JP2016140967A - Position control device - Google Patents

Position control device Download PDF

Info

Publication number
JP2016140967A
JP2016140967A JP2015020554A JP2015020554A JP2016140967A JP 2016140967 A JP2016140967 A JP 2016140967A JP 2015020554 A JP2015020554 A JP 2015020554A JP 2015020554 A JP2015020554 A JP 2015020554A JP 2016140967 A JP2016140967 A JP 2016140967A
Authority
JP
Japan
Prior art keywords
value
pass filter
disturbance
control device
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015020554A
Other languages
Japanese (ja)
Other versions
JP6417231B2 (en
Inventor
匡 宮路
Tadashi Miyaji
匡 宮路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP2015020554A priority Critical patent/JP6417231B2/en
Publication of JP2016140967A publication Critical patent/JP2016140967A/en
Application granted granted Critical
Publication of JP6417231B2 publication Critical patent/JP6417231B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a position control device which suppresses errors each of which may occur between a position specified by a position command value and an outputted position, by estimating vibration that occurs during cutting process without delay and compensating its impact.SOLUTION: A position control device calculates a gain characteristic and a phase characteristic in a cutting vibration frequency for a low-pass filter included in a disturbance observer. Then, the position control device performs a gain compensation and a phase compensation on an estimated disturbance value outputted from the disturbance observer, using an amplitude phase correcting unit 9, accurately estimates cutting vibration and compensates its impact.SELECTED DRAWING: Figure 1

Description

本発明は、工作機械等における送り軸の位置制御装置、特に加工中の切削振動に起因した位置誤差を抑制する位置制御装置の改良に関する。   The present invention relates to a feed shaft position control device in a machine tool or the like, and more particularly to an improvement in a position control device that suppresses a position error caused by cutting vibration during machining.

工作機械の送り軸では、例えばフライス加工を行う場合、加工に伴う切削負荷の上昇や切削振動に起因した位置誤差を生じる。これらの切削外乱に起因した位置誤差を抑制する手法として外乱オブザーバがよく知られている。   In the feed axis of a machine tool, for example, when milling is performed, a position error due to an increase in cutting load or cutting vibration accompanying the processing occurs. Disturbance observers are well known as a technique for suppressing position errors caused by these cutting disturbances.

図3は、従来の位置制御装置の一例として、非特許文献1の技術を示したブロック図である。図3において、制御器1は上位装置(図示しない)からの位置指令値rと位置検出値から操作量u0を出力し、加算器2で補償量と加算され、制御入力uとなる。制御入力uは、制御対象4に入力されるが、外乱dの影響で実質的な入力は制御入力uから外乱dを減算器3で引いた値と等しくなる。制御対象4は、制御入力uが与えられることにより、位置出力yが位置指令値rと等しくなるように制御される。また、制御対象4の位置出力yは、位置検出器等により、その位置を検出されるが、観測雑音ζの影響で、実質的な位置検出値y0は、位置出力yから観測雑音ζを加算器5で加えた値と等しくなる。   FIG. 3 is a block diagram showing the technique of Non-Patent Document 1 as an example of a conventional position control device. In FIG. 3, a controller 1 outputs an operation amount u0 from a position command value r and a position detection value from a host device (not shown), and is added to a compensation amount by an adder 2 to become a control input u. The control input u is input to the controlled object 4, but the substantial input becomes equal to the value obtained by subtracting the disturbance d from the control input u by the subtractor 3 due to the influence of the disturbance d. The control object 4 is controlled such that the position output y becomes equal to the position command value r when the control input u is given. Further, the position output y of the control object 4 is detected by a position detector or the like, but due to the influence of the observation noise ζ, the substantial position detection value y0 adds the observation noise ζ from the position output y. It is equal to the value added by the vessel 5.

一方、ノミナルプラントの逆システム6は、制御対象4の伝達特性Pに対するノミナル特性Pnに関し、逆伝達特性となるPn−1の伝達特性を持つ。ノミナルプラントの逆システム6は、位置検出値y0から制御対象4の実質的な入力を推定し、減算器7で制御入力uとの差分を取ることにより、制御対象4に作用する外乱dを推定する。ただし、ノミナルプラントの逆システム6は、非プロパーな関数となるため、実質的にはローパスフィルタ8を経て外乱推定値d’が出力される。この外乱推定値d’は補償量として加算器2で制御器1の出力である操作量u0と加算される。 On the other hand, the inverse system 6 of the nominal plant has a transfer characteristic of Pn −1 which is a reverse transfer characteristic with respect to the nominal characteristic Pn with respect to the transfer characteristic P of the controlled object 4. The inverse system 6 of the nominal plant estimates the substantial input of the controlled object 4 from the position detection value y0, and estimates the disturbance d acting on the controlled object 4 by taking the difference from the controlled input u by the subtractor 7. To do. However, since the inverse system 6 of the nominal plant is a non-proper function, the disturbance estimated value d ′ is substantially output through the low-pass filter 8. This disturbance estimated value d ′ is added as a compensation amount by the adder 2 with the manipulated variable u0 output from the controller 1.

次に動作原理について説明する。操作量u0、外乱d、観測雑音ζに対する位置出力y、制御入力uは、それぞれ式1、式2で表現される。
y=P×Pn /{Pn×(1−L)+P×L}×u0
−P×Pn×(1−L)/{Pn×(1−L)+P×L}×d
−P×L /{Pn×(1−L)+P×L}×ζ ・・・式1
u=Pn /{Pn×(1−L)+P×L}×u0
+P×L/{Pn×(1−L)+P×L}×d
−L /{Pn×(1−L)+P×L}×ζ ・・・式2
Next, the operation principle will be described. The manipulated variable u0, the disturbance d, the position output y with respect to the observation noise ζ, and the control input u are expressed by Expression 1 and Expression 2, respectively.
y = P * Pn / {Pn * (1-L) + P * L} * u0
-P * Pn * (1-L) / {Pn * (1-L) + P * L} * d
−P × L / {Pn × (1−L) + P × L} × ζ Equation 1
u = Pn / {Pn * (1-L) + P * L} * u0
+ P * L / {Pn * (1-L) + P * L} * d
−L / {Pn × (1−L) + P × L} × ζ Expression 2

ローパスフィルタ8の伝達特性Lが1の場合、式1は式3で表現され、外乱dの影響を排除することができる。
y=Pn×u0−ζ ・・・式3
When the transfer characteristic L of the low-pass filter 8 is 1, Expression 1 is expressed by Expression 3, and the influence of the disturbance d can be eliminated.
y = Pn × u0−ζ Equation 3

一方、式2は式4で表現され、観測雑音ζがP−1で増幅された状態で、制御入力uに重畳されることが分かる。
u=Pn/P×u0+d−1/P×ζ ・・・式4
On the other hand, Expression 2 is expressed by Expression 4, and it can be seen that the observation noise ζ is superimposed on the control input u in a state amplified by P− 1 .
u = Pn / P × u0 + d−1 / P × ζ Equation 4

即ち、外乱dの影響を抑制するためには、ローパスフィルタ8のカットオフ周波数をできるだけ高く設定することが好ましいものの、観測雑音ζに起因した異音や高周波振動の発生を防ぐため、カットオフ周波数をあまり高く設定できないというのが実状である。   That is, in order to suppress the influence of the disturbance d, it is preferable to set the cut-off frequency of the low-pass filter 8 as high as possible, but in order to prevent the generation of abnormal noise and high-frequency vibration due to the observation noise ζ, The fact is that it cannot be set too high.

ここで、機械加工時の挙動を例にすると、加工に伴い切削負荷が上昇した場合、外乱dとして定常的な負荷が加わる。しかし、ローパスフィルタ8は直流成分に対して伝達特性Lが1となるため、前述のように、外乱dの影響は抑制され、位置出力yに影響を及ぼすことはない。同様に、加工に伴い切削振動が発生した場合でも、その振動周波数がローパスフィルタ8のカットオフ周波数に比べ十分に低い状況下では、その影響を抑制することを可能としている。   Here, taking the behavior during machining as an example, when the cutting load increases with machining, a steady load is applied as the disturbance d. However, since the low-pass filter 8 has a transfer characteristic L of 1 with respect to the DC component, the influence of the disturbance d is suppressed as described above, and the position output y is not affected. Similarly, even when cutting vibration is generated during processing, it is possible to suppress the influence under a situation where the vibration frequency is sufficiently lower than the cut-off frequency of the low-pass filter 8.

山田耕嗣他著、「外乱オブザーバの高次数化とロバスト安定性に関する考察」、T.IEE Japan,Vol.117(1997)−C,No.12,p.1776−p.1781Koda Yamada et al., “Consideration on Higher Order and Robust Stability of Disturbance Observer”, T. IEEE Japan, Vol. 117 (1997) -C, No. 12, p. 1776-p. 1781

しかしながら、外乱dとして切削振動が作用した場合、その振動周波数におけるローパスフィルタ8の伝達特性Lが1となるまで、ローパスフィルタ8のカットオフ周波数を高めることは難しい。特にローパスフィルタ8の位相特性において、遅れが発生し、妨げとなる。仮に、ローパスフィルタ8の伝達特性Lを式5のように定めたとする。ここで、式5において、ωcはローパスフィルタ8のカットオフ角周波数、sはラプラス演算子を表す。
L=ωc/(s+ωc) ・・・式5
However, when cutting vibration acts as the disturbance d, it is difficult to increase the cutoff frequency of the low-pass filter 8 until the transfer characteristic L of the low-pass filter 8 at that vibration frequency becomes 1. In particular, a delay occurs in the phase characteristics of the low-pass filter 8 and hinders. Suppose that the transfer characteristic L of the low-pass filter 8 is determined as shown in Equation 5. Here, in Expression 5, ωc represents a cutoff angular frequency of the low-pass filter 8, and s represents a Laplace operator.
L = ωc / (s + ωc) Equation 5

この時、切削振動の振動角周波数がローパスフィルタ8のカットオフ角周波数ωcの半分、即ちωc/2であったとすると、ローパスフィルタ8のゲイン特性|L|は0.89倍、位相特性∠Lは26.6degの遅れとなる。更に、切削振動の振動角周波数がωc/5であったとしても、|L|は0.98倍、∠Lは11.3degの遅れとなる。   At this time, if the vibration angular frequency of the cutting vibration is half of the cutoff angular frequency ωc of the low-pass filter 8, that is, ωc / 2, the gain characteristic | L | of the low-pass filter 8 is 0.89 times, and the phase characteristic ∠L Becomes a delay of 26.6 deg. Furthermore, even if the vibration angular frequency of the cutting vibration is ωc / 5, | L | is 0.98 times and ∠L is 11.3 deg.

図4はローパスフィルタ8の伝達特性が1(|L|=1倍、∠L=0deg)の場合の時間応答特性を図示したものである。なお、ここでは簡単のため、操作量u0、観測雑音ζをともにゼロとしている。ローパスフィルタ8の伝達特性が1であるため、外乱推定値d’は外乱dと一致し、位置出力yに外乱dの影響を与えることがない。即ち切削振動が加わっても位置出力yは変移しない。   FIG. 4 illustrates a time response characteristic when the transfer characteristic of the low-pass filter 8 is 1 (| L | = 1 ×, ∠L = 0 deg). Here, for simplicity, the manipulated variable u0 and the observation noise ζ are both zero. Since the transfer characteristic of the low-pass filter 8 is 1, the estimated disturbance value d 'coincides with the disturbance d, and the position output y is not affected by the disturbance d. That is, the position output y does not change even when cutting vibration is applied.

一方、図5はローパスフィルタ8の伝達特性が1でない場合、即ちゲイン特性が減衰し、位相特性に遅れがある場合の時間応答特性を図示したものである。外乱推定値d’は外乱dに対し、振幅が低下し、位相も遅れを生じている。この時、外乱dの影響を打ち消すことができず、位置出力yに外乱dの影響が重畳する結果となる。   On the other hand, FIG. 5 illustrates the time response characteristic when the transfer characteristic of the low-pass filter 8 is not 1, that is, when the gain characteristic is attenuated and the phase characteristic is delayed. The estimated disturbance value d ′ has a lower amplitude and a delayed phase than the disturbance d. At this time, the influence of the disturbance d cannot be canceled, and the influence of the disturbance d is superimposed on the position output y.

このように、外乱dとして切削振動が作用した場合、切削振動の振動周波数に対するローパスフィルタ8の伝達特性が1(|L|=1倍、∠L=0deg)でないため、位置出力yに対する影響を完全に抑制することができないといった課題がある。   In this way, when cutting vibration acts as the disturbance d, the transfer characteristic of the low-pass filter 8 with respect to the vibration frequency of the cutting vibration is not 1 (| L | = 1 ×, ∠L = 0 deg), and therefore the influence on the position output y is affected. There is a problem that it cannot be completely suppressed.

本発明は、上記課題を鑑みてなされたものであり、加工中に発生する切削振動に対し、遅れなくこれを推定、補償することで、位置指令値と位置出力との間に生じる位置誤差を抑制する位置制御装置を提供することを目的とする。   The present invention has been made in view of the above problems, and estimates and compensates for cutting vibration generated during machining without delay, so that a position error generated between a position command value and a position output can be reduced. An object of the present invention is to provide a position control device that suppresses.

以上のような目的を達成するために、本発明に係る位置制御装置は、サーボモータを用いて負荷を駆動する数値制御機械の制御対象の位置を上位装置からの位置指令値に従って制御する位置制御装置において、前記位置指令値と位置検出器から得た前記制御対象の位置検出値とから操作量を出力する制御器と、前記操作量と補償量を加算して制御入力を出力する加算器と、前記制御入力に応じて制御対象を駆動する手段と、前記位置検出値に前記制御対象のノミナル値の逆特性を乗じて得た値と前記制御入力との差分をローパスフィルタに入力し、外乱推定値を得る外乱オブザーバと、前記外乱推定値と切削振動周波数とから前記補償量を算出する振幅位相補正器と、を備え、前記振幅位相補正器は、前記切削振動周波数における前記ローパスフィルタのゲイン特性からゲイン補正係数を算出し、前記切削振動周波数における前記ローパスフィルタの位相特性から位相補正値を算出し、前記ゲイン補正係数および前記位相補正値に基づいて前記外乱推定値をゲイン補正および位相補正する、ことを特徴とする。   In order to achieve the above object, a position control device according to the present invention is a position control that controls the position of a control target of a numerical control machine that drives a load using a servo motor in accordance with a position command value from a host device. In the apparatus, a controller that outputs an operation amount from the position command value and the position detection value of the control target obtained from a position detector, an adder that adds the operation amount and the compensation amount and outputs a control input; A means for driving a control object in accordance with the control input, and a difference between the control input and a value obtained by multiplying the position detection value by the inverse characteristic of the nominal value of the control object is input to a low-pass filter A disturbance observer that obtains an estimated value, and an amplitude phase corrector that calculates the compensation amount from the estimated disturbance value and the cutting vibration frequency, and the amplitude phase corrector includes the low pass at the cutting vibration frequency. A gain correction coefficient is calculated from the gain characteristic of the filter, a phase correction value is calculated from the phase characteristic of the low-pass filter at the cutting vibration frequency, and the estimated disturbance value is gain-corrected based on the gain correction coefficient and the phase correction value. And phase correction.

好適な態様では、前記切削振動周波数は、前記数値制御機械に設けられた主軸の回転速度と、前記主軸に取り付けられた工具の刃数と、から算出されることを特徴とする。   In a preferred aspect, the cutting vibration frequency is calculated from a rotation speed of a main shaft provided in the numerical control machine and the number of blades of a tool attached to the main shaft.

本発明による位置制御装置によれば、加工中に発生する切削振動に対し、遅れなくこれを推定、補償することができ、位置指令値と位置出力との間に生じる位置誤差を抑制することができる。   According to the position control device of the present invention, it is possible to estimate and compensate for the cutting vibration generated during machining without delay, and to suppress the position error generated between the position command value and the position output. it can.

本発明の実施例を示すブロック図である。It is a block diagram which shows the Example of this invention. 本発明の実施例を示すブロック図である。It is a block diagram which shows the Example of this invention. 従来技術を示すブロック図である。It is a block diagram which shows a prior art. 正確に外乱を推定できたときの時間応答特性図である。It is a time response characteristic figure when a disturbance can be estimated correctly. 外乱推定値に減衰や遅れを含むときの時間応答特性図である。It is a time response characteristic figure when attenuation and a delay are included in a disturbance estimated value.

以下、図面を参照しつつ本発明の実施例について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施例に関わる制御ブロックを示した図である。従来例と同一要素には、同一符号を付しており説明を省略する。従来例(図3)では、ローパスフィルタ8の出力を外乱推定値d’とし、操作量u0に加算していたのに対し、本発明(図1)ではローパスフィルタ8の出力を振幅位相補正器9に入力し、その出力を外乱推定値d’として操作量u0に加算する構成となっている。   FIG. 1 is a diagram showing a control block according to an embodiment of the present invention. The same elements as those of the conventional example are denoted by the same reference numerals, and description thereof is omitted. In the conventional example (FIG. 3), the output of the low-pass filter 8 is set to the disturbance estimated value d ′ and added to the manipulated variable u0. In contrast, in the present invention (FIG. 1), the output of the low-pass filter 8 is the amplitude phase corrector. 9 and the output is added to the manipulated variable u0 as a disturbance estimated value d '.

振幅位相補正器9は、ローパスフィルタ8の出力のほか、振動周波数fを入力に持ち、その伝達特性Gは、式6のように表現される。ここで、式6において、Kはゲイン補正係数、αは位相補正係数、sはラプラス演算子を表し、更に位相補正係数αは位相補正値φを用いて式7で規定される。
G=(K/√α)×(s+2πf√α)/(s+2πf/√α) ・・・式6
α=(1−sinφ)/(1+sinφ) ・・・式7
The amplitude / phase corrector 9 has the vibration frequency f as an input in addition to the output of the low-pass filter 8, and its transfer characteristic G is expressed as shown in Equation 6. Here, in Expression 6, K represents a gain correction coefficient, α represents a phase correction coefficient, s represents a Laplace operator, and the phase correction coefficient α is defined by Expression 7 using a phase correction value φ.
G = (K / √α) × (s + 2πf√α) / (s + 2πf / √α) Equation 6
α = (1−sinφ) / (1 + sinφ) Equation 7

振幅位相補正器9は、振動周波数fにおいて、ゲイン特性|G|がK、位相特性∠Gがφの進みとなる伝達特性を持つ。一方、このゲイン補正係数K、位相補正値φは、振動周波数fにおけるローパスフィルタ8の伝達特性Lに関し、式8、式9の関係を持つように設定される。
K=1/|L| ・・・式8
φ=−∠L ・・・式9
The amplitude / phase corrector 9 has a transfer characteristic in which the gain characteristic | G | is K and the phase characteristic ∠G is the advance of φ at the vibration frequency f. On the other hand, the gain correction coefficient K and the phase correction value φ are set so as to have the relationship of Expression 8 and Expression 9 with respect to the transfer characteristic L of the low-pass filter 8 at the vibration frequency f.
K = 1 / | L |
φ = -∠L ... Equation 9

即ち、ローパスフィルタ8によって減衰した振動周波数fの振動振幅をゲイン補正係数Kで増幅するとともに、ローパスフィルタ8によって生じた振動周波数fの位相遅れを位相補正値φで位相を進ませる機能を持つ。この振幅位相補正器9の働きにより、振動周波数fの切削振動を遅れなく正確に推定することができるようになる。そして、この振幅位相補正器9の出力である外乱推定値d’を補償量として加算器2で制御器1の出力である操作量u0と加算することによって、切削振動の影響で生じる位置誤差を抑制することができる。   That is, the vibration amplitude of the vibration frequency f attenuated by the low-pass filter 8 is amplified by the gain correction coefficient K, and the phase delay of the vibration frequency f generated by the low-pass filter 8 is advanced by the phase correction value φ. By the function of the amplitude phase corrector 9, the cutting vibration at the vibration frequency f can be accurately estimated without delay. Then, by adding the disturbance estimated value d ′ output from the amplitude phase corrector 9 as a compensation amount to the operation amount u0 output from the controller 1 by the adder 2, a position error caused by the influence of the cutting vibration is added. Can be suppressed.

即ち、ローパスフィルタ8、振幅位相補正器9からなる演算部の伝達特性が振動周波数fに対し、1となるため、図4で示した時間応答特性図のように、外乱推定値d’と外乱dが一致し、位置出力yに外乱dの影響を与えないようにすることが可能となる。   That is, since the transfer characteristic of the calculation unit including the low-pass filter 8 and the amplitude / phase corrector 9 is 1 with respect to the vibration frequency f, the disturbance estimated value d ′ and the disturbance as shown in the time response characteristic diagram shown in FIG. It is possible for d to match so that the position output y is not affected by the disturbance d.

なお、振幅位相補正器9に入力される振動周波数fは、加工条件などに従い上位装置から与えるものとする。例えば、図2に示すように、工具を取り付けた主軸の回転速度Sに工具の刃数Zを乗算器10で乗じることにより、切削振動の基本波として振動周波数fを定めることが可能である。また、主軸の回転速度Sの変化にあわせて、振幅位相補正器9で扱う振動周波数fを可変することも可能である。   It is assumed that the vibration frequency f input to the amplitude / phase corrector 9 is given from the host device according to the processing conditions. For example, as shown in FIG. 2, it is possible to determine the vibration frequency f as the fundamental wave of the cutting vibration by multiplying the rotation speed S of the main shaft to which the tool is attached by the number of blades Z of the tool with a multiplier 10. It is also possible to vary the vibration frequency f handled by the amplitude phase corrector 9 in accordance with the change in the rotational speed S of the main shaft.

また、振幅位相補正器9を付加したことにより、振動周波数fよりも高い周波数帯域において外乱推定値d’がK/√α倍に増幅され、観測雑音ζの影響が制御入力uに重畳することが懸念される。この場合、予めローパスフィルタ8を高周波域での減衰性能が優れた高次のローパスフィルタで構成することにより、その課題を回避することが可能である。   Further, by adding the amplitude phase corrector 9, the disturbance estimated value d ′ is amplified K / √α times in a frequency band higher than the vibration frequency f, and the influence of the observation noise ζ is superimposed on the control input u. Is concerned. In this case, the problem can be avoided by configuring the low-pass filter 8 in advance with a high-order low-pass filter having excellent attenuation performance in a high frequency region.

なお、上記実施例では、ローパスフィルタ8の伝達特性Lを式5のように定めた場合を例に説明したが、本発明は、この伝達特性に限定されるものではない。例えば、高域遮断特性に加えて低域遮断特性を併せ持つバンドパスフィルタのような伝達特性であっても、本発明の振幅位相補正器9を用いてゲイン・位相を適切に補正した外乱推定値d’を算出することができる。   In the above-described embodiment, the case where the transfer characteristic L of the low-pass filter 8 is determined as shown in Expression 5 is described as an example, but the present invention is not limited to this transfer characteristic. For example, even if the transfer characteristic is a bandpass filter having a low-frequency cutoff characteristic in addition to a high-frequency cutoff characteristic, the estimated disturbance value obtained by appropriately correcting the gain and phase using the amplitude phase corrector 9 of the present invention d ′ can be calculated.

以上のように、本発明による位置制御装置によれば、加工中に発生する切削振動に対し、遅れなくこれを推定、補償することができ、位置指令値と位置出力との間に生じる位置誤差を抑制することができる。   As described above, according to the position control device of the present invention, it is possible to estimate and compensate for cutting vibration generated during machining without delay, and a position error generated between the position command value and the position output. Can be suppressed.

1 制御器、2,5 加算器、3,7 減算器、4 制御対象、6 ノミナルプラントの逆システム、8 ローパスフィルタ、9 振幅位相補正器、10 乗算器。
DESCRIPTION OF SYMBOLS 1 Controller, 2, 5 Adder, 3, 7 Subtractor, 4 Control object, 6 Nominal plant inverse system, 8 Low pass filter, 9 Amplitude phase corrector, 10 Multiplier.

Claims (2)

サーボモータを用いて負荷を駆動する数値制御機械の制御対象の位置を上位装置からの位置指令値に従って制御する位置制御装置において、
前記位置指令値と位置検出器から得た前記制御対象の位置検出値とから操作量を出力する制御器と、
前記操作量と補償量を加算して制御入力を出力する加算器と、
前記制御入力に応じて制御対象を駆動する手段と、
前記位置検出値に前記制御対象のノミナル値の逆特性を乗じて得た値と前記制御入力との差分をローパスフィルタに入力し、外乱推定値を得る外乱オブザーバと、
前記外乱推定値と切削振動周波数とから前記補償量を算出する振幅位相補正器と、
を備え、
前記振幅位相補正器は、
前記切削振動周波数における前記ローパスフィルタのゲイン特性からゲイン補正係数を算出し、
前記切削振動周波数における前記ローパスフィルタの位相特性から位相補正値を算出し、
前記ゲイン補正係数および前記位相補正値に基づいて前記外乱推定値をゲイン補正および位相補正する、
ことを特徴とする位置制御装置。
In a position control device that controls the position of a control target of a numerical control machine that drives a load using a servo motor according to a position command value from a host device,
A controller that outputs an operation amount from the position command value and the position detection value of the control target obtained from a position detector;
An adder that adds the operation amount and the compensation amount to output a control input;
Means for driving the controlled object in accordance with the control input;
A disturbance observer that obtains a disturbance estimated value by inputting a difference between a value obtained by multiplying the position detection value by a reverse characteristic of the nominal value of the control target and the control input to a low-pass filter,
An amplitude phase corrector for calculating the compensation amount from the disturbance estimated value and the cutting vibration frequency;
With
The amplitude phase corrector is
Calculate a gain correction coefficient from the gain characteristic of the low-pass filter at the cutting vibration frequency,
Calculate a phase correction value from the phase characteristics of the low-pass filter at the cutting vibration frequency,
Gain correction and phase correction of the disturbance estimated value based on the gain correction coefficient and the phase correction value;
A position control device characterized by that.
請求項1に記載の位置制御装置であって、
前記切削振動周波数は、前記数値制御機械に設けられた主軸の回転速度と、前記主軸に取り付けられた工具の刃数と、から算出される、ことを特徴とする位置制御装置。
The position control device according to claim 1,
The position control device characterized in that the cutting vibration frequency is calculated from a rotation speed of a main shaft provided in the numerical control machine and a number of blades of a tool attached to the main shaft.
JP2015020554A 2015-02-04 2015-02-04 Position control device Active JP6417231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015020554A JP6417231B2 (en) 2015-02-04 2015-02-04 Position control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015020554A JP6417231B2 (en) 2015-02-04 2015-02-04 Position control device

Publications (2)

Publication Number Publication Date
JP2016140967A true JP2016140967A (en) 2016-08-08
JP6417231B2 JP6417231B2 (en) 2018-10-31

Family

ID=56568145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015020554A Active JP6417231B2 (en) 2015-02-04 2015-02-04 Position control device

Country Status (1)

Country Link
JP (1) JP6417231B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106843146A (en) * 2017-03-09 2017-06-13 大连理工大学 A kind of self adaptation variable-gain profile errors compensation method
CN108723890A (en) * 2017-04-20 2018-11-02 发那科株式会社 Wave the control device of the lathe of cutting
JP2019209419A (en) * 2018-06-04 2019-12-12 ファナック株式会社 Numerical control device
CN112904798A (en) * 2021-01-28 2021-06-04 清华大学 Two-axis motion system contour error compensation method and device based on time-frequency analysis
JP7068225B2 (en) 2019-04-08 2022-05-16 ファナック株式会社 Machine tool control device with spindle and feed shaft

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028858A (en) * 2000-07-14 2002-01-29 Toyoda Mach Works Ltd Servo control device of linear motor for driving tool rest
JP2003108206A (en) * 2001-10-02 2003-04-11 Mori Seiki Co Ltd Correction system for nc machine tool
JP2007233732A (en) * 2006-03-01 2007-09-13 Ricoh Co Ltd Servo controller
US20080037158A1 (en) * 2006-08-14 2008-02-14 Samsung Electronics Co., Ltd. Adaptive disturbance repressing method and apparatus, and disk drive apparatus using the same
JP2008079478A (en) * 2006-09-25 2008-04-03 Yaskawa Electric Corp Servo control device and speed follow-up control method thereof
JP2008217279A (en) * 2007-03-02 2008-09-18 Fuji Mach Mfg Co Ltd Position controller

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028858A (en) * 2000-07-14 2002-01-29 Toyoda Mach Works Ltd Servo control device of linear motor for driving tool rest
JP2003108206A (en) * 2001-10-02 2003-04-11 Mori Seiki Co Ltd Correction system for nc machine tool
JP2007233732A (en) * 2006-03-01 2007-09-13 Ricoh Co Ltd Servo controller
US20080037158A1 (en) * 2006-08-14 2008-02-14 Samsung Electronics Co., Ltd. Adaptive disturbance repressing method and apparatus, and disk drive apparatus using the same
JP2008047127A (en) * 2006-08-14 2008-02-28 Samsung Electronics Co Ltd Adaptive disturbance repressing method, computer-readable recording medium, adaptive disturbance repressing device, disk drive unit, and disk drive unit control method
JP2008079478A (en) * 2006-09-25 2008-04-03 Yaskawa Electric Corp Servo control device and speed follow-up control method thereof
JP2008217279A (en) * 2007-03-02 2008-09-18 Fuji Mach Mfg Co Ltd Position controller

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106843146A (en) * 2017-03-09 2017-06-13 大连理工大学 A kind of self adaptation variable-gain profile errors compensation method
CN106843146B (en) * 2017-03-09 2018-12-21 大连理工大学 A kind of adaptive variable-gain profile errors compensation method
CN108723890A (en) * 2017-04-20 2018-11-02 发那科株式会社 Wave the control device of the lathe of cutting
CN108723890B (en) * 2017-04-20 2020-01-21 发那科株式会社 Control device for machine tool for performing swing cutting
JP2019209419A (en) * 2018-06-04 2019-12-12 ファナック株式会社 Numerical control device
JP7068225B2 (en) 2019-04-08 2022-05-16 ファナック株式会社 Machine tool control device with spindle and feed shaft
US11534880B2 (en) 2019-04-08 2022-12-27 Fanuc Corporation Control apparatus of machine tool including spindle axis and feed axis
CN112904798A (en) * 2021-01-28 2021-06-04 清华大学 Two-axis motion system contour error compensation method and device based on time-frequency analysis

Also Published As

Publication number Publication date
JP6417231B2 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
JP6417231B2 (en) Position control device
KR101525421B1 (en) Dynamometer system
JP5273575B2 (en) Electric motor control device
JP6325504B2 (en) Servo control device having a function of automatically adjusting a learning controller
JP6177705B2 (en) Control device of mechanical device and gain determination method for friction compensation
JP6491497B2 (en) Motor control device
KR101515902B1 (en) Dynamometer system control device
JP5652678B2 (en) Electric motor control device
US10101729B2 (en) Motor control device, motor control method and computer readable recording medium
JP6671500B2 (en) Method and system for controlling an electric motor
JP2011257205A (en) Axial torque controller for dynamometer system
JP5644409B2 (en) Electric motor position control device
JP2020501124A (en) Method and apparatus for adjusting test bench equipment
JP2017068625A (en) Servo control apparatus with function for measuring characteristics of learning controller
JP5574762B2 (en) Motor control device
JP2011188571A5 (en)
JP6197923B1 (en) Control system
KR20140024809A (en) Motor control apparatus
JP5644203B2 (en) Torque ripple suppression control device and control method for rotating electrical machine
JP5017984B2 (en) Servo control device and speed tracking control method thereof
JP6971925B2 (en) Motor control device
JP5780058B2 (en) Periodic disturbance suppressor
JP7200560B2 (en) Servo controller and servo system
JP7225621B2 (en) Servo controller
JP2010161854A (en) Motor controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181005

R150 Certificate of patent or registration of utility model

Ref document number: 6417231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150