JP2011247611A - Gas measurement method and device - Google Patents

Gas measurement method and device Download PDF

Info

Publication number
JP2011247611A
JP2011247611A JP2010118077A JP2010118077A JP2011247611A JP 2011247611 A JP2011247611 A JP 2011247611A JP 2010118077 A JP2010118077 A JP 2010118077A JP 2010118077 A JP2010118077 A JP 2010118077A JP 2011247611 A JP2011247611 A JP 2011247611A
Authority
JP
Japan
Prior art keywords
absorbance
measurement
wavelength
correction
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010118077A
Other languages
Japanese (ja)
Other versions
JP5336425B2 (en
Inventor
Yoko Maruo
容子 丸尾
Jiro Nakamura
二朗 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2010118077A priority Critical patent/JP5336425B2/en
Publication of JP2011247611A publication Critical patent/JP2011247611A/en
Application granted granted Critical
Publication of JP5336425B2 publication Critical patent/JP5336425B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem of Rayleigh scattering due to the humidity of a measurement environment in the measurement of formaldehyde by a detection element carrying a detecting agent with a transparent porous body as a carrier by a simpler configuration.SOLUTION: A linear-relationship-for-correction setting part 104 obtains a linear relationship for correction corresponding to absorbance for correction measured by an absorbance measurement part 103 from a calibration curve for correction stored in a calibration curve storage part 101. For instance, when an inclination for correction corresponding to the absorbance for correction is acquired from the calibration curve for correction and the section of the axis of the absorbance when the straight line of the acquired inclination passes through the point of the reciprocal of the fourth power of a first wavelength and the absorbance for correction, the linear relationship for correction is obtained. The linear relationship for correction indicates the relationship of a wavelength and absorption by Rayleigh scattering.

Description

本発明は、環境リスクが高いガス状の大気汚染物質や室内環境汚染物質としてのホルムアルデヒドを測定するガス測定方法および装置に関するものである。   The present invention relates to a gas measuring method and apparatus for measuring formaldehyde as a gaseous air pollutant or indoor environmental pollutant having a high environmental risk.

ホルムアルデヒドは、新築の住宅や家具に含まれている場合があり、室内環境汚染の原因物質になっている。また、化学物質過敏症の人にとっては、ホルムアルデヒドがシックハウス症候群を引き起こす原因のひとつと考えられている。   Formaldehyde may be contained in newly built houses and furniture, and is a cause of indoor environmental pollution. For people with chemical sensitivity, formaldehyde is considered one of the causes of sick house syndrome.

このため、例えば屋内の換気を制御するために、簡単にホルムアルデヒドの濃度を測定する簡易装置が提案されている。例えば、4−アミノ−3−ヒドラジノ−5−メルカプト−1,2,4−トリアゾールのアルカリ水溶液でフィルターを湿潤させ、0.04−10ppmのホルムアルデヒドを検出する技術が提案されている(非特許文献1参照)。しかしこの技術では、測定の直前にフィルターを溶液で湿潤させる工程が含まれ、測定の簡便性を阻害している。また、上記技術では、ホルムアルデヒドの検出感度が十分でないため、短時間で測定を行うためにポンプが必要となり、装置の大型化を招いている。   For this reason, for example, in order to control indoor ventilation, a simple device that easily measures the concentration of formaldehyde has been proposed. For example, a technique has been proposed in which a filter is wetted with an alkaline aqueous solution of 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole and 0.04-10 ppm of formaldehyde is detected (Non-Patent Document). 1). However, this technique includes a step of wetting the filter with the solution immediately before the measurement, which hinders the convenience of the measurement. Moreover, in the said technique, since the detection sensitivity of formaldehyde is not enough, in order to measure in a short time, a pump is needed, and the enlargement of the apparatus is caused.

また、4−アミノ−4−フェニル−3−エン−2−オンと緩衝液とをシリカゲルが含まれる基材に展開し、0.05−0.7ppmのホルムアルデヒドを検出する技術がある(非特許文献2参照)。しかしながら、この測定技術では、上記基材が不透明であるため、基板の色の変化を測定するには反射光を測定する必要があり、精度(検出感度)が十分でない。また、また精度向上を目的として単位時間当たり通過させる空気量を多くするために、ポンプが必要となるなど、やはり、装置の大型化を招いている。   In addition, there is a technique for detecting 0.05-0.7 ppm formaldehyde by developing 4-amino-4-phenyl-3-en-2-one and a buffer solution on a base material containing silica gel (non-patent document). Reference 2). However, in this measurement technique, since the base material is opaque, it is necessary to measure reflected light in order to measure a change in the color of the substrate, and accuracy (detection sensitivity) is not sufficient. In addition, in order to increase the amount of air to be passed per unit time for the purpose of improving accuracy, a pump is necessary, which also increases the size of the apparatus.

また、4−アミノ−3−ヒドラジノ−5−メルカプト−1,2,4−トリアゾールのアルカリ水溶液を用いた拡散スクラバを用い、検出限界2ppbのホルムアルデヒドを検出するホルムアルデヒド簡易分析セット(MDS-100)が、株式会社ガステックより販売されている(非特許文献3参照)。この装置では、溶液の取り扱いが必要であり、また拡散スクラバ中に空気を通過させためにポンプが必要であった。   In addition, a simple formaldehyde analysis set (MDS-100) for detecting formaldehyde having a detection limit of 2 ppb using a diffusion scrubber using an alkaline aqueous solution of 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole It is sold by Gastec Co., Ltd. (see Non-Patent Document 3). This device required handling of the solution and a pump for passing air through the diffusion scrubber.

発明者らは上述したような状況を鑑み、ポンプなどを用いることなく、また、水溶液などの取り扱いを行うことなく、高感度にホルムアルデヒドを測定する方法を提案している(非特許文献4参照)。この測定では、多孔質ガラスを用いたホルムアルデヒド検知ガラスを用いている。ただし、この測定技術では、多孔質ガラスを用いた光学的な測定を行うため、測定時に湿度変化が起こった場合、多孔質ガラス内での水の吸着および脱着のためにレイリー散乱を生じ、正確なホルムアルデヒド濃度が求められないという問題がある。   In view of the situation as described above, the inventors have proposed a method for measuring formaldehyde with high sensitivity without using a pump or the like and without handling an aqueous solution or the like (see Non-Patent Document 4). . In this measurement, formaldehyde detection glass using porous glass is used. However, since this measurement technique performs optical measurement using porous glass, if humidity changes during measurement, Rayleigh scattering occurs due to adsorption and desorption of water in the porous glass, resulting in accurate measurement. There is a problem that a high formaldehyde concentration is not required.

このレイリー散乱の問題を解決するために、3つの異なる波長の光を用い、検知ガラスを透過した3つの波長の光の各々の吸光度より、レイリー散乱の発生による吸光度のずれを補正する技術を、発明者らが提案している(特許文献1参照)。   In order to solve this Rayleigh scattering problem, a technique for correcting the deviation in absorbance due to the occurrence of Rayleigh scattering from the absorbance of each of the three wavelengths transmitted through the detection glass, using light of three different wavelengths, Inventors have proposed (refer patent document 1).

特開2010-091279号公報JP 2010-091279 A

K.Kawamura, et al. ,"Development of a novel hand-held formaldehyde gas sensor for the rapid detection of sick building syndrome", Sensors and Actuators, B 105, pp.495-501, 2005.K. Kawamura, et al., "Development of a novel hand-held formaldehyde gas sensor for the rapid detection of sick building syndrome", Sensors and Actuators, B 105, pp.495-501, 2005. Y.Suzuki, et al. ,"Portable Sick House Syndrome Gas Monitoring System Based on Novel Colorimetric Reagents for the Highly Selective and Sensitive Detection of Formaldehyde", Environ. Sci. Technol. ,vol.37, No.24, pp.5695-5700, 2003.Y. Suzuki, et al., "Portable Sick House Syndrome Gas Monitoring System Based on Novel Colorimetric Reagents for the Highly Selective and Sensitive Detection of Formaldehyde", Environ. Sci. Technol., Vol. 37, No. 24, pp. 5695 -5700, 2003. http://www.gastec.co.jp/whatsnew/new_products.htmhttp://www.gastec.co.jp/whatsnew/new_products.htm Y.Y.Maruo, et al. ,"Development of formaldehyde sensing element using porous glass impregnated with β-diketone", Talanta, vol.74, pp.1141-1147, 2008.Y.Y.Maruo, et al., "Development of formaldehyde sensing element using porous glass impregnated with β-diketone", Talanta, vol.74, pp.1141-1147, 2008.

しかしながら、上述した技術では、光源として3つの波長が必要となり、また、3つの波長の光を処理する構成が必要となるなど、装置の構成が複雑になるという問題がある。   However, the above-described technique has a problem that the configuration of the apparatus becomes complicated, such as requiring three wavelengths as a light source and a configuration for processing light of three wavelengths.

本発明は、以上のような問題点を解消するためになされたものであり、より簡便な構成で、透明な多孔体を担体として検知剤を担持した検知素子よるホルムアルデヒドの測定における、測定環境の湿度によるレイリー散乱の問題が解消できるようにすることを目的とする。   The present invention has been made in order to solve the above-described problems, and has a simpler configuration and a measurement environment in the measurement of formaldehyde by a detection element that supports a detection agent with a transparent porous body as a carrier. The object is to solve the problem of Rayleigh scattering due to humidity.

本発明に係るガス測定方法は、ホルムアルデヒドと反応して可視領域の吸収が変化する検知剤が孔内に担持された透明な多孔体からなる検知素子を、異なる水分保持状態で少なくとも一方はレイリー散乱が発生している2つの状態で500〜800nmの測定波長範囲で吸光度を測定し、第1吸光度変化および第2吸光度変化を得る第1ステップと、第1吸光度変化および第2吸光度変化と、500〜800nmの測定波長の4乗の逆数との間の関係を示す第1の直線の第1の傾きおよび第2の直線の第2の傾きを求める第2ステップと、500〜800nmの範囲より選択した第1波長における第1吸光度変化の第1吸光度と第1の傾き、および第1波長における第2吸光度変化の第2吸光度と第2の傾きとの関係を示す補正用検量線を求める第3ステップと、検知剤が孔内に担持された透明な多孔体からなる測定用検知素子の、ホルムアルデヒドが含まれている雰囲気に晒されていない初期状態の初期吸光度を、ホルムアルデヒドと反応した検知剤が吸収する第2波長で測定する第4ステップと、測定対象の雰囲気に晒された測定用検知素子を第2波長で測定した測定吸光度、および第1波長で測定した補正用吸光度を得る第5ステップと、補正用検量線より補正用吸光度に対応する補正用直線関係を求める第6ステップと、補正用直線関係より第2波長におけるレイリー散乱による吸収よりなる補正値を求める第7ステップと、測定吸光度より補正値を減じた補正測定吸光度を求める第8ステップと、補正測定吸光度と初期吸光度との差より測定対象の雰囲気に含まれているホルムアルデヒドの濃度を求める第9ステップとを少なくとも備え、検知剤がホルムアルデヒドと反応して変化する可視領域の吸収は、500nmより小さい範囲であり、第2波長は500nmより小さい可視領域の波長であるようにしたものである。   The gas measuring method according to the present invention comprises a detection element comprising a transparent porous body in which a detection agent that reacts with formaldehyde to change absorption in the visible region is carried in a hole, at least one of which is Rayleigh scattering in different moisture holding states. The first step of measuring the absorbance in the measurement wavelength range of 500 to 800 nm in two states where the occurrence of the first and second absorbance changes is obtained, the first absorbance change and the second absorbance change, 500 A second step for determining the first slope of the first straight line and the second slope of the second straight line showing the relationship between the inverse of the fourth power of the measured wavelength of .about.800 nm, and a selection from the range of 500 to 800 nm. A calibration curve for correction indicating the relationship between the first absorbance and the first slope of the first absorbance change at the first wavelength and the second absorbance and the second slope of the second absorbance change at the first wavelength is obtained. The initial absorbance of the measurement detection element comprising a transparent porous body in which the detection agent is supported in the pores and not exposed to the atmosphere containing formaldehyde is reacted with formaldehyde. A fourth step of measuring at the second wavelength absorbed by the detection agent, a measurement absorbance measured at the second wavelength of the measurement sensing element exposed to the atmosphere to be measured, and a correction absorbance measured at the first wavelength are obtained. A fifth step, a sixth step for obtaining a correction linear relationship corresponding to the correction absorbance from the correction calibration curve, and a seventh step for obtaining a correction value consisting of absorption due to Rayleigh scattering at the second wavelength from the correction linear relationship; The eighth step of obtaining a corrected measurement absorbance obtained by subtracting the correction value from the measured absorbance and the difference between the corrected measurement absorbance and the initial absorbance are included in the atmosphere to be measured. At least a ninth step for determining the concentration of rumaldehyde, wherein the absorption in the visible region where the detection agent changes upon reaction with formaldehyde is in a range smaller than 500 nm, and the second wavelength is a wavelength in the visible region smaller than 500 nm. It is what I did.

上記ガス測定方法において、検知剤は、アセチルアセトン,1−フェニル−1,3−ブタンジオン,および1,3−ジフェニル−1,3−プロパンジオンの中より選択されたβ−ジケトンと酢酸アンモニウムと酢酸とを含むものであればよい。   In the gas measurement method, the detection agent is selected from the group consisting of acetylacetone, 1-phenyl-1,3-butanedione, and 1,3-diphenyl-1,3-propanedione, a β-diketone, ammonium acetate, and acetic acid. As long as it contains.

また、本発明に係るガス測定装置は、ホルムアルデヒドと反応して可視領域の吸収が変化する検知剤が孔内に担持された透明な多孔体からなる検知素子を、異なる水分保持状態で少なくとも一方はレイリー散乱が発生している2つの状態で500〜800nmの測定波長範囲で吸光度を測定することで得られた第1吸光度変化および第2吸光度変化と、500〜800nmの測定波長の4乗の逆数と、の間の関係を示す第1の直線の第1の傾きおよび第2の直線の第2の傾きを求め、500〜800nmの範囲より選択した第1波長における第1吸光度変化の第1吸光度と第1の傾き、および第1波長における第2吸光度変化の第2吸光度と第2の傾きとの関係を求めることで得られた補正用検量線が記憶されている検量線記憶部と、検知剤が孔内に担持された透明な多孔体からなる測定用検知素子と、測定対象の雰囲気に晒された測定用検知素子をホルムアルデヒドと反応した検知剤が吸収する第2波長で測定した測定吸光度、および第1波長で測定した補正用吸光度を測定する吸光度測定手段と、検量線記憶部に記憶されている補正用検量線より吸光度測定手段が測定した補正用吸光度に対応する補正用直線関係を求める補正用直線関係設定手段と、この補正用直線関係設定手段が求めた補正用直線関係より第2波長におけるレイリー散乱による吸収よりなる補正値を求める補正値算出手段と、この補正値算出手段が算出した補正値を測定吸光度より減じた補正測定吸光度を求める補正測定吸光度算出手段と、吸光度測定手段が第2波長で測定した測定対象の雰囲気に晒されていない測定用検知素子の初期吸光度と、補正測定吸光度との差により測定対象の雰囲気に含まれているホルムアルデヒドの濃度を求める濃度算出手段と、第1波長および第2波長の光を出力する光源とを備え、検知剤がホルムアルデヒドと反応して変化する可視領域の吸収は、500nmより小さい範囲であり、第2波長は500nmより小さい可視領域の波長である。   Further, the gas measuring device according to the present invention comprises a sensing element comprising a transparent porous body in which pores are loaded with a detecting agent that reacts with formaldehyde to change absorption in the visible region, and at least one of them is in a different moisture holding state. First absorbance change and second absorbance change obtained by measuring absorbance in the measurement wavelength range of 500 to 800 nm in two states where Rayleigh scattering occurs, and the inverse of the fourth power of the measurement wavelength of 500 to 800 nm. The first absorbance of the first absorbance change at the first wavelength selected from the range of 500 to 800 nm is obtained by obtaining the first slope of the first straight line and the second slope of the second straight line showing the relationship between Calibration curve storage unit storing a calibration curve for correction obtained by obtaining the relationship between the second slope of the first absorbance and the second absorbance of the second absorbance change at the first wavelength and the second slope, and detection Agent A measuring detector composed of a transparent porous material carried in the pores, a measured absorbance measured at a second wavelength absorbed by the detecting agent that has reacted with formaldehyde on the measuring detector exposed to the atmosphere to be measured, and An absorbance measuring means for measuring the absorbance for correction measured at the first wavelength and a correction for obtaining a correction linear relationship corresponding to the absorbance for correction measured by the absorbance measuring means from the calibration curve stored in the calibration curve storage unit A straight line relation setting means, a correction value calculating means for obtaining a correction value comprising absorption due to Rayleigh scattering at the second wavelength from the straight line relation for correction obtained by the straight line relation setting means for correction, and a correction value calculating means The corrected measurement absorbance calculation means for obtaining the corrected measurement absorbance obtained by subtracting the correction value from the measured absorbance, and the absorbance measurement means are exposed to the measurement target atmosphere measured at the second wavelength. Concentration calculating means for obtaining the concentration of formaldehyde contained in the atmosphere to be measured by the difference between the initial absorbance of the non-measuring sensing element and the corrected measured absorbance; and a light source that outputs light of the first wavelength and the second wavelength The absorption in the visible region, which changes when the detection agent reacts with formaldehyde, is in a range smaller than 500 nm, and the second wavelength is a wavelength in the visible region smaller than 500 nm.

上記ガス測定装置において、検知剤は、アセチルアセトン,1−フェニル−1,3−ブタンジオン,および1,3−ジフェニル−1,3−プロパンジオンの中より選択されたβ−ジケトンと酢酸アンモニウムと酢酸とを含むものであればよい。   In the gas measuring device, the detection agent is a β-diketone selected from acetylacetone, 1-phenyl-1,3-butanedione, and 1,3-diphenyl-1,3-propanedione, ammonium acetate, and acetic acid. As long as it contains.

以上説明したように、本発明によれば、補正用検量線を用いて測定を行うようにしたので、より簡便な構成で、透明な多孔体を担体として検知剤を担持した検知素子よるホルムアルデヒドの測定における、測定環境の湿度によるレイリー散乱の問題が解消できるようになるという優れた効果が得られる。   As described above, according to the present invention, since the measurement is performed using the calibration curve for correction, the detection of formaldehyde by the detection element supporting the detection agent with a transparent porous body as a carrier with a simpler configuration. In the measurement, an excellent effect is obtained that the problem of Rayleigh scattering due to the humidity of the measurement environment can be solved.

図1は、本発明の実施の形態におけるガス測定装置の構成を示す構成図である。FIG. 1 is a configuration diagram showing a configuration of a gas measuring device according to an embodiment of the present invention. 図2は、本発明の実施の形態におけるガス測定方法を説明するためのフローチャートである。FIG. 2 is a flowchart for explaining a gas measurement method according to the embodiment of the present invention. 図3は、各々異なる湿度変化の状態で、検知素子の吸光度(吸収スペクトル)を測定した結果を示す特性図である。FIG. 3 is a characteristic diagram showing the results of measuring the absorbance (absorption spectrum) of the sensing element under different humidity changes. 図4は、図3に示した各々の測定結果より500nmから700nmで吸光度と波長の4乗の逆数関係を求めることで得られる直線関係を示す特性図である。FIG. 4 is a characteristic diagram showing a linear relationship obtained by obtaining the inverse relationship between the absorbance and the fourth power of the wavelength from 500 nm to 700 nm from the respective measurement results shown in FIG. 図5は、補正用検量線の例を示すグラフである。FIG. 5 is a graph showing an example of a calibration curve for correction. 図6は、吸光度の測定を行う測定装置の構成例を示す構成図である。FIG. 6 is a configuration diagram illustrating a configuration example of a measurement apparatus that measures absorbance.

以下、本発明の実施の形態について図を参照して説明する。図1は、本発明の実施の形態におけるガス測定装置の構成を示す構成図である。このガス測定装置は、検量線記憶部101,測定用検知素子102,吸光度測定部103,補正用直線関係設定部104,補正値算出部105,補正測定吸光度算出部106,濃度算出部107,および光源108を備える。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram showing a configuration of a gas measuring device according to an embodiment of the present invention. This gas measurement apparatus includes a calibration curve storage unit 101, a measurement sensing element 102, an absorbance measurement unit 103, a correction linear relationship setting unit 104, a correction value calculation unit 105, a correction measurement absorbance calculation unit 106, a concentration calculation unit 107, and A light source 108 is provided.

検量線記憶部101は、以下に示すようにして求められる補正用検量線が記憶されている。まず、ホルムアルデヒドと反応して可視領域の吸収が変化する検知剤が孔内に担持された透明な多孔体からなる検知素子を、異なる水分保持状態で少なくとも一方はレイリー散乱が発生している2つの状態で500〜800nmの測定波長範囲で吸光度を測定することで得られた第1吸光度変化および第2吸光度変化と、500〜800nmの測定波長の4乗の逆数との間の関係を示す第1の直線の第1の傾きおよび第2の直線の第2の傾きを求める。次に、500〜800nmの範囲より選択した第1波長における第1吸光度変化の第1吸光度と第1の傾き、および第1波長における第2吸光度変化の第2吸光度と第2の傾きとの関係を求めることで補正用検量線が得られる。   The calibration curve storage unit 101 stores a calibration curve for correction obtained as follows. First, a detection element comprising a transparent porous body in which a detection agent that reacts with formaldehyde to change absorption in the visible region is carried in the pores, at least one of which is subjected to Rayleigh scattering in at least one moisture retention state. The 1st which shows the relationship between the 1st absorbance change and the 2nd absorbance change obtained by measuring the absorbance in the measurement wavelength range of 500 to 800 nm in the state and the inverse of the fourth power of the measurement wavelength of 500 to 800 nm The first slope of the straight line and the second slope of the second straight line are obtained. Next, the relationship between the first absorbance and the first slope of the first absorbance change at the first wavelength selected from the range of 500 to 800 nm, and the second absorbance and the second slope of the second absorbance change at the first wavelength. To obtain a calibration curve for correction.

測定用検知素子102は、上述した補正用検量線を求めるために用いる検知素子と同じであり、上述した検知剤が孔内に担持された透明な多孔体から構成されている。測定用検知素子102は、例えばコーニング社製のバイコール(Vycor:登録商標)ガラスからなる多孔体と、この多孔体の細孔の内部に配置された検知剤とから構成されている。多孔体は、例えば、バイコール#7930である。バイコール#7930は平均孔径4nmの複数の細孔を備えている。また、多孔体は、例えば、8(mm)×8(mm)で厚さ1(mm)のチップサイズとすればよい。また、検知剤は、アセチルアセトン,1−フェニル−1,3−ブタンジオン,および1,3−ジフェニル−1,3−プロパンジオンの中より選択されたβ−ジケトンと酢酸アンモニウムと酢酸とを含むものであればよい。なお、検知剤は、雰囲気の湿度の存在により細孔内に吸着する水分を含んでいる。   The measurement detection element 102 is the same as the detection element used for obtaining the correction calibration curve described above, and is composed of a transparent porous body in which the detection agent described above is carried in the pores. The detection element for measurement 102 is composed of, for example, a porous body made of Vycor (registered trademark) glass manufactured by Corning, and a detection agent disposed inside the pores of the porous body. The porous body is, for example, Vycor # 7930. Vycor # 7930 has a plurality of pores with an average pore diameter of 4 nm. Further, the porous body may have a chip size of 8 (mm) × 8 (mm) and a thickness of 1 (mm), for example. The detection agent includes β-diketone selected from acetylacetone, 1-phenyl-1,3-butanedione, and 1,3-diphenyl-1,3-propanedione, ammonium acetate, and acetic acid. I just need it. Note that the detection agent contains moisture adsorbed in the pores due to the presence of atmospheric humidity.

吸光度測定部103は、測定対象の雰囲気に晒された測定用検知素子102を、第2波長で測定した測定吸光度、および上述した第1波長で測定した補正用吸光度を測定する。第2波長は、ホルムアルデヒドと反応した検知剤が吸収する波長である。ここで、検知剤がホルムアルデヒドと反応して変化する可視領域の吸収は、500nmより小さい範囲であり、上述した第2波長は500nmより小さい可視領域の波長である。   The absorbance measurement unit 103 measures the measurement absorbance measured at the second wavelength and the correction absorbance measured at the first wavelength described above for the measurement sensing element 102 exposed to the measurement target atmosphere. The second wavelength is a wavelength absorbed by the detection agent that has reacted with formaldehyde. Here, the absorption in the visible region, which is changed by the detection agent reacting with formaldehyde, is in a range smaller than 500 nm, and the second wavelength described above is a wavelength in the visible region smaller than 500 nm.

補正用直線関係設定部104は、検量線記憶部101に記憶されている補正用検量線より吸光度測定部103が測定した補正用吸光度に対応する補正用直線関係を求める。   The correction linear relationship setting unit 104 obtains a correction linear relationship corresponding to the correction absorbance measured by the absorbance measurement unit 103 from the calibration curve stored in the calibration curve storage unit 101.

補正値算出部105は、補正用直線関係設定部104が求めた補正用直線関係より第2波長におけるレイリー散乱による吸収よりなる補正値を求める。   The correction value calculation unit 105 obtains a correction value made up of absorption by Rayleigh scattering at the second wavelength from the correction linear relationship obtained by the correction linear relationship setting unit 104.

補正測定吸光度算出部106は、補正値算出部105が算出した補正値を測定吸光度より減じた補正測定吸光度を求める。   The corrected measurement absorbance calculation unit 106 obtains a corrected measurement absorbance obtained by subtracting the correction value calculated by the correction value calculation unit 105 from the measurement absorbance.

濃度算出部107は、吸光度測定部103が第2波長で測定した測定対象の雰囲気に晒されていない測定用検知素子の初期吸光度と、補正測定吸光度との差により測定対象の雰囲気に含まれているホルムアルデヒドの濃度を求める。   The concentration calculation unit 107 is included in the measurement target atmosphere due to the difference between the initial absorbance of the measurement detection element that is not exposed to the measurement target atmosphere measured by the absorbance measurement unit 103 at the second wavelength and the corrected measurement absorbance. Find the concentration of formaldehyde.

光源108は、少なくとも第1波長および第2波長の光を出力する。   The light source 108 outputs light having at least a first wavelength and a second wavelength.

次に、本実施の形態におけるガス測定方法について、図2のフローチャートを用いて説明する。   Next, the gas measurement method in this Embodiment is demonstrated using the flowchart of FIG.

まず、ステップS201で、ホルムアルデヒドと反応して可視領域の吸収が変化する検知剤が孔内に担持された透明な多孔体からなる検知素子を、異なる水分保持状態で少なくとも一方はレイリー散乱が発生している2つの状態で500〜800nmの測定波長範囲で吸光度を測定し、第1吸光度変化および第2吸光度変化を得る。   First, in step S201, at least one of the detection elements made of a transparent porous body in which the detection agent that reacts with formaldehyde and changes in absorption in the visible region is supported in the pores is subjected to Rayleigh scattering in different moisture holding states. In the two states, the absorbance is measured in the measurement wavelength range of 500 to 800 nm to obtain the first absorbance change and the second absorbance change.

次に、ステップS202で、第1吸光度変化および第2吸光度変化と、500〜800nmの測定波長の4乗の逆数との間の関係を示す第1の直線の第1の傾きおよび第2の直線の第2の傾きを求める。   Next, in step S202, the first slope and the second straight line of the first straight line indicating the relationship between the first and second light absorbance changes and the inverse of the fourth power of the measurement wavelength of 500 to 800 nm. Is obtained.

次に、ステップS203で、500〜800nmの範囲より選択した第1波長における第1吸光度変化の第1吸光度と第1の傾き、および第1波長における第2吸光度変化の第2吸光度と第2の傾きとの関係を示す補正用検量線を求める。このようにして求めた補正用検量線は、検量線記憶部101に記憶させておく。   Next, in step S203, the first absorbance and the first slope of the first absorbance change at the first wavelength selected from the range of 500 to 800 nm, and the second absorbance and the second absorbance of the second absorbance change at the first wavelength. A calibration curve for correction indicating the relationship with the slope is obtained. The calibration curve obtained in this way is stored in the calibration curve storage unit 101.

次に、ステップS204で、検知剤が孔内に担持された透明な多孔体からなる測定用検知素子102の、ホルムアルデヒドが含まれている雰囲気に晒されていない初期状態の初期吸光度を、ホルムアルデヒドと反応した検知剤が吸収する第2波長で測定する。この測定は、例えば、上述したガス測定装置を用いて測定することができる。   Next, in step S204, the initial absorbance of the measurement detection element 102 made of a transparent porous body in which the detection agent is supported in the pores and not exposed to the atmosphere containing formaldehyde is defined as formaldehyde. Measured at the second wavelength absorbed by the reacted detector. This measurement can be performed using, for example, the gas measurement device described above.

次に、ステップS205で、測定対象の雰囲気に晒された測定用検知素子102を第2波長で測定した測定吸光度、および第1波長で測定した補正用吸光度を得る。例えば、光源108より出射して測定用検知素子102を透過した第1波長の光を吸光度測定部103で測定することで、補正用吸光度が得られる。また、光源108より出射して測定用検知素子102を透過した第2波長の光を吸光度測定部103で測定することで、測定吸光度が得られる。   Next, in step S205, the measurement absorbance measured at the second wavelength and the correction absorbance measured at the first wavelength are obtained for the measurement sensing element 102 exposed to the measurement target atmosphere. For example, the absorbance for correction is obtained by measuring the light of the first wavelength emitted from the light source 108 and transmitted through the measurement detection element 102 with the absorbance measurement unit 103. In addition, measurement light absorbance is obtained by measuring the light of the second wavelength emitted from the light source 108 and transmitted through the measurement sensing element 102 by the absorbance measurement unit 103.

次に、ステップS206で、補正用検量線より補正用吸光度に対応する補正用直線関係を求める。補正用直線関係設定部104が、検量線記憶部101に記憶されている補正用検量線より、吸光度測定部103が測定した補正用吸光度に対応する補正用直線関係を求める。例えば、補正量検量線より補正用吸光度に対応する補正用傾きを取得し、取得した傾きの直線が、第1波長の4乗の逆数と補正用吸光度との点を通るときの吸光度の軸の切片を求めれば、補正用直線関係が得られる。この補正用直線関係は、波長と、レイリー散乱による吸収との関係を示すものである。   Next, in step S206, a correction linear relationship corresponding to the correction absorbance is obtained from the correction calibration curve. The correction linear relationship setting unit 104 obtains a correction linear relationship corresponding to the correction absorbance measured by the absorbance measurement unit 103 from the calibration curve stored in the calibration curve storage unit 101. For example, the correction slope corresponding to the correction absorbance is obtained from the correction amount calibration curve, and the absorbance axis when the straight line of the obtained slope passes through the point of the inverse of the fourth power of the first wavelength and the correction absorbance is obtained. If the intercept is obtained, the correction linear relationship is obtained. This linear relationship for correction indicates the relationship between wavelength and absorption due to Rayleigh scattering.

次に、ステップS207で、補正用直線関係より第2波長におけるレイリー散乱による吸収よりなる補正値を求める。補正値算出部105が、補正用直線関係設定部104が求めた補正用直線関係より第2波長におけるレイリー散乱による吸収よりなる補正値を求める。   Next, in step S207, a correction value comprising absorption due to Rayleigh scattering at the second wavelength is obtained from the correction linear relationship. The correction value calculation unit 105 obtains a correction value composed of absorption due to Rayleigh scattering at the second wavelength from the correction linear relationship obtained by the correction linear relationship setting unit 104.

次に、ステップS208で、測定吸光度より補正値を減じた補正測定吸光度を求める。補正測定吸光度算出部106が、補正値算出部105が算出した補正値を測定吸光度より減じた補正測定吸光度を求める。   Next, in step S208, a corrected measured absorbance obtained by subtracting the correction value from the measured absorbance is obtained. The corrected measurement absorbance calculation unit 106 obtains a corrected measurement absorbance obtained by subtracting the correction value calculated by the correction value calculation unit 105 from the measurement absorbance.

最後に、ステップS209で、補正測定吸光度と初期吸光度との差より測定対象の雰囲気に含まれているホルムアルデヒドの濃度を求める。濃度算出部107が、吸光度測定部103が第2波長で測定した測定対象の雰囲気に晒されていない測定用検知素子の初期吸光度と、補正測定吸光度との差により測定対象の雰囲気に含まれているホルムアルデヒドの濃度を求める。   Finally, in step S209, the concentration of formaldehyde contained in the atmosphere to be measured is obtained from the difference between the corrected measured absorbance and the initial absorbance. The concentration calculation unit 107 is included in the measurement target atmosphere due to the difference between the initial absorbance of the measurement sensing element that is not exposed to the measurement target atmosphere measured by the absorbance measurement unit 103 at the second wavelength and the corrected measurement absorbance. Find the concentration of formaldehyde.

上述した本実施の形態によれば、光源としては2つの波長でよく、また、2つの波長を処理する構成で済むため、装置の構成はより簡略化でき、また、測定も簡便に行えるようになる。   According to this embodiment described above, the light source may have two wavelengths, and the configuration for processing the two wavelengths is sufficient, so that the configuration of the apparatus can be further simplified and the measurement can be performed easily. Become.

次に、本実施の形態の測定原理について、より詳細に説明する。発明者らは、500nmから700nmの間から選択した2つの波長の吸光度と波長の4乗分の1との間で成り立つ直線関係より、多孔体におけるレイリー散乱の影響が評価できることを、既に見いだしている(特許文献1参照)。ただし、この場合、レイリー散乱の影響を評価するための光学的な測定に加え、ホルムアルデヒドと検知剤との反応による400〜500nmの間の吸光度変化も測定することになり、測定のために必要となる光の波長が3つと多くなる。   Next, the measurement principle of this embodiment will be described in more detail. The inventors have already found that the influence of Rayleigh scattering in a porous material can be evaluated from a linear relationship established between the absorbance of two wavelengths selected from 500 nm to 700 nm and a quarter of the wavelength. (See Patent Document 1). However, in this case, in addition to the optical measurement for evaluating the influence of Rayleigh scattering, a change in absorbance between 400 and 500 nm due to the reaction between formaldehyde and the detection agent is also measured, which is necessary for the measurement. The wavelength of light becomes as many as three.

これらに対し、発明者らが鋭意検討した結果、上述した直線関係の傾きが、500nmから700nmの間から選択した1つの波長の吸光度を測定すれば、この吸光度の関数として表されることを見いだした。   In contrast, as a result of intensive studies by the inventors, it has been found that the slope of the linear relationship described above is expressed as a function of this absorbance when the absorbance at one wavelength selected from 500 nm to 700 nm is measured. It was.

上述した直線関係の傾きと吸光度の関係について、一例を用いて説明する。まず、用いる検知素子について説明する。   The relationship between the slope of the linear relationship and the absorbance described above will be described using an example. First, the detection element to be used will be described.

1−フェニル−1,3-ブタンジオン0.157gにエタノール50mlを加えて溶解し、この溶液に酢酸アンモニウム7.5gおよび酢酸0.15mlと水と加え60mlとして検知剤溶液とする。この検知剤溶液に、平均孔径4nmの多孔質ガラス(コーニングバイコール多孔質ガラス#3970)を浸漬し、これを24時間処理することで、多孔質ガラスの孔内に検知剤溶液を含浸させる。次に、検知剤溶液を含浸させた多孔質ガラスを、乾燥窒素中で24時間乾燥させ、検知素子とする。   50 ml of ethanol is added to 0.157 g of 1-phenyl-1,3-butanedione to dissolve, and 7.5 g of ammonium acetate, 0.15 ml of acetic acid and water are added to this solution to form 60 ml of a detection agent solution. A porous glass (Corning Vycor porous glass # 3970) having an average pore diameter of 4 nm is immersed in this detection agent solution, and this is treated for 24 hours, thereby impregnating the detection agent solution into the pores of the porous glass. Next, the porous glass impregnated with the detection agent solution is dried in dry nitrogen for 24 hours to form a detection element.

この検知素子の吸光度(吸収スペクトル)を測定すると、図3の(a)の曲線に示すように、紫外領域に吸収をもつ吸光特性を有する。図3は、各々異なる湿度変化の状態で、検知素子の吸光度(吸収スペクトル)を測定した結果を示す特性図である。   When the absorbance (absorption spectrum) of this sensing element is measured, as shown by the curve in FIG. 3A, it has an absorption characteristic having absorption in the ultraviolet region. FIG. 3 is a characteristic diagram showing the results of measuring the absorbance (absorption spectrum) of the sensing element under different humidity changes.

次に、上述した構成の検知素子を、高湿度(80%)でホルムアルデヒドを含む雰囲気の室内に8時間放置して室内の空気に暴露した後、直後に吸収スペクトルを測定すると、図3の(c)が得られる。さらに、この検知素子を、ホルムアルデヒドを含まず湿度が45%の雰囲気(空気)中に30分放置して乾燥させてから吸収スペクトルを測定すると、図3の(e)が得られる。さらに、この検知素子を、ホルムアルデヒドを含まず湿度が45%の空気中に30分放置して乾燥させてから吸収スペクトルを測定すると、図3の(f)が得られる。   Next, when the sensing element having the above-described configuration is left in a room with high humidity (80%) in an atmosphere containing formaldehyde for 8 hours and exposed to room air, immediately after measuring the absorption spectrum, ( c) is obtained. Further, when the absorption spectrum is measured after leaving this sensing element in an atmosphere (air) containing no formaldehyde and having a humidity of 45% for 30 minutes to obtain an absorption spectrum, (e) in FIG. 3 is obtained. Further, when the absorption spectrum is measured after the detection element is left to stand for 30 minutes in air containing no formaldehyde and dried at 45% humidity, (f) in FIG. 3 is obtained.

さらに、この検知素子を、ホルムアルデヒドを含まず湿度が2%の空気中に30分放置して乾燥させてから吸収スペクトルを測定すると、図3の(d)が得られる。さらに、この検知素子を、ホルムアルデヒドを含まず湿度が2%の空気中に30分放置して乾燥させてから吸収スペクトルを測定すると、図3の(b)が得られる。   Furthermore, when this detection element is left to stand in air containing no formaldehyde for 2 minutes and dried for 30 minutes, the absorption spectrum is measured and (d) in FIG. 3 is obtained. Further, when the absorption spectrum is measured after the detection element is left to stand for 30 minutes in air containing no formaldehyde and dried at a humidity of 2%, (b) in FIG. 3 is obtained.

図3の(b),(c),(d),(e),(f)に示すように、410nm付近(415nm)にピークを持つ吸収と、500nmから800nmにかけて徐々に吸光度が減少する吸収が測定される。これらは、各々異なる湿度変化の状態で、検知素子の吸収スペクトルを測定した結果となる。   As shown in (b), (c), (d), (e), and (f) of FIG. 3, absorption having a peak near 410 nm (415 nm) and absorption in which the absorbance gradually decreases from 500 nm to 800 nm. Is measured. These are the results of measuring the absorption spectrum of the sensing element under different humidity changes.

図3の(b),(c),(d),(e),(f)の500nmから800nmの吸収は、検知素子を構成している多孔質ガラス内での水分量(湿度)が変化したことにより発生したレイリー散乱によるものである。これらは、異なる水分保持状態でレイリー散乱が発生している状態で500〜800nmの測定波長範囲で吸光度を測定した結果である。   The absorption from 500 nm to 800 nm of (b), (c), (d), (e), and (f) in FIG. 3 changes the amount of moisture (humidity) in the porous glass constituting the sensing element. This is due to Rayleigh scattering generated. These are the results of measuring the absorbance in the measurement wavelength range of 500 to 800 nm in a state where Rayleigh scattering occurs in different moisture retention states.

ここで、レイリー散乱が起こっている場合、吸光度と波長の4乗の逆数の間には直線関係が成立する。これを根拠とし、測定された範囲で、各々の測定結果より500nmから700nmで吸光度と波長の4乗の逆数関係を求めると、図4の(a),(b),(c),(d),(e),(f)に示すように、いずれの測定結果においても、500〜700nmの範囲では、1/(波長)1/4と吸光度との間に直線関係が成立していることがわかる。 Here, when Rayleigh scattering occurs, a linear relationship is established between the absorbance and the inverse of the fourth power of the wavelength. Based on this, when the inverse relationship between the absorbance and the fourth power of the wavelength is obtained from 500 nm to 700 nm from each measurement result within the measured range, (a), (b), (c), (d ), (E), (f), in any measurement result, a linear relationship is established between 1 / (wavelength) 1/4 and absorbance in the range of 500 to 700 nm. I understand.

上述した結果の中で、例えば、525nmの吸光度と各直線の傾きの関係を求めると、図5に示すように、上述した直線の傾きと吸光度との間には直線関係が成立することがわかる。   Among the results described above, for example, when the relationship between the absorbance at 525 nm and the slope of each straight line is obtained, it can be seen that a linear relationship is established between the slope of the above straight line and the absorbance as shown in FIG. .

以上の結果より、予め上述した直線の傾きと吸光度との間の直線関係(補正用検量線)を求めておけば、例えば、525nmの吸光度を測定することで、補正用検量線より「1/(波長)1/4と吸光度との間の直線関係」の傾きが分かる。この「1/(波長)1/4と吸光度との間の直線関係」の傾きがわかれば、波長414nmの吸光度におけるレイリー散乱による吸光度の増加分が算出できる。 From the above results, if the linear relationship (correction calibration curve) between the slope of the straight line and the absorbance described above is obtained in advance, for example, by measuring the absorbance at 525 nm, the “1/1 / The slope of the “linear relationship between (wavelength) 1/4 and absorbance” is known. If the slope of the “linear relationship between 1 / (wavelength) 1/4 and absorbance” is known, the increase in absorbance due to Rayleigh scattering at the absorbance at a wavelength of 414 nm can be calculated.

例えば、図3に示した(a),(b),(c),(d),(e),(f)の曲線で示すスペクトルの中の、波長411nmにおける吸光度には、ホルムアルデヒドとの反応の結果生じた検知剤の吸収とレイリー散乱による吸収が含まれている。従って、上述したように525nmの吸光度の測定結果と図5に示す補正用検量線とにより求めたレイリー散乱の増加分をひけば、各曲線で示されている測定におけるホルムアルデヒドの濃度が算出できる。   For example, the absorbance at a wavelength of 411 nm in the spectra shown by the curves (a), (b), (c), (d), (e), and (f) shown in FIG. As a result, absorption of the detection agent and absorption due to Rayleigh scattering are included. Therefore, as described above, the formaldehyde concentration in the measurement indicated by each curve can be calculated by subtracting the increase in Rayleigh scattering obtained from the measurement result of the absorbance at 525 nm and the calibration curve for correction shown in FIG.

ところで、吸光度の測定は、例えば、図6に例示する測定装置を用いることで行えばよい。この測定装置は、まず、定盤601の上に、波長415nmの発光ダイオード602,波長525nmの発光ダイオード603、第1光センサ604、検知素子605、ハーフミラー606、第2光センサ607、および処理部筐体608を備える。   Incidentally, the measurement of absorbance may be performed by using, for example, a measuring apparatus illustrated in FIG. This measuring apparatus first has a light emitting diode 602 with a wavelength of 415 nm, a light emitting diode 603 with a wavelength of 525 nm, a first light sensor 604, a detection element 605, a half mirror 606, a second light sensor 607, and a processing on a surface plate 601. A partial housing 608 is provided.

発光ダイオード602および発光ダイオード603は、光源支持部611により定盤601の上に支持固定されている。また、第1光センサ604は、センサ支持部612により定盤601の上に支持固定されている。センサ支持部612は、接続部609を介して処理部筐体608に接続されている。また、第2光センサ607は、センサ保持部613に固定され、センサ保持部613は、処理部筐体608に固定されている支持梁614の先端部に固定されている。第2光センサ607は、支持梁614の内部に配設されて接続部(不図示)を介して処理部筐体608に接続されている。   The light emitting diode 602 and the light emitting diode 603 are supported and fixed on the surface plate 601 by the light source support portion 611. The first optical sensor 604 is supported and fixed on the surface plate 601 by the sensor support unit 612. The sensor support unit 612 is connected to the processing unit housing 608 via the connection unit 609. The second optical sensor 607 is fixed to the sensor holding unit 613, and the sensor holding unit 613 is fixed to the distal end portion of the support beam 614 fixed to the processing unit housing 608. The second optical sensor 607 is disposed inside the support beam 614 and connected to the processing unit casing 608 via a connection unit (not shown).

第2光センサ607は、発光ダイオード602および発光ダイオード603からの光が、ハーフミラー606を透過して到達する箇所に配置されている。また、第2光センサ607は、発光ダイオード602および発光ダイオード603からの光が、ハーフミラー606を反射して到達する箇所に設けられている。また、検知素子605は、ハーフミラー606と第1光センサ604との間に配置される。   The second optical sensor 607 is disposed at a position where the light from the light emitting diode 602 and the light emitting diode 603 reaches through the half mirror 606. The second photosensor 607 is provided at a location where the light from the light emitting diode 602 and the light emitting diode 603 is reflected by the half mirror 606. The detection element 605 is disposed between the half mirror 606 and the first optical sensor 604.

本測定装置では、発光ダイオード602および発光ダイオード603からの光は、まず、ハーフミラー606に入射し、この一部が透過して第1光センサ604に到達し、他の一部が反射して第2光センサ607に到達する。ここで、検知素子605を配置せずに、第1光センサ604および第2光センサ607の両者で受光される光強度が一致するように、各センサの感度を調整しておく。このように調整した状態で、検知素子605を配置して光源光の強度を各センサで測定すれば、第2光センサ607で検出された光強度と第1光センサ604で検出された光強度との差により、検知素子605の吸光度が測定できる。   In this measuring apparatus, light from the light emitting diode 602 and the light emitting diode 603 first enters the half mirror 606, a part of which is transmitted and reaches the first optical sensor 604, and the other part is reflected. It reaches the second optical sensor 607. Here, the sensitivity of each sensor is adjusted so that the light intensities received by both the first optical sensor 604 and the second optical sensor 607 match without arranging the detection element 605. When the sensing element 605 is arranged in such a state and the intensity of the light source light is measured by each sensor, the light intensity detected by the second light sensor 607 and the light intensity detected by the first light sensor 604 are measured. Thus, the absorbance of the sensing element 605 can be measured.

また、発光ダイオード602のみを点灯させて上述した光強度測定を行えば、波長415nmにおける吸光度が測定できる。また、発光ダイオード603のみを点灯させて上述した光強度測定を行えば、波長525nmにおける吸光度が測定できる。   Further, if the light intensity measurement described above is performed with only the light emitting diode 602 turned on, the absorbance at a wavelength of 415 nm can be measured. Further, if the light intensity measurement described above is performed with only the light emitting diode 603 turned on, the absorbance at a wavelength of 525 nm can be measured.

また、処理部筐体608の内部に、前述した検量線記憶部101,補正用直線関係設定部104,補正値算出部105,補正測定吸光度算出部106,濃度算出部107が収容されている。   Further, the above-described calibration curve storage unit 101, correction linear relationship setting unit 104, correction value calculation unit 105, correction measurement absorbance calculation unit 106, and concentration calculation unit 107 are accommodated in the processing unit housing 608.

上述した測定装置を用いた測定例について説明すると、まず、次に示す検知剤を作製し、この検知剤を用いて検知素子605を作製する。1−フェニル−1,3-ブタンジオン0.157gにエタノール50mlを加えて溶解し、この溶液に酢酸アンモニウム7.5gと酢酸0.15mlと水を加え60mlとして検知剤溶液とする。この検知剤溶液に孔径4nmの多孔質ガラス(コーニングバイコール多孔質ガラス#3970)を浸漬し、これを24時間処理することで、多孔質ガラスの孔内に検知剤溶液を含浸させる。次に、検知剤溶液を含浸させた多孔質ガラスを、乾燥窒素中で24時間乾燥させ、検知素子605とする。   A measurement example using the above-described measuring apparatus will be described. First, the following detection agent is manufactured, and the detection element 605 is manufactured using this detection agent. 50 ml of ethanol is added to 0.157 g of 1-phenyl-1,3-butanedione to dissolve, and 7.5 g of ammonium acetate, 0.15 ml of acetic acid and water are added to this solution to make 60 ml to form a detection agent solution. Porous glass (Corning Vycor porous glass # 3970) having a pore diameter of 4 nm is immersed in this detection agent solution, and this is treated for 24 hours, thereby impregnating the detection agent solution into the pores of the porous glass. Next, the porous glass impregnated with the detection agent solution is dried in dry nitrogen for 24 hours to form a detection element 605.

上述した検知素子605を図6に示す測定装置にセットし、まず、測定対象の環境に晒す前に、発光ダイオード602を点灯したときの吸光度(初期吸光度)を測定しておく。次に、測定装置を測定対象の室内に8時間放置した後、発光ダイオード602を点灯したときの吸光度(測定吸光度)および発光ダイオード603を点灯したときの吸光度(補正用吸光度)を測定する。なお、検知素子605と同じ構成の検知素子を用い、図2のフローチャートのステップS201〜ステップS203で説明したことにより、予め補正用検量線が作製されており、これらが処理部筐体608内の記憶部(検量線記憶部101)に記憶されている。   The above-described sensing element 605 is set in the measuring apparatus shown in FIG. 6, and first, the absorbance (initial absorbance) when the light-emitting diode 602 is turned on is measured before exposure to the measurement target environment. Next, after the measurement apparatus is left in the room to be measured for 8 hours, the absorbance when the light emitting diode 602 is turned on (measured absorbance) and the absorbance when the light emitting diode 603 is turned on (correction absorbance) are measured. Note that using the detection element having the same configuration as the detection element 605, the calibration curve for correction has been prepared in advance by the description in steps S201 to S203 in the flowchart of FIG. It is stored in the storage unit (calibration curve storage unit 101).

上述した測定で、発光ダイオード602を点灯したときの吸光度の測定結果のみでは、ホルムアルデヒドの濃度は、125ppb(1時間平均)と算出される。これは、測定吸光度より初期吸光度を減ずることで得られる結果である。   In the above-described measurement, the formaldehyde concentration is calculated as 125 ppb (1 hour average) only from the measurement result of the absorbance when the light emitting diode 602 is turned on. This is a result obtained by subtracting the initial absorbance from the measured absorbance.

一方、補正用吸光度と記憶されている補正用検量線とによりレイリー散乱による波長415nmにおける吸収よりなる補正値を求め、求めた補正値を測定吸光度より減じた補正吸光度を用いてホルムアルデヒドの濃度を算出すると、95ppb(1時間平均)となり、レイリー散乱の影響を排除した結果が得られる。   On the other hand, a correction value consisting of absorption at a wavelength of 415 nm due to Rayleigh scattering is obtained from the correction absorbance and the stored calibration curve, and the concentration of formaldehyde is calculated using the corrected absorbance obtained by subtracting the obtained correction value from the measured absorbance. Then, it becomes 95 ppb (1 hour average), and the result which excluded the influence of Rayleigh scattering is obtained.

以上に説明したように、本発明によれば、測定においては、光源として2つの波長を用いれば、レイリー散乱の影響を排除した状態で、透明な多孔体を担体として検知剤を担持した検知素子よるホルムアルデヒドの測定が行えるようになる。   As described above, according to the present invention, in the measurement, when two wavelengths are used as the light source, a detection element that carries a detection agent using a transparent porous body as a carrier in a state in which the influence of Rayleigh scattering is eliminated. This makes it possible to measure formaldehyde.

なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの組み合わせおよび変形が実施可能であることは明白である。例えば、補正用検量線の作製では、複数の検知素子を異なる湿度の環境に晒した後、より低い湿度の環境において、各々を測定することで、異なる水分保持状態で少なくとも一方はレイリー散乱が発生している2つの状態で500〜800nmの測定波長範囲で吸光度を測定し、第1吸光度変化および第2吸光度変化を得るようにしてもよい。   The present invention is not limited to the embodiments described above, and many combinations and modifications can be implemented by those having ordinary knowledge in the art within the technical idea of the present invention. It is obvious. For example, in the production of a calibration curve for correction, after exposing multiple sensing elements to different humidity environments, each is measured in a lower humidity environment, so that at least one of the different moisture retention states causes Rayleigh scattering. In the two states, the absorbance may be measured in the measurement wavelength range of 500 to 800 nm to obtain the first absorbance change and the second absorbance change.

また、上述した補正用検量線の作製において、500〜700nmの範囲で第1吸光度変化および第2吸光度変化を得るようにし、第1波長は、500〜700nmの範囲より選択してもよい。700〜800nmの範囲では、レイリー散乱による影響が大きくないので、500〜700nmの範囲より選択した第1波長を用いることで、精度の低下を抑制することができる。   In the preparation of the calibration curve for correction described above, the first absorbance change and the second absorbance change may be obtained in the range of 500 to 700 nm, and the first wavelength may be selected from the range of 500 to 700 nm. In the range of 700 to 800 nm, the influence due to Rayleigh scattering is not significant, so that a decrease in accuracy can be suppressed by using the first wavelength selected from the range of 500 to 700 nm.

101…検量線記憶部、102…測定用検知素子、103…吸光度測定部、104…補正用直線関係設定部、105…補正値算出部、106…補正測定吸光度算出部、107…濃度算出部、108…光源。   DESCRIPTION OF SYMBOLS 101 ... Calibration curve memory | storage part, 102 ... Detection element for measurement, 103 ... Absorbance measurement part, 104 ... Correction linear relationship setting part, 105 ... Correction value calculation part, 106 ... Correction measurement absorbance calculation part, 107 ... Concentration calculation part, 108: Light source.

Claims (4)

ホルムアルデヒドと反応して可視領域の吸収が変化する検知剤が孔内に担持された透明な多孔体からなる検知素子を、異なる水分保持状態で少なくとも一方はレイリー散乱が発生している2つの状態で500〜800nmの測定波長範囲で吸光度を測定し、第1吸光度変化および第2吸光度変化を得る第1ステップと、
前記第1吸光度変化および前記第2吸光度変化と、500〜800nmの測定波長の4乗の逆数との間の関係を示す第1の直線の第1の傾きおよび第2の直線の第2の傾きを求める第2ステップと、
500〜800nmの範囲より選択した第1波長における前記第1吸光度変化の第1吸光度と前記第1の傾き、および前記第1波長における前記第2吸光度変化の第2吸光度と前記第2の傾きとの関係を示す補正用検量線を求める第3ステップと、
前記検知剤が孔内に担持された透明な前記多孔体からなる測定用検知素子の、ホルムアルデヒドが含まれている雰囲気に晒されていない初期状態の初期吸光度を、ホルムアルデヒドと反応した前記検知剤が吸収する第2波長で測定する第4ステップと、
測定対象の雰囲気に晒された前記測定用検知素子を前記第2波長で測定した測定吸光度、および前記第1波長で測定した補正用吸光度を得る第5ステップと、
前記補正用検量線より前記補正用吸光度に対応する補正用直線関係を求める第6ステップと、
前記補正用直線関係より前記第2波長におけるレイリー散乱による吸収よりなる補正値を求める第7ステップと、
前記測定吸光度より前記補正値を減じた補正測定吸光度を求める第8ステップと、
前記補正測定吸光度と前記初期吸光度との差より前記測定対象の雰囲気に含まれているホルムアルデヒドの濃度を求める第9ステップと
を少なくとも備え、
前記検知剤がホルムアルデヒドと反応して変化する可視領域の吸収は、500nmより小さい範囲であり、前記第2波長は500nmより小さい可視領域の波長である
ことを特徴とするガス測定方法。
A detection element composed of a transparent porous body in which a detection agent that changes absorption in the visible region by reacting with formaldehyde is supported in the pores is in two states in which Rayleigh scattering occurs in at least one of the different moisture retention states. A first step of measuring absorbance in a measurement wavelength range of 500 to 800 nm to obtain a first absorbance change and a second absorbance change;
The first slope of the first straight line and the second slope of the second straight line showing the relationship between the first absorbance change and the second absorbance change, and the inverse of the fourth power of the measurement wavelength of 500 to 800 nm. A second step for determining
The first absorbance and the first slope of the first absorbance change at the first wavelength selected from the range of 500 to 800 nm, and the second absorbance and the second slope of the second absorbance change at the first wavelength, A third step for obtaining a calibration curve for correction indicating the relationship of
The detection agent for measurement comprising the transparent porous body, in which the detection agent is supported in the pores, has an initial absorbance in an initial state that is not exposed to an atmosphere containing formaldehyde, and the detection agent that has reacted with formaldehyde A fourth step of measuring at the second wavelength to absorb;
A fifth step of obtaining a measurement absorbance measured at the second wavelength of the measurement sensing element exposed to the atmosphere to be measured, and a correction absorbance measured at the first wavelength;
A sixth step of obtaining a correction linear relationship corresponding to the correction absorbance from the correction calibration curve;
A seventh step of obtaining a correction value consisting of absorption by Rayleigh scattering at the second wavelength from the correction linear relationship;
An eighth step of obtaining a corrected measured absorbance obtained by subtracting the correction value from the measured absorbance;
And at least a ninth step of determining the concentration of formaldehyde contained in the atmosphere of the measurement object from the difference between the corrected measurement absorbance and the initial absorbance,
Absorption in the visible region where the detection agent reacts with formaldehyde changes in a range smaller than 500 nm, and the second wavelength is a wavelength in the visible region smaller than 500 nm.
請求項1記載のガス測定方法において、
前記検知剤は、アセチルアセトン,1−フェニル−1,3−ブタンジオン,および1,3−ジフェニル−1,3−プロパンジオンの中より選択されたβ−ジケトンと酢酸アンモニウムと酢酸とを含むものである
ことを特徴とするガス測定方法。
The gas measurement method according to claim 1,
The detection agent includes a β-diketone selected from acetylacetone, 1-phenyl-1,3-butanedione, and 1,3-diphenyl-1,3-propanedione, ammonium acetate, and acetic acid. Characteristic gas measurement method.
ホルムアルデヒドと反応して可視領域の吸収が変化する検知剤が孔内に担持された透明な多孔体からなる検知素子を、異なる水分保持状態で少なくとも一方はレイリー散乱が発生している2つの状態で500〜800nmの測定波長範囲で吸光度を測定することで得られた第1吸光度変化および第2吸光度変化と、
500〜800nmの測定波長の4乗の逆数と、
の間の関係を示す第1の直線の第1の傾きおよび第2の直線の第2の傾きを求め、
500〜800nmの範囲より選択した第1波長における前記第1吸光度変化の第1吸光度と前記第1の傾き、および前記第1波長における前記第2吸光度変化の第2吸光度と前記第2の傾きとの関係を求めることで得られた補正用検量線が記憶されている検量線記憶部と、
前記検知剤が孔内に担持された透明な前記多孔体からなる測定用検知素子と、
測定対象の雰囲気に晒された前記測定用検知素子をホルムアルデヒドと反応した前記検知剤が吸収する第2波長で測定した測定吸光度、および前記第1波長で測定した補正用吸光度を測定する吸光度測定手段と、
前記検量線記憶部に記憶されている前記補正用検量線より前記吸光度測定手段が測定した前記補正用吸光度に対応する補正用直線関係を求める補正用直線関係設定手段と、
この補正用直線関係設定手段が求めた前記補正用直線関係より前記第2波長におけるレイリー散乱による吸収よりなる補正値を求める補正値算出手段と、
この補正値算出手段が算出した前記補正値を前記測定吸光度より減じた補正測定吸光度を求める補正測定吸光度算出手段と、
前記吸光度測定手段が前記第2波長で測定した前記測定対象の雰囲気に晒されていない前記測定用検知素子の初期吸光度と、前記補正測定吸光度との差により前記測定対象の雰囲気に含まれているホルムアルデヒドの濃度を求める濃度算出手段と、
前記第1波長および前記第2波長の光を出力する光源と
を備え、
前記検知剤がホルムアルデヒドと反応して変化する可視領域の吸収は、500nmより小さい範囲であり、前記第2波長は500nmより小さい可視領域の波長であることを特徴とするガス測定装置。
A detection element composed of a transparent porous body in which a detection agent that changes absorption in the visible region by reacting with formaldehyde is supported in the pores is in two states in which Rayleigh scattering occurs in at least one of the different moisture retention states. A first absorbance change and a second absorbance change obtained by measuring absorbance in a measurement wavelength range of 500 to 800 nm,
The reciprocal of the fourth power of the measurement wavelength of 500 to 800 nm;
Determining a first slope of a first straight line and a second slope of a second straight line that indicate the relationship between
The first absorbance and the first slope of the first absorbance change at the first wavelength selected from the range of 500 to 800 nm, and the second absorbance and the second slope of the second absorbance change at the first wavelength, A calibration curve storage unit in which a calibration curve for correction obtained by obtaining the relationship is stored;
A sensing element for measurement comprising the transparent porous body with the sensing agent carried in the pores;
Absorbance measuring means for measuring the measurement absorbance measured at the second wavelength absorbed by the detection agent reacted with formaldehyde on the measurement sensing element exposed to the atmosphere to be measured, and the correction absorbance measured at the first wavelength When,
A correction linear relationship setting means for obtaining a correction linear relationship corresponding to the correction absorbance measured by the absorbance measurement means from the correction calibration curve stored in the calibration curve storage unit;
Correction value calculating means for obtaining a correction value consisting of absorption by Rayleigh scattering at the second wavelength from the correction linear relation obtained by the correction linear relation setting means;
Corrected measurement absorbance calculation means for obtaining a corrected measurement absorbance obtained by subtracting the correction value calculated by the correction value calculation means from the measured absorbance;
The absorbance measurement means is included in the measurement target atmosphere due to the difference between the initial absorbance of the measurement sensing element not exposed to the measurement target atmosphere measured at the second wavelength and the corrected measurement absorbance. A concentration calculating means for determining the concentration of formaldehyde;
A light source that outputs light of the first wavelength and the second wavelength,
The gas measuring apparatus according to claim 1, wherein absorption in the visible region that changes when the detection agent reacts with formaldehyde is in a range smaller than 500 nm, and the second wavelength is a wavelength in the visible region smaller than 500 nm.
請求項3記載のガス測定装置において、
前記検知剤は、アセチルアセトン,1−フェニル−1,3−ブタンジオン,および1,3−ジフェニル−1,3−プロパンジオンの中より選択されたβ−ジケトンと酢酸アンモニウムと酢酸とを含むものである
ことを特徴とするガス測定装置。
In the gas measuring device according to claim 3,
The detection agent includes a β-diketone selected from acetylacetone, 1-phenyl-1,3-butanedione, and 1,3-diphenyl-1,3-propanedione, ammonium acetate, and acetic acid. Characteristic gas measuring device.
JP2010118077A 2010-05-24 2010-05-24 Gas measuring method and apparatus Expired - Fee Related JP5336425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010118077A JP5336425B2 (en) 2010-05-24 2010-05-24 Gas measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010118077A JP5336425B2 (en) 2010-05-24 2010-05-24 Gas measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2011247611A true JP2011247611A (en) 2011-12-08
JP5336425B2 JP5336425B2 (en) 2013-11-06

Family

ID=45413068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010118077A Expired - Fee Related JP5336425B2 (en) 2010-05-24 2010-05-24 Gas measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP5336425B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015215192A (en) * 2014-05-08 2015-12-03 日本電信電話株式会社 Pore parameter calculation method for transparent porous body
CN106104259A (en) * 2014-03-14 2016-11-09 泰尔茂株式会社 component measuring device, method and program
JP2016540974A (en) * 2013-11-13 2016-12-28 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company Microimager analysis system including optical element and method of using the same
CN114486756A (en) * 2022-01-18 2022-05-13 河北先河环保科技股份有限公司 Method for estimating concentration of formaldehyde in atmosphere

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185804A (en) * 1996-12-20 1998-07-14 Tokyo Gas Co Ltd Gas concentration measuring apparatus
JP2006258533A (en) * 2005-03-16 2006-09-28 Nippon Telegr & Teleph Corp <Ntt> Housing for ozone porous glass sensor
JP2009069048A (en) * 2007-09-14 2009-04-02 Nippon Telegr & Teleph Corp <Ntt> Gas concentration calculation method by colorimetric gas-sensing paper, and gas concentration measuring device
JP2010091279A (en) * 2008-10-03 2010-04-22 Nippon Telegr & Teleph Corp <Ntt> Method and instrument for measuring gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10185804A (en) * 1996-12-20 1998-07-14 Tokyo Gas Co Ltd Gas concentration measuring apparatus
JP2006258533A (en) * 2005-03-16 2006-09-28 Nippon Telegr & Teleph Corp <Ntt> Housing for ozone porous glass sensor
JP2009069048A (en) * 2007-09-14 2009-04-02 Nippon Telegr & Teleph Corp <Ntt> Gas concentration calculation method by colorimetric gas-sensing paper, and gas concentration measuring device
JP2010091279A (en) * 2008-10-03 2010-04-22 Nippon Telegr & Teleph Corp <Ntt> Method and instrument for measuring gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016540974A (en) * 2013-11-13 2016-12-28 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company Microimager analysis system including optical element and method of using the same
CN106104259A (en) * 2014-03-14 2016-11-09 泰尔茂株式会社 component measuring device, method and program
CN106104259B (en) * 2014-03-14 2018-11-09 泰尔茂株式会社 Component measuring device, method and storage medium
JP2015215192A (en) * 2014-05-08 2015-12-03 日本電信電話株式会社 Pore parameter calculation method for transparent porous body
CN114486756A (en) * 2022-01-18 2022-05-13 河北先河环保科技股份有限公司 Method for estimating concentration of formaldehyde in atmosphere

Also Published As

Publication number Publication date
JP5336425B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
US5315673A (en) Optical waveguide vapor sensor
US7662636B2 (en) Ozone gas sensing element, detection apparatus, and measurement method
US20220178834A1 (en) Method and apparatus for continuous gas monitoring using micro-colorimetric sensing and optical tracking of color spatial distribution
US20100075431A1 (en) Formaldehyde detector body, formaldehyde detector, formaldehyde detection method and formaldehyde detection reagent
JP5336425B2 (en) Gas measuring method and apparatus
JP4456131B2 (en) Formaldehyde concentration measurement method
JP2009539064A5 (en)
Pohl et al. Optical carbon dioxide detection in the visible down to the single digit ppm range using plasmonic perfect absorbers
JP4485977B2 (en) Case for ozone porous glass sensor
JP5192341B2 (en) Gas measuring device and method
Radica et al. Phenyl-modified hybrid organic-inorganic microporous films as high efficient platforms for styrene sensing
JP2009507219A (en) Zirconium oxide luminescent oxygen sensor
JP4410266B2 (en) Formaldehyde measurement method
JP7351462B2 (en) Nitric oxide gas detection method and nitric oxide gas detection device
CN116297279A (en) Method, system, device and equipment for detecting concentration of formaldehyde gas/VOC gas
JP4891283B2 (en) Measuring method and measuring apparatus for oxidizing gas
JPH09274032A (en) Method and material for detection of nitrogen dioxide gas
JP6468591B2 (en) Nitric oxide gas detection method, nitric oxide gas detection element, nitric oxide gas detection device
Sanchez et al. Tin dioxide-based gas sensors for detection of hydrogen fluoride in air
Ishiguro et al. Development of a detection tablet for a portable NO2 monitoring system
US20020031447A1 (en) Optical sensor having a sensitive layer containing particles
JP4787345B2 (en) Toluene detector and measuring method
JP3648105B2 (en) Nitrogen dioxide gas detection method and nitrogen dioxide gas detection device
JP4080512B2 (en) Passive type flux sampler
JP4995791B2 (en) Formaldehyde detection sheet

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111028

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111028

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121002

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130801

R150 Certificate of patent or registration of utility model

Ref document number: 5336425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees