JP2016140883A - Bonding method of ferrous material - Google Patents

Bonding method of ferrous material Download PDF

Info

Publication number
JP2016140883A
JP2016140883A JP2015018196A JP2015018196A JP2016140883A JP 2016140883 A JP2016140883 A JP 2016140883A JP 2015018196 A JP2015018196 A JP 2015018196A JP 2015018196 A JP2015018196 A JP 2015018196A JP 2016140883 A JP2016140883 A JP 2016140883A
Authority
JP
Japan
Prior art keywords
joining
bonding
organic acid
joint
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015018196A
Other languages
Japanese (ja)
Other versions
JP6561481B2 (en
Inventor
真司 小山
Shinji Koyama
真司 小山
達礼 常藤
Tatsunori Tsuneto
達礼 常藤
智美 白鳥
Tomomi Shiratori
智美 白鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Komatsu Seiki Kosakusho Co Ltd
Original Assignee
Gunma University NUC
Komatsu Seiki Kosakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC, Komatsu Seiki Kosakusho Co Ltd filed Critical Gunma University NUC
Priority to JP2015018196A priority Critical patent/JP6561481B2/en
Publication of JP2016140883A publication Critical patent/JP2016140883A/en
Application granted granted Critical
Publication of JP6561481B2 publication Critical patent/JP6561481B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bonding method of a ferrous material capable of bonding at a comparatively low temperature, and suppressing deformation upon bonding.SOLUTION: A ferrous material is bonded by a bonding method of the ferrous material including an organic acid treatment step for boiling a surface including a bonding part of each ferrous material of a plurality of ferrous materials in an organic acid solution, or exposing it to steam containing an organic acid, and a bonding step for butting, heating, pressurizing and bonding each surface of the bonding parts of the boiled or exposed ferrous material .SELECTED DRAWING: Figure 1

Description

本発明は、鉄鋼材料の接合方法に係わる。   The present invention relates to a method for joining steel materials.

従来、ステンレス鋼は、ろう付により接合されていた。
ステンレス鋼のろう付では、一般に、Ag,Cu,Ni及びAuを主成分とするろう材が用いられる。これらの融点は約800℃以上と高温であり、ろう材を溶融させて接合するため、位置決め精度に問題があり、適用範囲にも制限がある。また、ろう付にはフラックスが用いられるが、フラックス残渣による、ろう付部の腐食の問題が指摘されており、撤廃が望まれている。さらに、ろう材とステンレス鋼材との間で金属間化合物(脆性的な性質を有する)を形成して、接合部が脆化する。
Conventionally, stainless steel has been joined by brazing.
In brazing of stainless steel, a brazing material mainly composed of Ag, Cu, Ni and Au is generally used. These melting points are as high as about 800 ° C. or more, and since the brazing material is melted and joined, there is a problem in positioning accuracy and the application range is limited. In addition, flux is used for brazing, but the problem of corrosion of the brazing portion due to flux residue has been pointed out, and elimination is desired. Furthermore, an intermetallic compound (having brittle properties) is formed between the brazing material and the stainless steel material, and the joint becomes brittle.

また、ステンレス鋼の他の接合方法として、レーザ溶接、摩擦撹拌接合、固相拡散接合も提案されている。
しかしながら、これらの接合方法は、以下に述べる問題がある。
レーザ溶接:薄板では変形を生じることがあり、厚板ではポロシティや割れを生じることがあり、種々の溶接欠陥が発生する場合がある。
摩擦撹拌接合:ステンレス鋼が塑性流動を生じる温度域が1000℃を超えるため、このような高温に耐えうる攪拌用ツール材料の開発が必要になり、また、製造コストが増大するので、摩擦撹拌接合法を適用することが難しくなっている。また、他の接合法とも共通するが、微小部の精密な接合には適していない。
固相拡散接合:ステンレス鋼を大気中に曝すと、接合阻害因子である不動態皮膜が形成される。強度の高い接合部を得るには、接合圧力及び接合温度を上昇させることで不動態皮膜を機械的に破壊しなければならず、おのずと接合時のエネルギー増大と接合体の変形量の増加が生じてしまう問題点がある。
As other joining methods for stainless steel, laser welding, friction stir welding, and solid phase diffusion joining have also been proposed.
However, these joining methods have the following problems.
Laser welding: deformation may occur in thin plates, porosity and cracks may occur in thick plates, and various welding defects may occur.
Friction stir welding: Since the temperature range in which stainless steel generates plastic flow exceeds 1000 ° C, it is necessary to develop a stirring tool material that can withstand such high temperatures, and the manufacturing cost increases. It is becoming difficult to apply the law. Moreover, although it is common with other joining methods, it is not suitable for precise joining of minute portions.
Solid phase diffusion bonding: When stainless steel is exposed to the atmosphere, a passive film, which is a bonding inhibiting factor, is formed. In order to obtain a joint with high strength, the passive film must be mechanically broken by raising the joining pressure and joining temperature, which naturally increases the energy during joining and increases the deformation of the joined body. There is a problem.

また、金属材料の固相拡散接合を行う前に、金属材料の接合面を有機酸から成る除去液で処理して、接合面の表面の酸化皮膜を除去することが提案されている(例えば、特許文献1参照。)。   In addition, it is proposed to remove the oxide film on the surface of the bonding surface by treating the bonding surface of the metal material with a removing solution made of an organic acid before performing solid phase diffusion bonding of the metal material (for example, (See Patent Document 1).

特開2006−334652号公報JP 2006-334652 A

しかしながら、ステンレス鋼等の鉄鋼材料においては、特許文献1のように表面を有機酸で処理しただけで固相拡散接合を行うと、十分な接合強度が得られない。   However, in steel materials such as stainless steel, when solid phase diffusion bonding is performed only by treating the surface with an organic acid as in Patent Document 1, sufficient bonding strength cannot be obtained.

上述した問題の解決のために、本発明においては、接合時の変形を抑制することができ、高い位置精度を保つことが可能である鉄鋼材料の接合方法を提供するものである。   In order to solve the above-described problems, the present invention provides a method for joining steel materials that can suppress deformation during joining and can maintain high positional accuracy.

本発明の鉄鋼材料の接合方法は、複数の鉄鋼材料を接合する方法であって、各鉄鋼材料の接合部を含む表面を、有機酸溶液中において煮沸する、又は、有機酸を含む蒸気に曝露する有機酸処理工程と、煮沸又は曝露された鉄鋼材料の接合部の表面同士を突き合わせて、加熱及び加圧して接合する接合工程を含むものである。   The method for joining steel materials of the present invention is a method for joining a plurality of steel materials, wherein the surface including the joint portions of each steel material is boiled in an organic acid solution or exposed to vapor containing organic acids. An organic acid treatment step to be performed, and a bonding step in which the surfaces of the bonded portions of the steel material that have been boiled or exposed are brought into contact with each other, and heated and pressed to join.

上記本発明の鉄鋼材料の接合方法において、有機酸処理工程の後であり、かつ、接合工程の前に、鉄鋼材料の接合部の表面を洗浄する工程をさらに含む構成とすることができる。   In the joining method of the steel material of the said invention, it can be set as the structure which further includes the process of wash | cleaning the surface of the junction part of a steel material after an organic acid treatment process and before a joining process.

上述の本発明によれば、従来よりも低い接合温度で、高い接合強度を得ることができる。
これにより、接合温度を低くして、加熱に必要なエネルギーを低減し、接合時の変形量を低減することが可能になる。
According to the present invention described above, a high bonding strength can be obtained at a bonding temperature lower than that of the prior art.
This makes it possible to lower the bonding temperature, reduce the energy required for heating, and reduce the amount of deformation during bonding.

本発明の一実施の形態の鉄鋼材料の接合方法の手順のフローチャートである。It is a flowchart of the procedure of the joining method of the steel material of one embodiment of this invention. 実験で使用したステンレス鋼から成る板材の斜視図である。It is a perspective view of the board | plate material which consists of stainless steel used in experiment. 実験における接合状態を示す斜視図である。It is a perspective view which shows the joining state in experiment. ギ酸中での処理時間とピール強度の関係を示す図である。It is a figure which shows the relationship between the processing time in formic acid, and peel strength. クエン酸中での処理時間とピール強度の関係を示す図である。It is a figure which shows the relationship between the processing time in a citric acid, and peel strength. ギ酸処理及びクエン酸処理における接合温度とピール強度の関係を示す図である。It is a figure which shows the relationship between the joining temperature and peel strength in a formic acid process and a citric acid process. ピール試験後の破面を走査型電子顕微鏡によって観察した写真である。It is the photograph which observed the fracture surface after a peel test with the scanning electron microscope. 赤外分光法による測定から得られた吸光度のスペクトルを比較した図である。It is the figure which compared the spectrum of the light absorbency obtained from the measurement by infrared spectroscopy.

以下、発明を実施するための形態(以下、「実施の形態」という)について説明する。
なお、説明は以下の順序で行う。
1.本発明の概要
2.実施の形態
3.実施例
Hereinafter, modes for carrying out the invention (hereinafter referred to as “embodiments”) will be described.
The description will be given in the following order.
1. 1. Outline of the present invention Embodiment 3 FIG. Example

<1.本発明の概要>
まず、本発明の概要について説明する。
本発明の鉄鋼材料の接合方法は、複数の鉄鋼材料を接合する方法である。
そして、本発明では、各鉄鋼材料の接合部を含む表面を、有機酸溶液中において煮沸する、又は、有機酸を含む蒸気に曝露する有機酸処理工程と、煮沸又は曝露された鉄鋼材料の接合部の表面同士を突き合わせて、加熱及び加圧して接合する接合工程を含む。
<1. Summary of the present invention>
First, an outline of the present invention will be described.
The method for joining steel materials of the present invention is a method for joining a plurality of steel materials.
And in this invention, the surface containing the junction part of each steel material is boiled in an organic acid solution, or the organic acid treatment process which exposes to the vapor | steam containing an organic acid, and joining of the boiled or exposed steel material It includes a joining step in which the surfaces of the parts are butted and joined by heating and pressing.

本発明において、有機酸処理工程の後であり、かつ、接合工程の前に、鉄鋼材料の接合部の表面を洗浄する工程をさらに含む構成、とすることができる。   In this invention, it can be set as the structure which further includes the process of wash | cleaning the surface of the junction part of a steel material after an organic acid treatment process and before a joining process.

本発明において、鉄鋼材料としては、普通鋼、ステンレス鋼等、各種の鉄鋼材料を使用することができる。例えば、合金組成が13Cr,18Cr,18Cr−8Niのステンレス鋼等、各種のステンレス鋼を使用することができる。
接合する複数の鉄鋼材料は、鉄鋼材料の範囲内であれば、同一材料であっても、異なる材料であってもよい。このうち、異なる材料の組合せとしては、例えば、構成元素が異なる鉄鋼材料、組成が異なる鉄鋼材料、等が挙げられる。
In the present invention, various steel materials such as ordinary steel and stainless steel can be used as the steel material. For example, various stainless steels such as stainless steel having an alloy composition of 13Cr, 18Cr, 18Cr-8Ni can be used.
The plurality of steel materials to be joined may be the same material or different materials as long as they are within the range of the steel material. Among these, examples of combinations of different materials include steel materials having different constituent elements, steel materials having different compositions, and the like.

本発明において、有機酸としては、各種の有機酸を使用することができる。
例えば、ギ酸、酢酸、クエン酸から選ばれる1種以上を使用することができる。
In the present invention, various organic acids can be used as the organic acid.
For example, one or more selected from formic acid, acetic acid, and citric acid can be used.

接合したい鉄鋼材料を有機酸中において煮沸する、又は、有機酸を含む蒸気に曝露することで、接合表面に有機酸塩を生成させる。そして、接合面をつき合わせて、接合部に対して垂直方向の加圧及び接合部近傍の加熱を行って接合する。これにより、鉄鋼材料の接合体を形成することができる。
本発明により形成された接合体は、有機酸塩を生成させなかった場合に比べ約3倍の接合強度を有する接合体が形成できる。さらに有機酸としては、低温で分解する有機酸塩を生成するものから選択することができる。
A steel material to be joined is boiled in an organic acid or exposed to a vapor containing an organic acid, thereby generating an organic acid salt on the joining surface. Then, the bonding surfaces are brought into contact with each other, and pressure is applied in the vertical direction to the bonding portion and heating in the vicinity of the bonding portion is performed. Thereby, the joined body of steel materials can be formed.
The joined body formed according to the present invention can form a joined body having a joining strength about three times that in the case where the organic acid salt is not generated. Furthermore, as an organic acid, it can select from what produces | generates the organic acid salt decomposed | disassembled at low temperature.

鉄鋼材料の接合部の表面に形成されている有機酸塩被膜は、加熱及び加圧して鉄鋼材料を接合する接合工程において、熱分解反応を生じて、鉄鋼材料の鉄等の金属の原子面が露出するので、原子面同士の密着性が向上し、鉄鋼材料同士の金属的接触領域を増加させて、高い接合強度を得ることができる。   The organic acid salt film formed on the surface of the joint portion of the steel material causes a thermal decomposition reaction in the joining step of joining the steel material by heating and pressurizing, and the atomic surface of a metal such as iron of the steel material Since it exposes, the adhesiveness of atomic surfaces improves, the metallic contact area | region of steel materials can be increased, and high joint strength can be obtained.

上述したように、本発明によれば、従来よりも低い接合温度で、十分に高い接合強度が得られるので、低温かつ固相状態での接合が可能になる。
そして、接合温度と同様の観点から、接合の際の圧力を低くしても、十分に高い接合強度を得ることが可能になる。
これにより、低圧力で固相状態での接合が可能になり、従来用いられてきた種々の接合法と比較して、接合の際の変形量を低減することができる。また、ろう材等の挿入物がない直接接合であるため、高い位置精度を保つことができ、溶接では困難であった複雑な形状あるいは微小部の接合も可能になる。
また、低温かつ低圧力で接合が可能になるため、接合装置の構成を簡略化することや、加熱に必要なエネルギーを低減して、エネルギー効率を向上することができる。例えば、消費電力や加熱用の燃料、接合に要する時間等を低減することが可能になる。
As described above, according to the present invention, a sufficiently high bonding strength can be obtained at a bonding temperature lower than that of the prior art, so that bonding at a low temperature and in a solid state can be performed.
From the same viewpoint as the bonding temperature, it is possible to obtain a sufficiently high bonding strength even if the pressure during bonding is lowered.
As a result, bonding in a solid phase can be performed at a low pressure, and the amount of deformation at the time of bonding can be reduced as compared with various bonding methods conventionally used. In addition, since the direct joining is performed without an insert such as a brazing material, high positional accuracy can be maintained, and it is possible to join a complicated shape or a minute portion that has been difficult to weld.
Further, since bonding can be performed at a low temperature and a low pressure, the structure of the bonding apparatus can be simplified, energy required for heating can be reduced, and energy efficiency can be improved. For example, it becomes possible to reduce power consumption, fuel for heating, time required for joining, and the like.

<2.実施の形態>
本発明の一実施の形態の鉄鋼材料の接合方法の手順のフローチャートを、図1に示す。
図1に示すように、まず、ステップS11において、各鉄鋼材料の接合部を含む表面を、有機酸溶液中で煮沸、或いは、有機酸を含む蒸気に曝露する。
これにより、鉄鋼材料の接合部の表面に、有機酸塩被膜が形成される。
<2. Embodiment>
The flowchart of the procedure of the joining method of the steel material of one embodiment of this invention is shown in FIG.
As shown in FIG. 1, first, in step S <b> 11, the surface including the joint portion of each steel material is boiled in an organic acid solution or exposed to vapor containing an organic acid.
Thereby, the organic acid salt film is formed on the surface of the joint portion of the steel material.

鉄鋼材料としては、普通鋼、ステンレス鋼等、各種の鉄鋼材料を使用することができる。
有機酸としては、ギ酸、クエン酸や、その他の有機酸を使用することができる。有機酸溶液用の溶媒としては、水や各種の極性溶媒を使用することが可能である。
As the steel material, various steel materials such as ordinary steel and stainless steel can be used.
As the organic acid, formic acid, citric acid, and other organic acids can be used. As the solvent for the organic acid solution, water or various polar solvents can be used.

次に、ステップS12において、接合部の表面に有機酸塩被膜が形成された2つの鉄鋼材料を、加熱及び加圧して接合する。
これにより、表面汚染層が除去、或いは、有機酸塩に置換された状態で、加熱及び加圧するので、有機酸塩は熱分解反応を生じて分解されることから、第1の金属部材の金属原子の原子面が露出して不動態皮膜が無くなることで原子の拡散が促進され、接合部の鉄鋼材料の再結晶化が進むことで接合強度を増大させることができる。高い接合強度が得られるので、従来よりも低い温度及び低い変形量で高い接合強度を得ることが可能になる。
即ち、表面に有機酸塩被膜が形成されていない鉄鋼材料同士を接合した、従来の接合方法と比較して、接合の際の加熱の温度及び加圧力を低くすることが可能になる。
Next, in step S12, the two steel materials having the organic acid salt film formed on the surface of the joint are joined by heating and pressing.
As a result, since the surface contamination layer is removed or replaced with the organic acid salt, heating and pressurization are performed, so that the organic acid salt is decomposed by a thermal decomposition reaction, so that the metal of the first metal member Since the atomic plane of the atoms is exposed and the passive film is eliminated, the diffusion of the atoms is promoted, and the recrystallization of the steel material in the joint proceeds, so that the bonding strength can be increased. Since a high bonding strength can be obtained, it is possible to obtain a high bonding strength at a lower temperature and lower deformation than in the past.
That is, it is possible to lower the heating temperature and the applied pressure during joining, as compared with a conventional joining method in which steel materials having no organic acid salt film formed on their surfaces are joined together.

上述の本実施の形態によれば、高い接合強度が得られるので、低い温度で高い接合強度を得ることができ、有機酸による処理工程を行わない従来の場合と比較して、接合の際の加熱の温度を低くすることが可能になる。即ち、低温で固相状態での接合が可能になる。
そして、接合の際の圧力を低くしても十分に高い接合強度を得ることができ、低圧力で固相状態での接合が可能になることから、接合の際の変形量を低減することができるので、接合の位置精度を向上することができる。また、接合の位置精度が向上することにより、高い位置精度を保つことができ、溶接では困難であった複雑な形状や微小部の接合も可能になる。
さらに、低温かつ低圧力で接合が可能になるため、エネルギー効率を向上することができる。例えば、消費電力や加熱用の燃料、接合に要する時間等を低減することが可能になる。
According to the above-described embodiment, since a high bonding strength is obtained, a high bonding strength can be obtained at a low temperature, and compared with a conventional case in which a processing step using an organic acid is not performed, The heating temperature can be lowered. That is, bonding in a solid state can be performed at a low temperature.
And even if the pressure at the time of joining is lowered, sufficiently high joining strength can be obtained, and joining in a solid phase can be performed at a low pressure, so that the deformation amount at the time of joining can be reduced. Therefore, it is possible to improve the bonding position accuracy. Further, by improving the bonding position accuracy, it is possible to maintain a high position accuracy, and it is possible to bond complicated shapes and minute parts that have been difficult to weld.
Furthermore, since it becomes possible to join at low temperature and low pressure, energy efficiency can be improved. For example, it becomes possible to reduce power consumption, fuel for heating, time required for joining, and the like.

なお、ステップS11とステップS12の間に、ステップS11で有機酸処理を行った鉄鋼材料の接合部の表面を、洗浄するステップを設けても良い。   In addition, you may provide the step which wash | cleans the surface of the junction part of the steel material which performed the organic acid process by step S11 between step S11 and step S12.

<3.実施例>
次に、実際に、本発明によって鉄鋼材料の接合を行い、特性を調べた。
<3. Example>
Next, the steel materials were actually joined according to the present invention, and the characteristics were examined.

(実験1)ギ酸処理
接合素材として、図2に斜視図を示すような、それぞれSUS304ステンレス鋼から成る、ブロック状板材(10mm×15mm×5mm)、及び、リボン状ロール板材(5mm×100mm×0.17mm)を用意した。
そして、ブロック状板材の接合面をエメリー紙による機械研磨により仕上げ、リボン状ロール板材の接合面をバフ研磨により仕上げた。
ブロック状板材の組成は下記表1の通りであり、リボン状ロール板材の組成は下記表2の通りである。
(Experiment 1) Formic acid treatment As a joining material, a block plate (10 mm × 15 mm × 5 mm) and a ribbon roll plate (5 mm × 100 mm × 0) each made of SUS304 stainless steel as shown in a perspective view in FIG. .17 mm).
Then, the joining surface of the block-like plate material was finished by mechanical polishing with emery paper, and the joining surface of the ribbon-like roll plate material was finished by buffing.
The composition of the block-shaped plate material is as shown in Table 1 below, and the composition of the ribbon-shaped roll plate material is as shown in Table 2 below.


以下の作製方法により、継手の試料を作製した。
まず、各板材をアセトン中で超音波洗浄して脱脂を行った。
次に、各板材を50%ギ酸水溶液中で7〜15分の範囲内の所定時間煮沸した。
その後、蒸留水で10秒間洗浄した。
このようにして、接合用の試験片を準備した。
A joint sample was prepared by the following manufacturing method.
First, each plate material was degreased by ultrasonic cleaning in acetone.
Next, each plate was boiled in a 50% formic acid aqueous solution for a predetermined time within a range of 7 to 15 minutes.
Thereafter, it was washed with distilled water for 10 seconds.
Thus, the test piece for joining was prepared.

次に、図3の斜視図に示すように、ブロック状板材の上にリボン状ロール板材を当接させて、加熱及び加圧することにより、接合した。
そして、窒素ガス置換中(5L/分)において、接合荷重147N、接合時間1.8ksで一定とし、継手を作製した。
Next, as shown in the perspective view of FIG. 3, the ribbon-shaped roll plate material was brought into contact with the block-shaped plate material, and joined by heating and pressurizing.
Then, during the replacement with nitrogen gas (5 L / min), the joint load was 147 N and the joint time was 1.8 ks, and a joint was manufactured.

(ピール強度の測定)
接合により得られた継手に対して、ピール試験(クロスヘッド速度:0.17mm/秒)によりピール強度を測定した。
(Measurement of peel strength)
For the joint obtained by joining, the peel strength was measured by a peel test (crosshead speed: 0.17 mm / second).

(最適処理時間の検討)
ギ酸処理の最適処理時間の検討を行った。
ギ酸処理の時間を0.42ks(7分)、0.66ks(11分)、0.9ks(15分)と変えて、それぞれ接合用の試験片を作製した。
また、比較対照として、ギ酸処理を行っていない試験片も用意した。
そして、接合温度を1073K(750℃)として、ギ酸処理時間を変えた試験片で接合を行い、継手を作製した。
接合して得られた継手に対してピール強度の測定を行った。
ギ酸水溶液中での処理時間tとピール強度Fの関係を、図4に示す。なお、図4には、ギ酸処理をしていない比較対照の試料(as polished)の強度も示している。
(Examination of optimum processing time)
The optimum treatment time for formic acid treatment was examined.
The formic acid treatment time was changed to 0.42 ks (7 minutes), 0.66 ks (11 minutes), and 0.9 ks (15 minutes) to prepare test pieces for bonding, respectively.
Moreover, the test piece which has not performed formic acid treatment was also prepared as a comparison control.
Then, the joint temperature was set to 1073 K (750 ° C.), and the test piece was changed with the formic acid treatment time to produce a joint.
The peel strength was measured for the joint obtained by joining.
FIG. 4 shows the relationship between the treatment time t m and the peel strength F in the formic acid aqueous solution. In addition, in FIG. 4, the intensity | strength of the sample (as polished) of the comparison control which is not formic acid treatment is also shown.

図4より、0.66ks(11分)処理した試料が最もピール強度が大きくなり、処理時間が0.9ks(15分)に増えると、ピール強度が低下することがわかる。
処理時間が増えると引張強さが低下するのは、処理時間が長くなることにより有機酸塩が過剰に生成し、有機酸塩が分解してガスが発生することにより接合面に空孔が多く発生するためと推測される。
そして、処理時間を0.66ks(11分)と最適化することにより、無処理の場合の約3倍のピール強度が得られることがわかる。
As can be seen from FIG. 4, the peel strength of the sample treated with 0.66 ks (11 minutes) is the largest, and the peel strength is lowered when the treatment time is increased to 0.9 ks (15 minutes).
The tensile strength decreases when the treatment time is increased because the organic acid salt is excessively generated due to the long treatment time, and the organic acid salt is decomposed to generate gas, resulting in many pores on the joint surface. Presumed to occur.
It can be seen that by optimizing the processing time to 0.66 ks (11 minutes), a peel strength approximately three times that in the case of no processing can be obtained.

(実験2)クエン酸処理
接合素材として、実験1と同様に、ブロック状板材及びリボン状ロール板材を用意して、各板材を研磨により仕上げた。
そして、以下の作製方法により、継手の試料を作製した。
まず、各板材をアセトン中で超音波洗浄して脱脂を行った。
次に、各板材をクエン酸溶液で5〜14分の範囲内の所定時間煮沸した。
その後、蒸留水で10秒間洗浄した。
このようにして、接合用の試験片を準備した。
(Experiment 2) Citric acid treatment As in the case of Experiment 1, a block-shaped plate material and a ribbon-shaped roll plate material were prepared as bonding materials, and each plate material was finished by polishing.
And the sample of the joint was produced with the following production methods.
First, each plate material was degreased by ultrasonic cleaning in acetone.
Next, each plate was boiled with a citric acid solution for a predetermined time within a range of 5 to 14 minutes.
Thereafter, it was washed with distilled water for 10 seconds.
Thus, the test piece for joining was prepared.

次に、実験1と同様に、ブロック状板材の上にリボン状ロール板材を当接させて、加熱及び加圧することにより、接合した。
そして、窒素ガス置換中(5L/分)において、接合荷重147N、接合時間1.8ksで一定とし、継手を作製した。
接合により得られた継手に対して、ピール試験(クロスヘッド速度:0.17mm/秒)によりピール強度を測定した。
Next, as in Experiment 1, the ribbon-shaped roll plate material was brought into contact with the block-shaped plate material, and was joined by heating and pressing.
Then, during the replacement with nitrogen gas (5 L / min), the joint load was 147 N and the joint time was 1.8 ks, and a joint was manufactured.
For the joint obtained by joining, the peel strength was measured by a peel test (crosshead speed: 0.17 mm / second).

(最適処理時間の検討)
クエン酸処理の最適処理時間の検討を行った。
クエン酸処理の時間を0.30ks(5分)、0.48ks(8分)、0.66ks(11分)、0.84ks(14分)と変えて、それぞれ接合用の試験片を作製した。
そして、接合温度を1073K(750℃)として、クエン酸処理時間を変えた試験片で接合を行い、継手を作製した。
接合して得られた継手に対してピール強度の測定を行った。
クエン酸溶液中での処理時間tとピール強度Fの関係を、図5に示す。なお、図5には、図4と同じ比較対照の試料(as polished)の強度も示している。
(Examination of optimum processing time)
The optimum treatment time for citric acid treatment was examined.
Test pieces for joining were prepared by changing the citric acid treatment time to 0.30 ks (5 minutes), 0.48 ks (8 minutes), 0.66 ks (11 minutes), and 0.84 ks (14 minutes). .
Then, the joint temperature was 1073 K (750 ° C.), and joining was performed using a test piece in which the citric acid treatment time was changed to produce a joint.
The peel strength was measured for the joint obtained by joining.
FIG. 5 shows the relationship between the treatment time t m and the peel strength F in the citric acid solution. FIG. 5 also shows the strength of the same comparative sample (as polished) as in FIG.

図5より、0.66ks(11分)処理した試料が最もピール強度が大きくなり、処理時間が0.84ks(14分)に増えると、ピール強度が低下することがわかる。
そして、処理時間を0.66ks(11分)と最適化することにより、無処理の場合の約3倍強のピール強度が得られることがわかる。
From FIG. 5, it can be seen that the peel strength of the sample treated for 0.66 ks (11 minutes) is the highest, and the peel strength is lowered when the treatment time is increased to 0.84 ks (14 minutes).
It can be seen that by optimizing the processing time to 0.66 ks (11 minutes), a peel strength of about three times that of the case of no processing can be obtained.

(実験3)接合温度とピール強度の関係
次に、接合温度とピール強度の関係を調べた。
(Experiment 3) Relationship between Bonding Temperature and Peel Strength Next, the relationship between bonding temperature and peel strength was examined.

実験1や実験2と同様の方法により、それぞれ最適処理時間(11分)で処理を行った、ギ酸処理済みのブロック状板材及びリボン状ロール板材と、クエン酸処理済みのブロック状板材及びリボン状板材を、それぞれ多数用意した。   Formic acid-treated block plate and ribbon roll plate, citric acid-treated block plate and ribbon, which were processed at the optimum processing time (11 minutes), respectively, in the same manner as in Experiment 1 and Experiment 2. Many plate materials were prepared.

そして、実験1や実験2と同様にして、ギ酸処理済み及びクエン酸処理済みの板材について、それぞれ接合温度を変えて、各接合温度で接合した継手の試料を作製した。
また、比較対照として、有機酸処理を行わず、研磨仕上げ後にそのまま接合した場合についても、接合温度を変えて、各接合温度で接合した継手の試料を作製した。
接合温度は、1023K(750℃)、1073K(800℃)、1123K(850℃)の3通りとした。
Then, in the same manner as in Experiment 1 and Experiment 2, for the formic acid-treated and citric acid-treated plate materials, the joining temperature was changed, and joint samples joined at each joining temperature were produced.
Further, as a comparative control, even when the organic acid treatment was not performed and the bonding was performed as it was after the polishing finish, a bonding sample bonded at each bonding temperature was prepared by changing the bonding temperature.
There were three bonding temperatures: 1023 K (750 ° C.), 1073 K (800 ° C.), and 1123 K (850 ° C.).

作製した継手の試料に対して、ピール試験機にてピール強度の測定を行った。
ギ酸処理を行った場合(FA)、クエン酸処理を行った場合(CA)、研磨仕上げ後にそのまま接合した場合(as polished)の、それぞれの場合における接合温度Tとピール強度Fの関係を、図6に示す。
The peel strength of the produced joint sample was measured with a peel tester.
The relationship between the bonding temperature T and the peel strength F in each case when the formic acid treatment is performed (FA), when the citric acid treatment is performed (CA), and when bonded as it is after polishing finish (as polished) It is shown in FIG.

図6より、有機酸処理を行って有機酸塩被膜を付与することで、付与しなかった場合に比べて、約3倍のピール強度を有する接続部が形成できることがわかった。   From FIG. 6, it was found that by applying the organic acid treatment by applying the organic acid film, it is possible to form a connection portion having a peel strength about three times that in the case where the organic acid coating is not applied.

また、クエン酸処理を行った場合と、研磨仕上げ後にそのまま接合した場合について、ピール試験後の破面を走査型電子顕微鏡により観察した写真を、図7に示す。図7の上段はそのまま接合した場合の試料の写真であり、図7の下段はクエン酸処理を行った場合の試料の写真である。   Further, FIG. 7 shows photographs of the fracture surface after the peel test observed with a scanning electron microscope in the case of performing citric acid treatment and in the case of bonding as it is after polishing finish. The upper part of FIG. 7 is a photograph of the sample when it is joined as it is, and the lower part of FIG. 7 is a photograph of the sample when the citric acid treatment is performed.

図7より、有機酸塩被膜を付与しなかった場合は、接合温度Tの上昇とともに未密着部と考えられる領域が減少する傾向が認められるものの、ほとんどの領域では脆性的な破壊を生じていた。
一方、接合前に有機酸処理を行って有機酸塩被膜を付与した場合には、より低い接合温度から未密着部が減少し、接合相手材が付着したと考えられる凹凸を有した破断形態を示す領域が観察されるようになった。特に、接合温度1123K(750℃)においては、破面にディンプルを含む延性的な破断形態が認められるようになった。このような破断形態の変化は、ギ酸を用いた有機酸塩被膜付与を実施した場合にも認められた。
From FIG. 7, when the organic acid salt film was not applied, although a region considered to be a non-adhered portion tended to decrease as the bonding temperature T increased, brittle fracture occurred in most regions. .
On the other hand, when an organic acid salt film is applied by performing an organic acid treatment before joining, the non-adhered portion decreases from a lower joining temperature, and the fractured form has irregularities that are considered to have been joined by the joining partner material. The indicated area is now observed. In particular, at a bonding temperature of 1123 K (750 ° C.), a ductile fracture mode including dimples on the fracture surface has been recognized. Such a change in the rupture form was also observed when applying an organic acid salt film using formic acid.

(実験4)有機酸処理後の生成物の解析
SUS304ステンレス鋼から成る部材において、ギ酸処理を行った部材と、ギ酸処理を行わず研磨したままの部材を用意して、それぞれの部材について赤外分光法による測定を行い、吸光度のスペクトルを求めた。
得られた吸光度のスペクトルを、図8に示す。
(Experiment 4) Analysis of product after organic acid treatment Among members made of SUS304 stainless steel, a member that has been subjected to formic acid treatment and a member that has been polished without being subjected to formic acid treatment are prepared. Spectroscopic measurement was performed to determine the absorbance spectrum.
The obtained absorbance spectrum is shown in FIG.

図8より、ギ酸処理を行った部材では、1350cm−1と1650cm−1のピークが認められた。
これらのピークから、SUS304ステンレス鋼中のニッケルが、ギ酸と反応して、ニッケルのギ酸塩、即ち、ギ酸ニッケル(II)Ni(HCOO)が生成していることがわかる。
このギ酸ニッケル(II)は、403K近傍で熱分解して、水素と二酸化炭素を発生して金属ニッケルとなる。
従って、ギ酸処理を行ったSUSステンレス鋼を、加熱及び加圧して接合すると、熱分解により発生したガスが接合中に気化してニッケルの金属面が露出し、ニッケル金属同士の密着化が達成され、自己拡散が進行すると考えられる。
From FIG. 8, the member performing the formic acid treatment, the peak of 1350 cm -1 and 1650 cm -1 were observed.
From these peaks, it can be seen that nickel in SUS304 stainless steel reacts with formic acid to produce nickel formate, that is, nickel (II) Ni (HCOO) 2 formate.
This nickel (II) formate is thermally decomposed in the vicinity of 403K to generate hydrogen and carbon dioxide to be metallic nickel.
Therefore, when SUS stainless steel subjected to formic acid treatment is joined by heating and pressurizing, the gas generated by thermal decomposition is vaporized during joining, and the nickel metal surface is exposed, and adhesion between the nickel metals is achieved. It is thought that self-diffusion proceeds.

なお、赤外分光法による測定の結果、ニッケルだけでなく、鉄やクロムにも、同様に有機酸処理による有機酸塩被膜の効果が確認された。
従って、SUS304ステンレス鋼のようなニッケルを合金の主要成分とするステンレス鋼に限らず、ニッケルを合金の主要成分としないステンレス鋼や、普通鋼においても、本発明を適用して、有機酸塩被膜の生成による効果を得ることができると考えられる。
As a result of measurement by infrared spectroscopy, the effect of the organic acid salt coating by the organic acid treatment was confirmed not only on nickel but also on iron and chromium.
Therefore, the present invention is applied not only to stainless steels such as SUS304 stainless steel that have nickel as a main component of the alloy, but also to stainless steels and nickel that do not use nickel as the main component of the alloy. It is thought that the effect by generation of can be obtained.

本発明は、上述の実施の形態や実験の例に限定されるものではなく、本発明の要旨を逸脱しない範囲でその他様々な構成が取り得る。   The present invention is not limited to the above-described embodiments and experimental examples, and various other configurations can be employed without departing from the gist of the present invention.

Claims (3)

複数の鉄鋼材料を接合する方法であって、
各前記鉄鋼材料の接合部を含む表面を、有機酸溶液中において煮沸する、又は、有機酸を含む蒸気に曝露する有機酸処理工程と、
煮沸又は曝露された前記鉄鋼材料の前記接合部の表面同士を突き合わせて、加熱及び加圧して接合する接合工程を含む
鉄鋼材料の接合方法。
A method of joining a plurality of steel materials,
An organic acid treatment step in which a surface including a joint portion of each steel material is boiled in an organic acid solution, or exposed to a vapor containing an organic acid;
A method for joining steel materials, comprising a joining step in which the surfaces of the joint portions of the steel material that have been boiled or exposed are brought into contact with each other and joined by heating and pressing.
前記有機酸処理工程の後であり、かつ、前記接合工程の前に、前記鉄鋼材料の前記接合部の表面を洗浄する工程をさらに含む請求項1に記載の鉄鋼材料の接合方法。   The method for joining steel materials according to claim 1, further comprising a step of cleaning a surface of the joint portion of the steel material after the organic acid treatment step and before the joining step. 前記有機酸として、ギ酸、酢酸、クエン酸のいずれかを使用する、請求項1又は請求項2に記載の鉄鋼材料の接合方法。   The method for joining steel materials according to claim 1 or 2, wherein any one of formic acid, acetic acid, and citric acid is used as the organic acid.
JP2015018196A 2015-02-02 2015-02-02 Method of joining steel materials Active JP6561481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015018196A JP6561481B2 (en) 2015-02-02 2015-02-02 Method of joining steel materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015018196A JP6561481B2 (en) 2015-02-02 2015-02-02 Method of joining steel materials

Publications (2)

Publication Number Publication Date
JP2016140883A true JP2016140883A (en) 2016-08-08
JP6561481B2 JP6561481B2 (en) 2019-08-21

Family

ID=56569297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015018196A Active JP6561481B2 (en) 2015-02-02 2015-02-02 Method of joining steel materials

Country Status (1)

Country Link
JP (1) JP6561481B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020168658A (en) * 2019-04-05 2020-10-15 サンケン電気株式会社 Metal joining method
WO2021140785A1 (en) * 2020-01-09 2021-07-15 古河電気工業株式会社 Metal bonding material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006095534A (en) * 2004-09-28 2006-04-13 Ebara Corp Joining method and its apparatus
JP2011200930A (en) * 2010-03-26 2011-10-13 Gunma Univ Method for joining metal member
WO2013027354A1 (en) * 2011-08-25 2013-02-28 パナソニック株式会社 Bonded body, power semiconductor device and method for manufacturing bonded body and power semiconductor device
JP2015223600A (en) * 2014-05-27 2015-12-14 株式会社東芝 Joint method
US20160114423A1 (en) * 2013-05-15 2016-04-28 Nisshin Steel Co., Ltd. Method for producing a stainless steel diffusion-bonded product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006095534A (en) * 2004-09-28 2006-04-13 Ebara Corp Joining method and its apparatus
JP2011200930A (en) * 2010-03-26 2011-10-13 Gunma Univ Method for joining metal member
WO2013027354A1 (en) * 2011-08-25 2013-02-28 パナソニック株式会社 Bonded body, power semiconductor device and method for manufacturing bonded body and power semiconductor device
US20160114423A1 (en) * 2013-05-15 2016-04-28 Nisshin Steel Co., Ltd. Method for producing a stainless steel diffusion-bonded product
JP2015223600A (en) * 2014-05-27 2015-12-14 株式会社東芝 Joint method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020168658A (en) * 2019-04-05 2020-10-15 サンケン電気株式会社 Metal joining method
WO2021140785A1 (en) * 2020-01-09 2021-07-15 古河電気工業株式会社 Metal bonding material
JPWO2021140785A1 (en) * 2020-01-09 2021-07-15
JP7051000B2 (en) 2020-01-09 2022-04-08 古河電気工業株式会社 Metal joint material

Also Published As

Publication number Publication date
JP6561481B2 (en) 2019-08-21

Similar Documents

Publication Publication Date Title
CN106112167B (en) A kind of diffusion in vacuum soldering processes of molybdenum-copper and nickel base superalloy
CN106475679B (en) A kind of discontinuous pressure process diffusion connecting process of unrepeatered transmission of copper and aluminium alloy
CN114101888B (en) Zirconium alloy low-temperature diffusion connection method
CN106735833A (en) Sound based on eutectic reaction causes instant liquid-phase diffusion welding welding method
CN110732768B (en) Same kind/dissimilar metal connection forming method based on amorphous alloy
JP2013103271A (en) Method for producing diffusion-bonded product of stainless steel
CN102489813A (en) Vacuum active brazing process of molybdenum-copper alloys and stainless steel
Wu et al. Vacuum diffusion bonding of TC4 titanium alloy and T2 copper by a slow cooling heat treatment
CN108188521A (en) A kind of high-frequency induction heating method for welding of Mo Re alloys foil
CN106041350A (en) Tungsten/copper or tungsten/steel connector and method for preparing same
JP6561481B2 (en) Method of joining steel materials
CN101992331B (en) Vacuum brazing process for super-Ni laminated material and Cr18-Ni8 stainless steel
Samavatian et al. Effect of bonding pressure on microstructure and mechanical properties of Ti-6Al-4V diffusion-bonded joint
JP6132316B2 (en) Method for joining metal members
JP6546953B2 (en) Sputtering target-backing plate assembly and method for manufacturing the same
JP5597946B2 (en) Low-temperature metal joining method
Kumar et al. Study on requirement of nickel electroplating in OFE copper-316L stainless steel brazed joints
CN106271047B (en) A method of titanium-aluminum dissimilar metal is welded using femtosecond laser
JPWO2016104399A1 (en) Method for joining metal members
CN103182594A (en) Method for welding aluminium alloy instrument panel beam
JP6991172B2 (en) Sputtering target-backing plate junction
JP6677942B2 (en) Titanium joining method
Calliari et al. Laser welding of plastically deformed lean duplex stainless steel
CN108568610A (en) The method and its welding method of welded steel performance are improved using water jet
CN111001923B (en) Surface treatment method for stirring tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190708

R150 Certificate of patent or registration of utility model

Ref document number: 6561481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250