JP2016141793A - Polyolefin resin composition and gas barrier material - Google Patents

Polyolefin resin composition and gas barrier material Download PDF

Info

Publication number
JP2016141793A
JP2016141793A JP2015021193A JP2015021193A JP2016141793A JP 2016141793 A JP2016141793 A JP 2016141793A JP 2015021193 A JP2015021193 A JP 2015021193A JP 2015021193 A JP2015021193 A JP 2015021193A JP 2016141793 A JP2016141793 A JP 2016141793A
Authority
JP
Japan
Prior art keywords
polyolefin resin
resin composition
gas barrier
organic
swellable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015021193A
Other languages
Japanese (ja)
Other versions
JP6554697B2 (en
Inventor
川村 孝
Takashi Kawamura
孝 川村
正紀 宮本
Masanori Miyamoto
正紀 宮本
穣 田淵
Minoru Tabuchi
穣 田淵
田村 堅志
Takashi Tamura
堅志 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
National Institute for Materials Science
Original Assignee
DIC Corp
National Institute for Materials Science
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, National Institute for Materials Science, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2015021193A priority Critical patent/JP6554697B2/en
Publication of JP2016141793A publication Critical patent/JP2016141793A/en
Application granted granted Critical
Publication of JP6554697B2 publication Critical patent/JP6554697B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin composition obtained by dispersing swellable laminar silicate in a polyolefin resin uniformly and a gas barrier using the resin composition.SOLUTION: There is provided a polyolefin resin composition containing a non-swellable organic-inorganic composite where an organic onium compound is interlayer inserted into a non-swellable laminar silicate compound having an interlayer ion, where the polyolefin resin contains a modified polyolefin resin having a polar group.SELECTED DRAWING: Figure 1

Description

本発明は、特定の有機−無機複合体を含有するポリオレフィン樹脂組成物、及びそれを用いて得られるガスバリア材に関する。   The present invention relates to a polyolefin resin composition containing a specific organic-inorganic composite and a gas barrier material obtained using the same.

熱可塑性樹脂の中でポリオレフィン樹脂は加工性がよく、安価で、しかもリサイクルし易いので、包装材料あるいは容器の用途に多用されている。これら樹脂はさらに機能を高めるため、各種の無機化合物や有機化合物を添加する複合化がよく行われる。   Among thermoplastic resins, polyolefin resins are often used for packaging materials or containers because they are easy to process, inexpensive, and easy to recycle. In order to further enhance the functions of these resins, complexation in which various inorganic compounds and organic compounds are added is often performed.

また、内容物保存の目的で、密封性が求められる用途に利用される包装材料あるいは容器に用いられる熱可塑性樹脂は、酸素や水分の透過が抑制できるガスバリア性の高い樹脂材料が求められている。ガスバリア性を高める方法としては、
(1)化学構造的にガス透過性の小さい熱可塑性樹脂を用いる方法、
(2)無機物や有機物フィラーを多量に添加して気体透過性を下げた熱可塑性樹脂を使用する方法、
(3)ガスバリア性の高い熱可塑性樹脂と多層成形した材料を用いる方法、
(4)熱可塑性樹脂からなる成形物に気体不透過性の金属蒸着層を設けた材料を用いる方法、等が提案されている。
これらの中で無機物を添加してガスバリア性を向上させる手段として、粘土鉱物を主とした膨潤性層状ケイ酸塩をナノメートルレベルで分散制御した高分子−粘土ナノコンポジットの研究開発が盛んに行われている。
In addition, for the purpose of preserving the contents, a thermoplastic material used for packaging materials or containers used for applications that require hermeticity is required to be a resin material with high gas barrier properties that can suppress permeation of oxygen and moisture. . As a method of improving the gas barrier property,
(1) A method using a thermoplastic resin having a small gas permeability in terms of chemical structure,
(2) A method of using a thermoplastic resin in which a large amount of inorganic or organic filler is added to reduce gas permeability,
(3) A method using a thermoplastic resin having a high gas barrier property and a multilayer molded material,
(4) A method using a material in which a gas-impermeable metal vapor deposition layer is provided on a molded product made of a thermoplastic resin has been proposed.
Among these, as a means to improve the gas barrier properties by adding inorganic substances, research and development of polymer-clay nanocomposites in which swellable layered silicates mainly composed of clay minerals are controlled to be dispersed at the nanometer level has been actively conducted. It has been broken.

ポリオレフィン樹脂−粘土ナノコンポジットを使用した例としては、特許文献1、2等があるが、これらに記載の発明では膨潤性粘土鉱物を使用しているため、水蒸気バリア性は改善されない欠点を有している。これらの文献には、水蒸気バリア性を改善するために非膨潤性粘土鉱物を使用することは記載されていない。 Examples of using polyolefin resin-clay nanocomposites include Patent Documents 1 and 2, etc., but in the inventions described in these, since a swellable clay mineral is used, water vapor barrier properties are not improved. ing. These documents do not describe the use of non-swellable clay minerals to improve water vapor barrier properties.

また、特許文献3、4には官能基を有するポリオレフィン樹脂と有機化層状粘土鉱物とを使用することが記載されているが、非膨潤性粘度鉱物の記載は無く、膨潤性マイカを推奨しており、且つガスバリア性に関する記載は無い。
ポリオレフィン樹脂と粘土鉱物を使用したガスバリア性フィルムの例としては、特許文献5があるが、層状ケイ酸塩側面を界面活性剤で修飾しているため、水蒸気バリア性は改善されず、また非膨潤性層状ケイ酸塩を使用した例は示されていない。
Patent Documents 3 and 4 describe the use of a polyolefin resin having a functional group and an organically modified layered clay mineral, but there is no description of a non-swellable viscosity mineral, and swellable mica is recommended. In addition, there is no description regarding gas barrier properties.
As an example of a gas barrier film using a polyolefin resin and a clay mineral, there is Patent Document 5, but since the side surface of the layered silicate is modified with a surfactant, the water vapor barrier property is not improved and is not swollen. An example using a functional layered silicate is not shown.

特許文献6には、層状ケイ酸塩端面をシランカップリング剤で修飾する方法が示されているが、膨潤性マイカを推奨しており、非膨潤性粘土鉱物に関する具体例は記載されていなく、水蒸気バリア性に関する評価例も無い。 Patent Document 6 shows a method of modifying the end face of the layered silicate with a silane coupling agent, but recommends swellable mica, and does not describe any specific examples regarding non-swellable clay minerals. There is no evaluation example about water vapor barrier property.

一方、非膨潤性粘度鉱物の例としては特許文献7に記載されているが、ポリオレフィン樹脂を使用した具体例は無く、ガスバリア性を評価した具体例も記載されていない。
膨潤性層状ケイ酸塩を使用した場合、膨潤性層状ケイ酸塩が吸湿性を持っているため、酸素バリア性を向上させることはできるが、水蒸気バリア性を向上させることはできない。また、通常のポリオレフィンは吸湿性が低いため、水蒸気バリア性に関しては、吸湿性はあるが酸素バリア性が優れているポリアミド樹脂、エチレン−ビニルアルコール樹脂よりは良好であるが、酸素バリア性、及び有機溶剤バリア性は劣っているのが一般的である。
On the other hand, although an example of a non-swellable viscosity mineral is described in Patent Document 7, there is no specific example using a polyolefin resin, and no specific example of evaluating gas barrier properties is described.
When the swellable layered silicate is used, since the swellable layered silicate has hygroscopicity, the oxygen barrier property can be improved, but the water vapor barrier property cannot be improved. Further, since ordinary polyolefin has low hygroscopicity, the water vapor barrier property is better than polyamide resin and ethylene-vinyl alcohol resin that are hygroscopic but excellent in oxygen barrier property. The organic solvent barrier property is generally poor.

また、層間にインターカレーションされた有機化層状ケイ酸塩を使用した場合、通常の非極性ポリオレフィン樹脂に層間剥離した状態で均一に分散させることは困難であり、有機化層状ケイ酸塩が層間剥離の無い凝集した状態でポリオレフィン系樹脂に分散しても、ガスバリア性の改善効果は得られないのが現状である。 In addition, when using an organically layered silicate intercalated between layers, it is difficult to uniformly disperse the conventional nonpolar polyolefin resin in a state of delamination. Even if dispersed in a polyolefin-based resin in an agglomerated state without peeling, the present situation is that the effect of improving the gas barrier property cannot be obtained.

特開平07−331092号公報Japanese Unexamined Patent Publication No. 07-331092 特開平10−30039号公報Japanese Patent Laid-Open No. 10-30039 特開平10−182892号公報Japanese Patent Laid-Open No. 10-182892 特開2005−320488号公報JP 2005-320488 A 特開2001−64454号公報JP 2001-64454 A 特開2000−355640号公報JP 2000-355640 A WO2006/22431号公報WO2006 / 22431

本発明の課題は、非膨潤性層状ケイ酸をポリオレフィン樹脂に均一に分散させることにより得られる樹脂組成物を提供すること、及び該樹脂組成物を用いたガスバリア材を提供することにある。   An object of the present invention is to provide a resin composition obtained by uniformly dispersing non-swellable layered silicic acid in a polyolefin resin, and to provide a gas barrier material using the resin composition.

層間イオンを有する非膨潤性層状ケイ酸塩化合物に有機オニウム化合物が層間挿入された非膨潤性有機−無機複合体を含有するポリオレフィン樹脂組成物であって、ポリオレフィン樹脂が、極性基を有する変性ポリオレフィン樹脂を含んでなることを特徴とするポリオレフィン樹脂組成物、及び該樹脂組成物を含有するガスバリア材の提供による。   A polyolefin resin composition comprising a non-swellable organic-inorganic composite in which an organic onium compound is intercalated in a non-swellable layered silicate compound having interlayer ions, wherein the polyolefin resin has a polar group By providing a polyolefin resin composition comprising a resin, and a gas barrier material containing the resin composition.

本発明によれば、酸素バリア性、及び水蒸気バリア性に優れるガスバリア材を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the gas barrier material excellent in oxygen barrier property and water vapor | steam barrier property can be provided.

実施例における無水マレイン酸変性ホモポリプロピレン(B1a)のNMRチャートである。1 is an NMR chart of maleic anhydride-modified homopolypropylene (B1a) in Examples.

本発明は、従来、層間に有機物をインターカレーションした有機化処理が難しいといわれた吸湿性の少ない非膨潤性層状ケイ酸を特定の条件化で有機物を層間挿入させた非膨潤性有機化層状ケイ酸を特定のポリオレフィン樹脂に均一に分散させ、酸素バリア性と水蒸気バリア性の両方のバリア特性を向上させるポリオレフィン系ガスバリア性樹脂組成物及びそれを用いた成形体に関する。   The present invention is a non-swellable organic layered structure in which an organic substance is intercalated under specific conditions in a non-swellable layered silicic acid having low hygroscopicity, which has been said to be difficult to organically intercalate organic substances between layers. The present invention relates to a polyolefin-based gas barrier resin composition in which silicic acid is uniformly dispersed in a specific polyolefin resin to improve both oxygen barrier properties and water vapor barrier properties, and a molded body using the same.

即ち、本発明は以下から構成される。
1.層間イオンを有する非膨潤性層状ケイ酸塩化合物に有機オニウム化合物が層間挿入された非膨潤性有機−無機複合体を含有するポリオレフィン樹脂組成物であって、
ポリオレフィン樹脂が、極性基を有する変性ポリオレフィン樹脂を含んでなることを特徴とするポリオレフィン樹脂組成物、
2.層間イオンが、カリウムイオンである1.に記載のポリオレフィン樹脂組成物、
3.有機オニウム化合物が、炭素数が8以上の1級から3級のアミン塩、4級アンモニウム塩、あるいはアミノ酸塩類である1.又は2.に記載のポリオレフィン樹脂組成物、
4.ポリオレフィン樹脂が、エチレン系単量体、又はプロピレン系単量体から得られるポリオレフィン樹脂である1.〜3.の何れかに記載のポリオレフィン樹脂組成物、
5.極性基が、カルボキシ基、無水カルボキシ基、グリシジル基、又はアクリル酸エステル基である1.〜4.の何れかに記載のポリオレフィン樹脂組成物、
6.極性基を有する変性ポリオレフィン樹脂が、
(1)極性基濃度が0.1質量%以上で、分子量が10000〜100000であるポリオレフィン樹脂であるか、又は、
(2)極性基濃度が0.1質量%未満で、メルトフローレートが50g/10分以下のポリオレフィン樹脂である1.〜5.の何れかに記載のポリオレフィン樹脂組成物、
7.1.〜6.の何れかに記載のポリオレフィン樹脂組成物を用いて得られるガスバリア材、
8.ガスバリア材が、ガスバリア性フィルムである7.に記載のガスバリア材、
9.ガスバリア材が、ガスバリア性成形体である7.に記載のガスバリア材。
That is, this invention is comprised from the following.
1. A polyolefin resin composition comprising a non-swellable organic-inorganic composite in which an organic onium compound is intercalated in a non-swellable layered silicate compound having interlayer ions,
A polyolefin resin composition, wherein the polyolefin resin comprises a modified polyolefin resin having a polar group,
2. 1. Interlayer ions are potassium ions A polyolefin resin composition according to claim 1,
3. 1. The organic onium compound is a primary to tertiary amine salt having 8 or more carbon atoms, a quaternary ammonium salt, or an amino acid salt. Or 2. A polyolefin resin composition according to claim 1,
4). 1. The polyolefin resin is a polyolefin resin obtained from an ethylene monomer or a propylene monomer. ~ 3. A polyolefin resin composition according to any of the above,
5. 1. The polar group is a carboxy group, an anhydrous carboxy group, a glycidyl group, or an acrylate group. ~ 4. A polyolefin resin composition according to any of the above,
6). Modified polyolefin resin having a polar group,
(1) A polyolefin resin having a polar group concentration of 0.1% by mass or more and a molecular weight of 10,000 to 100,000, or
(2) A polyolefin resin having a polar group concentration of less than 0.1% by mass and a melt flow rate of 50 g / 10 min or less. ~ 5. A polyolefin resin composition according to any of the above,
7.1. ~ 6. A gas barrier material obtained using the polyolefin resin composition according to any one of
8). 6. The gas barrier material is a gas barrier film. Gas barrier material according to
9. 6. The gas barrier material is a gas barrier molded article. The gas barrier material described in 1.

(ポリオレフィン樹脂)
本発明のポリオレフィン樹脂は、極性基を有する変性ポリオレフィン樹脂であることに特徴を有する。
極性基としては、カルボキシル基、無水カルボキシル基、グリシジル基、又はアクリル酸エステル基から選ばれる基が好ましく用いられる。これら極性基以外の極性基は本発明に用いられる非膨潤性−無機複合体との親和性がやや劣り、非膨潤性−無機複合体の分散性が低下し、ガスバリア性改善効果に乏しい。
(Polyolefin resin)
The polyolefin resin of the present invention is characterized by being a modified polyolefin resin having a polar group.
As the polar group, a group selected from a carboxyl group, an anhydrous carboxyl group, a glycidyl group, or an acrylate group is preferably used. Polar groups other than these polar groups are slightly inferior in affinity with the non-swellable-inorganic composite used in the present invention, the dispersibility of the non-swellable-inorganic composite is lowered, and the gas barrier property improving effect is poor.

また、極性基濃度0.1質量%以上の極性基を有する変性ポリオレフィン樹脂ではゲルパーミテーションクロマトグラフで測定されたその分子量が10000〜100000の範囲であることが好ましい。分子量が10000以下では極性基濃度が0.1質量%以上であっても、極性基非含有ポリオレフィン樹脂との相溶性が低下し、非膨潤性−無機複合体の分散性が低下する。また分子量が100000を超えると組成物の粘度増加が大きく、フィルム加工性が低下する。
極性基濃度が0.1質量%未満の極性基を有する変性ポリオレフィン樹脂では、メルトフローレートが50g/10分以下であることが好ましい。メルトフローレートが50g/10分を超えるとフィルム加工性が低下する。該ポリオレフィン樹脂は、エチレン系単量体、又はプロピレン系単量体から得られるものが好ましい。
In the case of a modified polyolefin resin having a polar group having a polar group concentration of 0.1% by mass or more, the molecular weight measured by gel permeation chromatography is preferably in the range of 10,000 to 100,000. When the molecular weight is 10,000 or less, even if the polar group concentration is 0.1% by mass or more, the compatibility with the polar group-free polyolefin resin is lowered, and the dispersibility of the non-swellable-inorganic composite is lowered. On the other hand, when the molecular weight exceeds 100,000, the viscosity of the composition is greatly increased and the film processability is lowered.
In the modified polyolefin resin having a polar group having a polar group concentration of less than 0.1% by mass, the melt flow rate is preferably 50 g / 10 min or less. When the melt flow rate exceeds 50 g / 10 min, the film processability decreases. The polyolefin resin is preferably one obtained from an ethylene monomer or a propylene monomer.

このようなポリオレフィン樹脂としては、例えば、ポリエチレン,ポリプロピレン,ポリブテン,ポリペンテン,エチレン−プロピレン共重合体,エチレン−ブテン共重合体,ポリブタジエン,ポリイソプレン,水添ポリブタジエン,水添ポリイソプレン,エチレンーイソプレン共重合体、エチレン−水添イソプレン共重合体、エチレン−プロピレン−ジエン共重合体,エチレン−ブテン−ジエン共重合体,ブチルゴム,ポリメチルペンテン,スチレン−ブタジエン共重合体,及びスチレン−水添ブタジエン共重合体等を挙げることができるがこれらに限らない。
極性基を有する変性ポリオレフィン樹脂は、吸湿性が少なくまた溶融時の熱安定性に優れ、良成形性であることから、エチレン系単量体、又はプロピレン系単量体から得られるものが好ましい。
Examples of such polyolefin resins include polyethylene, polypropylene, polybutene, polypentene, ethylene-propylene copolymer, ethylene-butene copolymer, polybutadiene, polyisoprene, hydrogenated polybutadiene, hydrogenated polyisoprene, and ethylene-isoprene copolymer. Polymer, ethylene-hydrogenated isoprene copolymer, ethylene-propylene-diene copolymer, ethylene-butene-diene copolymer, butyl rubber, polymethylpentene, styrene-butadiene copolymer, and styrene-hydrogenated butadiene copolymer Although a polymer etc. can be mentioned, it is not restricted to these.
The modified polyolefin resin having a polar group is preferably one obtained from an ethylene monomer or a propylene monomer because it has a low hygroscopic property, is excellent in thermal stability upon melting, and has good moldability.

(有機−無機複合体)
本発明の有機−無機複合体は、層間イオンを有する非膨潤性層状ケイ酸塩化合物に有機オニウム化合物が層間挿入された非膨潤性有機−無機複合体を好ましく用いることができる。
好ましい有機−無機複合体としては、例えば、特許第5024783号公報に記載のものを挙げることができる。
(Organic-inorganic composite)
As the organic-inorganic composite of the present invention, a non-swellable organic-inorganic composite in which an organic onium compound is intercalated in a non-swellable layered silicate compound having interlayer ions can be preferably used.
Examples of preferable organic-inorganic composites include those described in Japanese Patent No. 5024783.

即ち、本発明では、好ましくは一般式が下式で表され、一次粒子の平均粒子径が2μm〜500μmで、層間イオンがKであるマイカ組成の層状珪酸塩に、正電荷有機化合物をインターカレーションしてなることを特徴とする有機−無機複合体において、層状珪酸塩は、下式を満たすものが使用される。
[(K0.1−b)(X)(Si4−eAl)O10(OH2−f)]
但し、0.6≦a≦1.0、0≦b≦0.1、0≦c≦3、0≦d≦2、2≦c+d≦3、0≦e<4、0≦f≦2であり、Mは層間にあるK以外のカチオンであって、Li、Na、Rb、Cs、NH、Be、Mg、Ca、Sr、Ba、Mn、Fe、Ni、Cu、Zn、Alのうちの少なくとも1つ、XとYは、2:1型シート内に形成される八面体内に入る金属であって、Xは、Mg、Fe、Mn、Ni、Zn、Liのうちの少なくとも1つ、Yは、Al、Fe、Mn、Crのうちの少なくとも1つである。
That is, in the present invention, a positively charged organic compound is preferably intercalated into a layered silicate having a general formula represented by the following formula, an average primary particle diameter of 2 μm to 500 μm, and a mica composition having an interlayer ion of K. In the organic-inorganic composite characterized in that the layered silicate satisfies the following formula.
[(K a M 0.1-b ) (X c Y d) (Si 4-e Al e) O 10 (OH f F 2-f)]
However, 0.6 ≦ a ≦ 1.0, 0 ≦ b ≦ 0.1, 0 ≦ c ≦ 3, 0 ≦ d ≦ 2, 2 ≦ c + d ≦ 3, 0 ≦ e <4, 0 ≦ f ≦ 2. Yes, M is a cation other than K between the layers, Li, Na, Rb, Cs, NH 4 , Be, Mg, Ca, Sr, Ba, Mn, Fe, Ni, Cu, Zn, Al At least one, X and Y are metals that enter the octahedron formed in the 2: 1 type sheet, wherein X is at least one of Mg, Fe, Mn, Ni, Zn, Li, Y is at least one of Al, Fe, Mn, and Cr.

さらに、好ましくは下式で示される0.6≦a≦0.9の雲母粘土鉱物が使用される。
[(K0.1−b)(X)(Si4−eAl)O10(OH2−f)]
但し、0.6≦a≦0.9、0≦b≦0.1、0≦c≦3、0≦d≦2、2≦c+d≦3、0≦e<4、0≦f≦2であり、Mは層間にあるK以外のカチオンであって、Li、Na、Rb、Cs、NH、Be、Mg、Ca、Sr、Ba、Mn、Fe、Ni、Cu、Zn、Alのうちの少なくとも1つ、XとYは、2:1型シート内に形成される八面体内に入る金属であって、Xは、Mg、Fe、Mn、Ni、Zn、Liのうちの少なくとも1つ、Yは、Al、Fe、Mn、Crのうちの少なくとも1つである。
上記組成式で0.6≦a≦1.0の範囲で定義される層状珪酸塩は、具体的には、白雲母、金雲母、黒雲母、脆雲母、などの雲母(マイカ)とその変質鉱物である2−八面体型バーミキュライト、3−八面体型バーミキュライトなどのバーミキュライト類が例示される。
また、上記組成式で0.6≦a≦0.9の範囲で定義される雲母粘土鉱物は、具体的には、イライト、セリサイト、海緑石(グロコナイト)、セラドナイトなどが例示される。
Further, a mica clay mineral of 0.6 ≦ a ≦ 0.9 represented by the following formula is preferably used.
[(K a M 0.1-b ) (X c Y d) (Si 4-e Al e) O 10 (OH f F 2-f)]
However, 0.6 ≦ a ≦ 0.9, 0 ≦ b ≦ 0.1, 0 ≦ c ≦ 3, 0 ≦ d ≦ 2, 2 ≦ c + d ≦ 3, 0 ≦ e <4, and 0 ≦ f ≦ 2. Yes, M is a cation other than K between the layers, Li, Na, Rb, Cs, NH 4 , Be, Mg, Ca, Sr, Ba, Mn, Fe, Ni, Cu, Zn, Al At least one, X and Y are metals that enter the octahedron formed in the 2: 1 type sheet, wherein X is at least one of Mg, Fe, Mn, Ni, Zn, Li, Y is at least one of Al, Fe, Mn, and Cr.
Specifically, the layered silicate defined by the above composition formula in the range of 0.6 ≦ a ≦ 1.0 specifically includes mica (mica) such as muscovite, phlogopite, biotite, brittle mica, and alteration thereof. Examples thereof include vermiculites such as 2-octahedral vermiculite and 3-octahedral vermiculite, which are minerals.
Further, specific examples of the mica clay mineral defined in the above composition formula in the range of 0.6 ≦ a ≦ 0.9 include illite, sericite, sea green stone (Groconite), and ceradonite.

さらに、本発明で使用される非膨潤性層状珪酸塩は、その一次粒子の平均粒子径が0.1μm〜500μmのものが適用され、1μm〜200μmの範囲がさらに好適である。その粒子径が大きいことを特徴とするため、高分子マトリックス中において、膨潤しかつ積層数が少なくなって薄片化していくことによりアスペクト比が極めて大きくなり、高分子複合材料の耐熱性、剛性、及びバリア性などを飛躍的に向上させる効果を有する。平均粒子径が500μmを超えると正電荷有機化合物を層間にインターカレートすることが困難になる。   Further, as the non-swellable layered silicate used in the present invention, those having an average primary particle diameter of 0.1 μm to 500 μm are applied, and a range of 1 μm to 200 μm is more preferable. Since the particle size is large, the aspect ratio becomes extremely large by swelling and reducing the number of layers in the polymer matrix, and the heat resistance, rigidity, In addition, it has the effect of dramatically improving the barrier properties. When the average particle diameter exceeds 500 μm, it becomes difficult to intercalate the positively charged organic compound between the layers.

粒子径の測定方法としては、水等の溶媒中での沈降式粒度測定法や光散乱法、や顕微鏡などにより粒子を直接観察して粒子径を実測する方法などが適用できる。層状珪酸塩は板状結晶であるため、球形換算で求める沈降式粒度測定法や光散乱法よりも透過型電子顕微鏡及び走査型電子顕微鏡などにより結晶のa,b軸方向を直接観察し、投影二次元映像より長短径比によって求める方法が好適であり、本発明においてもこの方法を用いる。   As a method for measuring the particle size, a sedimentation type particle size measurement method in a solvent such as water, a light scattering method, a method of directly observing the particles with a microscope, etc., and the like can be applied. Since the layered silicate is a plate-like crystal, the a and b axis directions of the crystal are directly observed and projected by a transmission electron microscope, a scanning electron microscope, etc., rather than by a sedimentation type particle size measurement method or a light scattering method obtained in a spherical form. A method of obtaining a longer / shorter diameter ratio than a two-dimensional image is preferable, and this method is also used in the present invention.

さらに、層間イオン量は、珪酸塩シートのもつマイナス電荷とチャージバランスするように層間に置換されており、前記化学式の係数a、いわゆる半単位格子当たりの電荷数(電荷密度)で示すことができる。本発明においては0.6≦a≦1.0の範囲のものが適用され、電荷密度が大きいほど積層シート間の引力が強くなるので、0.6≦a≦0.9であればより好ましい。電荷密度が0.6未満であると、スメクタイトの領域になるので粒子径は小さくなる傾向にあり、1.0より大きくなると積層シート間の引力が強くなり過ぎるため有機物質で層間を置換することが困難になる。   Further, the amount of ions in the interlayer is substituted between the layers so as to balance the negative charge of the silicate sheet, and can be expressed by the coefficient a of the chemical formula, that is, the number of charges per half unit lattice (charge density). . In the present invention, the one in the range of 0.6 ≦ a ≦ 1.0 is applied, and the higher the charge density, the stronger the attractive force between the laminated sheets. Therefore, 0.6 ≦ a ≦ 0.9 is more preferable. . If the charge density is less than 0.6, the particle size tends to be small because it becomes a smectite region, and if it is larger than 1.0, the attractive force between the laminated sheets becomes too strong, and the interlayer is replaced with an organic substance. Becomes difficult.

非膨潤性層状珪酸塩の層間イオン量の実測方法としては、膨潤性粘土鉱物に適用されているカチオン交換容量(CEC)の測定法:カラム浸透法(参照:「粘土ハンドブック」第二版日本粘土学会編 第576〜577頁 技報堂出版)やメチレンブルー吸着法(日本ベントナイト工業会標準試験法、JBAS−107−91)等の方法は適用できない。そこで化学組成の分析により見積もる方法を適用する。具体的には、プラズマ分光(ICP)分析、蛍光X線分析(XRF)、X線マイクロアナライザー(EPMA)などが用いられる。   The method for measuring the amount of interlayer ions in non-swellable layered silicates is the cation exchange capacity (CEC) measurement method applied to swellable clay minerals: column permeation method (see “Clay Handbook” 2nd edition Nippon Clay. Society of Science, pages 576-577, published by Gihodo) and the methylene blue adsorption method (Japan Bentonite Industry Association Standard Test Method, JBAS-107-91) cannot be applied. Therefore, a method of estimating by chemical composition analysis is applied. Specifically, plasma spectroscopy (ICP) analysis, fluorescent X-ray analysis (XRF), X-ray microanalyzer (EPMA), or the like is used.

本発明の有機−無機複合体は、このような特異な非膨潤性珪酸塩に対して有機オニウム塩をインターカレートさせることにより得られる。本発明に用いる正電荷有機化合物としては、特にその種類に限定されないが、好ましい例として炭素数が8以上の第一アミン,第二アミン,第三アミン及びそれらの塩化物、第四級アンモニウム塩、アミン化合物、アミノ酸誘導体、窒素含有複素環化合物或いは、ホスホニウム塩等が挙げられる。   The organic-inorganic composite of the present invention can be obtained by intercalating an organic onium salt with such a unique non-swellable silicate. The positively charged organic compound used in the present invention is not particularly limited to its kind, but preferred examples include primary amines, secondary amines, tertiary amines and their chlorides and quaternary ammonium salts having 8 or more carbon atoms. , Amine compounds, amino acid derivatives, nitrogen-containing heterocyclic compounds or phosphonium salts.

具体的には、オクチルアミン、ラウリルアミン、テトラデシルアミン、ヘキサデシルアミン、ステアリルアミン、オレイルアミン、アクリルアミン、ベンジルアミン、アニリン等に代表される第一アミン;ジラウリルアミン、ジテトラデシルアミン、ジヘキサデシルアミン、ジステアリルアミン、N−メチルアニリン等に代表される第二アミン:ジメチルオクチルアミン、ジメチルデシルアミン、ジメチルラウリルアミン、ジメチルミリスチルアミン、ジメチルパルミチルアミン、ジメチルステアリルアミン、ジラウリルモノメチルアミン、トリブチルアミン、トリオクチルアミン、N,N−ジメチルアニリン等に代表される第三アミン;テトラブチルアンモニウムイオン、テトラヘキシルアンモニウムイオン、ジヘキシルジメチルアンモニウムイオン、ジオクチルジメチルアンモニウムイオン、ヘキサトリメチルアンモニウムイオン、オクタトリメチルアンモニウムイオン、ドデシルトリメチルアンモニウムイオン、ヘキサデシルトリメチルアンモニウムイオン、ステアリルトリメチルアンモニウムイオン、ドコセニルトリメチルアンモニウムイオン、セチルトリメチルアンモニウムイオン、セチルトリエチルアンモニウムイオン、ヘキサデシルアンモニウムイオン、テトラデシルジメチルベンジルアンモニウムイオン、ステアリルジメチルベンジルアンモニウムイオン、ジオレイルジメチルアンモニウムイオン、N−メチルジエタノールラウリルアンモニウムイオン、ジプロパノールモノメチルラウリルアンモニウムイオン、ジメチルモノエタノールラウリルアンモニウムイオン、ポリオキシエチレンドデシルモノメチルアンモニウムイオン、アルキルアミノプロピルアミン四級化物等の第四級アンモニウムが挙げられる。更に、ロイシン、システィン、フェニルアラニン、チロシン、アスパラギン酸、グルタミン酸、リジン、6−アミノヘキシルカルボン酸、12−アミノラウリルカルボン酸、N,N−ジメチル−6−アミノヘキシルカルボン酸、N−n−ドデシル−N,N−ジメチル10−アミノデシルカルボン酸、ジメチル−N−12アミノラウリルカルボン酸等のアミノ酸誘導体;ピリジン、ピリミジン、ピロール、イミダゾール、プロリン、γ−ラクタム、ヒスチジン、トリプトファン、メラミン等の窒素含有複素環化合物等が挙げられる。   Specifically, primary amines represented by octylamine, laurylamine, tetradecylamine, hexadecylamine, stearylamine, oleylamine, acrylamine, benzylamine, aniline, etc .; dilaurylamine, ditetradecylamine, diamine Secondary amines typified by hexadecylamine, distearylamine, N-methylaniline, etc .: dimethyloctylamine, dimethyldecylamine, dimethyllaurylamine, dimethylmyristylamine, dimethylpalmitylamine, dimethylstearylamine, dilaurylmonomethylamine , Tertiary amines represented by tributylamine, trioctylamine, N, N-dimethylaniline, etc .; tetrabutylammonium ion, tetrahexylammonium ion, dihexyldimethylammoni Ion, dioctyldimethylammonium ion, hexatrimethylammonium ion, octatrimethylammonium ion, dodecyltrimethylammonium ion, hexadecyltrimethylammonium ion, stearyltrimethylammonium ion, dococenyltrimethylammonium ion, cetyltrimethylammonium ion, cetyltriethylammonium ion, Hexadecyl ammonium ion, tetradecyl dimethyl benzyl ammonium ion, stearyl dimethyl benzyl ammonium ion, dioleyl dimethyl ammonium ion, N-methyldiethanol lauryl ammonium ion, dipropanol monomethyl lauryl ammonium ion, dimethyl monoethanol lauryl ammonium ion , Polyoxyethylene dodecyl monomethyl ammonium ions, quaternary ammonium and alkyl aminopropyl amine quaternized like. Further, leucine, cysteine, phenylalanine, tyrosine, aspartic acid, glutamic acid, lysine, 6-aminohexylcarboxylic acid, 12-aminolaurylcarboxylic acid, N, N-dimethyl-6-aminohexylcarboxylic acid, Nn-dodecyl- Amino acid derivatives such as N, N-dimethyl 10-aminodecylcarboxylic acid and dimethyl-N-12 aminolaurylcarboxylic acid; nitrogen-containing complexes such as pyridine, pyrimidine, pyrrole, imidazole, proline, γ-lactam, histidine, tryptophan, and melamine A ring compound etc. are mentioned.

本発明の有機−無機複合体中の正電荷有機化合物量は、層状珪酸塩の層間陽イオン量に対して0.6〜5当量を含有することが好ましく、特に0.8〜2.0当量が最も好ましい。ここで言う正電荷有機化合物含有量は、層間のKイオンとイオン交換している正電荷有機化合物だけを対象としたものでなく、有機−無機複合体の表面に物理的に吸着している正電荷有機化合物も含まれており、熱重量測定などから見積もられる有機物質の総量である。有機−無機複合体中の正電荷有機化合物量が層間陽イオン量に対して0.6当量未満になると有機−無機複合体の高分子材料への分散性が損なわれる虞があり、5当量を超えると過剰な正電荷有機化合物によって高分子複合材料の耐熱性を低下させるなどの虞がある。   The amount of the positively charged organic compound in the organic-inorganic composite of the present invention preferably contains 0.6 to 5 equivalents, particularly 0.8 to 2.0 equivalents, relative to the interlayer cation amount of the layered silicate. Is most preferred. The positively charged organic compound content mentioned here is not only intended for positively charged organic compounds that are ion-exchanged with K ions between layers, but is positively physically adsorbed on the surface of the organic-inorganic composite. Charged organic compounds are also included, and are the total amount of organic substances estimated from thermogravimetry. If the amount of the positively charged organic compound in the organic-inorganic composite is less than 0.6 equivalents relative to the amount of interlayer cations, the dispersibility of the organic-inorganic composite in the polymer material may be impaired. When it exceeds, there exists a possibility that the heat resistance of a polymer composite material may be reduced with an excess positively charged organic compound.

本発明の有機−無機複合体の製造方法は、正電荷有機化合物溶液の濃度が0.01N以上であり、非膨潤性層状珪酸塩/正電荷有機化合物溶液の固液比が0.1(質量比)以下であることを特徴としている。0.01N未満の濃度では十分なイオン交換反応を誘発することができず、長時間の処理を施しても一部の層間のカリウムイオンと交換するのみで本発明の高分子複合材料用の充填剤には使用できない。正電荷有機化合物溶液の濃度は、溶液として得られる限界濃度まで可能である。非膨潤性層状珪酸塩/正電荷有機化合物溶液の固液比が0.001より低くなるとコスト面で望ましくない。   In the method for producing an organic-inorganic composite of the present invention, the concentration of the positively charged organic compound solution is 0.01 N or more, and the solid-liquid ratio of the non-swellable layered silicate / positively charged organic compound solution is 0.1 (mass Ratio) or less. When the concentration is less than 0.01 N, a sufficient ion exchange reaction cannot be induced, and even if a long-time treatment is performed, only replacement with potassium ions between some layers can be performed. It cannot be used as a preparation. The concentration of the positively charged organic compound solution can be up to the limit concentration obtained as a solution. If the solid-liquid ratio of the non-swellable layered silicate / positively charged organic compound solution is lower than 0.001, it is not desirable in terms of cost.

正電荷有機化合物を非膨潤性の層状珪酸塩の層間にインターカレートさせるイオン交換反応は、該層状珪酸塩の粉末を正電荷有機化合物の濃厚溶液中に加え、加熱処理することにより、該層状珪酸塩結晶の層間のKイオンを正電荷有機化合物に置換し、有機修飾することによりなされる。この際の処理温度としては40〜200℃の範囲であることが好ましい。40℃未満では層間に正電荷有機化合物を均一にインターカレートすることができず、200℃よりも高温になると有機物の分解、重合を誘発する虞がある。   The ion exchange reaction for intercalating the positively charged organic compound between the layers of the non-swellable layered silicate is carried out by adding the layered silicate powder to a concentrated solution of the positively charged organic compound and heat-treating it. This is done by replacing the K ions between the silicate crystal layers with a positively charged organic compound and organically modifying it. The treatment temperature at this time is preferably in the range of 40 to 200 ° C. When the temperature is lower than 40 ° C., the positively charged organic compound cannot be uniformly intercalated between the layers, and when the temperature is higher than 200 ° C., decomposition of organic substances and polymerization may occur.

その後、洗浄、濾過を繰返し、未置換の有機カチオンを十分に除去、乾燥して得られる。この処理工程ではKイオンと置換可能な正電荷有機化合物は限定されるので、まずその特定の正電荷有機化合物と有機−無機複合体を形成した後に異種の正電荷有機化合物に再置換する二段階のイオン交換方法で任意の有機−無機複合体を製造することが可能になる。   Thereafter, washing and filtration are repeated, and the unsubstituted organic cation is sufficiently removed and dried. In this treatment step, the positively charged organic compounds that can be substituted with K ions are limited, so that the two steps of first forming an organic-inorganic complex with the specific positively charged organic compound and then resubstituting with a different positively charged organic compound. Any organic-inorganic composite can be produced by this ion exchange method.

二段階のイオン交換反応により任意の有機−無機複合体を得る処理方法としては、第一の処理工程で使用する正電荷有機化合物は、炭素数8〜18の1級から3級のアミン塩、4級アンモニウム塩であることが好ましい。さらに好ましくは炭素数が10〜14の範囲のものである。炭素数が8未満では層状珪酸塩の層間に挿入することができず、炭素数が18を超えると正電荷有機化合物が層間に強固に固定化されて二段目のイオン交換反応を容易に進行させることができない。   As a treatment method for obtaining an arbitrary organic-inorganic complex by a two-stage ion exchange reaction, the positively charged organic compound used in the first treatment step is a primary to tertiary amine salt having 8 to 18 carbon atoms, A quaternary ammonium salt is preferred. More preferably, the carbon number is in the range of 10-14. If the number of carbon atoms is less than 8, it cannot be inserted between the layers of the layered silicate. If the number of carbon atoms exceeds 18, the positively charged organic compound is firmly fixed between the layers, and the second-stage ion exchange reaction easily proceeds. I can't let you.

第一の処理工程で使用する正電荷有機化合物とは異種の二段目に用いる正電荷有機化合物には、特に制限はないが、第一の処理工程で使用した正電荷有機化合物よりも分子量が大きく、極性の高いものの方がより容易なイオン交換が可能になる。また、第一の処理工程で使用した正電荷有機化合物よりも分子量が小さく、極性が低くても高濃度の溶液を高い温度条件で処理することでイオン交換可能となる。   The positively charged organic compound used in the second step, which is different from the positively charged organic compound used in the first treatment step, is not particularly limited, but has a molecular weight higher than that of the positively charged organic compound used in the first treatment step. Larger and more polar ones allow easier ion exchange. Further, even if the molecular weight is smaller than that of the positively charged organic compound used in the first treatment step and the polarity is low, ion exchange is possible by treating a high concentration solution under high temperature conditions.

上記本発明の有機−無機複合体は、高分子材料中に分散させる高分子複合材料の充填剤に供される。高分子材料中の有機−無機複合体含有量は0.1〜40質量%であり、好ましくは1.0〜10質量%の範囲である。0.1質量%未満では高分子材料への十分な補強効果が得られず、40質量%を超えると有機−無機複合体の分散性が損なわれる虞がある。またX線回折で層状ケイ酸塩に起因するd(001)面のピークが観測されても差し支えない。   The organic-inorganic composite of the present invention is used as a filler for a polymer composite material dispersed in the polymer material. The content of the organic-inorganic composite in the polymer material is 0.1 to 40% by mass, preferably 1.0 to 10% by mass. If it is less than 0.1% by mass, a sufficient reinforcing effect on the polymer material cannot be obtained, and if it exceeds 40% by mass, the dispersibility of the organic-inorganic composite may be impaired. Further, a peak on the d (001) plane due to the layered silicate may be observed by X-ray diffraction.

本発明のポリオレフィン樹脂組成物は、前記ポリオレフィン樹脂組成物が前記有機−無機複合体を含有してなることに特徴を有する。
有機−無機複合体をポリオレフィン樹脂組成物へ含有せしめる方法は、公知慣用の混合、或いは分散方法により行うことができる。具体的にはポリオレフィン樹脂と非膨潤性有機−無機複合体をヘンシェルミキサー、ナウターミキサー、タンブラー、リボンブレンダー等で混合した後、バンバリーミキサー、ブラベンダー、ニーダー、ロール、単軸もしくは多軸の押出機及びコニーダーなどの公知の混練方法を用いて溶融混練することにより製造することができる。なお、溶媒等で希釈され、室温での粘度がインク状にまで下げられた未硬化状態の高分子複合材料の場合には三本ロールやビーズミル等の公知の混練方法により製造することもできる。
The polyolefin resin composition of the present invention is characterized in that the polyolefin resin composition contains the organic-inorganic composite.
The method for incorporating the organic-inorganic composite into the polyolefin resin composition can be carried out by a known and commonly used mixing or dispersing method. Specifically, after mixing polyolefin resin and non-swellable organic-inorganic composite with Henschel mixer, Nauter mixer, tumbler, ribbon blender, etc., Banbury mixer, Brabender, kneader, roll, single screw or multi screw extrusion It can be produced by melt kneading using a known kneading method such as a machine and a kneader. In the case of an uncured polymer composite material diluted with a solvent or the like and having a viscosity at room temperature lowered to an ink, it can be produced by a known kneading method such as a triple roll or a bead mill.

本発明の有機−無機複合体を熱可塑性高分子と溶融混練する方法としては、各成分を混合した後、溶融混練することが好ましく、例えば、バンバリーミキサー、ブラベンダー、ニーダー、ロール、単軸もしくは多軸の押出機及びコニーダーなどの公知の混練方法を用いて溶融混練することにより製造することができる。本発明では多軸押出機、好ましくは二軸押出機を用い、ポリオレフィン樹脂のみを溶融混練した後、非膨潤性有機−無機複合体のみを押出機シリンダー途中から強制的に供給し、溶融混練する所謂非膨潤性有機−無機複合体のみをサイドフィードする方式が、非膨潤性有機−無機複合体の形状を保持しかつ分散性を向上させる上で好ましい。   As a method of melt-kneading the organic-inorganic composite of the present invention with a thermoplastic polymer, it is preferable to melt-knead after mixing each component, for example, Banbury mixer, Brabender, kneader, roll, uniaxial or It can manufacture by melt-kneading using well-known kneading methods, such as a multi-screw extruder and a kneader. In the present invention, using a multi-screw extruder, preferably a twin-screw extruder, after melt-kneading only the polyolefin resin, only the non-swellable organic-inorganic composite is forcibly supplied from the middle of the extruder cylinder and melt-kneaded. A method in which only the so-called non-swellable organic-inorganic composite is side-fed is preferable for maintaining the shape of the non-swellable organic-inorganic composite and improving dispersibility.

(ガスバリア材)
本発明のポリオレフィン樹脂組成物は、酸素バリア性及び水蒸気バリア性を有するガスバリア成形体用の樹脂組成物として用いることができる。成形体としては単層フィルム、多層フィルム、包装用袋、包装容器、ハウジング部品等に成形して使用できる。
フィルム成形の方法としては公知の方法により得ることが可能である。具体的には溶融押出法、溶液キャスト法(溶液流延法)、カレンダー法、圧縮成形法などが用いられる。好ましい成形方法としては、Tダイ、ストレートダイ、インフレーションダイ等を装備した単軸押出機または多軸押出機を用いた単層または多層溶融押出法が用いられる。多層フィルムの成形方法としては、共押出法、ラミネート法等の公知の方法が用いられる。
(Gas barrier material)
The polyolefin resin composition of the present invention can be used as a resin composition for a gas barrier molded article having oxygen barrier properties and water vapor barrier properties. As a molded body, it can be used after being formed into a single layer film, a multilayer film, a packaging bag, a packaging container, a housing part or the like.
A film forming method can be obtained by a known method. Specifically, a melt extrusion method, a solution casting method (solution casting method), a calendar method, a compression molding method, or the like is used. As a preferable forming method, a single-layer or multi-layer melt extrusion method using a single-screw extruder or a multi-screw extruder equipped with a T die, a straight die, an inflation die, or the like is used. As a method for forming the multilayer film, known methods such as a co-extrusion method and a lamination method are used.

また得られた(未延伸)フィルムを一軸または二軸延伸して用いても差し支えない。延伸する方法としては特に限定されず、公知の手法に従えばよい。一軸延伸は、縦延伸(フィルム巻取り方向の延伸)であってもよいし、横延伸(フィルム幅方向の延伸)であってもよい。縦延伸の場合、典型的には、フィルムの幅方向の変化を自由とする自由端一軸延伸である。フィルムの幅方向の変化を固定とする固定端一軸延伸も可能である。二軸延伸は、典型的には縦延伸後に横延伸を行う逐次二軸延伸であるが、縦横延伸を同時に行う同時二軸延伸も好適に使用できる。更に、厚み方向の延伸やフィルムロールに対して斜め方向に延伸することも可能である。延伸方法、延伸温度及び延伸倍率は目的とする性能に応じて適宜選択することができる。 Further, the obtained (unstretched) film may be used after being uniaxially or biaxially stretched. It does not specifically limit as the method of extending | stretching, What is necessary is just to follow a well-known method. Uniaxial stretching may be longitudinal stretching (stretching in the film winding direction) or transverse stretching (stretching in the film width direction). In the case of longitudinal stretching, it is typically free end uniaxial stretching in which the change in the width direction of the film is free. Fixed-end uniaxial stretching is also possible in which the change in the width direction of the film is fixed. The biaxial stretching is typically sequential biaxial stretching in which transverse stretching is performed after longitudinal stretching, but simultaneous biaxial stretching in which longitudinal and transverse stretching is simultaneously performed can also be suitably used. Furthermore, it is also possible to stretch in the oblique direction with respect to stretching in the thickness direction or film roll. The stretching method, stretching temperature, and stretching ratio can be appropriately selected according to the target performance.

フィルム以外の成形体の製造方法としては射出成形法、ブロー成形法、チューブ、パイプ等の中空押出成形法、圧縮成形法、真空成形法、圧空成形法、回転成形法(粉末成形法)などが用いられる。これらの中で射出成形法、ブロー成形法、中空押出成形法、圧縮成形法、真空成形法、圧空成形法などが生産性に優れ好ましく用いられる。またこれらの成形体は単層、多層成形体であっても良く、目的の性能に合せて、適時有効な成形方法が用いられる。 Manufacturing methods for molded articles other than films include injection molding, blow molding, hollow extrusion molding such as tubes and pipes, compression molding, vacuum molding, pressure molding, and rotational molding (powder molding). Used. Among these, the injection molding method, blow molding method, hollow extrusion molding method, compression molding method, vacuum molding method, and pressure molding method are preferably used because of their excellent productivity. These molded products may be single-layer or multilayer molded products, and a molding method effective in a timely manner is used according to the target performance.

本発明のポリオレフィン樹脂組成物には目的に応じて他の慣用の成分、例えば発泡性黒鉛、熱安定剤、抗菌剤、光安定剤、紫外線吸収剤、酸化防止剤、帯電防止剤、防腐剤、接着促進剤、着色剤、結晶化促進剤、発泡剤、滑剤、殺菌剤、防曇剤、可塑剤、離型剤、増粘剤、防滴剤、衝撃性改良剤、例えばシリコン系の発煙抑制剤などを含み得る。
本発明の方法で得られた組成物は、諸物性を付与する目的から、さらに必要に応じてガラス繊維、炭素繊維、金属繊維、アラミド繊維、繊維状チタン酸カリウム、アスベスト及び炭化ケイ素や窒化ケイ素等を初めとする各種のウイスカー等の繊維状無機充填剤、グラファイト、CNT、グラフェン、炭酸カルシウム、シリカ、窒化ホウ素、硫酸バリウム、硫酸カルシウム、ウォラストナイト、ケイ酸カルシウム、炭酸マグネシウム、ドロマイト、三酸化アンチモン、酸化マグネシウム、酸化亜鉛、酸化チタン、酸化鉄、二硫化モリブデン、黒鉛、石こう、ガラス粉、ガラスビーズ、石英、石英ガラス、鉄、亜鉛、銅、アルミニウム、ニッケル等の無機充填剤を一種または二種以上配合することができる。
Depending on the purpose, the polyolefin resin composition of the present invention may have other conventional components such as expandable graphite, heat stabilizer, antibacterial agent, light stabilizer, ultraviolet absorber, antioxidant, antistatic agent, preservative, Adhesion promoter, colorant, crystallization accelerator, foaming agent, lubricant, bactericidal agent, antifogging agent, plasticizer, mold release agent, thickener, drip proofing agent, impact modifier such as silicon-based smoke suppression Agents and the like.
For the purpose of imparting various physical properties, the composition obtained by the method of the present invention further comprises glass fiber, carbon fiber, metal fiber, aramid fiber, fibrous potassium titanate, asbestos, silicon carbide and silicon nitride as necessary. Fibrous inorganic fillers such as various whiskers such as graphite, CNT, graphene, calcium carbonate, silica, boron nitride, barium sulfate, calcium sulfate, wollastonite, calcium silicate, magnesium carbonate, dolomite, three One kind of inorganic filler such as antimony oxide, magnesium oxide, zinc oxide, titanium oxide, iron oxide, molybdenum disulfide, graphite, gypsum, glass powder, glass beads, quartz, quartz glass, iron, zinc, copper, aluminum, nickel Alternatively, two or more kinds can be blended.

以下、実施例により本発明を更に詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

(製造例1)非膨潤性有機化層状ケイ酸塩の合成
攪拌機、冷却管、温度計を設置した100Lのガラスライニングされた反応釜にイオン交換水:37.5kg、6N−塩酸:722.75mL、またアンモニウム当量/マイカカリウム当量=2/1になるようにオクタデシルアンモニウム塩としてアーミン18D(ライオン・アクゾ株式会社製、全アミン価:208.0):2.45kg、非膨潤性マイカとして一般式KMg(Si3Al)O10(OH)示される金雲母 NCR−300(分子量:417.3、平均粒径10μmヤマグチマイカ製):1.875kgを仕込んだ。60rpmで攪拌しながら、スチームにて昇温し、95(℃)で24時間反応させた。反応終了後、70(℃)以下になるまで冷却し、内容物を取り出し、イソプロピルアルコールで洗浄し、加圧濾過器で濾過した。洗浄ろ過工程を3回実施した後、濾過物を真空乾燥機にて80(℃)で24時間乾燥させた。得られた非膨潤性有機化層状ケイ酸塩をM1とする。
X線回折装置によりM1のX線回折を実施したところ、原料金雲母のd(001)面の回折ピーク(2θ=8.8(deg))は残存していたが、有機化率をTGAにて測定したところ、32質量%であった。
(Production Example 1) Synthesis of non-swelling organically modified layered silicate Ion-exchanged water: 37.5 kg, 6N-hydrochloric acid: 722.75 mL in a 100 L glass-lined reaction kettle equipped with a stirrer, a condenser tube, and a thermometer In addition, armine 18D (made by Lion Akzo Co., Ltd., total amine number: 208.0): 2.45 kg as non-swellable mica, so that ammonium equivalent / mica potassium equivalent = 2/1 KMg 3 (Si 3 Al) O 10 (OH) 2 As shown, phlogopite MCR NCR-300 (molecular weight: 417.3, average particle size 10 μm, manufactured by Yamamicaica): 1.875 kg was charged. While stirring at 60 rpm, the temperature was raised with steam and the reaction was carried out at 95 (° C.) for 24 hours. After completion of the reaction, the reaction mixture was cooled to 70 (° C.) or less, the contents were taken out, washed with isopropyl alcohol, and filtered with a pressure filter. After performing the washing and filtration step three times, the filtrate was dried at 80 (° C.) for 24 hours in a vacuum dryer. The obtained non-swellable organically modified layered silicate is designated as M1.
When X-ray diffraction of M1 was performed with an X-ray diffractometer, the diffraction peak (2θ = 8.8 (deg)) of the d (001) plane of the raw mica remained, but the organic conversion rate was converted to TGA. To be 32% by mass.

(実施例1)〜(実施例4)フィルム成形用組成物の作製及び評価
有機−無機複合体として、製造例1に記載の非膨潤性有機化層状ケイ酸(M1)、ポリオレフィン樹脂(B1a)として、無水マレイン酸含有量0.04質量%、MFR(メルトフローレート)7g/10分のプロピレン単独重合体(三井化学製、アドマーQE800)、(B2)のポリオレフィン樹脂としてメルトフローレート7.5g/10分のホモポリプロピレン(サンアロマー製 PC600A)を表−1に示す配合量にて配合し、均一に混合した。
(Example 1) to (Example 4) Production and Evaluation of Film-Forming Composition As an organic-inorganic composite, non-swellable organically modified layered silicic acid (M1) described in Production Example 1 and polyolefin resin (B1a) As a polyolefin resin of a propylene homopolymer (Mitsui Chemicals, Admer QE800) having a maleic anhydride content of 0.04% by mass and an MFR (melt flow rate) of 7 g / 10 min, a melt flow rate of 7.5 g as a polyolefin resin of (B2) / 10 minute homopolypropylene (Sun Aroma PC600A) was blended in the blending amounts shown in Table 1 and mixed uniformly.

得られた混合物を2軸押出機(テクノベル製、KZW15)にて、シリンダー温度270(℃)で溶融混練を実施し、ペレット化した。
得られたペレットを先端にTダイを付けた2軸押出機(テクノベル製、KZW15)及び冷却ロール付き巻取り機にて、シリンダー温度230℃、冷却ロール30℃、巻取り速度3m/分で、厚み30μmの無延伸フィルムを得た。得られたフィルムを収縮しないようにガラス板で挟み、120℃/2hrsアニーリング後、フィルムの水蒸気透過率及び酸素透過率を表−1に示した。
The obtained mixture was melt-kneaded with a twin-screw extruder (manufactured by Technobel, KZW15) at a cylinder temperature of 270 (° C.) to be pelletized.
In the twin-screw extruder (manufactured by Technovel, KZW15) with a T-die at the tip of the obtained pellets and a winder with a cooling roll, the cylinder temperature was 230 ° C, the cooling roll was 30 ° C, and the winding speed was 3 m / min. An unstretched film having a thickness of 30 μm was obtained. The obtained film was sandwiched between glass plates so as not to shrink, and after annealing at 120 ° C./2 hrs, the water vapor permeability and oxygen permeability of the film are shown in Table 1.

(製造例2)膨潤性有機化層状ケイ酸塩の合成
製造例1のマイカの代わりに、一般式Na0.33(Al1.67Mg0.33)Si10(OH)であらわされる膨潤性層状ケイ酸塩(モンモリロナイト、クニピアF:分子量:734、クニミネ工業製)を用い、アンモニウム当量/マイカナトリウム当量=2/1になるようにオクタデシルアンモニウム塩としてアーミン18D 4.93kg、クニピアF:1.875kgを仕込み、温度40℃にした以外は製造例1と同様に合成した。得られた膨潤性有機化層状ケイ酸塩をY1とする。
X線回折装置によりY1のX線回折を実施したところ、原料金雲母のd(001)面の回折ピーク(2θ=9(deg))は残存せず、有機化率をTGAにて測定したところ、37質量%であった。
(Production Example 2) Synthesis of Swellable Organostratified Layered Silicate Instead of the mica of Production Example 1, it is represented by the general formula Na 0.33 (Al 1.67 Mg 0.33 ) Si 4 O 10 (OH) 2 Swellable lamellar silicate (Montmorillonite, Kunipia F: molecular weight: 734, manufactured by Kunimine Industries), armine 18D 4.93 kg as octadecylammonium salt so that ammonium equivalent / mica sodium equivalent = 2/1, Kunipia F : 1.875 kg was synthesized in the same manner as in Production Example 1 except that the temperature was 40 ° C. The resulting swellable organically modified layered silicate is designated Y1.
When X-ray diffraction of Y1 was carried out with an X-ray diffractometer, the diffraction peak (2θ = 9 (deg)) on the d (001) plane of the raw mica did not remain, and the organic conversion rate was measured by TGA. 37% by mass.

(比較例1)〜(比較例3)
有機化処理をしていない非膨潤性層状ケイ酸塩NCR−300(M0)、同様に有機化処理をしていない膨潤性層状ケイ酸塩クニピアF(Y0)及び製造例2で得られた膨潤性有機化層状ケイ酸塩(Y1)を使用し、表−2に示す配合にて、実施例と同様に無延伸フィルムを得た。得られたフィルムの水蒸気透過率及び酸素透過率を表−2に示す。
(Comparative Example 1) to (Comparative Example 3)
Non-swelling layered silicate NCR-300 (M0) not treated with organic treatment, swelling layered silicate Kunipia F (Y0) similarly treated without organic treatment and swelling obtained in Production Example 2 The non-stretched film was obtained in the same manner as in the Examples using the organically modified layered silicate (Y1) and the formulation shown in Table-2. Table 2 shows the water vapor transmission rate and oxygen transmission rate of the obtained film.

(製造例3)非膨潤性有機化層状ケイ酸塩の合成
製造例1のマイカの代わりに一般的化学式K0.7Na0.08Ca0.08)(Al1.77Mg0.08Fe0.12Ti0.03)(Al0.78Si3.22)・O10OHで示されるセリサイト(三信鉱工製、セリサイトFSE、平均粒径10μm)を使用し、同様にアンモニウム当量/マイカカリウム当量=2/1になるようにオクタデシルアンモニウム塩 アーミン18Dを仕込み、95(℃)にて48時間反応させた後、実施例1と同様に洗浄、乾燥を行った。得られた非膨潤性層状ケイ酸塩をM2とする。
X線回折装置によりM2のX線回折を実施したところ、原料セリサイトのd(001)面の回折ピーク(2θ=8.8(deg))は残存していたが、有機化率をTGAにて測定したところ、37質量%であった。
(Production Example 3) Synthesis of non-swellable organically modified layered silicate General chemical formula K 0.7 Na 0.08 Ca 0.08 ) (Al 1.77 Mg 0.08 Fe) instead of mica in Production Example 1 0.12 Ti 0.03 ) (Al 0.78 Si 3.22) · O 10 OH 2 sericite (manufactured by Sanshin Mining Co., Ltd., sericite FSE, average particle size 10 μm) was used, and similarly ammonium The octadecylammonium salt armin 18D was charged so that the equivalent weight / mica potassium equivalent weight = 2/1 and reacted at 95 (° C) for 48 hours, followed by washing and drying in the same manner as in Example 1. The obtained non-swellable layered silicate is designated as M2.
When X-ray diffraction of M2 was performed with an X-ray diffractometer, the diffraction peak (2θ = 8.8 (deg)) of the d (001) plane of the raw material sericite remained, but the organic conversion rate was converted to TGA. To be 37% by mass.

(実施例5)〜(実施例6)フィルム成形用組成物の作製及び評価
有機−無機複合体として、製造例3に記載の非膨潤性有機化層状ケイ酸(M2)、ポリオレフィン樹脂(B1a)として、無水マレイン酸含有量0.04質量%、MFR7g/10分の極性基含有プロピレン単独重合体(三井化学製、アドマーQE800)、(B1b)のポリオレフィン樹脂として無水マレイン酸含有量1.7質量%、分子量30000の無水マレイン酸含有ポリプロピレン系樹脂(三洋化成製、ユーメックス1010)、及び実施例4で使用した(B2)のポリオレフィン樹脂ホモポリプロピレン樹脂を表−1に示す配合量にて配合し、均一に混合した。
得られた混合物を2軸押出機(テクノベル製、KZW15)にて、シリンダー温度270(℃)で溶融混練を実施し、ペレット化した。
得られたペレットを先端にTダイを付けた2軸押出機(テクノベル製、KZW15)及び冷却ロール付き巻取り機にて、シリンダー温度230℃、冷却ロール30℃、巻取り速度3m/分で、厚み30μmの無延伸フィルムを得た。
得られたフィルムを実施例1と同様にアニーリングした後、水蒸気透過率及び酸素透過率を表−1に示した。
(Example 5) to (Example 6) Production and Evaluation of Film-Forming Composition As an organic-inorganic composite, non-swellable organically modified layered silicic acid (M2) described in Production Example 3 and polyolefin resin (B1a) As a polyolefin resin of maleic anhydride content 0.04 mass%, MFR 7 g / 10 min polar group-containing propylene homopolymer (manufactured by Mitsui Chemicals, Admer QE800), (B1b), maleic anhydride content 1.7 mass %, A maleic anhydride-containing polypropylene resin having a molecular weight of 30000 (manufactured by Sanyo Chemical Co., Ltd., Yumex 1010) and the polyolefin resin homopolypropylene resin of (B2) used in Example 4 in the blending amounts shown in Table 1. Mix evenly.
The obtained mixture was melt-kneaded with a twin-screw extruder (manufactured by Technobel, KZW15) at a cylinder temperature of 270 (° C.) to be pelletized.
In the twin-screw extruder (manufactured by Technovel, KZW15) with a T-die at the tip of the obtained pellets and a winder with a cooling roll, the cylinder temperature was 230 ° C, the cooling roll was 30 ° C, and the winding speed was 3 m / min. An unstretched film having a thickness of 30 μm was obtained.
After the obtained film was annealed in the same manner as in Example 1, the water vapor transmission rate and the oxygen transmission rate are shown in Table-1.

(比較例4、5)
比較例1で使用した有機化処理していない非膨潤性非有機化層状ケイ酸塩(M0)及び比較例2で使用した有機化処理していない膨潤性非有機化層状ケイ酸塩(Y0)と未変性ポリプロピレン樹脂(B2)を用い、実施例1と同様にしてフィルム化し、得られたフィルムのガスバリア性を測定した。結果を表2に示す。
(Comparative Examples 4 and 5)
Non-swelling non-organizing layered silicate (M0) used in Comparative Example 1 and non-swelling non-organizing layered silicate (Y0) used in Comparative Example 2 Using the unmodified polypropylene resin (B2), a film was formed in the same manner as in Example 1, and the gas barrier properties of the obtained film were measured. The results are shown in Table 2.

以下に、本実施例で行った測定方法を以下に示す。
<測定方法>
1.水蒸気透過率の測定
フィルムを縦横24mmに切り出し、収縮しないように120℃/2hrsアニールした後、厚みを測定し、Illonois社製 model7001にて、40℃、90%RHの条件で水蒸気透過率を測定し、30μm厚み換算して、水蒸気透過率「30−水蒸気透過率」とした。
2.酸素透過率
MOCON社製 model1/20にて、23℃にて相対湿度0%RHで酸素透過率を測定し、厚み30μmに換算して、酸素透過率「30−酸素透過率」とした。
3.層状ケイ酸塩有機化率の測定
得られた層状ケイ酸塩を熱重量減少率測定装置にて、昇温速度20℃/min.で昇温し、120℃/30分保持した後、昇温速度20℃/min.で800℃まで昇温し、重量減少率を測定し、層状ケイ酸塩有機化率とした。
4.X線回折の測定
得られたフィルムを縦横24mmに切り出し、株式会社リガク製RINT−TTRIIでX線回折を測定した。
5.数平均分子量
数平均分子量(Mn)はゲルパーミネーションクロマトグラフィーにて、下記測定条件に従って測定した。
高温ゲルパーミネーションクロマトグラフィー(Waters allianceGPC2000)
・溶媒:オルトジクロロベンゼン
・基準物質:ポリスチレン
Below, the measuring method performed in the present Example is shown below.
<Measurement method>
1. Measurement of water vapor transmission rate The film was cut into 24 mm vertically and horizontally, annealed at 120 ° C / 2 hrs so as not to shrink, then measured for thickness, and measured for water vapor transmission rate under conditions of 40 ° C and 90% RH with model 7001 manufactured by Illonois. Then, in terms of 30 μm thickness, the water vapor transmission rate was “30-water vapor transmission rate”.
2. Oxygen transmission rate The oxygen transmission rate was measured at 23 ° C. and a relative humidity of 0% RH with a model 1/20 manufactured by MOCON, and converted to a thickness of 30 μm to obtain an oxygen transmission rate of “30-oxygen transmission rate”.
3. Measurement of layered silicate organic conversion rate The obtained layered silicate was heated at a rate of temperature increase of 20 ° C./min. The temperature was raised at 20 ° C./min. The temperature was raised to 800 ° C., and the weight reduction rate was measured to obtain the layered silicate organic conversion rate.
4). Measurement of X-ray diffraction The obtained film was cut into 24 mm length and width, and X-ray diffraction was measured with RINT-TTRII manufactured by Rigaku Corporation.
5. Number average molecular weight The number average molecular weight (Mn) was measured by gel permeation chromatography according to the following measurement conditions.
High temperature gel permeation chromatography (Waters alliance GPC2000)
・ Solvent: Orthodichlorobenzene ・ Reference material: Polystyrene

6.無水マレイン酸量の測定
試料約60mgを細かく刻み1,3,5−トリクロロベンゼン700mgと混合し、NMR測定試料管に入れ、ブロックヒータ140℃で2時間加熱し溶解した。この試料をNMR JNM−ECA600により140℃でHを測定した。得られたNMR結果より0.8〜2.0ppmまでのプロピレンのHピークと2.6〜3.1ppmまでの無水マレイン酸Hピークの面積比より無水マレイン酸量を求めた。
例えば、図1に基づいた例を示すと、
プロピレンに基づく水素1個当たりの面積値は、(392+98+100)/6=98.3、無水マレイン酸に基づく水素1個当たりの面積値は、(0.014+0.015)/2=0.016となる。
これより、両者のモル比は、無水マレイン酸/プロピレン=0.016/98.3であり、各々の分子量98及び43を乗じて、無水マレイン酸の質量%として、(0.016×98)/(98.3×43)=0.04(質量%)と算出される。
7.MFRの測定
MFRはJIS K6921−2に準拠し、230℃/2160gで測定した。
6). Measurement of maleic anhydride amount About 60 mg of a sample was finely minced and mixed with 700 mg of 1,3,5-trichlorobenzene, put into an NMR measurement sample tube, and heated at 140 ° C. for 2 hours to dissolve. This sample was measured for 1 H at 140 ° C. by NMR JNM-ECA600. The resulting determined by 1 H peak and maleic acid content than the area ratio of the maleic acid 1 H peaks up 2.6~3.1ppm of propylene by NMR results to 0.8~2.0Ppm.
For example, an example based on FIG.
The area value per hydrogen based on propylene is (392 + 98 + 100) /6=98.3, and the area value per hydrogen based on maleic anhydride is (0.014 + 0.015) /2=0.016. Become.
From this, the molar ratio of both is maleic anhydride / propylene = 0.016 / 98.3, and by multiplying the respective molecular weights 98 and 43, the weight percentage of maleic anhydride is (0.016 × 98). /(98.3×43)=0.04 (mass%).
7). Measurement of MFR MFR was measured at 230 ° C./2160 g according to JIS K6921-2.

Figure 2016141793
Figure 2016141793

Figure 2016141793
Figure 2016141793

本発明の樹脂組成物を用いて得られるガスバリア材は、酸素バリア性及び水蒸気バリア性の両方に優れるので、食品、医薬品、電気電子部品等用のガスバリア性を要するフィルム、成形体等の包装材としての利用が可能である。   Since the gas barrier material obtained by using the resin composition of the present invention is excellent in both oxygen barrier property and water vapor barrier property, it is a packaging material for films, molded articles and the like that require gas barrier properties for foods, pharmaceuticals, electrical and electronic parts, etc. It can be used as

a:プロピレンに基づく水素によるピーク
b:無水マレイン酸に基づく水素によるピーク
a: Peak due to hydrogen based on propylene b: Peak due to hydrogen based on maleic anhydride

Claims (9)

層間イオンを有する非膨潤性層状ケイ酸塩化合物に有機オニウム化合物が層間挿入された非膨潤性有機−無機複合体を含有するポリオレフィン樹脂組成物であって、
ポリオレフィン樹脂が、極性基を有する変性ポリオレフィン樹脂を含んでなることを特徴とするポリオレフィン樹脂組成物。
A polyolefin resin composition comprising a non-swellable organic-inorganic composite in which an organic onium compound is intercalated in a non-swellable layered silicate compound having interlayer ions,
A polyolefin resin composition, wherein the polyolefin resin comprises a modified polyolefin resin having a polar group.
層間イオンが、カリウムイオンである請求項1に記載のポリオレフィン樹脂組成物。 The polyolefin resin composition according to claim 1, wherein the interlayer ions are potassium ions. 有機オニウム化合物が、炭素数が8以上の1級から3級のアミン塩、4級アンモニウム塩、あるいはアミノ酸塩類である請求項1又は2に記載のポリオレフィン樹脂組成物。 The polyolefin resin composition according to claim 1 or 2, wherein the organic onium compound is a primary to tertiary amine salt having 8 or more carbon atoms, a quaternary ammonium salt, or an amino acid salt. ポリオレフィン樹脂が、エチレン系単量体、又はプロピレン系単量体から得られるポリオレフィン樹脂である請求項1〜3の何れかに記載のポリオレフィン樹脂組成物。 The polyolefin resin composition according to any one of claims 1 to 3, wherein the polyolefin resin is a polyolefin resin obtained from an ethylene monomer or a propylene monomer. 極性基が、カルボキシ基、無水カルボキシ基、グリシジル基、又はアクリル酸エステル基である請求項1〜4の何れかに記載のポリオレフィン樹脂組成物。 The polyolefin resin composition according to claim 1, wherein the polar group is a carboxy group, an anhydrous carboxy group, a glycidyl group, or an acrylate group. 極性基を有する変性ポリオレフィン樹脂が、
(1)極性基濃度が0.1質量%以上で、分子量が10000〜100000であるポリオレフィン樹脂であるか、又は、
(2)極性基濃度が0.1質量%未満で、メルトフローレートが50g/10分以下のポリオレフィン樹脂である請求項1〜5の何れかに記載のポリオレフィン樹脂組成物。
Modified polyolefin resin having a polar group,
(1) A polyolefin resin having a polar group concentration of 0.1% by mass or more and a molecular weight of 10,000 to 100,000, or
(2) The polyolefin resin composition according to any one of claims 1 to 5, which is a polyolefin resin having a polar group concentration of less than 0.1% by mass and a melt flow rate of 50 g / 10 min or less.
請求項1〜6の何れかに記載のポリオレフィン樹脂組成物を用いて得られるガスバリア材。 The gas barrier material obtained using the polyolefin resin composition in any one of Claims 1-6. ガスバリア材が、ガスバリア性フィルムである請求項7に記載のガスバリア材。 The gas barrier material according to claim 7, wherein the gas barrier material is a gas barrier film. ガスバリア材が、ガスバリア性成形体である請求項7に記載のガスバリア材。 The gas barrier material according to claim 7, wherein the gas barrier material is a gas barrier molded article.
JP2015021193A 2015-02-05 2015-02-05 Polyolefin resin composition and gas barrier material Active JP6554697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015021193A JP6554697B2 (en) 2015-02-05 2015-02-05 Polyolefin resin composition and gas barrier material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015021193A JP6554697B2 (en) 2015-02-05 2015-02-05 Polyolefin resin composition and gas barrier material

Publications (2)

Publication Number Publication Date
JP2016141793A true JP2016141793A (en) 2016-08-08
JP6554697B2 JP6554697B2 (en) 2019-08-07

Family

ID=56569657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015021193A Active JP6554697B2 (en) 2015-02-05 2015-02-05 Polyolefin resin composition and gas barrier material

Country Status (1)

Country Link
JP (1) JP6554697B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218459A1 (en) * 2019-04-25 2020-10-29 株式会社クラレ Coating composition and anti-fog member, anti-fouling member, laminate and anti-bacterial product using same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272739A (en) * 1985-09-26 1987-04-03 Sumitomo Chem Co Ltd Polypropylene resin composition
JP2002037940A (en) * 2000-07-21 2002-02-06 Grand Polymer Co Ltd Polypropylene resin composition and method for producing the same
WO2006022431A1 (en) * 2004-08-27 2006-03-02 National Institute For Materials Science Organic-inorganic composite and polymer composite material, and method for production thereof
WO2006082927A1 (en) * 2005-02-03 2006-08-10 National Institute For Materials Science Process for producing flaky silicate powder
JP2006307190A (en) * 2005-03-28 2006-11-09 Mitsubishi Chemicals Corp Modified olefin polymer composition and olefin polymer composition using the same
WO2007032380A1 (en) * 2005-09-14 2007-03-22 National Institute For Materials Science Mixed-layered phyllosilicate and process for producing the same
WO2007046305A1 (en) * 2005-10-17 2007-04-26 National Institute For Materials Science Method for production of organic-inorganic complex, organic-inorganic complex, and polymeric composite material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272739A (en) * 1985-09-26 1987-04-03 Sumitomo Chem Co Ltd Polypropylene resin composition
JP2002037940A (en) * 2000-07-21 2002-02-06 Grand Polymer Co Ltd Polypropylene resin composition and method for producing the same
WO2006022431A1 (en) * 2004-08-27 2006-03-02 National Institute For Materials Science Organic-inorganic composite and polymer composite material, and method for production thereof
WO2006082927A1 (en) * 2005-02-03 2006-08-10 National Institute For Materials Science Process for producing flaky silicate powder
JP2006307190A (en) * 2005-03-28 2006-11-09 Mitsubishi Chemicals Corp Modified olefin polymer composition and olefin polymer composition using the same
WO2007032380A1 (en) * 2005-09-14 2007-03-22 National Institute For Materials Science Mixed-layered phyllosilicate and process for producing the same
WO2007046305A1 (en) * 2005-10-17 2007-04-26 National Institute For Materials Science Method for production of organic-inorganic complex, organic-inorganic complex, and polymeric composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218459A1 (en) * 2019-04-25 2020-10-29 株式会社クラレ Coating composition and anti-fog member, anti-fouling member, laminate and anti-bacterial product using same

Also Published As

Publication number Publication date
JP6554697B2 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
JP5024783B2 (en) ORGANIC-INORGANIC COMPOSITE, POLYMER COMPOSITE AND PROCESS FOR PRODUCING THE SAME
US7959886B2 (en) Mixed-layered phyllosilicate and process for producing the same
EP0598836B1 (en) Melt process formation of polymer nanocomposite of exfoliated layered material
US6225394B1 (en) Intercalates formed by co-intercalation of onium ion spacing/coupling agents and monomer, oligomer or polymer ethylene vinyl alcohol (EVOH) intercalants and nanocomposites prepared with the intercalates
Villanueva et al. Comparative study of nanocomposites of polyolefin compatibilizers containing kaolinite and montmorillonite organoclays
JP5083767B2 (en) Method for producing organic-inorganic composite, organic-inorganic composite, and polymer composite
JP2003306585A (en) Resin-phyllosilicate composite material and its manufacturing process
Liborio et al. New chemical treatment of bentonite for the preparation of polypropylene nanocomposites by melt intercalation
JP6554697B2 (en) Polyolefin resin composition and gas barrier material
Mohamed Radiation induced modification of NBR and SBR montmorillonite nanocomposites
Seyidoglu et al. Production of modified clays and their use in polypropylene‐based nanocomposites
Lonkar et al. Influence of reactive compatibilization on the structure and properties of PP/LDH nanocomposites
Acharya et al. Ethylene propylene diene terpolymer/ethylene vinyl acetate/layered silicate ternary nanocomposite by solution method
Sánchez-Valdes et al. Effect of PEgMA/amine silane compatibilizer on clay dispersion of polyethylene-clay nanocomposites
JP2007106924A (en) Resin composition and molded article thereof
JP2017043692A (en) Gas or steam barrier resin composition and barrier material
Giannakas et al. Preparation and characterization of polymer/organosilicate nanocomposites based on unmodified LDPE
JP2008063408A (en) Method for producing polymer composite material
JPH10298358A (en) Resin molded product
Lerari et al. Preparation method effect on thermal properties of PMMA/clay nanocomposite
EP2480599A1 (en) Nanocomposite composition and system
JP2000281841A (en) Layered silicate composite material, its production and molded product from the composite material
JP2002121397A (en) Resin-phyllosilicate composite material and its manufacturing method
JP2001040207A (en) Phyllosilicate-containing composite resin composition and barrier composite resin molded product
EP1840160A2 (en) Nanocomposite materials, their production and articles made therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190617

R150 Certificate of patent or registration of utility model

Ref document number: 6554697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250