JP2016143514A5 - Charged particle beam apparatus and scanning electron microscope - Google Patents

Charged particle beam apparatus and scanning electron microscope Download PDF

Info

Publication number
JP2016143514A5
JP2016143514A5 JP2015017319A JP2015017319A JP2016143514A5 JP 2016143514 A5 JP2016143514 A5 JP 2016143514A5 JP 2015017319 A JP2015017319 A JP 2015017319A JP 2015017319 A JP2015017319 A JP 2015017319A JP 2016143514 A5 JP2016143514 A5 JP 2016143514A5
Authority
JP
Japan
Prior art keywords
charged particle
objective lens
particle beam
sample
power source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015017319A
Other languages
Japanese (ja)
Other versions
JP2016143514A (en
JP6204388B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2015017319A priority Critical patent/JP6204388B2/en
Priority claimed from JP2015017319A external-priority patent/JP6204388B2/en
Priority to PCT/JP2015/084074 priority patent/WO2016121226A1/en
Priority to TW105122731A priority patent/TWI680488B/en
Publication of JP2016143514A publication Critical patent/JP2016143514A/en
Publication of JP2016143514A5 publication Critical patent/JP2016143514A5/en
Application granted granted Critical
Publication of JP6204388B2 publication Critical patent/JP6204388B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

一次電子線12は、加速電源14で加速されたエネルギーで試料23上を走査する。そのとき二次電子21aは、第2の対物レンズ26の磁場により磁束に巻きついて螺旋運動をしながら上昇する。試料23表面から離れると急速に磁束密度が低下するので、二次電子21aは旋回から振りほどかれて発散し、二次電子検出器19からの引込み電界により偏向されて二次電子検出器19に捕獲される。すなわち、二次電子検出器19から発生する電界が、荷電粒子によって試料から放出される二次電子を引き付けるように、二次電子検出器19は配置される、このようにして、二次電子検出器19に入る二次電子21aを多くすることができる。 The primary electron beam 12 scans the sample 23 with energy accelerated by the acceleration power source 14. At that time, the secondary electrons 21a are wound around the magnetic flux by the magnetic field of the second objective lens 26 and rise while spiraling. Since the magnetic flux density rapidly decreases when the sample 23 moves away from the surface of the sample 23, the secondary electrons 21 a are unwound from the swirl and diverge, and are deflected by the drawn electric field from the secondary electron detector 19, and are then incident on the secondary electron detector 19. Be captured. That is, the secondary electron detector 19 is arranged so that the electric field generated from the secondary electron detector 19 attracts the secondary electrons emitted from the sample by the charged particle beam . The number of secondary electrons 21a entering the detector 19 can be increased.

Claims (22)

荷電粒子源と、  A charged particle source;
前記荷電粒子源から放出する荷電粒子線を加速するために設けられる、前記荷電粒子源に接続された加速電源と、  An acceleration power source connected to the charged particle source, provided to accelerate the charged particle beam emitted from the charged particle source;
試料に対して前記荷電粒子線が入射する側に設置され、前記荷電粒子線を前記試料に集束させる第1の対物レンズと、  A first objective lens that is installed on a side where the charged particle beam is incident on a sample and focuses the charged particle beam on the sample;
前記試料に対して前記荷電粒子線が入射する側の反対側に設置され、前記荷電粒子線を試料に集束させる第2の対物レンズと、  A second objective lens that is placed on the opposite side of the sample where the charged particle beam is incident, and focuses the charged particle beam on the sample;
前記第1の対物レンズの強度を可変する第1の対物レンズ電源と、  A first objective lens power source for varying the intensity of the first objective lens;
前記第2の対物レンズの強度を可変する第2の対物レンズ電源と  A second objective lens power source for varying the intensity of the second objective lens;
を備え、With
前記第1の対物レンズ電源のみを用いるとき、前記試料は、前記第1の対物レンズと前記第2の対物レンズとの間に配置され、  When using only the first objective lens power source, the sample is disposed between the first objective lens and the second objective lens;
前記第2の対物レンズ電源のみを用いるとき、前記第2の対物レンズと測定試料面との距離が前記第1の対物レンズと測定試料面との距離よりも近くされる、荷電粒子線装置。  When only the second objective lens power source is used, the charged particle beam apparatus is configured such that the distance between the second objective lens and the measurement sample surface is closer than the distance between the first objective lens and the measurement sample surface.
荷電粒子源と、  A charged particle source;
前記荷電粒子源から放出する荷電粒子線を加速するために設けられる、前記荷電粒子源に接続された加速電源と、  An acceleration power source connected to the charged particle source, provided to accelerate the charged particle beam emitted from the charged particle source;
試料に対して前記荷電粒子線が入射する側に設置され、前記荷電粒子線を前記試料に集束させる第1の対物レンズと、  A first objective lens that is installed on a side where the charged particle beam is incident on a sample and focuses the charged particle beam on the sample;
前記試料に対して前記荷電粒子線が入射する側の反対側に設置され、前記荷電粒子線を試料に集束させる第2の対物レンズと、  A second objective lens that is placed on the opposite side of the sample where the charged particle beam is incident, and focuses the charged particle beam on the sample;
前記第1の対物レンズの強度を可変する第1の対物レンズ電源と、  A first objective lens power source for varying the intensity of the first objective lens;
前記第2の対物レンズの強度を可変する第2の対物レンズ電源と、  A second objective lens power source for varying the intensity of the second objective lens;
前記第1の対物レンズ電源と前記第2の対物レンズ電源とを制御する第1の制御装置と  A first control device for controlling the first objective lens power source and the second objective lens power source;
を備え、With
前記第1の対物レンズ電源のみを用いるとき、前記第1の対物レンズと測定試料面との距離が前記第2の対物レンズと測定試料面との距離よりも近くされ、  When using only the first objective lens power source, the distance between the first objective lens and the measurement sample surface is made closer than the distance between the second objective lens and the measurement sample surface;
前記第2の対物レンズ電源のみを用いるとき、前記第2の対物レンズと測定試料面との距離が前記第1の対物レンズと測定試料面との距離よりも近くされる、荷電粒子線装置。  When only the second objective lens power source is used, the charged particle beam apparatus is configured such that the distance between the second objective lens and the measurement sample surface is closer than the distance between the first objective lens and the measurement sample surface.
荷電粒子源と、  A charged particle source;
前記荷電粒子源から放出する荷電粒子線を加速するために設けられる、前記荷電粒子源に接続された加速電源と、  An acceleration power source connected to the charged particle source, provided to accelerate the charged particle beam emitted from the charged particle source;
試料に対して前記荷電粒子線が入射する側に設置され、前記荷電粒子線を前記試料に集束させる第1の対物レンズと、  A first objective lens that is installed on a side where the charged particle beam is incident on a sample and focuses the charged particle beam on the sample;
前記試料に対して前記荷電粒子線が入射する側の反対側に設置され、前記荷電粒子線を試料に集束させる第2の対物レンズと、  A second objective lens that is placed on the opposite side of the sample where the charged particle beam is incident, and focuses the charged particle beam on the sample;
前記第1の対物レンズの強度を可変する第1の対物レンズ電源と、  A first objective lens power source for varying the intensity of the first objective lens;
前記第2の対物レンズの強度を可変する第2の対物レンズ電源と、  A second objective lens power source for varying the intensity of the second objective lens;
前記第1の対物レンズ電源と前記第2の対物レンズ電源とを制御する第1の制御装置と  A first control device for controlling the first objective lens power source and the second objective lens power source;
を備え、With
前記第1の制御装置は、前記第1の対物レンズの強度と前記第2の対物レンズの強度とを独立に制御する機能と、同時に制御する機能と、を有し、  The first control device has a function of independently controlling the strength of the first objective lens and the strength of the second objective lens, and a function of controlling the strength simultaneously.
前記第1の対物レンズ電源のみを用いるとき、前記第1の対物レンズと測定試料面との距離が前記第2の対物レンズと測定試料面との距離よりも近くされ、  When using only the first objective lens power source, the distance between the first objective lens and the measurement sample surface is made closer than the distance between the second objective lens and the measurement sample surface;
前記第2の対物レンズ電源のみを用いるとき、前記第2の対物レンズと測定試料面との距離が前記第1の対物レンズと測定試料面との距離よりも近くされる、荷電粒子線装置。  When only the second objective lens power source is used, the charged particle beam apparatus is configured such that the distance between the second objective lens and the measurement sample surface is closer than the distance between the first objective lens and the measurement sample surface.
荷電粒子源と、  A charged particle source;
前記荷電粒子源から放出する荷電粒子線を加速するために設けられる、前記荷電粒子源に接続された加速電源と、  An acceleration power source connected to the charged particle source, provided to accelerate the charged particle beam emitted from the charged particle source;
前記荷電粒子線を試料に集束させる対物レンズとを有する荷電粒子線装置であって、  A charged particle beam apparatus having an objective lens for focusing the charged particle beam on a sample,
前記対物レンズは、  The objective lens is
前記試料に対して前記荷電粒子線が入射する側に設置される第1の対物レンズと、    A first objective lens installed on the side on which the charged particle beam is incident on the sample;
前記試料に対して前記荷電粒子線が入射する側の反対側に設置される第2の対物レンズとを含み、    A second objective lens installed on the opposite side to the side on which the charged particle beam is incident on the sample,
前記荷電粒子線装置は、  The charged particle beam device comprises:
前記第1の対物レンズの強度を可変する第1の対物レンズ電源と、    A first objective lens power source for varying the intensity of the first objective lens;
前記第2の対物レンズの強度を可変する第2の対物レンズ電源と、    A second objective lens power source for varying the intensity of the second objective lens;
前記第1の対物レンズ電源と前記第2の対物レンズ電源とを制御する第1の制御装置とを備え、    A first control device for controlling the first objective lens power source and the second objective lens power source;
前記第1の制御装置は、前記第1の対物レンズの強度と前記第2の対物レンズの強度とを独立に制御する機能と、同時に制御する機能と、前記荷電粒子線を前記第1の対物レンズのみで試料に集束する機能と、前記荷電粒子線を前記第2の対物レンズのみで前記試料に集束する機能と、前記第1の対物レンズと前記第2の対物レンズを同時に使い、前記荷電粒子線の前記試料に入射する開き角を前記第1の対物レンズで可変して、前記荷電粒子線を前記第2の対物レンズのみで前記試料に集束するときよりも当該開き角が小さくなるように、前記試料に集束する機能とを有する、荷電粒子線装置。  The first control device includes a function of independently controlling the intensity of the first objective lens and the intensity of the second objective lens, a function of simultaneously controlling the intensity, and the charged particle beam for the first objective lens. A function of focusing the sample only on the lens, a function of focusing the charged particle beam on the sample only by the second objective lens, and the charging using the first objective lens and the second objective lens simultaneously. The opening angle of the particle beam incident on the sample is varied by the first objective lens so that the opening angle is smaller than when the charged particle beam is focused on the sample by the second objective lens alone. And a charged particle beam device having a function of focusing on the sample.
前記荷電粒子線を二次元的に走査する二段の偏向部材を備え、  A two-stage deflecting member for two-dimensionally scanning the charged particle beam;
前記二段の偏向部材は、上段の偏向部材と下段の偏向部材とを有し、    The two-stage deflection member has an upper deflection member and a lower deflection member,
前記上段の偏向部材の強度または電圧を可変する上段偏向電源と、  An upper deflection power source for varying the strength or voltage of the upper deflection member;
前記下段の偏向部材の強度または電圧を可変する下段偏向電源と、  A lower deflection power source for varying the strength or voltage of the lower deflection member;
前記上段偏向電源と前記下段偏向電源とを制御する第2の制御装置とを備え、  A second control device for controlling the upper deflection power source and the lower deflection power source;
前記上段の偏向部材と前記下段の偏向部材は、前記第1の対物レンズの内部から前記荷電粒子線が飛来してくる側に設置され、  The upper deflection member and the lower deflection member are installed on the side from which the charged particle beam comes from the inside of the first objective lens,
前記第2の制御装置は、前記上段偏向電源と前記下段偏向電源の使用電流比または使用電圧比を可変する、請求項1から4のいずれかに記載の荷電粒子線装置。  5. The charged particle beam device according to claim 1, wherein the second control device varies a use current ratio or a use voltage ratio of the upper deflection power supply and the lower deflection power supply. 6.
前記荷電粒子線を二次元的に走査する二段の偏向部材を有し、  Having a two-stage deflection member for two-dimensionally scanning the charged particle beam;
前記二段の偏向部材は、上段の偏向部材と下段の偏向部材とを有し、    The two-stage deflection member has an upper deflection member and a lower deflection member,
前記上段の偏向部材の強度または電圧を可変する上段偏向電源と、  An upper deflection power source for varying the strength or voltage of the upper deflection member;
前記下段の偏向部材の強度または電圧を可変する下段偏向電源と、  A lower deflection power source for varying the strength or voltage of the lower deflection member;
前記上段偏向電源と前記下段偏向電源とを制御する第2の制御装置とを備え、  A second control device for controlling the upper deflection power source and the lower deflection power source;
前記上段の偏向部材と前記下段の偏向部材は、前記第1の対物レンズの内部から前記荷電粒子線が飛来してくる側に設置され、  The upper deflection member and the lower deflection member are installed on the side from which the charged particle beam comes from the inside of the first objective lens,
前記下段の偏向部材は、それぞれが巻数の異なる複数のコイルであり、  The lower deflection member is a plurality of coils each having a different number of turns,
前記第2の制御装置は、前記複数のコイルのうち用いるものを制御する、請求項1から4のいずれかに記載の荷電粒子線装置。  The charged particle beam device according to claim 1, wherein the second control device controls one of the plurality of coils to be used.
前記偏向部材は、偏向コイルまたは偏向電極である、請求項5または6に記載の荷電粒子線装置。  The charged particle beam apparatus according to claim 5, wherein the deflection member is a deflection coil or a deflection electrode. 前記試料に負電位を与える、前記荷電粒子線を減速するためのリターディング電源を備えた、請求項1から7のいずれかに記載の荷電粒子線装置。  The charged particle beam apparatus according to claim 1, further comprising a retarding power supply for decelerating the charged particle beam that applies a negative potential to the sample. 前記第2の対物レンズは、前記加速電源を−30kVから−10kVのいずれかにして加速された前記荷電粒子線を、前記第2の対物レンズの磁極の前記試料に最も近いところから見て、0mmから4.5mmのいずれかの高さの位置に集束可能である、請求項1から8のいずれかに記載の荷電粒子線装置。  The second objective lens sees the charged particle beam accelerated by setting the acceleration power source to any one of −30 kV to −10 kV from a position closest to the sample of the magnetic pole of the second objective lens, The charged particle beam apparatus according to any one of claims 1 to 8, wherein the charged particle beam apparatus can be focused to a position at any height of 0 mm to 4.5 mm. 前記第2の対物レンズ上に配置される絶縁板と、  An insulating plate disposed on the second objective lens;
前記絶縁板の上に配置される導電性試料台とをさらに備え、  A conductive sample stage disposed on the insulating plate;
前記第2の対物レンズと前記導電性試料台とは絶縁される、請求項1から9のいずれかに記載の荷電粒子線装置。  The charged particle beam apparatus according to claim 1, wherein the second objective lens and the conductive sample stage are insulated.
前記導電性試料台は、周縁部に近付くほど前記絶縁板から離れる形状をしている、請求項10に記載の荷電粒子線装置。  The charged particle beam apparatus according to claim 10, wherein the conductive sample stage is shaped so as to move away from the insulating plate as it approaches the peripheral edge. 前記絶縁板と前記導電性試料台との間が、絶縁材で充填される、請求項10または11に記載の荷電粒子線装置。  The charged particle beam apparatus according to claim 10 or 11, wherein a space between the insulating plate and the conductive sample stage is filled with an insulating material. 前記導電性試料台の上部に、開口部のある電位板をさらに備え、  Further comprising a potential plate with an opening on the conductive sample stage,
前記電位板には、接地電位、正の電位、または負の電位が与えられる、請求項10から12のいずれかに記載の荷電粒子線装置。  The charged particle beam device according to claim 10, wherein a ground potential, a positive potential, or a negative potential is applied to the potential plate.
前記電位板の開口部は直径2mmから20mmの円形、またはメッシュ形状である、請求項13に記載の荷電粒子線装置。  The charged particle beam device according to claim 13, wherein the opening of the potential plate has a circular shape or a mesh shape with a diameter of 2 mm to 20 mm. 前記電位板は、試料の近く以外の場所では前記導電性試料台から離れる形状を有する、請求項13または14に記載の荷電粒子線装置。  The charged particle beam apparatus according to claim 13 or 14, wherein the potential plate has a shape that is separated from the conductive sample stage at a place other than the vicinity of the sample. 前記電位板を移動させる移動手段をさらに備えた、請求項13から15のいずれかに記載の荷電粒子線装置。  The charged particle beam apparatus according to claim 13, further comprising a moving unit that moves the potential plate. 前記移動手段は、前記電位板に接続されたステージであり、  The moving means is a stage connected to the potential plate;
前記ステージは、前記試料を載置可能である、請求項16に記載の荷電粒子線装置。  The charged particle beam apparatus according to claim 16, wherein the stage can mount the sample.
前記第2の対物レンズを形成する磁極は、  The magnetic pole forming the second objective lens is
前記荷電粒子線の理想光軸と中心軸が一致した中心磁極と、    A central magnetic pole whose central axis coincides with the ideal optical axis of the charged particle beam;
上部磁極と、    The top pole,
筒形の側面磁極と、    A cylindrical side pole,
円盤形状の下部磁極とを有し、    A disk-shaped lower magnetic pole,
前記中心磁極の前記試料側に近い上部は、該上部ほど径が小さくなる形状であり、前記中心磁極の下部は円柱形状であり、  The upper part of the central magnetic pole close to the sample side has a shape with a smaller diameter toward the upper part, and the lower part of the central magnetic pole has a cylindrical shape,
前記上部磁極は、中心に円形の開口部が形成された磁極であり、中心に向かいテーパ状に前記中心磁極の重心に近い側が薄くなる円盤形状である、請求項1から17のいずれかに記載の荷電粒子線装置。  18. The upper magnetic pole is a magnetic pole having a circular opening at the center, and has a disk shape that tapers toward the center and becomes thinner near the center of gravity of the central magnetic pole. 18. Charged particle beam equipment.
前記中心磁極の前記試料側の面と、前記上部磁極の前記試料側の面とが同じ高さである、請求項18に記載の荷電粒子線装置。  The charged particle beam apparatus according to claim 18, wherein a surface of the central magnetic pole on the sample side and a surface of the upper magnetic pole on the sample side are the same height. 前記中心磁極の上部先端径Dは、6mmより大きく、かつ14mmより小さく、  The upper tip diameter D of the central magnetic pole is larger than 6 mm and smaller than 14 mm,
前記上部磁極の前記円形の開口部の径dと、前記中心磁極の前記上部先端径Dとの関係が、d−D≧4mmである、請求項18または19に記載の荷電粒子線装置。  The charged particle beam device according to claim 18 or 19, wherein a relationship between a diameter d of the circular opening of the upper magnetic pole and the upper tip diameter D of the central magnetic pole is dD ≧ 4 mm.
前記荷電粒子源として、熱電子源型のものが用いられる、請求項1から20のいずれかに記載の荷電粒子線装置。  21. The charged particle beam apparatus according to claim 1, wherein a thermoelectron source type is used as the charged particle source. 請求項1から21のいずれかに記載の荷電粒子線装置を備える、走査電子顕微鏡。  A scanning electron microscope comprising the charged particle beam device according to any one of claims 1 to 21.
JP2015017319A 2015-01-30 2015-01-30 Charged particle beam apparatus and scanning electron microscope Active JP6204388B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015017319A JP6204388B2 (en) 2015-01-30 2015-01-30 Charged particle beam apparatus and scanning electron microscope
PCT/JP2015/084074 WO2016121226A1 (en) 2015-01-30 2015-12-03 Charged particle beam device and scanning electron microscope
TW105122731A TWI680488B (en) 2015-01-30 2016-07-19 Charged particle beam apparatus and scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015017319A JP6204388B2 (en) 2015-01-30 2015-01-30 Charged particle beam apparatus and scanning electron microscope

Publications (3)

Publication Number Publication Date
JP2016143514A JP2016143514A (en) 2016-08-08
JP2016143514A5 true JP2016143514A5 (en) 2017-08-10
JP6204388B2 JP6204388B2 (en) 2017-09-27

Family

ID=56542861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015017319A Active JP6204388B2 (en) 2015-01-30 2015-01-30 Charged particle beam apparatus and scanning electron microscope

Country Status (3)

Country Link
JP (1) JP6204388B2 (en)
TW (1) TWI680488B (en)
WO (1) WO2016121226A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121224A1 (en) * 2015-01-30 2016-08-04 松定プレシジョン株式会社 Charged particle beam device and scanning electron microscope
CN113495081B (en) * 2020-03-19 2022-10-18 清华大学 Method for measuring secondary electron emission coefficient

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2644930B1 (en) * 1989-03-21 1996-04-26 Cameca VARIABLE FOCAL COMPOSITE ELECTROMAGNETIC LENS
JPH0320942A (en) * 1989-06-16 1991-01-29 Jeol Ltd Scanning electron microscope
JP2000003691A (en) * 1998-06-12 2000-01-07 Nikon Corp Charged particle beam deflection device, charged particle beam deflection method and charged particle beam device
US6452175B1 (en) * 1999-04-15 2002-09-17 Applied Materials, Inc. Column for charged particle beam device
US7446320B1 (en) * 2005-08-17 2008-11-04 Kla-Tencor Technologies Corproation Electronically-variable immersion electrostatic lens
KR20140061480A (en) * 2005-11-28 2014-05-21 칼 짜이스 에스엠테 게엠베하 Particle-optical component
WO2007067296A2 (en) * 2005-12-02 2007-06-14 Alis Corporation Ion sources, systems and methods
DE102010001347A1 (en) * 2010-01-28 2011-08-18 Carl Zeiss NTS GmbH, 73447 Device for the transmission of energy and / or for the transport of an ion and particle beam device with such a device
WO2013065399A1 (en) * 2011-10-31 2013-05-10 株式会社 日立ハイテクノロジーズ Scanning electron microscope

Similar Documents

Publication Publication Date Title
JP2016143513A5 (en) Charged particle beam apparatus and scanning electron microscope
JP6626936B2 (en) Charged particle beam device and scanning electron microscope
US11075056B2 (en) Scanning electron microscope objective lens system and method for specimen observation
JP6177817B2 (en) Charged particle beam apparatus and scanning electron microscope
JP4215282B2 (en) SEM equipped with electrostatic objective lens and electrical scanning device
JP5537050B2 (en) Focused ion beam device
JP2016143514A5 (en) Charged particle beam apparatus and scanning electron microscope
EP2998978B1 (en) Deflection field assembly, electron detection system and focused ion beam system
JP6204388B2 (en) Charged particle beam apparatus and scanning electron microscope
WO2019207707A1 (en) Charged particle beam device
WO2015004981A1 (en) Electron gun and electron microscope
JP6462729B2 (en) Charged particle beam apparatus and scanning electron microscope
JP4596061B2 (en) Scanning electron microscope
EP2833390A1 (en) Use of electrostatic objective lens in an electron microscope
KR20210062709A (en) Objective lens array
JP2015185529A (en) Stage device and electron beam device
JP2011238387A (en) Electronic probe device using emitter array