JP2016142667A - Nitrogen monoxide gas detection method, nitrogen monoxide gas detection element and nitrogen monoxide gas detection device - Google Patents

Nitrogen monoxide gas detection method, nitrogen monoxide gas detection element and nitrogen monoxide gas detection device Download PDF

Info

Publication number
JP2016142667A
JP2016142667A JP2015019896A JP2015019896A JP2016142667A JP 2016142667 A JP2016142667 A JP 2016142667A JP 2015019896 A JP2015019896 A JP 2015019896A JP 2015019896 A JP2015019896 A JP 2015019896A JP 2016142667 A JP2016142667 A JP 2016142667A
Authority
JP
Japan
Prior art keywords
nitric oxide
detection
oxide gas
absorbance
gas detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015019896A
Other languages
Japanese (ja)
Other versions
JP6468591B2 (en
Inventor
丸尾 容子
Yoko Maruo
容子 丸尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Institute of Technology
Original Assignee
Tohoku Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Institute of Technology filed Critical Tohoku Institute of Technology
Priority to JP2015019896A priority Critical patent/JP6468591B2/en
Publication of JP2016142667A publication Critical patent/JP2016142667A/en
Application granted granted Critical
Publication of JP6468591B2 publication Critical patent/JP6468591B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To enable nitrogen monoxide gas to be accurately and easily detected.SOLUTION: A nitrogen monoxide gas detection method comprises: an exposure process to expose a detection element, with a detection agent made of PTIO (2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) arranged in pores of a porous body, to a measurement object atmosphere; a measurement process to measure absorbance of the detection agent, which is exposed to the measurement object atmosphere in the exposure process, in a state where ultraviolet and visible light is cut off; and a detection process to detect nitrogen monoxide gas in the measurement object atmosphere on the basis of comparison between the absorbance of the detection element preliminarily measured before being exposed to the measuring object atmosphere and the absorbance measured in the measurement process.SELECTED DRAWING: Figure 1

Description

本発明は、空気中に存在する一酸化窒素ガスを検知する一酸化窒素検知方法、一酸化窒素ガス検知素子、一酸化窒素ガス検知装置に関する。   The present invention relates to a nitric oxide detection method, a nitric oxide gas detection element, and a nitric oxide gas detection device that detect nitrogen monoxide gas present in the air.

近年医学の分野で、生体内で生成する一酸化窒素が注目され、血管の弛緩作用や発ガンの機構、神経伝達・学習・記憶等に関与していると言われている。また、気管支喘息の患者には呼気中に含まれる一酸化窒素が上昇するとの報告が有り(非特許文献1:日本呼吸学会誌48(1),17-22(2010))、呼気一酸化窒素濃度を測定できる簡易型測定器が販売されている。代表的な測定器にAerocrine製Niox Mino(http://www.niox.com/en-US/feno-asthma/)やチェスト株式会社のNIOX MINO(http://www.chest-mi.co.jp/product/一酸化窒素ガス分析装置niox-mino/)が有り、米国食品医薬品局(FDA)に承認されたり、日本で薬事承認されている。これら装置は、イオン電極を用い、呼気を吹き込んで測定を行う。しかし、呼気の吹き込みは個体差があり測定結果のばらつきの原因となるなど問題点が多かった。またポンプを使用する必要があり、呼気以外への適用が難しいという問題点があった。   In recent years, nitric oxide produced in vivo has attracted attention in the field of medicine, and is said to be involved in the relaxation of blood vessels, the mechanism of carcinogenesis, neurotransmission, learning and memory. In addition, there is a report that patients with bronchial asthma have elevated nitric oxide contained in exhaled breath (Non-patent Document 1: Journal of the Japanese Respiratory Society 48 (1), 17-22 (2010)). Exhaled nitric oxide Simple measuring instruments that can measure concentration are on the market. Typical measuring instruments include Aeroxrine Niox Mino (http://www.niox.com/en-US/feno-asthma/) and Chest NIOX MINO (http://www.chest-mi.co. jp / product / nitrogen monoxide analyzer niox-mino /), approved by the US Food and Drug Administration (FDA) or approved by Japan. These devices use ion electrodes and perform measurements by blowing in exhaled air. However, there are many problems such as inhaling exhalation, which causes individual differences and causes variations in measurement results. Moreover, there is a problem that it is necessary to use a pump and it is difficult to apply to other than exhalation.

また比色法によって測定する方法として酵素により亜硝酸イオンに変換して、その後ザルツマン試薬による発色反応によって測定する方法(http://www.cosmobio.co.jp/product/detail/cbl-20130517-1.asp?entry_id=11049)も報告されている。しかし、この方法は溶液の測定に限定され、また一酸化窒素を直接測定するのではなく、一酸化窒素の酸化産物である亜硝酸イオンを測定するものであった。   In addition, as a method for measuring by a colorimetric method, it is converted to nitrite ion by an enzyme and then measured by a color development reaction using a Salzmann reagent (http://www.cosmobio.co.jp/product/detail/cbl-20130517- 1.asp? Entry_id = 11049) has also been reported. However, this method is limited to the measurement of a solution and does not directly measure nitric oxide, but measures nitrite ions, which are oxidation products of nitric oxide.

また大気中の一酸化窒素については、横浜市環境科学研究所により大気中の一酸化窒素をPTIOを含浸させたろ紙に暴露して、PTIOの酸化力により一酸化窒素を亜硝酸イオンに変換し、その後溶液に溶出させて、ザルツマン反応により亜硝酸イオンを測定する方法が報告されている。(http://www.city.yokohama.lg.jp/kankyo/mamoru/kenkyu/shiryo/pub/d0001/d0001.pdf)しかし、この方法によると複雑な溶液を使った操作を必要とする。さらにザルツマン試薬によって発色した色がPTIOと干渉するなどの問題があった。   As for nitrogen monoxide in the atmosphere, the City of Yokohama, Environmental Science Institute exposes nitrogen monoxide in the atmosphere to filter paper impregnated with PTIO, and converts nitric oxide into nitrite ions by PTIO's oxidizing power. Then, a method for measuring nitrite ions by elution into a solution and using the Salzmann reaction has been reported. (Http://www.city.yokohama.lg.jp/kankyo/mamoru/kenkyu/shiryo/pub/d0001/d0001.pdf) However, this method requires an operation using a complex solution. In addition, the color developed by the Salzmann reagent interfered with PTIO.

日本呼吸学会誌48(1),17-22(2010)The Journal of the Japan Respiratory Society 48 (1), 17-22 (2010)

本発明はこのような問題に鑑みてなされたものであって、その目的とするところは気体状態の一酸化窒素をポンプ等を必要とせず、高精度にかつ簡便に検知可能とすることを目的とする。   The present invention has been made in view of such a problem, and an object of the present invention is to make it possible to easily detect nitrogen monoxide in a gaseous state with high accuracy and without requiring a pump or the like. And

上記課題を解決するための本発明の一酸化窒素ガス検知方法は、PTIO(2-フェニル-4,4,5,5-テトラメチルイミダゾリン-1-オキシル 3-オキシド)よりなる検知剤を多孔体の孔内に配置して構成される検知素子を測定対象の検知対象の空気中に暴露する暴露工程と、暴露工程により検知対象の空気中に暴露された検知素子の吸光度を、紫外可視光を遮断した状態で測定する測定工程と、検知対象の空気中に暴露する前にあらかじめ測定された検出素子の吸光度と、測定工程により測定された吸光度との比較に基づいて、検知対象の空気中の一酸化窒素ガスを検出する検出工程とを有することを特徴とする。   In order to solve the above problems, a method for detecting nitric oxide gas of the present invention uses a porous body containing a detection agent comprising PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide) The exposure process that exposes the sensing element that is arranged in the hole of the detection object to the air to be measured and the absorbance of the sensing element that is exposed to the air to be detected by the exposure process Based on a comparison between the measurement process measured in the blocked state, the absorbance of the detection element measured in advance before exposure to the air to be detected, and the absorbance measured by the measurement process, And a detection step of detecting nitric oxide gas.

本発明に係る一酸化窒素ガス検知方法は、まず、可視光領域で実質的に透明な例えばガラスからなる多孔体と、その多孔体の孔内に配置されたPTIOよりなる検知剤を備えるようにした一酸化窒素ガス検知素子を用意し、検知対象の空気中に暴露する。一酸化窒素ガス検知素子の孔内に一酸化窒素が侵入すると、孔内に配置されたPTIOにより一酸化窒素が酸化されて、二酸化窒素が生成するとともに、PTIOはイミノニトロオキサイド化合物になる。それとともにPTIO特有の光吸収度合いが減少し、イミノニトロオキサイド化合物による光吸収度合いが増加する。従って、検知対象の空気中への暴露前後の吸光度を測定することで、検知対象の空気中の一酸化窒素を検出することが可能となる。このとき、一連の操作を紫外可視光を遮断した状態で行う。ガラスからなる多孔体内に配置されたPTIOは、紫外可視光を吸収すると分解されるので一酸化窒素を酸化するためには紫外可視光を遮断する必要がある。   The nitric oxide gas detection method according to the present invention first includes a porous body made of, for example, glass that is substantially transparent in the visible light region, and a detection agent made of PTIO disposed in the pores of the porous body. Prepare the nitric oxide gas sensing element and expose it to the air to be sensed. When nitrogen monoxide enters the hole of the nitric oxide gas detection element, the nitric oxide is oxidized by PTIO disposed in the hole to generate nitrogen dioxide, and PTIO becomes an imino nitrooxide compound. At the same time, the degree of light absorption peculiar to PTIO decreases, and the degree of light absorption by the iminonitrooxide compound increases. Therefore, it is possible to detect nitric oxide in the air to be detected by measuring the absorbance before and after exposure to the air to be detected. At this time, a series of operations are performed in a state where ultraviolet-visible light is blocked. PTIO placed in a porous body made of glass is decomposed when it absorbs UV-visible light. Therefore, it is necessary to block UV-visible light in order to oxidize nitric oxide.

上記吸収が変化するので測定する波長は550nm〜575nmの間、及び330nm〜350nmの間、及び230nm〜250nmの間から選択する。なお、多孔体は、孔径が20nm以下であればよい。   Since the absorption changes, the wavelength to be measured is selected from 550 nm to 575 nm, 330 nm to 350 nm, and 230 nm to 250 nm. The porous body may have a pore diameter of 20 nm or less.

本発明にかかる一酸化窒素ガス検知素子は、可視光領域で透明な多孔体と、前記多孔体の孔内に配置されたPTIO(2-フェニル-4,4,5,5-テトラメチルイミダゾリン-1-オキシル 3-オキシド)よりなる検知剤とを備えることを特徴とする。   A nitric oxide gas sensing element according to the present invention includes a porous body transparent in the visible light region, and PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-) disposed in the pores of the porous body. 1-oxyl 3-oxide) and a detection agent.

本発明にかかる一酸化窒素ガス検知装置は、PTIO(2-フェニル-4,4,5,5-テトラメチルイミダゾリン-1-オキシル 3-オキシド)を多孔体の孔内に配置して構成される検知素子と、所定波長の光を放出する発光部と、前記発光部から放出されて前記検知素子を透過した光を受光する受光部と、前記受光部が受光した光量に基づいて、検知素子の吸光度を測定する測定部とを備えることを特徴とする。   The nitric oxide gas detector according to the present invention is configured by arranging PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide) in the pores of a porous body. Based on the sensing element, a light emitting unit that emits light of a predetermined wavelength, a light receiving unit that receives light emitted from the light emitting unit and transmitted through the sensing element, and a light amount received by the light receiving unit, And a measuring unit for measuring absorbance.

以上説明したように、本発明によれば、ガラスからなる多孔体の孔内に,PTIOからなる検知剤を備えるようにした検知素子を、紫外可視光を遮断した状態で用いるようにしたので、空気中に含まれている一酸化窒素を、高精度にかつ簡便に測定することが出来るようになるという優れた効果が得られる。   As described above, according to the present invention, the detection element provided with the detection agent made of PTIO is used in the pores of the porous body made of glass in a state in which ultraviolet-visible light is blocked. An excellent effect is obtained in that nitric oxide contained in the air can be easily measured with high accuracy.

以上説明したように、本発明においてはPTIOを担持させた多孔質の検知素子を用い、紫外可視光を遮断した状態で使用し、3つの波長で測定を行うことにより、検知対象の空気中に含まれる一酸化窒素ガスを高感度且つ高精度にしかも簡便に測定することができる。   As described above, in the present invention, a porous sensing element supporting PTIO is used in a state where ultraviolet-visible light is blocked, and measurement is performed at three wavelengths, so that air is detected in the air. The contained nitric oxide gas can be easily measured with high sensitivity and high accuracy.

本発明の実施の形態における一酸化窒素ガス検知素子について説明するための説明図である。It is explanatory drawing for demonstrating the nitric oxide gas detection element in embodiment of this invention. 本発明の実施の形態における検知素子の光吸収スペクトルを示す図である。It is a figure which shows the light absorption spectrum of the detection element in embodiment of this invention. 一酸化窒素に暴露前後の検知素子の光吸収スペクトルを示す図である。It is a figure which shows the light absorption spectrum of the sensing element before and behind exposure to nitric oxide. 一酸化窒素の濃度を0.8ppm〜2.5ppmの濃度範囲で作製した試料空気に、本実施の形態例における検知素子を1時間暴露することによる340nm及び570nmにおける吸光度差の測定結果を示す特性図である。FIG. 4 is a characteristic diagram showing the measurement results of the difference in absorbance at 340 nm and 570 nm by exposing the sensing element in this embodiment for 1 hour to sample air prepared with a nitric oxide concentration range of 0.8 ppm to 2.5 ppm. is there. 一酸化窒素の濃度を0.8ppm〜2.5ppmの濃度範囲で作製した試料空気に、本実施の形態例における検知素子を1時間暴露することによる240nmにおける吸光度差の測定結果を示す特性図である。It is a characteristic diagram which shows the measurement result of the light absorbency difference in 240 nm by exposing the sensing element in a present Example to the sample air produced in the density | concentration range of 0.8 ppm-2.5 ppm of nitric oxide for 1 hour. 一酸化窒素の濃度を2.5ppmの濃度範囲で作製した試料空気に、本実施の形態例における検知素子を1時間及び5時間暴露することによる光吸収スペクトルの測定結果を示す特性図である。It is a characteristic view showing a measurement result of a light absorption spectrum by exposing the sensing element in the present embodiment for 1 hour and 5 hours to sample air prepared with a nitric oxide concentration in a concentration range of 2.5 ppm. 本実施の形態例における一酸化窒素検知素子を用いた測定装置の構成例を示す図である。It is a figure which shows the structural example of the measuring apparatus using the nitric oxide detection element in this Embodiment.

以下、図面を参照して本発明の最良の形態について説明する。しかしながら、かかる実施例が本発明の技術的範囲を限定するものではない。   Hereinafter, the best mode of the present invention will be described with reference to the drawings. However, such examples do not limit the technical scope of the present invention.

本発明の実施の形態における一酸化窒素ガス検知方法について説明する。図1は、本発明の実施の形態における一酸化窒素ガス検知方法を説明するための図である。まず、一酸化窒素ガス検知素子(以下、検知素子)の作製方法について説明する。図1(a)に示すように、PTIO 0.0780gにエタノール100mlを加え溶解して含浸液101を容器102の中に作製する。   A method for detecting nitric oxide gas in the embodiment of the present invention will be described. FIG. 1 is a diagram for explaining a nitric oxide gas detection method according to an embodiment of the present invention. First, a method for manufacturing a nitric oxide gas detection element (hereinafter, detection element) will be described. As shown in FIG. 1A, 100 ml of ethanol is added to 0.0780 g of PTIO and dissolved to prepare an impregnating solution 101 in a container 102.

次に、図1(b)に示すように、検知剤溶液(含浸液)101に、平均孔径4nmの多孔質ガラスである多孔体103を浸漬する。多孔体103は、例えば技研科学社製の多孔質ガラスである。また、多孔体103は、例えば8(mm)× 8(mm) で厚さ1(mm)のチップサイズである。なお、多孔体103は、平均孔径が20nm以下であると良い。また、ここでは検知素子103aを板状としたが、これに限るものではなく、ファイバ状に形成するようにしても良い。   Next, as shown in FIG. 1 (b), a porous body 103, which is porous glass having an average pore diameter of 4 nm, is immersed in the detection agent solution (impregnation liquid) 101. The porous body 103 is, for example, porous glass manufactured by Giken Kagaku. The porous body 103 has a chip size of, for example, 8 (mm) × 8 (mm) and a thickness of 1 (mm). The porous body 103 preferably has an average pore diameter of 20 nm or less. Although the detection element 103a is plate-shaped here, it is not limited to this and may be formed in a fiber shape.

多孔体103をガラス(硼珪酸ガラス)から構成した場合、この平均孔径を20nm以下とすることで、可視UV波長領域(波長200nm〜2000nm)での透過スペクトルの測定において、可視光領域(350nm〜800nm)では光が透過する。しかし、平均孔径が20nmを越えて大きくなると、可視光領域で急激な透過率の減少が観測されることが判明している(特許第3639123号公報参照)。このことにより、多孔体は、可視光領域において実質的に透明とするために、平均孔径が20nm以下とした方がよい。本実施の形態における多孔体103の比表面積は1g当たり100m2以上である。なお、多孔体103は、多孔質ガラスに限らず、担持する検知剤(検知溶液)と反応しない透明な(透光性を有する)材料から構成されていてもよい。 When the porous body 103 is made of glass (borosilicate glass), by setting the average pore diameter to 20 nm or less, in the measurement of the transmission spectrum in the visible UV wavelength region (wavelength 200 nm to 2000 nm), the visible light region (350 nm to Light is transmitted at 800nm). However, it has been found that when the average pore diameter increases beyond 20 nm, a sharp decrease in transmittance is observed in the visible light region (see Japanese Patent No. 3639123). For this reason, the porous body should have an average pore diameter of 20 nm or less in order to make the porous body substantially transparent in the visible light region. The specific surface area of the porous body 103 in the present embodiment is 100 m 2 or more per 1 g. The porous body 103 is not limited to porous glass, and may be made of a transparent (translucent) material that does not react with the detection agent (detection solution) to be carried.

上述した多孔体103を検知剤溶液101に24時間浸漬し、多孔体103の孔内に検知剤溶液を含浸させた後、検知剤が含浸した多孔体103を風乾し、図1(c)に示すように、窒素ガス気流中に24時間放置して乾燥し、検知素子103aを作製する。このときに容器は遮光フィルムで覆って光が入らないようにする。これにより、検知素子103aには、PTIOよりなる検知剤が導入され、検知素子103aの多孔質の孔内に上記検知剤が担持されているものとなる。このように構成された検知素子103aによれば、孔内に一酸化窒素ガスが浸入すると、孔内に配置されたPTIOとが反応する。   The porous body 103 described above is immersed in the detection agent solution 101 for 24 hours, and the pores of the porous body 103 are impregnated with the detection agent solution, and then the porous body 103 impregnated with the detection agent is air-dried, as shown in FIG. As shown, the sensing element 103a is produced by leaving it to stand in a nitrogen gas stream for 24 hours and drying it. At this time, the container is covered with a light shielding film to prevent light from entering. As a result, the detection agent made of PTIO is introduced into the detection element 103a, and the detection agent is carried in the porous holes of the detection element 103a. According to the sensing element 103a configured as described above, when nitric oxide gas enters the hole, PTIO disposed in the hole reacts.

検知素子の孔内に一酸化窒素が侵入すると、孔内に配置されたPTIOにより一酸化窒素が酸化されて、二酸化窒素が生成するとともに、PTIOはイミノニトロオキサイド化合物になる。それとともにPTIO特有の光吸収特性が減少し、イミノニトロオキサイド化合物による光吸収特性が増加する。   When nitrogen monoxide enters into the hole of the sensing element, the nitrogen monoxide is oxidized by PTIO disposed in the hole to generate nitrogen dioxide, and PTIO becomes an iminonitrooxide compound. At the same time, the light absorption characteristic peculiar to PTIO decreases and the light absorption characteristic by the iminonitrooxide compound increases.

なお、検知素子の作成の際に光の遮光は行わないようにすると、検知素子103aには、PTIOよりなる検知剤が導入され、検知素子103aの多孔質の孔内に上記検知剤が担持されているものとなるが、多孔質ガラス上のPTIOは徐々に分解されて、作製された検知素子はPTIO特有の光吸収特性を有さなくなる。このように構成された検知素子によれば、すでにPTIOが存在しないため、一酸化窒素の検出ができなくなる。PTIOは溶液においては比較的安定で光による分解は起こりにくく、多孔質ガラスの孔内において特に光に対して不安定になると考えられる。   If light is not shielded when creating the sensing element, a sensing agent made of PTIO is introduced into the sensing element 103a, and the sensing agent is carried in the porous holes of the sensing element 103a. However, PTIO on the porous glass is gradually decomposed, and the produced sensing element does not have the light absorption characteristic peculiar to PTIO. According to the sensing element configured as described above, since no PTIO already exists, it becomes impossible to detect nitric oxide. PTIO is relatively stable in solution and hardly decomposes by light, and it is considered that PTIO is particularly unstable to light in the pores of the porous glass.

次に、上記手法により作成された検知素子103aを用いた一酸化窒素ガスの検出方法について説明する。まず、大気の空気中において検知素子103aの厚さ方向の吸光度を測定する。例えば、図1(d)に示すように、光強度I0の入射光を透過させた透過光の強度Iを測定し、これらより吸光度(=log10(I0/I))を求める。検知素子を構成している多孔体が、可視光領域(350nm〜800nm)において高い透過率を有しているので、検知素子の透過率を測定することで、検知素子の吸光度を測定することができる。すなわち、本実施の形態例によれば、検知素子を検知対象である空気に暴露する前と暴露する後とでの検知素子の吸光度を測定することで、検知対象の空気に含まれる一酸化窒素ガスを検知することができる。 Next, a method for detecting nitric oxide gas using the sensing element 103a created by the above method will be described. First, the absorbance in the thickness direction of the sensing element 103a is measured in atmospheric air. For example, as shown in FIG. 1 (d), the intensity I of the transmitted light that transmits the incident light having the light intensity I 0 is measured, and the absorbance (= log 10 (I 0 / I)) is obtained from these. Since the porous body constituting the sensing element has a high transmittance in the visible light region (350 nm to 800 nm), the absorbance of the sensing element can be measured by measuring the transmittance of the sensing element. it can. That is, according to the present embodiment, by measuring the absorbance of the sensing element before and after exposing the sensing element to the air that is the sensing object, nitrogen monoxide contained in the sensing object air Gas can be detected.

図2は、本発明の実施の形態における検知素子の光吸収スペクトルを示す図である。吸光度の測定の結果、図2に示すように、240nm付近、340nm付近及び570nm付近にピークを持つ光吸収が測定される。   FIG. 2 is a diagram showing a light absorption spectrum of the sensing element in the embodiment of the present invention. As a result of the measurement of absorbance, as shown in FIG. 2, light absorption having peaks at around 240 nm, around 340 nm, and around 570 nm is measured.

次に、図1(e)に示すように、例えば、2ppmの濃度の一酸化窒素ガスが存在する検知対象の空気104中に、検知素子103aを5時間暴露する。この暴露は、室温(約20℃)の状態で行う。この後、暴露後の検知素子103aを検知対象の空気104中より取り出し、図1(f)に示すように、暴露後の検知素子103aの厚さ方向の吸光度を再び測定する。上述した2回(検知対象の空気104への暴露前と暴露後)の吸光度の測定(吸光光度分析)結果を図3に示す。   Next, as shown in FIG. 1E, for example, the detection element 103a is exposed to the detection target air 104 in which nitrogen monoxide gas having a concentration of 2 ppm exists for 5 hours. This exposure is performed at room temperature (about 20 ° C). Thereafter, the exposed detection element 103a is taken out from the air 104 to be detected, and as shown in FIG. 1 (f), the absorbance in the thickness direction of the exposed detection element 103a is measured again. FIG. 3 shows the results of absorbance measurement (absorbance analysis) performed twice (before and after exposure to the air 104 to be detected).

図3は、一酸化窒素暴露を含む空気に暴露前の検知素子と、暴露後の検知素子の光吸収スペクトルを示す図である。図3では、横軸は波長、縦軸は吸光度であり、検知対象の空気に暴露する(晒す)前の吸光度の測定結果を実線で示し、暴露した後の吸光度の測定結果を破線で示す。図3に示すように、波長240nm付近(230nm〜250nmの間の波長領域)の吸収、340nm付近(330nm〜350nmの間の波長領域)の吸収及び570nm付近(550nm〜575nmの間の波長領域)の吸収において、実線と破線との間に大きな違いが見られる。   FIG. 3 is a diagram showing a light absorption spectrum of a sensing element before exposure to air including exposure to nitric oxide and a sensing element after exposure. In FIG. 3, the horizontal axis represents wavelength, and the vertical axis represents absorbance. The measurement result of the absorbance before exposure to the detection target air is indicated by a solid line, and the measurement result of the absorbance after exposure is indicated by a broken line. As shown in FIG. 3, absorption near wavelength 240nm (wavelength region between 230nm and 250nm), absorption near 340nm (wavelength region between 330nm and 350nm) and near 570nm (wavelength region between 550nm and 575nm) There is a big difference between the solid line and the broken line in the absorption.

図3に示したように、一酸化窒素ガスが含まれる空気に検知素子103aを暴露した後の、検知素子103bの吸光度の測定(破線)では、おおよそ波長240nmを中心とした吸収が増加している。また波長340nmを中心とした吸収と波長570nmを中心とした吸収は減少している。従って、本実施の形態における検知素子における光吸収の変化の測定や、色の変化の観察により、一酸化窒素ガスの検知及びその濃度などの測定が可能となる。例えば、黄緑色の発光ダイオード(中心波長570nm)や紫外LED(中心波長345nm中心波長240nm)からの光の透過率を測定することで上記光吸収の変化が測定可能である。   As shown in FIG. 3, in the measurement of the absorbance of the sensing element 103b after exposure of the sensing element 103a to air containing nitric oxide gas (broken line), the absorption centered at a wavelength of about 240 nm increases. Yes. Moreover, the absorption centering on wavelength 340nm and the absorption centering on wavelength 570nm are decreasing. Therefore, it is possible to detect the nitric oxide gas and measure the concentration thereof by measuring the change in light absorption in the sensing element in this embodiment and observing the change in color. For example, the change in light absorption can be measured by measuring the transmittance of light from a yellow-green light emitting diode (center wavelength 570 nm) or an ultraviolet LED (center wavelength 345 nm, center wavelength 240 nm).

上述した検知工程の一連の操作を紫外可視光を遮断した状態で、酸素存在下で行う。ガラスからなる多孔体内に配置されたPTIOは、紫外可視光を吸収すると分解されるので一酸化窒素を酸化するためには紫外可視光を遮断する必要がある。またPTIOはガラスからなる多孔体内で、水分が存在する時には自己分解を起こし、徐々に分解される。但し大気中に酸素が存在すると自己分解の速度は非常に遅くなる。そこで測定時には酸素がある状態で行う。   A series of operations in the above-described detection process is performed in the presence of oxygen in a state where ultraviolet-visible light is blocked. PTIO placed in a porous body made of glass is decomposed when it absorbs UV-visible light. Therefore, it is necessary to block UV-visible light in order to oxidize nitric oxide. PTIO is self-decomposing when water is present in a porous body made of glass, and gradually decomposes. However, when oxygen is present in the atmosphere, the rate of autolysis is very slow. Therefore, measurement is performed in the presence of oxygen.

次に、本実施の形態における検知素子を用いた測定例について説明する。例えば、一酸化窒素ガスの濃度を1ppm〜2.5ppmの濃度範囲で作製した試料空気に、本実施の形態の一酸化窒素検知素子を1時間暴露する。この暴露前と暴露後とにおける検知素子の、波長240nm、340nm及び570nmにおける吸光度の差と、試料空気における一酸化窒素ガスの濃度との関係を調べると、図4A及び図4Bに示すようになる。   Next, a measurement example using the detection element in the present embodiment will be described. For example, the nitric oxide sensing element of this embodiment is exposed to sample air prepared with a nitric oxide gas concentration in the concentration range of 1 ppm to 2.5 ppm for 1 hour. When the relationship between the difference in absorbance at wavelengths of 240 nm, 340 nm, and 570 nm and the concentration of nitric oxide gas in the sample air before and after the exposure is examined, the results are as shown in FIGS. 4A and 4B. .

このように、吸光度差と一酸化窒素ガス濃度の相関関係から、吸光度差を一酸化窒素ガス濃度に換算することができ、吸光度に基づいて該濃度を求めることができる。   Thus, from the correlation between the absorbance difference and the nitric oxide gas concentration, the absorbance difference can be converted into the nitric oxide gas concentration, and the concentration can be obtained based on the absorbance.

吸光度差が発生する上述の3つの波長領域(550nm〜575nmの間の波長領域、330nm〜350nmの間の波長領域、230nm〜250nmの間の波長領域)の少なくとも1つの領域について測定を行うことで、一酸化窒素ガスの検知及びその濃度を求めることができ、さらには、複数(2つ又は3つ)の波長領域での測定を行うことで、より高精度且つ正確な測定が可能となる。   By measuring at least one of the above-mentioned three wavelength regions (wavelength region between 550 nm and 575 nm, wavelength region between 330 nm and 350 nm, wavelength region between 230 nm and 250 nm) where the difference in absorbance occurs Further, detection of nitric oxide gas and the concentration thereof can be obtained, and furthermore, more accurate and accurate measurement can be performed by performing measurement in a plurality of (two or three) wavelength regions.

図4A及び図4Bは、一酸化窒素ガスの濃度を0.8ppm〜2.5ppmの濃度範囲で作製した試料空気に、本実施の形態例の検知素子を1時間暴露することによる吸光度差の測定結果を示す特性図であり、図4Aは340nm及び570nmにおける吸光度差を示し、図4Bでは240nmにおける吸光度差を示す。図4A及び図4Bから明らかなように、一酸化窒素濃度が高い試料空気に暴露された検知素子ほど、吸光度の差が大きいものとなる。また、分光計は0.0005の吸光度の差が検出可能であるために1時間暴露では570nmの吸光度差では45ppb、340nmの吸光度差では20ppbの検出が可能である。これにより高感度で一酸化窒素が検出可能であることが判る。   4A and 4B show the measurement results of the difference in absorbance by exposing the sensing element of this embodiment for 1 hour to sample air prepared with a nitric oxide gas concentration range of 0.8 ppm to 2.5 ppm. FIG. 4A shows the difference in absorbance at 340 nm and 570 nm, and FIG. 4B shows the difference in absorbance at 240 nm. As is clear from FIGS. 4A and 4B, the difference in absorbance is larger as the sensing element is exposed to the sample air having a higher nitric oxide concentration. Further, since the spectrometer can detect a difference in absorbance of 0.0005, it can detect 45 ppb at an absorbance difference of 570 nm and 20 ppb at an absorbance difference of 340 nm when exposed for 1 hour. This shows that nitric oxide can be detected with high sensitivity.

また、一酸化窒素の濃度を2.5ppmの濃度で作製した試料空気に、本実施の形態の一酸化窒素検知素子を、1時間及び5時間暴露する。この暴露の前後における検知素子の、吸光度の差を調べると、図5に示すようになる。   In addition, the nitric oxide sensing element of this embodiment is exposed to sample air prepared with a nitric oxide concentration of 2.5 ppm for 1 hour and 5 hours. When the difference in absorbance of the sensing element before and after this exposure is examined, it is as shown in FIG.

図5は、一酸化窒素の濃度を2.5ppmの濃度範囲で作製した試料空気に、本実施の形態例の検知素子を1時間及び5時間暴露することによる光吸収スペクトルの測定結果を示す特性図である。図5では、横軸は波長、縦軸は吸光度であり、検知対象の空気に暴露する(晒す)前の吸光度の測定結果を実線で示し、1時間暴露した後の吸光度の測定結果を破線で示し、5時間暴露した後の吸光度の測定結果を一点鎖線で示す。図5から明らかなように、暴露時間が長いほど、吸光度の差が大きくなっている。   FIG. 5 is a characteristic diagram showing a measurement result of a light absorption spectrum obtained by exposing the sensing element of this embodiment for 1 hour and 5 hours to sample air prepared with a nitric oxide concentration of 2.5 ppm. It is. In FIG. 5, the horizontal axis represents wavelength, and the vertical axis represents absorbance. The measurement result of the absorbance before exposure (exposure) to the air to be detected is indicated by a solid line, and the measurement result of the absorbance after exposure for 1 hour is indicated by a broken line. The measurement results of absorbance after exposure for 5 hours are indicated by a one-dot chain line. As can be seen from FIG. 5, the longer the exposure time, the greater the difference in absorbance.

以上に説明したように、本実施の形態例における一酸化窒素検知素子によれば、光を透過する多孔質ガラスである多孔体を基質とし、この複数の孔内にPTIOを含む検知剤を担持させたので、空気中に含まれるppbレベルの極微量な一酸化窒素を、精度良く測定することが可能となる。また、図5を用いて説明したように、測定の時間を長くするほど吸光度の変化が大きく測定されるので、本検知素子は時間的に蓄積した濃度の測定が可能であり、ppb以下の極微量な濃度の一酸化窒素の測定も暴露時間を長くすることで可能である。   As described above, according to the nitric oxide sensing element in the present embodiment, a porous body that is light-transmissive porous glass is used as a substrate, and a detection agent containing PTIO is carried in the plurality of holes. Therefore, it is possible to accurately measure a very small amount of nitric oxide at a ppb level contained in the air. In addition, as described with reference to FIG. 5, the longer the measurement time, the greater the change in absorbance is measured. Therefore, the present sensing element can measure the concentration accumulated over time, and is less than ppb. A trace amount of nitric oxide can also be measured by increasing the exposure time.

図6は、本実施の形態例における一酸化窒素検知素子を用いた測定装置の構成例を示す図である。一酸化窒素検知素子を用いた測定装置としては、例えば、発光光の中心波長が340nmの発光ダイオード(発光部)110とフォトディテクタ(受光部)120との間に本検知素子103aを配置し、発光ダイオード110から出力されて検知素子103aを透過した光をフォトディテクタ120で検出し、測定部140によってフォトディテクタ120からの出力信号を処理して検知素子103aの吸光度の変化を出力する構成とすればよい。このような簡便な装置構成で、上述した極微量な一酸化窒素の測定が容易に行える。フォトディテクタ120により受光された光量はアナログ又はデジタルの電気信号に変換され、測定部140(各種分析装置、コンピュータ装置など)により処理される。   FIG. 6 is a diagram illustrating a configuration example of a measurement apparatus using the nitric oxide sensing element in the present embodiment. As a measuring device using a nitric oxide sensing element, for example, the sensing element 103a is arranged between a light emitting diode (light emitting part) 110 having a center wavelength of emitted light of 340 nm and a photodetector (light receiving part) 120 to emit light. The light output from the diode 110 and transmitted through the sensing element 103a may be detected by the photodetector 120, and the output signal from the photodetector 120 may be processed by the measurement unit 140 to output the change in absorbance of the sensing element 103a. With such a simple apparatus configuration, the above-described trace amount of nitric oxide can be easily measured. The amount of light received by the photodetector 120 is converted into an analog or digital electrical signal and processed by the measurement unit 140 (various analyzers, computer devices, etc.).

また例えば、発光光の中心波長が570nmの発光ダイオードとフォトディテクタとの間に本検知素子を配置し、検知素子を透過した光をフォトディテクターで検出可能とし、フォトディテクタからの出力信号を処理して検知素子の吸光度の変化を出力する構成とすればよい。このような簡便な装置構成で、上述した極微量な一酸化窒素の測定が容易に行える。   Also, for example, this detector element is placed between a light-emitting diode with a center wavelength of emitted light of 570 nm and a photodetector so that the light transmitted through the detector element can be detected by the photodetector, and the output signal from the photodetector is processed and detected. What is necessary is just to set it as the structure which outputs the change of the light absorbency of an element. With such a simple apparatus configuration, the above-described trace amount of nitric oxide can be easily measured.

また図4A及び図4Bに示したように吸光度を測定する波長によって、感度が異なることより複数の波長を組み合わせることにより、より精度よく濃度の測定が可能になる。   Also, as shown in FIGS. 4A and 4B, the concentration can be measured with higher accuracy by combining a plurality of wavelengths because the sensitivity varies depending on the wavelength at which the absorbance is measured.

本発明は、前記実施の形態に限定されるものではなく、本発明の分野における通常の知識を有する者であれば想到し得る各種変形、修正を含む要旨を逸脱しない範囲の設計変更があっても、本発明に含まれることは勿論である。   The present invention is not limited to the above-described embodiment, and there are design changes within a range that does not depart from the gist including various modifications and corrections that can be conceived by those having ordinary knowledge in the field of the present invention. Of course, it is included in the present invention.

101:検知剤溶液、102:容器、103:多孔体、103a:検知素子、104:検知対象の空気、110:発光ダイオード、120:フォトディテクタ、140:測定部   101: Detection agent solution, 102: Container, 103: Porous body, 103a: Detection element, 104: Air to be detected, 110: Light emitting diode, 120: Photo detector, 140: Measurement unit

Claims (9)

PTIO(2-フェニル-4,4,5,5-テトラメチルイミダゾリン-1-オキシル 3-オキシド)よりなる検知剤を多孔体の孔内に配置して構成される検知素子を検知対象の空気中に暴露する暴露工程と、
前記暴露工程により検知対象の空気中に暴露された前記検知素子の吸光度を、紫外可視光を遮断した状態で測定する測定工程と、
検知対象の空気中に暴露する前にあらかじめ測定された前記検出素子の吸光度と、前記測定工程により測定された吸光度との比較に基づいて、検知対象の空気中の一酸化窒素ガスを検知する検知工程とを有することを特徴とする一酸化窒素ガス検知方法。
A sensing element consisting of PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide) is placed in the pores of the porous body in the air to be detected. Exposure process to be exposed to,
A measurement step of measuring the absorbance of the detection element exposed to the air to be detected by the exposure step in a state where ultraviolet-visible light is blocked;
Detection that detects nitric oxide gas in the detection target air based on a comparison between the absorbance of the detection element measured in advance before exposure to the detection target air and the absorbance measured in the measurement step A nitric oxide gas detection method comprising the steps of:
請求項1に記載の一酸化窒素ガス検知方法において、
検知素子の1つの波長の吸光度を測定し、一酸化窒素ガス濃度に換算する一酸化窒素検知方法。
In the nitric oxide gas detection method according to claim 1,
A nitric oxide detection method in which the absorbance of one wavelength of the detection element is measured and converted to a nitric oxide gas concentration.
請求項1に記載の一酸化窒素ガス検知方法において、
検知素子の2つの波長の吸光度を測定し、一酸化窒素濃度に換算する一酸化窒素ガス検知方法。
In the nitric oxide gas detection method according to claim 1,
A nitric oxide gas detection method in which the absorbance of two wavelengths of the detection element is measured and converted to a nitric oxide concentration.
請求項1に記載の一酸化窒素検知ガス方法において、
検知素子の3つの波長の吸光度を測定し、一酸化窒素ガス濃度に換算する一酸化窒素ガス検知方法。
In the nitric oxide detection gas method according to claim 1,
A nitric oxide gas detection method in which absorbances at three wavelengths of a detection element are measured and converted to a nitric oxide gas concentration.
請求項2に記載の一酸化窒素ガス検知方法において、
1つの波長は、550nm〜575nmの間、若しくは330nm〜350nmの間、若しくは230nm〜250nmの間のいずれか1つであることを特徴とする一酸化窒素ガス検知方法。
In the nitric oxide gas detection method according to claim 2,
One wavelength is any one between 550 nm-575 nm, or 330 nm-350 nm, or 230 nm-250 nm, The nitric oxide gas detection method characterized by the above-mentioned.
請求項3記載の一酸化窒素ガス検知方法において、
2つの波長が、550nm〜575nmの間、若しくは330nm〜350nmの間、若しくは230nm〜250nmの間のうちのいずれか2つであることを特徴とする一酸化窒素ガス検知方法。
In the nitric oxide gas detection method according to claim 3,
The method for detecting nitric oxide gas, wherein the two wavelengths are any one of 550 nm to 575 nm, 330 nm to 350 nm, or 230 nm to 250 nm.
請求項4記載の一酸化窒素ガス検知方法において、
3つの波長が、550nm〜575nmの間、330nm〜350nmの間、及び230nm〜250nmの間であることを特徴とする一酸化窒素ガス検知方法。
In the nitric oxide gas detection method according to claim 4,
A method for detecting nitric oxide gas, wherein the three wavelengths are between 550 nm and 575 nm, between 330 nm and 350 nm, and between 230 nm and 250 nm.
透明な多孔体と、
前記多孔体の孔内に配置されたPTIO(2-フェニル-4,4,5,5-テトラメチルイミダゾリン-1-オキシル 3-オキシド)よりなる検知剤とを備えることを特徴とする一酸化窒素ガス検知素子。
A transparent porous body,
And a detector made of PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide) disposed in the pores of the porous body. Gas sensing element.
PTIO(2-フェニル-4,4,5,5-テトラメチルイミダゾリン-1-オキシル 3-オキシド)を多孔体の孔内に配置して構成される検知素子と、
所定波長の光を放出する発光部と、
前記発光部から放出されて前記検知素子を透過した光を受光する受光部と、
前記受光部が受光した光量に基づいて、検知素子の吸光度を測定する測定部とを備えることを特徴とする一酸化窒素ガス検知装置。
A sensing element configured by placing PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide) in the pores of the porous body;
A light emitting unit that emits light of a predetermined wavelength;
A light receiving portion that receives light emitted from the light emitting portion and transmitted through the detection element;
A nitric oxide gas detection device comprising: a measurement unit that measures the absorbance of the detection element based on the amount of light received by the light receiving unit.
JP2015019896A 2015-02-04 2015-02-04 Nitric oxide gas detection method, nitric oxide gas detection element, nitric oxide gas detection device Active JP6468591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015019896A JP6468591B2 (en) 2015-02-04 2015-02-04 Nitric oxide gas detection method, nitric oxide gas detection element, nitric oxide gas detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015019896A JP6468591B2 (en) 2015-02-04 2015-02-04 Nitric oxide gas detection method, nitric oxide gas detection element, nitric oxide gas detection device

Publications (2)

Publication Number Publication Date
JP2016142667A true JP2016142667A (en) 2016-08-08
JP6468591B2 JP6468591B2 (en) 2019-02-13

Family

ID=56570303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015019896A Active JP6468591B2 (en) 2015-02-04 2015-02-04 Nitric oxide gas detection method, nitric oxide gas detection element, nitric oxide gas detection device

Country Status (1)

Country Link
JP (1) JP6468591B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7351462B2 (en) 2019-11-15 2023-09-27 学校法人東北工業大学 Nitric oxide gas detection method and nitric oxide gas detection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115974A (en) * 1989-09-29 1991-05-16 Tokyo Kasei Kogyo Kk Analysis of nitrogen oxides in atmosphere
JPH09274032A (en) * 1996-02-07 1997-10-21 Nippon Telegr & Teleph Corp <Ntt> Method and material for detection of nitrogen dioxide gas
JPH1087592A (en) * 1996-09-11 1998-04-07 Ken Fujimori Nitrogen monoxide generating agent
US20100256514A1 (en) * 2009-04-01 2010-10-07 Apieron Inc. Analyzer for Nitric Oxide in Exhaled Breath with Multiple-Use Sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115974A (en) * 1989-09-29 1991-05-16 Tokyo Kasei Kogyo Kk Analysis of nitrogen oxides in atmosphere
JPH09274032A (en) * 1996-02-07 1997-10-21 Nippon Telegr & Teleph Corp <Ntt> Method and material for detection of nitrogen dioxide gas
JPH1087592A (en) * 1996-09-11 1998-04-07 Ken Fujimori Nitrogen monoxide generating agent
US20100256514A1 (en) * 2009-04-01 2010-10-07 Apieron Inc. Analyzer for Nitric Oxide in Exhaled Breath with Multiple-Use Sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7351462B2 (en) 2019-11-15 2023-09-27 学校法人東北工業大学 Nitric oxide gas detection method and nitric oxide gas detection device

Also Published As

Publication number Publication date
JP6468591B2 (en) 2019-02-13

Similar Documents

Publication Publication Date Title
US5315673A (en) Optical waveguide vapor sensor
Greenawald et al. Development of an inexpensive RGB color sensor for the detection of hydrogen cyanide gas
US20100075431A1 (en) Formaldehyde detector body, formaldehyde detector, formaldehyde detection method and formaldehyde detection reagent
Liu et al. Multi-parameter optical fiber sensing of gaseous ammonia and carbon dioxide
da Silveira Petruci et al. Analytical methods applied for ozone gas detection: A review
ATE436010T1 (en) SPECTROSCOPIC METHOD FOR MEASURING TOTAL HEMOGLOBIN LEVELS
TW201415002A (en) Optochemical sensor
JP4456131B2 (en) Formaldehyde concentration measurement method
JP5432014B2 (en) Method for measuring volatile organic substances
JP6468591B2 (en) Nitric oxide gas detection method, nitric oxide gas detection element, nitric oxide gas detection device
JP7351462B2 (en) Nitric oxide gas detection method and nitric oxide gas detection device
Liu et al. A reflection-mode fibre-optic sensor for breath carbon dioxide measurement in healthcare
JP4410266B2 (en) Formaldehyde measurement method
JP2014505260A (en) Apparatus and method for hydrogen peroxide detection
JP2000081426A (en) Method and element for detecting nitrogen dioxide gas and nitrogen dioxide gas detecting device using the same
JP2011247611A (en) Gas measurement method and device
JP7026384B2 (en) Acetone detector
Ballantine Jr et al. An optical waveguide acid vapor sensor
JP2008196945A (en) Detection element of unsaturated hydrocarbon gas, measuring method and measuring device
Chu et al. Development of ratiometric optical fiber sensor for ammonia gas detection
US11344223B2 (en) Method and an apparatus for measuring acetone concentrations in breath
KR20150120249A (en) Method of measuring formaldehyde concentration of gasand measuring instrument
Asanuma et al. A colorimetric method for the measurement of ppb-level NO in exhaled air using porous glass analytical chips
JP4891283B2 (en) Measuring method and measuring apparatus for oxidizing gas
JP2012215467A (en) Biological substance analyzer and biological substance analysis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190110

R150 Certificate of patent or registration of utility model

Ref document number: 6468591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250