非接触歪測定装置ARGUS(GOM社製/コベルコ科研)を用い、以下の(1)〜(4)の手順を経ることが挙げられる。
(1)プレス成形対象材料(供試材)の表面に、複数の印として、φ0.8mmドットマーク(1.5mm間隔)を電解転写して形成する。
(2)形成されたドットマークを、加工前後でCCDカメラを用いて多方向から撮影する。
(3)撮影されたドットマークに基づいて加工前後のドット間距離を測定し、その変化量から最大主歪及び最小主歪を算出する。
(4)最大主歪及び最小主歪に基づいて、プレス成形体の平面歪引張変形、単軸引張変形、二軸引張変形及び縮みフランジ変形の中から少なくとも二種以上の変形量を測定する。
As a method for measuring the amount of deformation, the following steps (1) to (4) may be performed using a non-contact strain measuring device ARGUS (manufactured by GOM / Kobelco Research Institute).
(1) Formed by electrolytic transfer of φ0.8 mm dot marks (1.5 mm intervals) as a plurality of marks on the surface of a press molding target material (test material).
(2) Photograph the formed dot marks from multiple directions using a CCD camera before and after processing.
(3) The distance between dots before and after processing is measured based on the photographed dot mark, and the maximum principal strain and the minimum principal strain are calculated from the amount of change.
(4) Based on the maximum principal strain and the minimum principal strain, at least two types of deformation amounts are measured from the plane strain tensile deformation, uniaxial tensile deformation, biaxial tensile deformation, and shrinkage flange deformation of the press-formed body.

上記の手順(4)について詳しく説明するため、まず、図8を参照しながら、プレス成形の塑性変形の加工要素について説明する。   In order to describe the procedure (4) in detail, first, the processing elements for plastic deformation of press molding will be described with reference to FIG.

塑性変形の加工要素は、最大主歪及び最小主歪を用いて、引張方向の変形、圧縮方向の変形、変形なしの各組合せにより、大きく4種類に分類される。図8は、その加工要素を図示したものであり、最大主歪をε、最小主歪をε、そして最大主歪εと最小主歪εのどちらとも直交する板厚方向歪をεと記載している。
最大主歪εが引張変形であり、最小主歪εが変形なしである加工要素は、「平面歪引張変形」(図8のA)と称される。最大主歪εと最小主歪εがいずれも引張変形である加工要素は、「二軸引張変形」(図8のC)と称される。最大主歪εが引張変形であって、最小主歪εが圧縮変形である加工要素は、「縮みフランジ変形」(図8のD)と称される。最大主歪εが引張り変形、最小主歪εが圧縮変形であり、圧縮が引張の1/2相当の歪量である加工要素は、「単軸引張変形」又は「伸びフランジ変形」(図8のB)と称される。
The plastic deformation processing elements are roughly classified into four types according to combinations of deformation in the tensile direction, deformation in the compression direction, and no deformation using the maximum principal strain and the minimum principal strain. FIG. 8 shows the machining elements. The maximum principal strain is ε 1 , the minimum principal strain is ε 2 , and the plate thickness direction strain orthogonal to both the maximum principal strain ε 1 and the minimum principal strain ε 2 is shown. It has been described as ε t.
A machining element in which the maximum principal strain ε 1 is tensile deformation and the minimum principal strain ε 2 is not deformed is referred to as “planar strain tensile deformation” (A in FIG. 8). A machining element in which the maximum principal strain ε 1 and the minimum principal strain ε 2 are both tensile deformations is referred to as “biaxial tensile deformation” (C in FIG. 8). A machining element in which the maximum principal strain ε 1 is tensile deformation and the minimum principal strain ε 2 is compression deformation is referred to as “shrink flange deformation” (D in FIG. 8). The machining element in which the maximum principal strain ε 1 is tensile deformation, the minimum principal strain ε 2 is compression deformation, and the compression is a strain equivalent to ½ of tension is “uniaxial tensile deformation” or “stretch flange deformation” ( This is referred to as B) in FIG.

次に、手順(4)について説明する。まず、平面歪引張変形は、最大主歪εが引張変形であり、最小主歪εが変形なしの加工要素であるから、プレス成形品において、その加工要素に近接した歪状態を有する領域は、平面歪引張変形を強く受けて加工された領域であると判断できる。本実施形態では、図2に示すパンチ13と図4に示すダイス23により加工されて、図6に示すようなプレス成形体40が成形される。プレス成形体40の凸部41の周縁には、パンチ13のパンチ隅部fに対応し、ダイス23のダイス偶部fに対応した形状を有する隅部fに隣接して、領域Cが形成される。当該領域Cは、ダイス23のダイス底部hの曲率半径Rdに対応して形成された曲線形状を有する底部hを含むものである。当該領域Cは、最大主歪εが大きく、最小主歪εが0に近い歪量で測定されることから、平面歪引張変形を強く受けている領域である。領域Cにおいて、最大主歪εが最も大きく、最小主歪εが略変形なしである箇所のプレス前後の変形量を、平面歪引張変形が主体で関与する量とする。 Next, procedure (4) will be described. First, in the plane strain tensile deformation, since the maximum principal strain ε 1 is a tensile deformation and the minimum principal strain ε 2 is a working element without deformation, a region having a strain state close to the working element in a press-formed product. Can be determined to be a region processed by being strongly subjected to plane strain tensile deformation. In the present embodiment, a press-molded body 40 as shown in FIG. 6 is formed by processing with the punch 13 shown in FIG. 2 and the die 23 shown in FIG. On the periphery of the convex portion 41 of the press-formed body 40, the region C is adjacent to the corner portion f 3 having a shape corresponding to the punch corner portion f 1 of the punch 13 and corresponding to the die even portion f 2 of the die 23. Is formed. The region C includes a bottom portion h 3 having a curved shape formed corresponding to the radius of curvature Rd of the die bottom portion h 2 of the die 23. The region C is a region that is strongly subjected to plane strain tensile deformation because the maximum principal strain ε 1 is large and the minimum principal strain ε 2 is measured with a strain amount close to zero. In the region C, the amount of deformation before and after pressing at a location where the maximum principal strain ε 1 is the largest and the minimum principal strain ε 2 is substantially undeformed is an amount mainly involving plane strain tensile deformation.

単軸引張変形は、最大主歪εが引張り変形、最小主歪εが圧縮変形であり、圧縮による歪量が引張による歪量の1/2相当の加工要素である。本実施形態では、図6に示すプレス成形体40の枝43A、43B、43C、43Dの長さ方向の側面には、領域Sが形成される。当該領域Sは、パンチ基部からパンチ肩部cに向けて略縦方向に延びる形状に対応し、ダイス基部からダイス肩部cに向けて略縦方向に延びる形状に対応して形成された領域を含むものである。当該領域Sは、最大主歪εが大きく、最小主歪εが圧縮変形として測定されることから、単軸引張変形を強く受けている領域である。領域Sにおいて、最大主歪εが最も大きく、最小主歪εが圧縮変形である箇所のプレス前後の変形量を、単軸引張変形が主体で関与する量とする。 In the uniaxial tensile deformation, the maximum principal strain ε 1 is tensile deformation, the minimum principal strain ε 2 is compression deformation, and the strain amount due to compression is a processing element corresponding to ½ of the strain amount due to tension. In the present embodiment, a region S is formed on the side surfaces in the length direction of the branches 43A, 43B, 43C, and 43D of the press-formed body 40 shown in FIG. The area S corresponds to the shape extending in the substantially vertical direction from the punch base to punch shoulder c 1, which is formed corresponding to the shape extending in the substantially vertical direction from the die base to the die shoulder c 2 It includes areas. The region S is a region where the maximum principal strain ε 1 is large and the minimum principal strain ε 2 is measured as compressive deformation, and thus is strongly subjected to uniaxial tensile deformation. In the region S, the amount of deformation before and after pressing at the place where the maximum principal strain ε 1 is the largest and the minimum principal strain ε 2 is the compressive deformation is the amount mainly involving uniaxial tensile deformation.

二軸引張変形は、最大主歪εと最小主歪εがいずれも引張変形である加工要素である。本実施形態では、図6に示すプレス成形体40の凸部41の角部であり、かつ、肩部である領域Tを形成する。当該領域Tは、パンチ13のパンチ角部eとパンチ肩部g及びダイス23のダイス角部eとダイス底部hの形状に対応して形成された領域を含むものである。当該領域Tは、最大主歪εと最小主歪εが大きな引張歪として測定されることから、二軸引張変形を強く受けている領域である。領域Tにおいて、最大主歪εが最も大きく、最小主歪εが引張変形である箇所のプレス前後の変形量を、二軸引張変形が主体で関与する量とする。 Biaxial tensile deformation is a processing element in which the maximum principal strain ε 1 and the minimum principal strain ε 2 are both tensile deformations. In the present embodiment, a region T which is a corner portion of the convex portion 41 of the press-formed body 40 shown in FIG. 6 and is a shoulder portion is formed. The region T includes regions formed corresponding to the shapes of the punch corner part e 1 and the punch shoulder part g 1 of the punch 13 and the die corner part e 2 and the die bottom part h 2 of the die 23. The region T is a region that is strongly subjected to biaxial tensile deformation because the maximum principal strain ε 1 and the minimum principal strain ε 2 are measured as large tensile strains. In the region T, the amount of deformation before and after pressing at the location where the maximum principal strain ε 1 is the largest and the minimum principal strain ε 2 is the tensile deformation is an amount mainly involving the biaxial tensile deformation.

縮みフランジ変形は、最大主歪εが引張変形であって、最小主歪εが圧縮変形である加工要素である。本実施形態では、図6に示すプレス成形体40の平面部42において、例えば凸部の角部の周囲等の領域Fは、ダイス23の頂部側の上面及び板押さえ32の平面に対応して形成された領域を含むものである。当該領域Fは、最大主歪εが大きな引張歪として、また、最小主歪εが大きな圧縮歪として測定されることから、縮みフランジ変形を強く受けている領域である。領域Fにおいて、最大主歪εが最も大きく、最小主歪εが最も小さい箇所のプレス前後の変形量を、縮みフランジ変形が主体で関与する量とする。 Shrink flange deformation is a working element in which the maximum principal strain ε 1 is tensile deformation and the minimum principal strain ε 2 is compression deformation. In the present embodiment, in the flat portion 42 of the press-formed body 40 shown in FIG. 6, for example, the region F around the corner of the convex portion corresponds to the upper surface on the top side of the die 23 and the flat surface of the plate presser 32. It includes the formed region. The region F is a region that is strongly subjected to shrinkage flange deformation because the maximum principal strain ε 1 is measured as a large tensile strain and the minimum principal strain ε 2 is measured as a large compressive strain. In the region F, the maximum principal strain epsilon 1 is the largest, the minimum principal strain epsilon 2 amount of deformation before and after the press of the smallest portion, shrinkage flange deformation is the amount involved in principal.

〔割れ予測工程〕
図9を参照しながら、割れ予測工程について説明する。割れ予測工程は、変形量測定工程で測定した二種以上の変形量のそれぞれについて、最大主歪及び最小主歪の関係をプロットし、このプロットの結果からプレス成形体の割れを予測する工程である。このプロットは、例えば、成形線図として作成することができる。本明細書において、割れ予測は、上記非接触歪測定装置ARGUSを用いて行うものとする。
[Crack prediction process]
The crack prediction process will be described with reference to FIG. The crack prediction step is a step of plotting the relationship between the maximum principal strain and the minimum principal strain for each of two or more types of deformation measured in the deformation amount measurement step, and predicting the crack of the press-formed body from the result of this plot. is there. This plot can be created as a shaping diagram, for example. In this specification, crack prediction is performed using the non-contact strain measuring device ARGUS.

図9において、縦軸は、最大主歪εの大きさを示し、横軸は、最小主歪εの大きさを示す。平面歪引張変形の場合、最大主歪εが引張変形であり、最小主歪εが変形なしであることから、図9の縦軸にあたる直線L(ε=0)方向の変形形態が、平面歪引張変形に相当する。 9, the ordinate indicates the magnitude of the maximum principal strain epsilon 1, the horizontal axis indicates the magnitude of the minimum principal strain epsilon 2. In the case of plane strain tensile deformation, since the maximum principal strain ε 1 is tensile deformation and the minimum principal strain ε 2 is not deformed, the deformation form in the direction of the straight line L 12 = 0) corresponding to the vertical axis in FIG. Corresponds to plane strain tensile deformation.

二軸引張変形の場合、最大主歪εと最小主歪εがいずれも引張変形であることから、図9の直線L(ε=ε)方向の変形形態が、二軸引張変形に相当する。 In the case of biaxial tensile deformation, since the maximum principal strain ε 1 and the minimum principal strain ε 2 are both tensile deformations, the deformation form in the direction of the straight line L 31 = ε 2 ) in FIG. Corresponds to deformation.

縮みフランジ変形の場合、最大主歪εが引張変形であり、最小主歪εが圧縮変形であることから、図9の直線L(ε=−ε)方向の変形形態が、縮みフランジ変形に相当する。 In the case of shrinkage flange deformation, since the maximum principal strain ε 1 is tensile deformation and the minimum principal strain ε 2 is compression deformation, the deformation form in the direction of the straight line L 41 = −ε 2 ) in FIG. Corresponds to shrinkage flange deformation.

単軸引張変形(伸びフランジ変形)の場合、圧縮による歪量が引張りによる歪量の1/2相当であるから、図9の直線L(ε=−2ε)方向の変形形態が、単軸引張変形に相当する。 In the case of uniaxial tensile deformation (elongation flange deformation), since the strain amount due to compression is equivalent to ½ of the strain amount due to tension, the deformation form in the direction of the straight line L 21 = −2ε 2 ) in FIG. Corresponds to uniaxial tensile deformation.

プレス加工時の歪量が過大になると、加工割れを生じやすくなる。図9に示すように、最大主歪εと最小主歪εが増加するほど、引張り割れを発生しやすくなる。一方、最大主歪εが低減し、最小主歪εが圧縮する方向(マイナス側)に移行すると、引張り割れの発生が抑制される。 If the amount of strain at the time of press working becomes excessive, processing cracks are likely to occur. As shown in FIG. 9, as the maximum principal strain ε 1 and the minimum principal strain ε 2 increase, tensile cracks are more likely to occur. On the other hand, when the maximum principal strain ε 1 is reduced and the minimum principal strain ε 2 is shifted in the compressing direction (minus side), the occurrence of tensile cracks is suppressed.

また、L〜Lで示された加工要素は、それぞれの歪み状態に応じて、板厚変化が減少又は増加し、この板厚変化量が過大になると、加工割れの発生に至り、板厚変化に応じて引張割れ又は圧縮割れを生じやすくなる。このうち、L〜Lに近接した変形形態では、引張変形の割合が大きく、板厚が減少する方向にあるので、引張割れの発生が予測される。Lに近接した変形形態は、圧縮変形の割合が大きく、板厚が増加する方向にあるので、圧縮割れの発生が予測される。 Further, the processing elements indicated by L 1 to L 4 have a decrease or increase in the plate thickness depending on the respective strain states. When this plate thickness change amount becomes excessive, the processing cracks occur, Depending on the thickness change, tensile cracks or compression cracks are likely to occur. Among these, in the deformation mode close to L 1 to L 3 , the ratio of tensile deformation is large and the thickness is in the direction of decreasing, so the occurrence of tensile cracks is predicted. Variations in close proximity to L 4 represents the proportion of compressive deformation is large, because the direction in which the plate thickness is increased, the occurrence of compression cracking is predicted.

本発明は、このような予測のもとで、プレス加工された後の歪状態(歪分布)を測定し、L〜Lの加工要素を強く受けている箇所の歪状態に基づいて、加工割れの可能性を予測するものであり、原板のプレス加工性を評価するものである。
具体的には、プレス加工された変形領域において歪状態(歪分布)を測定し、成形線図のようにプロットし、プロットした結果から、最大主歪及び最小主歪が大きい箇所を特定し、この特定箇所の歪状態に基づいて板厚減少率を算出し、加工割れの成否を予測することができる。
The present invention measures the strain state (strain distribution) after being pressed under such a prediction, and based on the strain state of the portion that is strongly receiving the processing elements L 1 to L 4 , It predicts the possibility of processing cracks and evaluates the press workability of the original sheet.
Specifically, the strain state (strain distribution) is measured in the deformed region subjected to press processing, plotted as a forming diagram, and from the plotted results, a location where the maximum main strain and the minimum main strain are large is specified, The plate thickness reduction rate can be calculated based on the strain state at this specific location, and the success or failure of the work crack can be predicted.

本発明によると、所望の複合成形品を得ることなく、プレス成形対象材料を複合プレス成形したときの各種加工要素(平面歪引張変形、二軸引張変形、縮みフランジ変形及び単軸引張変形)の歪状態を正確に把握できる。そして、最大主歪が大きい箇所、あるいは最小主歪が大きい箇所にプロットがあると、測定対象をプレス成形したときに測定対象の板厚が大きく減少し得ると予測できる。その結果、プレス成形対象材料を複合プレス成形したときに、作製される複合プレス成形品の割れが生じ易いと予測できる。   According to the present invention, various processing elements (planar strain tensile deformation, biaxial tensile deformation, contraction flange deformation, and uniaxial tensile deformation) when the material to be pressed is subjected to composite press molding without obtaining a desired composite molded product. The strain state can be accurately grasped. If there is a plot at a location where the maximum principal strain is large or a location where the minimum principal strain is large, it can be predicted that the plate thickness of the measurement target can be greatly reduced when the measurement target is press-molded. As a result, it can be predicted that when the material to be press-molded is subjected to composite press molding, the composite press-molded product produced is likely to crack.

さらに、上記のプロットした結果は、L〜Lの歪状態と比較し、L〜Lと近接する度合い(近接度)を求めることができる。成形材料や加工条件を変えると、測定領域の歪量及び近接度も変化するので、歪量及び近接度の変化を比較することによって、成形材料の加工性、加工安定性を評価したり、適した加工条件を評価することができる。 Furthermore, results of plotting of the above, as compared to the strain on the L 1 ~L 4, it is possible to determine the degree (proximity) coming close to the L 1 ~L 4. When the molding material and processing conditions are changed, the strain amount and proximity of the measurement area also change. By comparing changes in the strain amount and proximity, the processability and processing stability of the molding material can be evaluated and suitable. Machining conditions can be evaluated.

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるもので
はない。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

<プレス成形体の製造>
〔試験例1〕
板厚が0.8mmであるSUS430(フェライト系ステンレス鋼)を供試材とし、一辺が300mmである略正方形にカットしたプレス成形対象材料を用いて、上記プレス加工性評価装置にて下記に示すプレス条件でプレス成形し、プレス成形体を得た。
<Manufacture of press-molded bodies>
[Test Example 1]
SUS430 (ferritic stainless steel) with a plate thickness of 0.8 mm is used as a test material, and a press molding target material cut into a substantially square shape with a side of 300 mm is shown below in the press workability evaluation apparatus. Press molding was performed under the pressing conditions to obtain a press-molded body.

図10(a)は、使用したダイス23の平面図を示したものであり、図10(b)は、当該ダイス23のY−Y線での断面図を示したものである。図10(c)は、使用したパンチ13の正面図を示したものである。   FIG. 10A shows a plan view of the die 23 used, and FIG. 10B shows a cross-sectional view of the die 23 taken along line YY. FIG. 10 (c) shows a front view of the used punch 13.

(プレス条件)
装置 :2000kN サーボプレス
ダイス、パンチ :図10のとおり
板押え力 :9.5トン
速度 :5spm
潤滑条件 :加工用表面保護フィルムSPV3633(日東電工社製)
対象材料方向:圧延方向が金型の前後方向と平行
加工高さ :32mm
(Press conditions)
Equipment: 2000kN Servo press Dies and punches: As shown in Fig. 10 Plate pressing force: 9.5 tons Speed: 5spm
Lubrication condition: Surface protective film for processing SPV3633 (manufactured by Nitto Denko Corporation)
Target material direction: The rolling direction is parallel to the longitudinal direction of the mold. Processing height: 32 mm

〔試験例2〕
プレス成形対象材料が、長さ:300mm四方、板厚:0.8mmのSUS430改良鋼(高加工用フェライト系ステンレス鋼)であること以外は、試験例1と同様の手法によりプレス成形体を得た。
[Test Example 2]
A press-formed body is obtained by the same method as in Test Example 1 except that the material to be press-molded is SUS430 improved steel (ferritic stainless steel for high workability) having a length of 300 mm square and a plate thickness of 0.8 mm. It was.

<解析>
〔変形量の測定〕
上記のとおり、変形量は、非接触歪測定装置ARGUS(GOM社製/コベルコ科研)を用い、次の手法により測定した。
(1)加工前の対象材料(供試材)の表面に、φ0.8mmドットマーク(1.5mm間隔)を電解転写して形成した。
(2)プレス加工前のドットマークと、プレス加工後のドットマークとを、CCDカメラを用いて多方向から撮影した。
(3)撮影されたドットマークに基づいて加工前後のドット間距離を測定し、その変化量から最大主歪及び最小主歪を算出した。
<Analysis>
(Measurement of deformation)
As described above, the amount of deformation was measured by the following method using a non-contact strain measuring device ARGUS (manufactured by GOM / Kobelco Research Institute).
(1) φ0.8 mm dot marks (1.5 mm intervals) were formed by electrolytic transfer on the surface of the target material (test material) before processing.
(2) The dot mark before press processing and the dot mark after press processing were photographed from multiple directions using a CCD camera.
(3) The distance between dots before and after processing was measured based on the photographed dot marks, and the maximum principal strain and the minimum principal strain were calculated from the amount of change.

〔成形線の作成〕
上記の算出の結果から、各々のドットマークについて、最大主歪を縦軸座標とし、最小主歪を横軸座標とした複数の座標を得ることができる。図11は、これら複数の座標をプロットすることによって得られる歪分布である。この歪分布において、直線L(ε=0)方向の変形は、平面歪引張変形に相当し、直線L(ε=−2ε)方向の変形は、単軸引張変形に相当する。直線L(ε=ε)方向の変形は、二軸引張変形に相当し、直線L(ε=−ε)方向の変形は、縮みフランジ変形に相当する。また、濃淡で示した領域は、最大主歪の大きさに対応し、淡色に近づくほど最大主歪量が大きいことを示し、濃色に近づくほど最大主歪量が小さいことを示す。
[Creation of forming line]
From the above calculation results, for each dot mark, a plurality of coordinates can be obtained with the maximum principal strain as the vertical axis coordinate and the minimum main strain as the horizontal axis coordinate. FIG. 11 shows a strain distribution obtained by plotting the plurality of coordinates. In this strain distribution, the deformation in the direction of the straight line L 12 = 0) corresponds to plane strain tensile deformation, and the deformation in the direction of the straight line L 21 = −2ε 2 ) corresponds to uniaxial tensile deformation. . The deformation in the direction of the straight line L 31 = ε 2 ) corresponds to biaxial tensile deformation, and the deformation in the direction of the straight line L 41 = −ε 2 ) corresponds to shrinkage flange deformation. The shaded area corresponds to the size of the maximum principal distortion, and indicates that the maximum principal distortion amount is larger as the color is lighter, and the maximum principal distortion amount is smaller as the color is closer to dark color.

また、歪分布の最外線を結ぶことによって成形線が得られる。例えば、図11に示した成形線では、a〜dにおいて突出する形状の曲線が描かれている。これらのa〜dは、プレス成形体で測定された領域のうち、最大主歪ε及び最小主歪εが大きい箇所に位置しており、4つの加工要素A〜Dの変形形態を強く受けている領域である。これらの測定箇所は、このうち、直線Lに最も近接する点aは、平面歪引張変形の測定に好適な箇所に相当し、直線Lに最も近接する点bは、単軸引張変形の測定に好適な箇所に相当し、直線Lに最も近接する点cは、二軸引張変形の測定に好適な箇所に相当し、直線Lに最も近接する点dは、縮みフランジ変形の測定に好適な箇所に相当する。 Further, a forming line can be obtained by connecting the outermost lines of the strain distribution. For example, in the forming line shown in FIG. 11, a curved line having a shape protruding from a to d is drawn. These a to d are located at locations where the maximum principal strain ε 1 and the minimum principal strain ε 2 are large in the region measured by the press-molded body, and the deformation forms of the four processing elements A to D are strongly strengthened. This is the area you are receiving. These measurement points, of which, is a point closest to the straight line L 1, corresponds to a suitable location for placement of the plane strain tensile deformation, b that is closest to the straight line L 2 is a uniaxial tensile deformation corresponds to a suitable location for placement, the c point closest to the straight line L 3, the biaxial tensile corresponds to a suitable location for placement of the deformation, d that is closest to the straight line L 4 are, shrinkage measurements flange deformation It corresponds to a suitable location.

図11に示すように、試験例2に係るプレス成形体は、試験例1に係るプレス成形体に比べて、点a(平面歪引張変形が主体で関与する測定箇所)、点c(二軸引張変形が主体で関与する測定箇所)及び点d(縮みフランジ変形が主体で関与する測定箇所)の最大主歪εが小さかった。このことから、試験例2で使用されたステンレス鋼は、試験例1で使用されたステンレス鋼と比べて、板厚減少が小さく、任意の形状に複合プレス成形したとき、プレス成形品の割れを抑えられたと考えられる。 As shown in FIG. 11, the press-molded body according to Test Example 2 is compared with the press-molded body according to Test Example 1 at point a (measurement location mainly involving plane strain tensile deformation), point c (biaxial). The maximum principal strain ε 1 at the measurement location where the tensile deformation is mainly involved) and the point d (measurement location where the shrinkage flange deformation is mainly involved) was small. From this, the stainless steel used in Test Example 2 has a smaller reduction in plate thickness than the stainless steel used in Test Example 1, and when the composite press-molded into an arbitrary shape, cracks in the press-formed product are not observed. It is thought that it was suppressed.

加工領域において加工割れが発生し易くなる条件を概略すると、表1の示すとおりである。最大主歪及び最小主歪が大きいことに加えて、a〜dがL〜Lに近接あるいは離隔する程度に応じて、加工割れが発生し易い状態となる。その理由を、プレス成形中の板材が体積一定の関係にあることに基づいて説明する。 Table 1 summarizes the conditions under which machining cracks are likely to occur in the machining region. In addition to large maximum principal strain and minimum principal strain, work cracks are likely to occur depending on the degree to which a to d are close to or separated from L 1 to L 4 . The reason will be described based on the fact that the plate material during press molding has a constant volume relationship.

例えば、aがLに近接する場合は、引張り歪が1軸方向(最大主歪方向)に偏ることによって、板材の面内の歪み域が狭くなり、局部的な板厚減少を生じ易くなる。bがLから最大主歪軸方向に離れる場合は、圧縮歪みによる板厚増加の効果が低下し、局部的な板厚減少を招く。また、cがLに近接すると、2軸方向で歪が均等になるので、板材の面内の歪が均一に広がりやすくなるのに対し、cがLから最大主歪方向に離れる場合は、均一な歪み域が狭くなり、局部的な板厚減少が発生しやすくなる。dがLから最小主歪軸方向に離れる場合は、1軸方向(最大主歪方向)の引張要素が小さくなり、板材の面内の圧縮歪が過多となるため、板厚増加の追従が困難となって割れが発生しやすくなる。 For example, if a is close to L 1, by the tensile strain is biased in one axial direction (maximum principal strain direction), becomes narrow strain range in the plane of the plate, it tends to occur a local thickness reduction . b is if leaving the maximum principal strain direction from L 2, the effect of the plate thickness increase due to compressive strain is reduced, leading to local thickness reduction. Further, when c is close to L 3 , the strain is equalized in the biaxial direction, so that the in-plane strain is easily spread uniformly, whereas when c is away from L 3 in the maximum principal strain direction, The uniform strain area becomes narrow and local thickness reduction is likely to occur. If d is separated from L 4 to the minimum principal strain direction, pulling elements of one axial (maximum principal strain direction) is reduced, since the compressive strain in the plane of the plate becomes excessive, the follow-up of the plate thickness increases It becomes difficult and cracking is likely to occur.

図12は、図11に示した歪分布をプレス成形体に重ね合わせることで歪分布を可視化して模式的に示したものである。破線は、プレス成形体の凸部の輪郭を示す。実線の位置は、各々のドットマークの位置に対応し、実線の方向は、ドットマークごとの最大主歪の方向に対応し、実線の長さは、ドットマークごとの最大主歪の大きさに対応する。また、濃淡を示した領域は、最大主歪の大きさに対応し、色が淡色に近づくほど最大主歪量が大きいことを示し、色が濃色に近づくほど最大主歪量が小さいことを示す。   FIG. 12 schematically shows the strain distribution visualized by superimposing the strain distribution shown in FIG. 11 on the press-formed body. A broken line shows the outline of the convex part of a press-molded body. The position of the solid line corresponds to the position of each dot mark, the direction of the solid line corresponds to the direction of the maximum principal strain for each dot mark, and the length of the solid line is the size of the maximum principal strain for each dot mark. Correspond. In addition, the shaded area corresponds to the size of the maximum principal distortion, indicating that the maximum principal distortion amount is larger as the color is closer to light color, and that the maximum principal distortion amount is smaller as the color is closer to dark color. Show.

図13は、図12について、図11に示した点a〜dに相当する箇所の最大主歪及び最小主歪を詳細に説明したものである。a〜dの丸で囲んだ部分は、点a〜dに相当する箇所を示す。丸内に記載した矢印εは、点a〜dにおいて最大主歪が生じた方向を示し、矢印εは、点a〜dにおいて最小主歪が生じた方向を示す。また、この矢印の方向は、変形の方向を示し、外向きの矢印は、変形が引張変形であることを示し、内向きの矢印は、変形が圧縮変形であることを示す。なお、点aの位置では平面歪引張変形の測定が好適であり、点bの位置では単軸引張変形の測定が好適であり、点cの位置では二軸引張変形の測定が好適であり、点dの位置では縮みフランジ変形の測定が好適である。なお、以下、点a〜dを位置a〜dということもある。 FIG. 13 is a detailed description of the maximum principal strain and the minimum principal strain at locations corresponding to the points a to d shown in FIG. Portions surrounded by circles a to d indicate portions corresponding to the points a to d. An arrow ε 1 described in a circle indicates a direction in which the maximum principal strain is generated at the points a to d, and an arrow ε 2 indicates a direction in which the minimum principal strain is generated at the points a to d. The direction of the arrow indicates the direction of deformation, the outward arrow indicates that the deformation is tensile deformation, and the inward arrow indicates that the deformation is compression deformation. Incidentally, the measurement of plane strain tensile deformation is suitable at the position of point a, the measurement of uniaxial tensile deformation is suitable at the position of point b, and the measurement of biaxial tensile deformation is suitable at the position of point c, At the position of the point d, it is preferable to measure the shrinkage flange deformation. Hereinafter, the points a to d may be referred to as positions a to d.

図13に示すように、(ア)プレス成形体の凸部の隅部fに隣接する底部hを含む領域に相当する箇所(位置aを含み、図6のCに相当する領域)では、平面歪引張変形が生じていることが分かる。また、(イ)プレス成形体の枝における長さ方向の側面の領域に相当する箇所(位置bを含み、図6のSに相当する領域)では、単軸引張変形が生じていることが分かる。また、(ウ)プレス成形体の凸部の角部eであり、かつ、肩部gである領域に相当する箇所(位置cを含み、図6のTに相当する領域)では、二軸引張変形が生じていることが分かる。また、(エ)プレス成形体の平面部の領域に相当する箇所(位置dを含み、図6のFに相当する領域)では、縮みフランジ変形が生じていることが分かる。すなわち、試験例に係るプレス成形体は、4つの加工要素(平面歪引張変形、二軸引張変形、縮みフランジ変形及び単軸引張変形)をいずれも含んでおり、位置aが平面歪引張変形の測定に、位置bが単軸引張変形の測定に、位置cが二軸引張変形の測定に、また、位置dが単軸引張変形の測定にそれぞれ好適な箇所である。 As shown in FIG. 13, (a) at a location corresponding to a region including the bottom h 3 adjacent to the corner f 3 of the convex portion of the press-molded body (a region including the position a and corresponding to C in FIG. 6). It can be seen that plane strain tensile deformation occurs. In addition, it is understood that (a) uniaxial tensile deformation occurs in a portion corresponding to the region of the side surface in the length direction in the branch of the press-formed body (the region including the position b and corresponding to S in FIG. 6). . In addition, (c) a portion corresponding to a region that is the corner portion e 3 of the convex portion of the press-formed body and that is the shoulder portion g 3 (a region that includes the position c and corresponds to T in FIG. 6) It can be seen that axial tensile deformation has occurred. In addition, it can be seen that (f) shrinkage flange deformation occurs in a portion corresponding to the area of the flat portion of the press-molded body (an area including the position d and corresponding to F in FIG. 6). That is, the press-formed body according to the test example includes all of four processing elements (plane strain tensile deformation, biaxial tensile deformation, shrinkage flange deformation, and uniaxial tensile deformation), and the position a is plane strain tensile deformation. For measurement, position b is suitable for measurement of uniaxial tensile deformation, position c is suitable for measurement of biaxial tensile deformation, and position d is suitable for measurement of uniaxial tensile deformation.

〔各種の変形と板厚変化率との関係〕
図13における位置a〜dについて、プレス成形前後での板厚変化率を計測した。板厚の変化は、超音波厚み計(型式:38DL−PLUS、オリンパス株式会社製)により計測した。図14にその結果を示す。図14に示すように、試験例2に係るプレス成形体は、試験例1に係るプレス成形体に比べて、位置a〜cにおいて板厚変化率が低減し、板厚減少が抑制されていた。そのため、試験例1の鋼材を用いて任意の形状に複合プレス成形したとき、プレス成形品の割れを抑えられることが分かる。
[Relationship between various deformations and plate thickness change rate]
The plate thickness change rate before and after press molding was measured at positions a to d in FIG. The change in the plate thickness was measured with an ultrasonic thickness meter (model: 38DL-PLUS, manufactured by Olympus Corporation). FIG. 14 shows the result. As shown in FIG. 14, the press-formed body according to Test Example 2 has a reduced plate thickness change rate at positions a to c and a reduction in plate thickness compared to the press-formed body according to Test Example 1. . Therefore, it can be seen that when the steel material of Test Example 1 is subjected to composite press molding into an arbitrary shape, cracking of the press-formed product can be suppressed.

〔最大主歪方向における引張の程度〕
図15は、図13における位置a〜cでの最大主歪方向の引張歪状態を示す。図15において、矢印の方向は、最大主歪の方向を示し、矢印の大きさは、最大主歪の大きさを示す。また、濃淡は、最大主歪の大きさに対応し、淡色に近づくほど最大主歪量が大きいことを示し、濃色に近づくほど最大主歪量が小さいことを示す。
[Degree of tension in the maximum principal strain direction]
FIG. 15 shows the tensile strain state in the maximum principal strain direction at positions a to c in FIG. In FIG. 15, the direction of the arrow indicates the direction of the maximum principal strain, and the size of the arrow indicates the size of the maximum principal strain. Further, the shade corresponds to the size of the maximum principal strain, and indicates that the maximum principal strain amount is larger as the color is lighter, and the maximum principal strain amount is smaller as the color is closer to dark color.

図15において、位置aは、平面歪引張変形の測定に好適な箇所であり、図8のAのようにプレス成形体の板厚が減少する部位である。図15に示すように、試験例2に係るプレス成形体は、試験例1に係るプレス成形体に比べて、平面歪引張変形量が小さく、板厚変化率が抑制された。   In FIG. 15, a position “a” is a portion suitable for measurement of plane strain tensile deformation, and is a portion where the plate thickness of the press-formed body decreases as shown in FIG. As shown in FIG. 15, the press-formed body according to Test Example 2 had a smaller plane strain tensile deformation amount than the press-formed body according to Test Example 1, and the plate thickness change rate was suppressed.

また、図15において、位置bは、単軸引張変形の測定に好適な箇所であり、試験例2に係るプレス成形体は、試験例1に係るプレス成形体に比べて、単軸引張変形量が大きかった。   Further, in FIG. 15, position b is a location suitable for measurement of uniaxial tensile deformation, and the press-formed body according to Test Example 2 is more uniaxial tensile deformation amount than the press-formed body according to Test Example 1. Was big.

これらのことから、試験例2に係るプレス成形体は、試験例1に係るプレス成形体に比べて、位置bにおいて単軸引張変形が進み、その結果、位置bに隣接する位置aで平面歪引張変形が少なく抑えられて、板厚変化率が小さく抑えられたと考えられる。   From these facts, the press-formed body according to Test Example 2 undergoes uniaxial tensile deformation at the position b as compared with the press-formed body according to Test Example 1, and as a result, the plane strain at the position a adjacent to the position b. It is thought that the tensile deformation was suppressed to a low level and the plate thickness change rate was suppressed to a low level.

r値(塑性ひずみ比)は、板材における幅方向の対数歪みεと板厚の対数歪みεとの比ε/εを示した指標である。r値の高い板材を引張り変形すると、板厚減少率が低く、薄くなりにくいことから、r値の低い板材に比べて深絞り加工中に素材の破断が起こりにくいとされている。このことから、単純引張変形による加工は、r値の影響を強く受ける加工要素であるといえる。 The r value (plastic strain ratio) is an index indicating the ratio ε w / ε t of the logarithmic strain ε w in the width direction and the logarithmic strain ε t in the plate thickness. When a plate material having a high r value is pulled and deformed, the reduction rate of the plate thickness is low and it is difficult for the plate material to be thinned. Therefore, the material is less likely to break during deep drawing than a plate material having a low r value. From this, it can be said that the processing by simple tensile deformation is a processing element that is strongly influenced by the r value.

そこで試験例1及び2に係るプレス成形体のそれぞれについてr値を測定した。試験例1に係るプレス成形体のr値は平均0.90であり、試験例2に係るプレス成形体のr値は平均1.74であった。この結果は、図14に示された、単純引張変形の大きかった試験例2に係るプレス成形体が試験例1に係るプレス成形体に比べて板厚減少率が抑制された傾向と整合するものであった。   Therefore, the r value was measured for each of the press-formed bodies according to Test Examples 1 and 2. The r value of the press-formed body according to Test Example 1 was 0.90 on average, and the r value of the press-formed body according to Test Example 2 was 1.74 on average. This result is consistent with the tendency shown in FIG. 14 in which the press-formed body according to Test Example 2 in which simple tensile deformation was large compared with the press-formed body according to Test Example 1 in which the plate thickness reduction rate was suppressed. Met.

以上のことから、本発明に係るプレス加工性評価装置を用いることで、1つの成形加工品により複合成形時の各種加工要素(平面歪引張変形、二軸引張変形、縮みフランジ変形及び単軸引張変形)の歪状態を正確に把握できる。従来のように単一の加工要素による評価結果と比較する必要がないので、単一成形評価と複合成形評価との齟齬に起因する問題が生じない。そのため、実際の複合成形品について加工性や加工安定性を正確に評価することができる。   From the above, by using the press workability evaluation apparatus according to the present invention, various processing elements (plane strain tensile deformation, biaxial tensile deformation, contraction flange deformation, and uniaxial tension at the time of composite molding by one molded product. Deformation) can be accurately grasped. Since it is not necessary to compare with the evaluation result by a single processing element as in the prior art, there is no problem caused by the conflict between single molding evaluation and composite molding evaluation. Therefore, it is possible to accurately evaluate processability and process stability of an actual composite molded product.

また、測定結果をプロットし、歪分布を得ることで、歪みの状態を一元化して把握することができるので、成形対象材料どうしの成形性や加工性の相違を比較できる。   In addition, by plotting the measurement results and obtaining the strain distribution, it is possible to unify and grasp the strain state, so that the difference in formability and workability between the molding target materials can be compared.

また、成形線図と板厚減少率とを比較することで、成形対象材料ごとの加工性を評価できる。   Moreover, the workability for each material to be molded can be evaluated by comparing the forming diagram and the plate thickness reduction rate.

<ダイス及びパンチの形状の最適化>
〔試験例3〕
試験例2と同じ高加工用フェライト系ステンレス鋼を供試材とし、一辺が300mmである略正方形にカットしたプレス成形対象材料を用いて、上記プレス加工性評価装置にて下記に示すプレス条件でプレス成形し、複数種類のプレス成形体を得た。
<Optimization of die and punch shape>
[Test Example 3]
Using the same high-working ferritic stainless steel as in Test Example 2 as a test material and using a press-molding target material cut into a substantially square shape with a side of 300 mm, the press workability evaluation apparatus uses the following press conditions. A plurality of types of press-molded bodies were obtained by press molding.

(プレス条件)
ダイス及びパンチの形状は、図2、図4に示すとおりである。枝の幅Wdと枝の角部の曲率半径Rcとの比Wd/Rcは、1、1.5、2、2.5、5、10、15、15.5の8種類にしている。その他の条件は、試験例2と同様である。
(Press conditions)
The shapes of the die and punch are as shown in FIGS. The ratio Wd / Rc between the branch width Wd and the radius of curvature Rc of the corner of the branch is eight types of 1, 1.5, 2, 2.5, 5, 10, 15, and 15.5. Other conditions are the same as in Test Example 2.

試験例3によって得られた種々のプレス成形体について、枝の割れの状態を観察した。枝の割れがない場合を“○”とし、図7の(a)に示すように、角部eの境界で割れが生じている場合を“×”とし、図7の(b)に示すように、角部eで割れが生じている場合を“×”とした。その結果を表2に示す。 With respect to various press-formed bodies obtained in Test Example 3, the state of branch cracks was observed. The case where there is no branch crack is indicated by “◯”, and as shown in FIG. 7A, the case where a crack occurs at the boundary of the corner e 3 is indicated by “× 1 ”. As shown, the case where a crack occurred at the corner e 3 was defined as “× 2 ”. The results are shown in Table 2.

表2に示すように、Wd/Rcが2以上15以下である場合、プレス成形体の枝において、割れは生じなかった。一方、Wd/Rcが2未満である場合、図7の(a)に示すように、プレス成形体において角部eの境界に応力が局部的に集中し、プレス成形体の割れが発生した。また、Wd/Rcが15を超える場合、図7の(b)に示すとおり、プレス成形体において枝の角部eの周方向で塑性歪域が縮小し、角部eでの割れが発生した。 As shown in Table 2, when Wd / Rc was 2 or more and 15 or less, cracks did not occur in the branches of the press-formed body. On the other hand, when Wd / Rc is less than 2, as shown in (a) of FIG. 7, the stress at the boundary of the corner e 3 in pressed bodies is concentrated locally, cracking of the pressed bodies occurs . Further, when Wd / Rc exceeds 15, as shown in FIG. 7 (b), plastic strain region is reduced in the circumferential direction of the branch corners e 3 in pressed bodies, cracks at the corners e 3 Occurred.

〔試験例4〕
試験例2と同じ高加工用フェライト系ステンレス鋼を供試材とし、一辺が300mmである略正方形にカットしたプレス成形対象材料を用いて、上記プレス加工性評価装置にて下記に示すプレス条件でプレス成形し、複数種類のプレス成形体を得た。
[Test Example 4]
Using the same high-working ferritic stainless steel as in Test Example 2 as a test material and using a press-molding target material cut into a substantially square shape with a side of 300 mm, the press workability evaluation apparatus uses the following press conditions. A plurality of types of press-molded bodies were obtained by press molding.

(プレス条件)
ダイス及びパンチの形状は、図2、図4に示すとおりである。パンチ13の凸部を正面視し、当該凸部の厚さをHpとし、パンチ肩部gの曲率半径をRpとし、ダイス底部hの曲率半径をRdとするとき、Hpと(Rp+Rd)との比Hp/(Rp+Rd)が、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2の10種類にしている。その他の条件は、試験例2と同じである。
(Press conditions)
The shapes of the die and punch are as shown in FIGS. When the convex portion of the punch 13 is viewed from the front, the thickness of the convex portion is Hp, the radius of curvature of the punch shoulder g 1 is Rp, and the radius of curvature of the die bottom h 3 is Rd, and Hp and (Rp + Rd) The ratio Hp / (Rp + Rd) is 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2 There are 10 types. Other conditions are the same as in Test Example 2.

試験例4によって得られた種々のプレス成形体について、試験例2での<解析>のうち、〔変形量の測定〕及び〔成形線の作成〕を行い、4つの加工要素(平面歪引張変形、二軸引張変形、縮みフランジ変形及び単軸引張変形)の現出の有無を確認した。変形が現出された場合を“○”とし、現出されなかった場合を“×”とした。その結果を表3に示す。   For various press-formed bodies obtained in Test Example 4, [Measurement of Deformation] and [Creation of Forming Line] of <Analysis> in Test Example 2 were performed, and four processing elements (plane strain tensile deformation) , Biaxial tensile deformation, shrinking flange deformation, and uniaxial tensile deformation) were confirmed. The case where the deformation appeared was “◯”, and the case where the deformation was not shown was “x”. The results are shown in Table 3.

表3に示すように、対象材料をプレス成形して得られるプレス成形体において、Hp/(Rp+Rd)が0.5以上、すなわち、Hpが(Rp+Rd)の0.5倍以上である場合は、4つの加工要素(平面歪引張変形、二軸引張変形、縮みフランジ変形及び単軸引張変形)の全てを好適に測定できることが確認された。一方、Hp/(Rp+Rd)が0.5未満、すなわち、Hpが(Rp+Rd)の0.5倍未満のプレス成形体においては、4つの加工要素のうち、二軸引張変形だけを測定できるにとどまり、他の加工要素(平面歪引張変形、縮みフランジ変形及び単軸引張変形)を好適に測定できなかった。
Hp≧(Rp+Rd)/2であると、1つのプレス成形体において複数の加工要素を現出することから、加工性の評価に活用できる点で好ましい。
As shown in Table 3, in the press-molded product obtained by press-molding the target material, Hp / (Rp + Rd) is 0.5 or more, that is, when Hp is 0.5 times or more of (Rp + Rd), It was confirmed that all of the four processing elements (plane strain tensile deformation, biaxial tensile deformation, shrinkage flange deformation, and uniaxial tensile deformation) can be suitably measured. On the other hand, in a press-molded body having Hp / (Rp + Rd) of less than 0.5, that is, Hp of less than 0.5 times (Rp + Rd), only biaxial tensile deformation can be measured among the four working elements. Other processing elements (plane strain tensile deformation, shrinkage flange deformation, and uniaxial tensile deformation) could not be suitably measured.
When Hp ≧ (Rp + Rd) / 2, a plurality of processing elements appear in one press-formed body, which is preferable in that it can be used for evaluation of workability.

1 プレス加工性評価装置
10 パンチ部
11 底板
12 パンチホルダー
13 パンチ
132 凸部
20 ダイス部
21 上板
22 ダイスホルダー
23 ダイス
231 凹部
232 ダイス側平面部
30、30A、30B ガイド部
31、31A、31B ガイドピン
32、32A、32B 板押え
321 板押え側平面部
33 クッションピン
40 プレス成形体
41 プレス成形体凸部
42 平面部
43 枝
50 板材
DESCRIPTION OF SYMBOLS 1 Press workability evaluation apparatus 10 Punch part 11 Bottom plate 12 Punch holder 13 Punch 132 Convex part 20 Die part 21 Upper plate 22 Die holder 23 Dice 231 Recess 232 Dice side plane part 30, 30A, 30B Guide part 31, 31A, 31B Guide Pin 32, 32A, 32B Plate presser 321 Plate presser side plane portion 33 Cushion pin 40 Press molded body 41 Press molded body convex portion 42 Planar portion 43 Branch 50 Plate material

Claims (9)

3以上の枝からなる多枝形状の凸部を有するパンチと、
前記凸部と嵌合可能な3以上の枝からなる多枝形状の凹部、及び前記凹部を囲むダイス側平面部を有するダイスと、
前記ダイス側平面部と略平行な板押え側平面部を有し、プレス成形の対象となる対象材料を前記ダイス側平面部及び前記板押え側平面部で挟み込み可能な板押えとを備える、前記対象材料のプレス加工性を評価するプレス加工性評価装置。
A punch having a multi-branch-shaped convex part composed of three or more branches;
A dice having a multi-branch-shaped concave portion composed of three or more branches that can be fitted to the convex portion, and a die-side flat portion surrounding the concave portion;
A plate presser side plane portion substantially parallel to the die side plane portion, and a plate presser capable of sandwiching a target material to be pressed by the die side plane portion and the plate press side plane portion, Press workability evaluation device that evaluates press workability of target materials.
前記多枝形状の枝が3つである場合、隣り合う枝どうしがなす角は互いに鈍角であり、
前記多枝形状の枝が4つである場合、隣り合う枝どうしがなす角は略直角であり、
前記多枝形状の枝が5つ以上である場合、隣り合う枝どうしがなす角は互いに鋭角である、請求項1に記載のプレス加工性評価装置。
When there are three multi-branched branches, the angles formed by adjacent branches are obtuse angles,
When there are four multi-branched branches, the angle between adjacent branches is substantially a right angle;
The press workability evaluation apparatus according to claim 1, wherein when there are five or more multi-branched branches, angles formed by adjacent branches are acute to each other.
前記多枝形状の枝が4つであり、前記凸部及び前記凹部が略十字形状である、請求項1又は2に記載のプレス加工性評価装置。   The press workability evaluation apparatus according to claim 1 or 2, wherein the number of the multi-branched branches is four, and the convex part and the concave part have a substantially cross shape. 前記ダイスを平面視する場合、前記凹部の角部は曲線をなしており、前記ダイスの前記枝の幅をWdとし、前記ダイスの前記枝の角部における曲率半径をRcとするとき、前記Wdの前記Rcに対する比Wd/Rcは、2以上15未満であり、
前記パンチを正面視する場合、前記凸部の頂部における肩部は、曲線をなしており、前記肩部における曲率半径をRpとし、前記凸部の厚さをHpとし、さらに、前記ダイスを断面視する場合、前記凹部の底部は曲線をなしており、前記底部の曲率半径をRdとするとき、Hp≧(Rp+Rd)/2である、請求項1から3のいずれかに記載のプレス加工性評価装置。
When the die is viewed in plan, the corners of the recesses are curved, the width of the branch of the die is Wd, and the radius of curvature at the corner of the branch of the die is Rc. The ratio Wd / Rc to Rc is 2 or more and less than 15,
When the punch is viewed from the front, the shoulder at the top of the convex portion is curved, the radius of curvature at the shoulder is Rp, the thickness of the convex is Hp, and the die is cross-sectioned. 4. The press workability according to claim 1, wherein when viewed, the bottom of the recess is curved, and Hp ≧ (Rp + Rd) / 2, where Rd is the radius of curvature of the bottom. 5. Evaluation device.
3以上の枝からなる多枝形状の凹部を有するパンチと、
前記凹部と嵌合可能な3以上の枝からなる多枝形状の凸部、及び前記凸部を囲むダイス側平面部を有するダイスと、
前記ダイス側平面部と略平行な板押え側平面部を有し、プレス成形の対象となる対象材料を前記ダイス側平面部及び前記板押え側平面部で挟み込み可能な板押えとを備える、前記対象材料のプレス加工性を評価するプレス加工性評価装置。
A punch having a multi-branch-shaped recess composed of three or more branches;
A die having a multi-branch-shaped convex portion comprising three or more branches that can be fitted to the concave portion, and a die-side flat portion surrounding the convex portion;
A plate presser side plane portion substantially parallel to the die side plane portion, and a plate presser capable of sandwiching a target material to be pressed by the die side plane portion and the plate press side plane portion, Press workability evaluation device that evaluates press workability of target materials.
プレス成形の対象となる対象材料を、請求項1から5のいずれかに記載のプレス加工性評価装置を用いてプレス成形し、プレス成形体を得るプレス成形工程と、
前記プレス成形体の平面歪引張変形、単軸引張変形、二軸引張変形及び縮みフランジ変形の中から少なくとも二種以上の変形量を測定する変形量測定工程とを含む、プレス加工性の評価方法。
A press molding step of subjecting a target material to be subjected to press molding to press molding using the press workability evaluation apparatus according to any one of claims 1 to 5 to obtain a press molded body,
A deformation amount measuring step of measuring at least two kinds of deformation amounts among plane strain tensile deformation, uniaxial tensile deformation, biaxial tensile deformation, and shrinkage flange deformation of the press-molded product. .
前記変形量測定工程は、
前記対象材料に複数の印を予め転写し、
プレス成形の前後での前記印の最大主歪及び最小主歪を測定し、
前記プレス成形体の記凸部の隅部に隣接する底部を含む領域に相当する箇所であって、最大主歪が最も大きく、最小主歪が略変形なしである箇所の変形量を、前記平面歪引張変形が主体で関与する変形量とし、
前記プレス成形体の枝における長さ方向の側面の領域に相当する箇所であって、最大主歪が最も大きく、最小主歪が圧縮変形である箇所の変形量を、前記単軸引張変形が主体で関与する変形量とし、
前記プレス成形体の前記凸部の角部であり、かつ、肩部である領域に相当する箇所であって、最大主歪が最も大きく、最小主歪が引張変形である箇所の変形量を、前記二軸引張変形が主体で関与する変形量とし、
前記プレス成形体の凸部を囲む平面部の領域に相当する箇所であって、最大主歪が最も大きく、最小主歪が最も小さい箇所の変形量を、前記縮みフランジ変形が主体で関与する変形量とする工程である、請求項6に記載のプレス加工性の評価方法。
The deformation amount measuring step includes
A plurality of marks are previously transferred to the target material,
Measure the maximum principal strain and the minimum principal strain of the mark before and after press molding,
The amount of deformation of a portion corresponding to the region including the bottom adjacent to the corner of the convex portion of the press-molded body, wherein the maximum principal strain is the largest and the minimum principal strain is substantially undeformed. The amount of deformation in which strain tensile deformation is mainly involved,
The portion corresponding to the region of the side surface in the length direction in the branch of the press-formed body, where the maximum principal strain is the largest and the minimum principal strain is the compressive deformation, the deformation amount is mainly the uniaxial tensile deformation The amount of deformation involved in
It is a corner corresponding to the region of the convex portion of the press-formed body and the shoulder portion, the maximum principal strain is the largest, the deformation amount of the portion where the minimum principal strain is tensile deformation, The amount of deformation mainly involving the biaxial tensile deformation,
The deformation corresponding to the region of the flat portion surrounding the convex portion of the press-formed body, where the maximum principal strain is the largest and the smallest principal strain is the smallest, the deformation mainly involving the shrinkage flange deformation The method for evaluating press workability according to claim 6, wherein the method is a step of making a quantity.
前記複数の印の最大主歪及び最小主歪の関係をプロットし、このプロットの結果から前記プレス成形体の割れを予測する割れ予測工程をさらに含む、請求項7に記載のプレス加工性の評価方法。   The evaluation of press workability according to claim 7, further comprising a crack prediction step of plotting a relationship between the maximum principal strain and the minimum principal strain of the plurality of marks and predicting a crack of the press-formed body from the result of the plot. Method. 前記対象材料として、四角形状、八角形状、楕円形状、又は円形状であるブランクを用いる、請求項6から8のいずれかに記載のプレス加工性の評価方法。   The press workability evaluation method according to any one of claims 6 to 8, wherein a blank having a quadrangular shape, an octagonal shape, an elliptical shape, or a circular shape is used as the target material.
JP2015023666A 2015-02-09 2015-02-09 Press workability evaluation apparatus and press workability evaluation method Active JP6173369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015023666A JP6173369B2 (en) 2015-02-09 2015-02-09 Press workability evaluation apparatus and press workability evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015023666A JP6173369B2 (en) 2015-02-09 2015-02-09 Press workability evaluation apparatus and press workability evaluation method

Publications (2)

Publication Number Publication Date
JP2016144824A true JP2016144824A (en) 2016-08-12
JP6173369B2 JP6173369B2 (en) 2017-08-02

Family

ID=56685696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015023666A Active JP6173369B2 (en) 2015-02-09 2015-02-09 Press workability evaluation apparatus and press workability evaluation method

Country Status (1)

Country Link
JP (1) JP6173369B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022108196A1 (en) 2020-11-19 2022-05-27 주식회사 엘지에너지솔루션 Punch pin hole inspection apparatus using punch and die, and punch pin hole inspection method using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145679A (en) * 2011-01-26 2011-07-28 Fujifilm Corp Radiographic image-forming system
JP2013121607A (en) * 2011-12-12 2013-06-20 Jfe Steel Corp Method for measuring forming limit line in high temperature press forming
CA2889954A1 (en) * 2012-10-30 2014-05-08 Hydro Aluminium Rolled Products Gmbh Aluminium composite material and forming method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011145679A (en) * 2011-01-26 2011-07-28 Fujifilm Corp Radiographic image-forming system
JP2013121607A (en) * 2011-12-12 2013-06-20 Jfe Steel Corp Method for measuring forming limit line in high temperature press forming
CA2889954A1 (en) * 2012-10-30 2014-05-08 Hydro Aluminium Rolled Products Gmbh Aluminium composite material and forming method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022108196A1 (en) 2020-11-19 2022-05-27 주식회사 엘지에너지솔루션 Punch pin hole inspection apparatus using punch and die, and punch pin hole inspection method using same
KR20220069178A (en) 2020-11-19 2022-05-27 주식회사 엘지에너지솔루션 Punch pin hole inspection device using punch and die, and punch pin hole inspection method using the same

Also Published As

Publication number Publication date
JP6173369B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP6133965B1 (en) Evaluation method of stretch flangeability
CN110997172B (en) Method for evaluating deformation limit on sheared surface of metal plate, method for predicting crack, and method for designing press die
Gau et al. Forming micro channels on aluminum foils by using flexible die forming process
JP6547920B2 (en) Evaluation method of deformation limit on sheared surface of metal plate, crack prediction method and press mold design method
JP6133915B2 (en) Secondary press workability evaluation method
CN109470559B (en) DIC-based necking failure limit strain detection method
Abbasi et al. Analytical method for prediction of weld line movement during stretch forming of tailor-welded blanks
Frącz et al. Aspects of verification and optimization of sheet metal numerical simulations process using the photogrammetric system
JP6173369B2 (en) Press workability evaluation apparatus and press workability evaluation method
CN113128001A (en) Forming limit test method
WO2024009566A1 (en) Method and device for obtaining forming limit of metal sheet
Saleh et al. Development technique for deep drawing without blank holder to produce circular cup of brass alloy
Zhang et al. A new method for determination of forming limit diagram based on digital image correlation
JP5900751B2 (en) Evaluation method and prediction method of bending inner crack
Foecke et al. Robustness of the sheet metal springback cup test
JP7464176B1 (en) Method, device and program for determining press-molded cracks, and method for manufacturing press-molded products
RU2655634C1 (en) Method for testing sheet materials to axiosymmetrical drawing
RU2659458C1 (en) Method for testing sheet materials to axisymmetrical drawing
RU2655636C1 (en) Method for testing sheet materials to axiosymmetrical drawing
Lin et al. Using a punch with micro-ridges to shorten the multistage deep drawing process for stainless steels
JP2020093303A (en) Method of manufacturing press component, and design method for lower die
WO2024062822A1 (en) Press forming fracture determination method, device and program, and method for manufacturing press formed part
JP7452520B2 (en) Press molding crack determination method, press molding crack determination device, press molding crack determination program, and press molding crack suppression method
RU2631230C1 (en) Device for testing sheet materials
Kadkhodayan et al. Finite element simulation of process and springback of friction aided deep drawing using tapered blank holder divided into eight segments

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170111

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170131

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170704

R150 Certificate of patent or registration of utility model

Ref document number: 6173369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350