JP2016139525A - Power storage device and method for controlling power storage device - Google Patents

Power storage device and method for controlling power storage device Download PDF

Info

Publication number
JP2016139525A
JP2016139525A JP2015013798A JP2015013798A JP2016139525A JP 2016139525 A JP2016139525 A JP 2016139525A JP 2015013798 A JP2015013798 A JP 2015013798A JP 2015013798 A JP2015013798 A JP 2015013798A JP 2016139525 A JP2016139525 A JP 2016139525A
Authority
JP
Japan
Prior art keywords
battery
voltage
time
storage device
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015013798A
Other languages
Japanese (ja)
Other versions
JP6369340B2 (en
Inventor
俊雄 小田切
Toshio Odagiri
俊雄 小田切
順一 波多野
Junichi Hatano
順一 波多野
隆広 都竹
Takahiro Tsutake
隆広 都竹
西垣 研治
Kenji Nishigaki
研治 西垣
筒井 雄介
Yusuke Tsutsui
雄介 筒井
量也 山田
Kazuya Yamada
量也 山田
皓子 安谷屋
Hiroko Ataya
皓子 安谷屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2015013798A priority Critical patent/JP6369340B2/en
Publication of JP2016139525A publication Critical patent/JP2016139525A/en
Application granted granted Critical
Publication of JP6369340B2 publication Critical patent/JP6369340B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a power storage device and a method for controlling the power storage device, capable of obtaining an accurate open circuit voltage even before the polarization is solved after charge/discharge is finished.SOLUTION: Disclosed is a power storage device 1 which includes: a battery 4; and a control circuit 3 for controlling charge/discharge of the battery 4. When a predetermined time T1 from completion of charging/discharging of the battery is shorter than a polarization elimination time (T2 or T3) until it is deemed that charging/discharging of the battery 4 is finished and polarization of the battery 4 is eliminated, a control circuit 3 estimates an open circuit voltage of the battery 4 after the polarization of the battery 4 is eliminated on the basis of an amount of change of a voltage of the battery 4 measured during the predetermined time T1 and uses the measured voltage of the battery 4 as the open circuit voltage when the predetermined time T1 is longer than the polarization elimination time (T2 or T3).SELECTED DRAWING: Figure 1

Description

本発明は、充放電をする蓄電装置および蓄電装置の制御方法に関する。   The present invention relates to a power storage device that charges and discharges and a method for controlling the power storage device.

電池の充放電を終了した後に分極がある状態で電池の電圧を計測しても、分極による電圧降下が残っているため、分極が解消した後の開回路電圧(OCV:Open Circuit Voltage)を精度よく計測できない。しかし、精度のよいOCVを計測するためには分極が解消するまで待たなければならい。そこで、充放電を終了した後に、分極が解消する前であっても、精度のよいOCVを求めたい。   Even if the voltage of the battery is measured in the state of polarization after the charge / discharge of the battery is completed, the voltage drop due to the polarization remains, so the open circuit voltage (OCV) after the polarization is eliminated is accurate. I cannot measure well. However, in order to measure the OCV with high accuracy, it is necessary to wait until the polarization is eliminated. Therefore, it is desirable to obtain an accurate OCV even after the charge / discharge is finished and before the polarization is eliminated.

関連する技術として、充電による拡散分極の解消前の第一の時点で計測した蓄電池の第一の電圧値V1と、第一の時点t1以降の所定の時点で計測された蓄電池の第二の電圧値V21と、の電圧変動特性(V1/V21)に基づいて、蓄電池のOCVを推定することが知られている。   As a related technique, the first voltage value V1 of the storage battery measured at the first time point before the diffusion polarization due to charging is canceled, and the second voltage of the storage battery measured at a predetermined time point after the first time point t1. It is known to estimate the OCV of the storage battery based on the voltage fluctuation characteristic (V1 / V21) of the value V21.

また、関連する技術として、無負荷状態にあると推定した時点から、経過した時間t1からt3それぞれにおいて計測したバッテリの端子電圧v1からv3を用いて、電圧v1からv3それぞれに対応する三つの推定計算式(v1=[a/(t1−c)]+b、v2=[a/(t2−c)]+b、v3=[a/(t3−c)]+b)からbを表す式を導き、該式に対応する変数に、時間t1からt3、端子電圧v1からv3を代入してバッテリのOCVを推定することが知られている。なお、上記式において、aは係数とし、cは起点と一定値以下になった時点との時間差に相当する時間としている。   Further, as a related technique, three estimations corresponding to the voltages v1 to v3 are respectively performed using the battery terminal voltages v1 to v3 measured at the elapsed times t1 to t3 from the time when it is estimated that the load is not loaded. From the calculation formulas (v1 = [a / (t1-c)] + b, v2 = [a / (t2-c)] + b, v3 = [a / (t3-c)] + b), an expression representing b is derived, It is known to estimate the battery OCV by substituting the time t1 to t3 and the terminal voltages v1 to v3 into variables corresponding to the equation. In the above formula, “a” is a coefficient, and “c” is a time corresponding to a time difference between the starting point and a time point when the value becomes a certain value or less.

また、関連する技術として、充放電終了後の所定時間内に二次電池の電圧を計測し、時間軸上で複数の計測した電圧を取得し、複数の計測した電圧を用いて逐次計算を行い、二次電池のOCVの時間特性を近似する四次以上の指数減衰関数の係数を決定し、少なくとも決定した係数に基づき二次電池のOCVの収束値を求め、OCVの収束値に基づき充電率(SOC(State Of Charge))を推定する技術が知られている。   In addition, as a related technology, the voltage of the secondary battery is measured within a predetermined time after the end of charging / discharging, and a plurality of measured voltages are obtained on the time axis, and sequential calculation is performed using the plurality of measured voltages. Determining a coefficient of an exponential decay function of the fourth or higher order that approximates the OCV time characteristic of the secondary battery, obtaining a convergence value of the secondary battery OCV based on at least the determined coefficient, and charging rate based on the OCV convergence value A technique for estimating (SOC (State Of Charge)) is known.

特開2014−153131号公報JP 2014-153131 A 特開2004−109007号公報JP 2004-109007 A 特開2005−043339号公報JP 2005-043339 A

本発明の一側面に係る目的は、充放電を終了した後に、分極が解消する前でも、精度のよい開回路電圧(推定したOCV)を求めることができる蓄電装置および蓄電装置の制御方法を提供することである。   An object according to one aspect of the present invention is to provide a power storage device and a power storage device control method capable of obtaining an accurate open circuit voltage (estimated OCV) even after charge / discharge is completed and before polarization is eliminated. It is to be.

実施の態様のひとつである蓄電装置は、電池と、電池の充放電を制御する制御回路と、を備える。
制御回路は、電池の充放電が終了してからの所定時間が、電池の充放電が終了して電池の分極が解消したと見做すまでの分極解消時間より短い場合、所定時間に計測した電池の電圧の変化量に基づいて、電池の分極が解消した後の電池の開回路電圧を推定し、所定時間が、分極解消時間以上長い場合、計測した電池の電圧を開回路電圧とする。
A power storage device that is one embodiment includes a battery and a control circuit that controls charging and discharging of the battery.
The control circuit measured a predetermined time when the predetermined time after the charging / discharging of the battery was completed was shorter than the depolarization time until it was determined that the charging / discharging of the battery was completed and the polarization of the battery was cancelled. Based on the amount of change in the voltage of the battery, the open circuit voltage of the battery after the polarization of the battery is eliminated is estimated. If the predetermined time is longer than the polarization elimination time, the measured battery voltage is set as the open circuit voltage.

他の実施の態様のひとつである蓄電装置は、電池と、電池の充放電を制御する制御回路と、を備える。
制御回路は、電池の充放電が終了してからの所定時間が、電池の充放電が終了して電池の分極が解消したと見做すまでの分極解消時間より短い場合、第一の時間の電圧と第一の時間以降の第二の時間の電圧との差を用いて変化量を求め、第一の時間の電圧と変化量に推定係数を乗算した値とを加算して、電池の分極が解消した後の電池の開回路電圧の推定をする。
A power storage device according to another embodiment includes a battery and a control circuit that controls charging / discharging of the battery.
If the predetermined time after the charging / discharging of the battery is completed is shorter than the depolarization time until the charging / discharging of the battery is finished and the polarization of the battery is considered to be eliminated, the control circuit The difference between the voltage and the voltage at the second time after the first time is used to determine the amount of change, and the voltage of the first time and the value obtained by multiplying the amount of change by the estimation coefficient are added to determine the polarization of the battery. Estimate the open circuit voltage of the battery after the problem is resolved.

充放電を終了した後に、分極が解消する前でも、精度のよい開回路電圧(推定したOCV)を求めることができる。   An accurate open circuit voltage (estimated OCV) can be obtained even after the charge / discharge is finished and before the polarization is eliminated.

図1は、蓄電装置の一実施例を示す図である。FIG. 1 is a diagram illustrating an example of a power storage device. 図2Aは、放電期間および放電後の分極解消時間の電池の電圧の変化の一例を示す図である。FIG. 2A is a diagram illustrating an example of a change in battery voltage during a discharge period and a polarization elimination time after discharge. 図2Bは、充電期間および充電後の分極解消時間の電池の電圧の変化の一例を示す図である。FIG. 2B is a diagram illustrating an example of a change in battery voltage during a charging period and a polarization elimination time after charging. 図3は、蓄電装置の動作の一実施例を示す図である。FIG. 3 is a diagram illustrating an example of the operation of the power storage device. 図4は、蓄電装置の動作の一実施例を示す図である。FIG. 4 is a diagram illustrating an example of the operation of the power storage device. 図5は、充放電をする際の電池のSOCの変化の一例を示す図である。FIG. 5 is a diagram showing an example of a change in the SOC of the battery when charging and discharging. 図6は、実施形態3の蓄電装置の一実施例を示す図である。FIG. 6 is a diagram illustrating an example of the power storage device according to the third embodiment. 図7は、実施形態3における蓄電装置の動作の一実施例を示す図である。FIG. 7 is a diagram illustrating an example of the operation of the power storage device according to the third embodiment.

以下図面に基づいて実施形態について詳細に説明する。
実施形態1について説明する。
図1は、蓄電装置の一実施例を示す図である。図1に示す蓄電装置1は、例えば電池パックで、車両に搭載することが考えられる。本例において蓄電装置1は、一つ以上の電池4を有する組電池2、蓄電装置1を制御する制御回路3、電池4の電圧を計測する電圧計5、組電池2に流れる電流を計測する電流計6、を有している。電池4はリチウムイオン電池などの二次電池、または、蓄電素子などである。
Hereinafter, embodiments will be described in detail with reference to the drawings.
The first embodiment will be described.
FIG. 1 is a diagram illustrating an example of a power storage device. The power storage device 1 shown in FIG. 1 may be mounted on a vehicle, for example, with a battery pack. In this example, the power storage device 1 measures the current flowing through the assembled battery 2, the assembled battery 2 having one or more batteries 4, the control circuit 3 that controls the power storage device 1, the voltmeter 5 that measures the voltage of the battery 4. An ammeter 6 is provided. The battery 4 is a secondary battery such as a lithium ion battery or a storage element.

制御回路3は、電池4および電池4の充放電を制御する。さらに、OCV、SOCの推定をする。制御回路3は、例えば、CPU(Central Processing Unit)、マルチコアCPU、プログラマブルなデバイス(FPGA(Field Programmable Gate Array)やPLD(Programmable Logic Device)など)を用いた回路が考えられ、制御回路3の内部または外部に備えられている記憶部に記憶されている蓄電装置1の各部を制御するプログラムを読み出して実行する。なお、本例においては制御回路3を用いて説明をするが、制御回路3が実行する制御を、例えば車両に搭載されている一つ以上のECU(Electronic Control Unit)などに行わせてもよい。   The control circuit 3 controls charging / discharging of the battery 4 and the battery 4. Furthermore, OCV and SOC are estimated. The control circuit 3 may be, for example, a circuit using a CPU (Central Processing Unit), a multi-core CPU, a programmable device (FPGA (Field Programmable Gate Array), PLD (Programmable Logic Device), etc.). Or the program which controls each part of the electrical storage apparatus 1 memorize | stored in the memory | storage part provided outside is read and executed. In this example, the control circuit 3 is used for description. However, the control executed by the control circuit 3 may be performed by, for example, one or more ECUs (Electronic Control Units) mounted on the vehicle. .

OCVの推定について説明する。
制御回路3は、電池4の充放電が終了してからの所定時間T1が、電池4の充放電が終了して電池4の分極が解消したと見做すまでの分極解消時間(放電後の分極解消時間T2あるいは充電後の分極解消時間T3)より短い場合、所定時間T1までに計測した電池4の電圧の変化量に基づいて、電池4の分極が解消した後の電池4のOCVを推定する。また、所定時間T1が、分極解消時間T2あるいはT3以上長い場合、計測した電池4の電圧をOCVとする。
The OCV estimation will be described.
The control circuit 3 determines that the predetermined time T1 after the charging / discharging of the battery 4 is finished is the polarization elimination time (after the discharging) until it is considered that the charging / discharging of the battery 4 is finished and the polarization of the battery 4 is eliminated. If it is shorter than the polarization elimination time T2 or the polarization elimination time T3 after charging, the OCV of the battery 4 after the polarization of the battery 4 is eliminated is estimated based on the amount of change in the voltage of the battery 4 measured up to the predetermined time T1. To do. When the predetermined time T1 is longer than the polarization elimination time T2 or T3, the measured voltage of the battery 4 is OCV.

分極解消時間T2またはT3は電池4の分極が解消したか否かを判定する時間で、電池4の分極が解消したと見做す時間である。分極解消時間は、例えば、実験やシミュレーションにより決めることが考えられる。なお、分極解消時間T2またはT3は、電池4の温度により変化するので、温度に応じて分極解消時間T2、T3を変えることが望ましい。また、電池4の状態に基づいて決めてもよい。例えば、電池4の電圧、組電池2に流れる電流、内部抵抗、温度などを用いて分極解消時間T2、T3を変えてもよい。
(A)放電が終了してからのOCVの推定について説明する。
The polarization elimination time T2 or T3 is a time for determining whether or not the polarization of the battery 4 has been eliminated, and is a time for assuming that the polarization of the battery 4 has been eliminated. For example, the polarization elimination time can be determined by experiment or simulation. Since the polarization elimination time T2 or T3 varies depending on the temperature of the battery 4, it is desirable to change the polarization elimination times T2 and T3 according to the temperature. Further, it may be determined based on the state of the battery 4. For example, the polarization elimination times T2 and T3 may be changed using the voltage of the battery 4, the current flowing through the assembled battery 2, the internal resistance, the temperature, and the like.
(A) The estimation of OCV after the end of discharge will be described.

図2Aは、放電期間および放電後の分極解消時間の電池の電圧の変化の一例を示す図である。図2Aの縦軸には電池の電圧が示され、横軸には時間が示されている。図2Aの例では、(1)時間t0において電池4の放電が終了し、放電後の分極解消時間T2(時間t0−t3)において電池4の電圧Vd1、Vd2を計測した場合(所定時間T1<分極解消時間T2の場合)、電池4の電圧Vd1、Vd2の差、即ち変化量(Vd2−Vd1)に基づいて、電池4の分極が解消した後の電池4のOCVを推定する。(2)分極解消時間T2を経過した後に計測した場合(所定時間T1≧分極解消時間T2の場合)は、電池4の計測した電圧をOCVとする。   FIG. 2A is a diagram illustrating an example of a change in battery voltage during a discharge period and a polarization elimination time after discharge. The vertical axis of FIG. 2A shows the voltage of the battery, and the horizontal axis shows time. In the example of FIG. 2A, (1) when the discharge of the battery 4 is completed at time t0, and the voltages Vd1 and Vd2 of the battery 4 are measured during the polarization elimination time T2 (time t0-t3) after discharge (predetermined time T1 < In the case of the polarization elimination time T2, the OCV of the battery 4 after the polarization of the battery 4 is eliminated is estimated based on the difference between the voltages Vd1 and Vd2 of the battery 4, that is, the change amount (Vd2−Vd1). (2) When measured after the polarization elimination time T2 has elapsed (when the predetermined time T1 ≧ polarization elimination time T2), the measured voltage of the battery 4 is OCV.

電池4の分極が解消した後の電池4のOCVの推定は、図2Aの例では、分極解消時間T2より短い期間における、第一の時間t1の電圧Vd1と第一の時間以降の第二の時間t2の電圧Vd2との差を用いて変化量(Vd2−Vd1)を求め、第一の時間t1の電圧Vd1と、変化量(Vd2−Vd1)に放電用の推定係数aを乗算した値と、を加算して算出する(OCVcal=Vd1+(Vd2−Vd1)×a)。ここで、推定係数aは、分極解消時間T2を経過した後に計測した電圧に基づいて更新する。推定係数aは、例えば、分極解消時間T2を経過した後に計測した精度の高いOCVを用いて更新する。すなわち、計測した精度の高いOCVは分極が解消した正しいOCV(OCVcor)と考えられるので、このOCVcorを用いて新しい推定係数aを求める(OCVcor=Vd1+(Vd2−Vd1)×a)。   In the example of FIG. 2A, the OCV of the battery 4 after the polarization of the battery 4 is eliminated is estimated based on the voltage Vd1 at the first time t1 and the second time after the first time in a period shorter than the polarization elimination time T2. The amount of change (Vd2−Vd1) is obtained using the difference from the voltage Vd2 at time t2, and the value obtained by multiplying the voltage Vd1 at the first time t1 by the amount of change (Vd2−Vd1) and the estimation coefficient a for discharge, , Are calculated (OCVcal = Vd1 + (Vd2−Vd1) × a). Here, the estimation coefficient a is updated based on the voltage measured after the polarization elimination time T2 has elapsed. The estimation coefficient a is updated using, for example, a highly accurate OCV measured after the polarization elimination time T2 has elapsed. That is, since the measured highly accurate OCV is considered to be a correct OCV (OCVcor) in which polarization has been eliminated, a new estimation coefficient a is obtained using this OCVcor (OCVcor = Vd1 + (Vd2−Vd1) × a).

なお、電池4の現在のSOCが所定範囲(SOC規定値内)にない場合にはOCVの推定を行わない。すなわち、電池4のSOCが低い範囲などでは、電池4のOCV−SOC特性においてSOC規定値内と変化が異なるので、精度よくOCVを推定できないため、電池4のSOC規定値内にない場合にはOCVの推定を行わないようにしてもよい。   Note that if the current SOC of the battery 4 is not within the predetermined range (within the SOC specified value), the OCV is not estimated. That is, in the range where the SOC of the battery 4 is low, the OCV-SOC characteristics of the battery 4 are different from those within the SOC specified value, so the OCV cannot be accurately estimated. The OCV may not be estimated.

さらに、分極解消時間T2を経過した後にOCVを計測した場合、所定の時間はOCVの推定を行わない。すなわち、分極解消時間T2を経過した後にOCVを計測した場合、所定の時間は、電流積算で算出したSOCから算出したOCVの精度が高いと考えられるため、新たにOCVの推定をしないようする。所定の時間は、例えば、OCVcorを求めてから一時間以上が考えられるが、一時間に限定されるものではない。   Furthermore, when the OCV is measured after the polarization elimination time T2 has elapsed, the OCV is not estimated for a predetermined time. That is, when the OCV is measured after the polarization elimination time T2 has elapsed, it is considered that the OCV calculated from the SOC calculated by the current integration has a high accuracy, so that the OCV is not newly estimated. The predetermined time may be, for example, one hour or more after obtaining OCVcor, but is not limited to one hour.

上記のようにOCVを求めることで、充放電を終了した後に、分極が解消する前でも、精度のよいOCV(推定したOCV)を求めることができる。
(B)充電が終了してからのOCVの推定について説明する。
By obtaining the OCV as described above, an accurate OCV (estimated OCV) can be obtained even after the charge / discharge is completed and before the polarization is eliminated.
(B) The estimation of OCV after charging is completed will be described.

図2Bは、充電期間および充電後の分極解消時間の電池の電圧の変化の一例を示す図である。図2Bの縦軸には電池の電圧が示され、横軸には時間が示されている。図2Bの例では、(3)時間t4において電池4の充電が終了し、充電後の分極解消時間T3(時間t4−t7)において電池4の電圧Vc1、Vc2を計測した場合(所定時間T1<分極解消時間T3の場合)、電池4の電圧Vc1、Vc2の差、即ち変化量(Vc2−Vc1)に基づいて、電池4の分極が解消した後の電池4のOCVを推定する。(4)分極解消時間T3を経過した後に計測した場合(所定時間T1≧分極解消時間T3の場合)は、電池4の計測した電圧をOCVとする。   FIG. 2B is a diagram illustrating an example of a change in battery voltage during a charging period and a polarization elimination time after charging. The vertical axis of FIG. 2B shows the voltage of the battery, and the horizontal axis shows time. In the example of FIG. 2B, (3) when charging of the battery 4 is completed at time t4, and the voltages Vc1 and Vc2 of the battery 4 are measured at the polarization elimination time T3 (time t4-t7) after charging (predetermined time T1 < In the case of the polarization elimination time T3), the OCV of the battery 4 after the polarization of the battery 4 is eliminated is estimated based on the difference between the voltages Vc1 and Vc2 of the battery 4, that is, the change amount (Vc2−Vc1). (4) When measured after the polarization elimination time T3 has elapsed (when the predetermined time T1 ≧ polarization elimination time T3), the voltage measured by the battery 4 is OCV.

電池4の分極が解消した後の電池4のOCVの推定は、図2Bの例では、分極解消時間T3より短い期間における、第一の時間t5の電圧Vc1と第一の時間以降の第二の時間t6の電圧Vc2との差を用いて変化量(Vc2−Vc1)を求め、第一の時間t5の電圧Vc1と、変化量(Vc2−Vc1)に充電用の推定係数bを乗算した値と、を加算して算出する(OCVcal=Vc1+(Vc2−Vc1)×b)。ここで、推定係数bは、分極解消時間T3を経過した後に計測した電圧に基づいて更新する。推定係数bは、例えば、分極解消時間T3を経過した後に計測した精度の高いOCVを用いて更新する。すなわち、計測した精度の高いOCVは分極が解消した正しいOCV(OCVcor)と考えられるので、このOCVcorを用いて新しい推定係数bを求める(OCVcor=Vc1+(Vc2−Vc1)×b)。   The estimation of the OCV of the battery 4 after the polarization of the battery 4 is eliminated is based on the voltage Vc1 at the first time t5 and the second time after the first time in the period shorter than the polarization elimination time T3 in the example of FIG. 2B. The amount of change (Vc2−Vc1) is obtained using the difference from the voltage Vc2 at time t6, and the value obtained by multiplying the voltage Vc1 at the first time t5 by the amount of change (Vc2−Vc1) and the charging estimation coefficient b. Are calculated (OCVcal = Vc1 + (Vc2−Vc1) × b). Here, the estimation coefficient b is updated based on the voltage measured after the polarization elimination time T3 has elapsed. The estimation coefficient b is updated using, for example, a highly accurate OCV measured after the polarization elimination time T3 has elapsed. In other words, since the measured highly accurate OCV is considered to be a correct OCV (OCVcor) with the polarization eliminated, a new estimation coefficient b is obtained using this OCVcor (OCVcor = Vc1 + (Vc2−Vc1) × b).

なお、電池4の現在のSOCが所定範囲(SOC規定値内)にない場合にはOCVの推定を行わない。すなわち、電池4のSOCが低い範囲などでは、電池4のOCV−SOC特性においてSOC規定値内と変化が異なるので、精度よくOCVを推定できないため、電池4のSOCが所定範囲にない場合にはOCVの推定を行わないようにしてもよい。   Note that if the current SOC of the battery 4 is not within the predetermined range (within the SOC specified value), the OCV is not estimated. That is, in the range where the SOC of the battery 4 is low, the OCV-SOC characteristics of the battery 4 are different from those within the specified SOC value, so the OCV cannot be estimated accurately. The OCV may not be estimated.

さらに、分極解消時間T3を経過した後にOCVを計測した場合、所定の時間はOCVの推定を行わない。すなわち、分極解消時間T3を経過した後にOCVを計測した場合、所定の時間は、電流積算で算出したSOCから算出したOCVの精度が高いと考えられるため、新たにOCVの推定をしないようする。所定の時間は、例えば、OCVcorを求めてから一時間以上が考えられるが、一時間に限定されるものではない。   Furthermore, when the OCV is measured after the polarization elimination time T3 has elapsed, the OCV is not estimated for a predetermined time. That is, when the OCV is measured after the polarization elimination time T3 has elapsed, it is considered that the OCV calculated from the SOC calculated by current integration is highly accurate for a predetermined time, so that the OCV is not newly estimated. The predetermined time may be, for example, one hour or more after obtaining OCVcor, but is not limited to one hour.

上記のようにOCVを求めることで、充放電を終了した後に、分極が解消する前でも、精度のよいOCV(推定したOCV)を求めることができる。
(C)SOCの推定について説明する。
By obtaining the OCV as described above, an accurate OCV (estimated OCV) can be obtained even after the charge / discharge is completed and before the polarization is eliminated.
(C) The estimation of SOC will be described.

制御回路3は、所定時間T1が分極解消時間T2またはT3より短い場合、推定したOCVcalを用いてSOCを求め、所定時間T1が分極解消時間T2またはT3以上長い場合、計測したOCVcorを用いてSOCを求める。なお、SOCを求める方法はOCVを用いた方法であればよく、限定されるものではない。   When the predetermined time T1 is shorter than the polarization elimination time T2 or T3, the control circuit 3 obtains the SOC using the estimated OCVcal. When the predetermined time T1 is longer than the polarization elimination time T2 or T3, the control circuit 3 uses the measured OCVcor to determine the SOC. Ask for. The method for obtaining the SOC is not limited as long as it is a method using OCV.

上記のようにOCVcalを用いてSOCを推定することで、充放電を終了した後に、分極が解消する前でも、精度のよいSOC(推定したSOC)を求めることができる。
蓄電装置の動作について説明する。
By estimating the SOC using the OCVcal as described above, it is possible to obtain a highly accurate SOC (estimated SOC) even after the charge / discharge is completed and before the polarization is eliminated.
The operation of the power storage device will be described.

図3、4は、蓄電装置の動作の一実施例を示す図である。例えば、車両に蓄電装置1が搭載されている場合、ステップS1で制御回路3は、車両が走行または充電(図2Aの放電期間、図2Bの充電期間)を終了したか否かを判定し、走行終了または充電終了(図2A、図2Bの休止期間)をしている場合(Yes)にはステップS2に移行し、走行または充電をしている場合(No)にはステップS1で待機する。すなわち、ステップS1では充放電が終了したか否かを判定している。   3 and 4 are diagrams illustrating an example of the operation of the power storage device. For example, when the power storage device 1 is mounted on the vehicle, in step S1, the control circuit 3 determines whether the vehicle has finished running or charging (the discharging period in FIG. 2A, the charging period in FIG. 2B), If the vehicle is running or charging is complete (the pause period in FIGS. 2A and 2B) (Yes), the process proceeds to step S2. If the vehicle is running or charged (No), the process waits in step S1. That is, in step S1, it is determined whether charging / discharging has ended.

ステップS2では、制御回路3が第一の電圧、第二の電圧を取得する。放電後であれば、図2Aにおける、第一の時間t1の電圧Vd1と第一の時間以降の第二の時間t2の電圧Vd2とを取得する。充電後であれば、図2Bにおける、第一の時間t5の電圧Vc1と第一の時間以降の第二の時間t6の電圧Vc2とを取得する。   In step S2, the control circuit 3 acquires the first voltage and the second voltage. After the discharge, the voltage Vd1 at the first time t1 and the voltage Vd2 at the second time t2 after the first time in FIG. 2A are acquired. If it is after charging, the voltage Vc1 at the first time t5 and the voltage Vc2 at the second time t6 after the first time in FIG. 2B are acquired.

ステップS3では、制御回路3が分極解消時間(放電後の分極解消時間T2あるいは充電後の分極解消時間T3)を経過した後に、OCVcorを計測してから所定の時間が経過したか否かを判定する。所定の時間が経過した場合(Yes)にはステップS4に移行し、所定の時間が経過していない場合(No)にはこの処理を終了する。分極解消時間を経過した後にOCVを計測した場合、所定の時間は、電流積算で算出したSOCから算出したOCVの精度が高い、即ち、推定したOCVcalを用いて推定したSOCよりも電流積算で算出したSOCの精度が高いと考えられるため、新たにOCVの推定をしないようする。所定の時間は、例えば一時間以上などが考えられるが、特に限定するものではない。   In step S3, it is determined whether or not a predetermined time has elapsed since the OCVcor was measured after the control circuit 3 passed the polarization elimination time (polarization elimination time T2 after discharging or polarization elimination time T3 after charging). To do. When the predetermined time has elapsed (Yes), the process proceeds to step S4, and when the predetermined time has not elapsed (No), this process is terminated. When the OCV is measured after the depolarization time has elapsed, the OCV calculated from the SOC calculated by the current integration has a higher accuracy than the SOC estimated using the estimated OCVcal. Therefore, the OCV is not estimated again. The predetermined time may be, for example, one hour or more, but is not particularly limited.

ステップS4では、制御回路3が第一の電圧と第二の電圧との差が所定値、例えば計測誤差Verより大きいか否かを判定し、計測誤差Verより大きい場合(Yes)にはステップS5に移行し、計測誤差Ver以下の場合(No)には第一の電圧と第二の電圧には変化がないので、この処理を終了する。例えば、放電後の休止期間の場合にはVd2−Vd1>VerであればステップS5に移行する。また、充電後の休止期間の場合にはVc1−Vc2>VerであればステップS5に移行する。   In step S4, the control circuit 3 determines whether or not the difference between the first voltage and the second voltage is greater than a predetermined value, for example, the measurement error Ver. If the difference is greater than the measurement error Ver (Yes), step S5 is performed. If the measurement error is equal to or smaller than Ver (No), the first voltage and the second voltage are not changed, and thus this process is terminated. For example, in the rest period after discharge, if Vd2−Vd1> Ver, the process proceeds to step S5. In the case of a rest period after charging, if Vc1-Vc2> Ver, the process proceeds to step S5.

ステップS5で制御回路3は、電池4の現在のSOCがSOC規定値内であるか否かを判定し、SOC規定値内である場合(Yes)にはステップS6に移行し、SOC規定値内でない場合(No)にはこの処理を終了する。電池4のSOCが低い範囲などでは、電池4のOCV−SOC特性においてSOC規定値内と変化が異なるので、精度よくOCVを推定できないため、電池4のSOCがSOC規定値内にない場合にはこの処理を終了する。   In step S5, the control circuit 3 determines whether or not the current SOC of the battery 4 is within the SOC specified value. If it is within the SOC specified value (Yes), the control circuit 3 proceeds to step S6 and is within the SOC specified value. If not (No), this process ends. In the range where the SOC of the battery 4 is low, the OCV-SOC characteristics of the battery 4 are different from those within the SOC specified value. Therefore, since the OCV cannot be estimated with high accuracy, the SOC of the battery 4 is not within the SOC specified value. This process ends.

ステップS6では、制御回路3が計測した電圧が正常な範囲(電圧正常範囲)にあるか否かを判定し、電圧正常範囲内の場合(Yes)にはステップS7に移行し、電圧正常範囲内ではない場合(No)にはこの処理を終了する。ステップS6ではノイズなどにより正常に電圧を計測できなかったときに、計測した電圧を用いると、精度のよいOCVを求められないため、ノイズなどの影響を受けた計測した電圧がある場合にはこの処理を終了する。例えば、放電後の場合には、第一の時間t1より前に電圧Vd3を計測し、第二の時間t2より前に電圧Vd4を計測し、|(Vd2−Vd1)−(Vd4−Vd3)|を求め、求めた値が正常範囲内であれば、ノイズなどの影響を受けていないと判定する。また、充電後の場合には、時間t1より前に電圧Vc3を計測し、時間t2より前に電圧Vc4を計測し、|(Vc3−Vc4)−(Vc1−Vc2)|を求め、求めた値が正常範囲内であれば、ノイズなどの影響を受けていないと判定する。   In step S6, it is determined whether or not the voltage measured by the control circuit 3 is in a normal range (normal voltage range). If the voltage is within the normal voltage range (Yes), the process proceeds to step S7, where If not (No), this process ends. In step S6, when the voltage cannot be measured normally due to noise or the like, if the measured voltage is used, an accurate OCV cannot be obtained. If there is a measured voltage affected by noise or the like, this The process ends. For example, after discharge, the voltage Vd3 is measured before the first time t1, the voltage Vd4 is measured before the second time t2, and | (Vd2-Vd1)-(Vd4-Vd3) | If the calculated value is within the normal range, it is determined that the signal is not affected by noise or the like. In the case of after charging, the voltage Vc3 is measured before time t1, the voltage Vc4 is measured before time t2, and | (Vc3-Vc4)-(Vc1-Vc2) | Is within the normal range, it is determined that it is not affected by noise or the like.

ステップS7では、分極解消時間より短い期間において、第一の時間t1の電圧と第一の時間以降の第二の時間t2の電圧との差を用いて変化量を求め、第一の時間t1の電圧と変化量に推定係数を乗算した値とを加算して、制御回路3が推定したOCVを求める。放電後の場合には、推定したOCV(OCVcal=Vd1+(Vd2−Vd1)×a)を求めて、新しいOCVに更新する。充電後の場合には、推定したOCV(OCVcal=Vc1+(Vc2−Vc1)×b)を求めて、新しいOCVに更新する。   In step S7, in a period shorter than the polarization elimination time, the amount of change is obtained using the difference between the voltage at the first time t1 and the voltage at the second time t2 after the first time, and at the first time t1. The OCV estimated by the control circuit 3 is obtained by adding the voltage and the value obtained by multiplying the change amount by the estimation coefficient. In the case after discharge, the estimated OCV (OCVcal = Vd1 + (Vd2−Vd1) × a) is obtained and updated to a new OCV. In the case after charging, the estimated OCV (OCVcal = Vc1 + (Vc2−Vc1) × b) is obtained and updated to a new OCV.

ステップS8では、制御回路3がステップS7で推定したOCV(OCVcal)を用いて、SOCを推定する。このように推定したOCV(OCVcal)を用いてSOCを推定することで、充放電を終了した後に、分極が解消する前でも、精度のよいSOC(推定したSOC)を求めることができる。   In step S8, the control circuit 3 estimates the SOC using the OCV (OCVcal) estimated in step S7. By estimating the SOC using the estimated OCV (OCVcal), it is possible to obtain a highly accurate SOC (estimated SOC) even after the charge / discharge is completed and before the polarization is eliminated.

図4のステップS9において、制御回路3は車両が走行を開始したか否かを判定し、走行開始をしていない場合(No)にはステップS10に移行し、走行を開始した場合(Yes)にはこの処理を終了する。   In step S9 of FIG. 4, the control circuit 3 determines whether or not the vehicle has started traveling. If the vehicle has not started traveling (No), the process proceeds to step S10, and when traveling has started (Yes). This process ends.

ステップS10で制御回路3は、分極解消時間に到達した場合(Yes)にはステップS11に移行し、分極解消時間に到達していない場合(No)にはステップS9に移行する。   In step S10, the control circuit 3 proceeds to step S11 when the polarization elimination time is reached (Yes), and proceeds to step S9 when the polarization elimination time is not reached (No).

ステップS11で制御回路3はOCVを計測し、ステップS12では計測したOCVを用いてSOCを求める。放電後の場合には、所定時間T1が、分極解消時間T2以上長い場合、計測した電池4の電圧をOCVとし、計測したOCV(OCVcor)を用いてSOCを求める。充電後の場合には、所定時間T1が、分極解消時間T3以上長い場合、計測した電池4の電圧をOCVとし、計測したOCV(OCVcor)を用いてSOCを求める。   In step S11, the control circuit 3 measures the OCV, and in step S12, obtains the SOC using the measured OCV. After the discharge, when the predetermined time T1 is longer than the polarization elimination time T2, the measured voltage of the battery 4 is set as OCV, and the SOC is obtained using the measured OCV (OCVcor). In the case after charging, when the predetermined time T1 is longer than the polarization elimination time T3, the measured voltage of the battery 4 is set as OCV, and the SOC is obtained using the measured OCV (OCVcor).

ステップS13では制御回路3が補正係数を求め、ステップS14では補正係数を更新する。放電用の推定係数aは、分極解消時間T2を経過した後に計測した電圧に基づいて更新する。推定係数aは、例えば、計測した精度の高いOCV(OCVcor)となる新しい推定係数aを求める(OCVcor=Vd1+(Vd2−Vd1)×a)。充電用の推定係数bは、分極解消時間T3を経過した後に計測した電圧に基づいて更新する。推定係数bは、例えば、計測した精度の高いOCV(OCVcor)となる新しい推定係数bを求める(OCVcor=Vc1+(Vc2−Vc1)×b)。なお、推定係数は移動平均などで重み付けして求めてもよい。   In step S13, the control circuit 3 obtains a correction coefficient, and in step S14, the correction coefficient is updated. The discharge estimation coefficient a is updated based on the voltage measured after the polarization elimination time T2 has elapsed. As the estimation coefficient a, for example, a new estimation coefficient a to be a highly accurate OCV (OCVcor) is obtained (OCVcor = Vd1 + (Vd2−Vd1) × a). The charging estimation coefficient b is updated based on the voltage measured after the polarization elimination time T3 has elapsed. As the estimation coefficient b, for example, a new estimation coefficient b that becomes a measured highly accurate OCV (OCVcor) is obtained (OCVcor = Vc1 + (Vc2−Vc1) × b). The estimation coefficient may be obtained by weighting with a moving average or the like.

ステップS15では、制御回路3は車両が走行を開始したか否かを判定し、走行を開始していない場合(No)にはステップS9に移行し、走行を開始した場合(Yes)にはこの処理を終了する。なお、ステップS13、S14は、ステップS15の後に行ってもよい。   In step S15, the control circuit 3 determines whether or not the vehicle has started traveling. If the vehicle has not started traveling (No), the process proceeds to step S9, and if the vehicle has started traveling (Yes), this control circuit 3 The process ends. Note that steps S13 and S14 may be performed after step S15.

上記のようにOCVを推定することで、充放電を終了した後に、分極が解消する前でも、推定精度のよいOCV(OCVcal)を求めることができる。また、上記のように推定したOCV(OCVcal)または計測したOCV(OCVcor)を用いてSOCを求めることで、充放電を終了した後に、推定精度のよいSOCを求めることができる。   By estimating the OCV as described above, it is possible to obtain an OCV (OCVcal) with good estimation accuracy even after the charge / discharge is completed and before the polarization is eliminated. Further, by obtaining the SOC using the OCV (OCVcal) estimated as described above or the measured OCV (OCVcor), it is possible to obtain the SOC with high estimation accuracy after the charge / discharge is completed.

実施形態2について説明する。
電池4の満充電容量を推定する方法として、電池4を完全に放電したり満充電にしたりすることなく、電池の満充電容量を、充電を開始した時間のSOCと充電を終了した時間のSOCとの差分ΔSOCと、充電開始から充電終了までの積算電流と、を用いて満充電容量(=積算電流/(ΔSOC[%]/100[%])を算出する方法が知られている。しかしながら、上記二つのSOCの推定精度が低下すると、満充電容量の推定精度が低下することになり、さらには積算電流を用いたSOCの推定精度も低下することになる。
Embodiment 2 will be described.
As a method for estimating the full charge capacity of the battery 4, the full charge capacity of the battery is determined based on the SOC at the start of charging and the SOC at the end of charging without completely discharging or fully charging the battery 4. However, there is known a method of calculating the full charge capacity (= integrated current / (ΔSOC [%] / 100 [%]) using the difference ΔSOC between the charging current and the accumulated current from the start of charging to the end of charging. If the estimation accuracy of the two SOCs is lowered, the estimation accuracy of the full charge capacity is lowered, and further, the estimation accuracy of the SOC using the integrated current is also lowered.

実施形態2では、実施形態1で説明した方法で求めたSOCと積算電流とを用いて満充電容量を求める。すなわち、放電後のSOCと充電後のSOCとを用いて精度のよい差分ΔSOCを求め、精度のよいΔSOCと積算電流とを用いて満充電容量(=積算電流/(精度のよいΔSOC[%]/100[%])を推定する。その結果、従来よりも満充電容量の推定精度を向上させることができる。また、SOCの推定精度が向上することにより、容量維持率SOH(State Of Health)を用いた電池4の寿命判断精度を向上させることができる。   In the second embodiment, the full charge capacity is obtained using the SOC obtained by the method described in the first embodiment and the integrated current. That is, an accurate difference ΔSOC is obtained using the SOC after discharging and the SOC after charging, and the full charge capacity (= integrated current / (accurate ΔSOC [%]) using the accurate ΔSOC and the accumulated current. As a result, the estimation accuracy of the full charge capacity can be improved as compared with the conventional case, and the capacity maintenance rate SOH (State Of Health) can be improved by improving the estimation accuracy of the SOC. The life judgment accuracy of the battery 4 using can be improved.

図5は、充放電をする際の電池のSOCの変化の一例を示す図である。図5の縦軸には電池のSOCが示され、横軸には時間が示されている。実施形態2における制御回路3は、電池4のSOCと、電池4に流れる電流を計測して求める積算電流と、を用いて、満充電容量を求める。図5の例では、(a)時間t51において放電が終了すると、実施形態1で説明した方法で、電池4のOCVを求め(OCVcalまたはOCVcor)、求めたOCVを用いて放電後のSOC1を求める。(b)時間t52で充電を開始すると時間t53まで、電流計6が計測した電池4に流れる充電電流を用いて積算電流を求める。(c)時間t53において充電が終了すると、実施形態1で説明した方法で、電池4のOCVを求め(OCVcalまたはOCVcor)、求めたOCVを用いて充電後のSOC2を求める。(d)放電後のSOC1と充電後のSOC2とを用いて精度のよい差分ΔSOCを求め、精度のよいΔSOCと積算電流とを用いて満充電容量を求める。   FIG. 5 is a diagram showing an example of a change in the SOC of the battery when charging and discharging. The vertical axis of FIG. 5 shows the SOC of the battery, and the horizontal axis shows time. The control circuit 3 according to the second embodiment obtains the full charge capacity using the SOC of the battery 4 and the integrated current obtained by measuring the current flowing through the battery 4. In the example of FIG. 5, (a) when the discharge ends at time t51, the OCV of the battery 4 is obtained (OCVcal or OCVcor) by the method described in the first embodiment, and the SOC1 after the discharge is obtained using the obtained OCV. . (B) When charging is started at time t52, the accumulated current is obtained using the charging current flowing through the battery 4 measured by the ammeter 6 until time t53. (C) When charging ends at time t53, the OCV of the battery 4 is obtained (OCVcal or OCVcor) by the method described in the first embodiment, and the SOC2 after charging is obtained using the obtained OCV. (D) An accurate difference ΔSOC is obtained using the SOC1 after discharging and the SOC2 after charging, and the full charge capacity is obtained using the accurate ΔSOC and the integrated current.

実施形態2によれば、充放電が終了した後に求めた精度のよいOCVおよびSOCを用いることにより、満充電容量の推定精度を向上させることができる。
実施形態3について説明する。
According to the second embodiment, it is possible to improve the estimation accuracy of the full charge capacity by using the highly accurate OCV and SOC obtained after the completion of charging / discharging.
A third embodiment will be described.

図6は、実施形態3の蓄電装置の一実施例を示す図である。図6の蓄電装置は、複数の電池4を有する組電池2と、電池4それぞれの電圧または容量を均等にするセルバランス回路601と、を備える。セルバランス回路601は、例えば、電池4間の電圧のばらつきをできるだけ無くして均等にする回路である。セルバランス回路601は、例えば、組電池2のうちで電圧が最小値の電池4を検出し、他の電池4の電圧を検出した電池4の電圧に合わせるようにセルバランス処理を行う、パッシブ型セルバランス回路を用いることが考えられる。しかしながら、電池4が分極を解消していない場合に求めるOCVあるいはSOCの精度がよくないため、セルバランス処理により電池4間の電圧または容量のばらつきを均等にする精度が低下する。また、分極を解消するまで待ってからセルバランス処理を実行することが考えられるが、セルバランス処理を開始するまでに時間がかかってしまう。   FIG. 6 is a diagram illustrating an example of the power storage device according to the third embodiment. The power storage device of FIG. 6 includes an assembled battery 2 having a plurality of batteries 4 and a cell balance circuit 601 that equalizes the voltages or capacities of the batteries 4. The cell balance circuit 601 is, for example, a circuit that eliminates voltage variations between the batteries 4 as much as possible and equalizes them. The cell balance circuit 601 detects, for example, the battery 4 having the minimum voltage among the assembled batteries 2 and performs a cell balance process so that the voltage of the other battery 4 matches the detected voltage of the battery 4. It is conceivable to use a cell balance circuit. However, since the accuracy of the OCV or SOC required when the battery 4 does not cancel the polarization is not good, the accuracy of equalizing the voltage or capacity variation between the batteries 4 by the cell balance processing is lowered. Although it is conceivable to execute the cell balance process after waiting for the polarization to be eliminated, it takes time to start the cell balance process.

そこで、実施形態3では、実施形態1で説明した方法で求めたOCV(OCVcal)を用いてセルバランス処理をすることで、分極が解消する時間を待たなくても、セルバランス処理を精度よく行うことができるようにする。   Therefore, in the third embodiment, cell balance processing is performed using the OCV (OCVcal) obtained by the method described in the first embodiment, so that the cell balance processing can be accurately performed without waiting for the time for polarization to be eliminated. To be able to.

実施形態3における制御回路3は、所定時間T1が分極解消時間(放電後の分極解消時間T2あるいは充電後の分極解消時間T3)より短い場合、推定したOCV(OCVcal)を用い、所定時間T1が分極解消時間以上長い場合、計測したOCV(OCVcor)を用いて、セルバランス回路601を制御する。   When the predetermined time T1 is shorter than the polarization elimination time (polarization elimination time T2 after discharge or polarization elimination time T3 after charging), the control circuit 3 in the third embodiment uses the estimated OCV (OCVcal), and the predetermined time T1 is When the polarization elimination time is longer, the cell balance circuit 601 is controlled using the measured OCV (OCVcor).

実施形態3における蓄電装置の動作について説明する。
図7は、実施形態3における蓄電装置の動作の一実施例を示す図である。ステップS701では、図3に示すステップS1からS8において求めた、組電池2の電池4それぞれにおける、所定時間T1が分極解消時間より短い場合に推定したOCV(OCVcal)を用いて、制御回路3がセルバランス判定範囲内であるか否かを判定する。すなわち、電池4それぞれについて推定したOCVのうち最大値と最小値の差を求め、その差がセルバランス判定範囲内である場合(Yes)には図7のステップS9に移行する。その差がセルバランス判定範囲内でない場合(No)には図7のステップS703に移行してセルバランス処理を実行する。
The operation of the power storage device in Embodiment 3 will be described.
FIG. 7 is a diagram illustrating an example of the operation of the power storage device according to the third embodiment. In step S701, the control circuit 3 uses the OCV (OCVcal) estimated when the predetermined time T1 is shorter than the polarization elimination time in each of the batteries 4 of the assembled battery 2 obtained in steps S1 to S8 shown in FIG. It is determined whether it is within the cell balance determination range. That is, the difference between the maximum value and the minimum value of the estimated OCVs for each battery 4 is obtained, and when the difference is within the cell balance determination range (Yes), the process proceeds to step S9 in FIG. If the difference is not within the cell balance determination range (No), the process proceeds to step S703 in FIG. 7 to execute the cell balance process.

ステップS9からS15の処理については、実施形態1で説明をしているので省略をする。
ステップS702では、図7に示すステップS9からS14において求めた、組電池2の電池4それぞれにおける、所定時間T1が分極解消時間以上の場合に計測したOCV(OCVcor)を用いて、制御回路3がセルバランス判定範囲内であるか否かを判定する。すなわち、電池4それぞれについて計測したOCVのうち最大値と最小値の差を求め、その差がセルバランス判定範囲内である場合(Yes)には図7のステップS15に移行する。その差がセルバランス判定範囲内でない場合(No)には図7のステップS703に移行してセルバランス処理を実行する。ステップS703では、制御回路3がセルバランス処理を実行して、セルバランス回路601を制御する。
Since the processing from step S9 to S15 has been described in the first embodiment, it will be omitted.
In step S702, the control circuit 3 uses the OCV (OCVcor) measured when the predetermined time T1 is equal to or longer than the polarization elimination time in each of the batteries 4 of the assembled battery 2 obtained in steps S9 to S14 shown in FIG. It is determined whether it is within the cell balance determination range. That is, the difference between the maximum value and the minimum value of the OCV measured for each of the batteries 4 is obtained, and when the difference is within the cell balance determination range (Yes), the process proceeds to step S15 in FIG. If the difference is not within the cell balance determination range (No), the process proceeds to step S703 in FIG. 7 to execute the cell balance process. In step S703, the control circuit 3 executes a cell balance process to control the cell balance circuit 601.

実施形態3によれば、所定時間T1が分極解消時間T2またはT3より短い場合、推定したOCV(OCVcal)を用い、所定時間T1が分極解消時間T2またはT3以上長い場合、計測したOCV(OCVcor)を用いて、セルバランス回路601を制御する。その結果、分極が解消する時間を待たなくても、セルバランス処理を精度よく行うことができる。   According to the third embodiment, when the predetermined time T1 is shorter than the polarization elimination time T2 or T3, the estimated OCV (OCVcal) is used. When the predetermined time T1 is longer than the polarization elimination time T2 or T3, the measured OCV (OCVcor) Is used to control the cell balance circuit 601. As a result, the cell balance process can be performed accurately without waiting for the time for the polarization to be eliminated.

なお、セルバランス回路601はアクティブ型セルバランス回路やプログレッシブ型セルバランス回路でもよい。
また、本発明は、上記実施形態1から3に限定されるものでなく、本発明の要旨を逸脱しない範囲内で種々の改良、変更が可能である。
Note that the cell balance circuit 601 may be an active cell balance circuit or a progressive cell balance circuit.
Further, the present invention is not limited to the first to third embodiments, and various improvements and modifications can be made without departing from the gist of the present invention.

1 蓄電装置、
2 組電池、
3 制御回路、
4 電池、
5 電圧計、
6 電流計、
601 セルバランス回路、
1 power storage device,
2 battery packs,
3 Control circuit,
4 batteries,
5 Voltmeter,
6 Ammeter,
601 cell balance circuit,

Claims (10)

電池と、前記電池の充放電を制御する制御回路と、を備える蓄電装置であって、
前記制御回路は、
前記電池の充放電が終了してからの所定時間が、前記電池の充放電が終了して前記電池の分極が解消したと見做すまでの分極解消時間より短い場合、前記所定時間までに計測した前記電池の電圧の変化量に基づいて、前記電池の分極が解消した後の前記電池の開回路電圧を推定し、
前記所定時間が、前記分極解消時間以上長い場合、計測した前記電池の電圧を開回路電圧とする、
ことを特徴とする蓄電装置。
A power storage device comprising a battery and a control circuit that controls charging and discharging of the battery,
The control circuit includes:
If the predetermined time after charging / discharging of the battery is shorter than the polarization elimination time until it is considered that the charging / discharging of the battery is completed and the polarization of the battery is eliminated, measurement is performed by the predetermined time Based on the amount of change in the voltage of the battery, the open circuit voltage of the battery after the polarization of the battery is eliminated,
When the predetermined time is longer than the polarization elimination time, the measured voltage of the battery is an open circuit voltage,
A power storage device.
請求項1に記載の蓄電装置あって、
前記制御回路は、
前記電池の分極が解消した後の前記電池の開回路電圧の推定を、前記分極解消時間より短い期間における、第一の時間の電圧と前記第一の時間以降の第二の時間の電圧との差を用いて前記変化量を求め、前記第一の時間の電圧と前記変化量に推定係数を乗算した値とを加算して算出する、
ことを特徴とする蓄電装置。
The power storage device according to claim 1,
The control circuit includes:
The estimation of the open circuit voltage of the battery after the polarization of the battery has been eliminated is the first time voltage and the second time voltage after the first time in a period shorter than the polarization elimination time. Obtaining the amount of change using a difference, and calculating by adding the voltage of the first time and a value obtained by multiplying the amount of change by an estimation coefficient;
A power storage device.
請求項2に記載の蓄電装置あって、
前記制御回路は、
前記推定係数を、前記分極解消時間を経過した後に計測した電圧に基づいて更新する、
ことを特徴とする蓄電装置。
The power storage device according to claim 2,
The control circuit includes:
Updating the estimated coefficient based on a voltage measured after the polarization elimination time has elapsed;
A power storage device.
請求項1から3のいずれか一項に記載の蓄電装置あって、
前記制御回路は、
前記電池の充電率が所定範囲にない場合、開回路電圧の推定を行わない、
ことを特徴とする蓄電装置。
The power storage device according to any one of claims 1 to 3,
The control circuit includes:
If the charging rate of the battery is not in the predetermined range, do not estimate the open circuit voltage,
A power storage device.
請求項1から4のいずれか一項に記載の蓄電装置あって、
前記制御回路は、
前記分極解消時間を経過した後に開回路電圧を計測した場合、所定の時間は前記開回路電圧の推定を行わない、
ことを特徴とする蓄電装置。
The power storage device according to any one of claims 1 to 4,
The control circuit includes:
If the open circuit voltage is measured after elapse of the polarization elimination time, the open circuit voltage is not estimated for a predetermined time.
A power storage device.
請求項1から5のいずれか一項に記載の蓄電装置あって、
前記制御回路は、
前記所定時間が前記分極解消時間より短い場合、推定した開回路電圧を用いて充電率を求め、
前記所定時間が前記分極解消時間以上長い場合、計測した開回路電圧を用いて充電率を求める、
ことを特徴とする蓄電装置。
The power storage device according to any one of claims 1 to 5,
The control circuit includes:
If the predetermined time is shorter than the polarization elimination time, the charging rate is determined using the estimated open circuit voltage,
If the predetermined time is longer than the polarization elimination time, the charge rate is determined using the measured open circuit voltage.
A power storage device.
請求項6に記載の蓄電装置あって、
前記制御回路は、
前記充電率と、前記電池に流れる電流を計測して求める積算電流と、を用いて、満充電容量を求める、
ことを特徴とする蓄電装置。
The power storage device according to claim 6,
The control circuit includes:
Using the charging rate and the integrated current obtained by measuring the current flowing through the battery, the full charge capacity is obtained.
A power storage device.
請求項1に記載の蓄電装置あって、
前記蓄電装置は、複数の前記電池を有する組電池と、前記電池それぞれの電圧または容量を均等にするセルバランス回路と、を備え、
前記制御回路は、
前記所定時間が前記分極解消時間より短い場合、推定した開回路電圧を用い、前記所定時間が前記分極解消時間以上長い場合、計測した開回路電圧を用いて、前記セルバランス回路を制御する、
ことを特徴とする蓄電装置。
The power storage device according to claim 1,
The power storage device includes a battery pack having a plurality of the batteries, and a cell balance circuit that equalizes the voltage or capacity of each of the batteries,
The control circuit includes:
When the predetermined time is shorter than the polarization elimination time, the estimated open circuit voltage is used, and when the predetermined time is longer than the polarization elimination time, the measured open circuit voltage is used to control the cell balance circuit.
A power storage device.
電池と、前記電池の充放電を制御する制御回路と、を備える蓄電装置であって、
前記制御回路は、
前記電池の充放電が終了してからの所定時間が、前記電池の充放電が終了して前記電池の分極が解消したと見做すまでの分極解消時間より短い場合、第一の時間の電圧と前記第一の時間以降の第二の時間の電圧との差を用いて変化量を求め、前記第一の時間の電圧と前記変化量に推定係数を乗算した値とを加算して、前記電池の分極が解消した後の前記電池の開回路電圧の推定をする、
ことを特徴とする蓄電装置。
A power storage device comprising a battery and a control circuit that controls charging and discharging of the battery,
The control circuit includes:
When the predetermined time after the charging / discharging of the battery is completed is shorter than the depolarization time until the charging / discharging of the battery is completed and the polarization of the battery is considered to be eliminated, the voltage of the first time And the difference between the voltage of the second time after the first time and the amount of change, add the voltage of the first time and the value obtained by multiplying the amount of change by an estimation coefficient, Estimating the open circuit voltage of the battery after the polarization of the battery has been resolved;
A power storage device.
電池と、前記電池の充放電を制御する制御回路と、を備える蓄電装置の制御方法であって、
前記蓄電装置は、
前記電池の充放電が終了してからの所定時間が、前記電池の充放電が終了して前記電池の分極が解消したと見做すまでの分極解消時間より短い場合、前記所定時間に計測した前記電池の電圧の変化量に基づいて、前記電池の分極が解消した後の前記電池の開回路電圧を推定し、
前記所定時間が、前記分極解消時間以上長い場合、計測した前記電池の電圧を開回路電圧とする、
ことを特徴とする蓄電装置の制御方法。
A control method of a power storage device comprising a battery and a control circuit that controls charging and discharging of the battery,
The power storage device
When the predetermined time from the end of charging / discharging of the battery is shorter than the polarization elimination time until it is considered that the charging / discharging of the battery is completed and the polarization of the battery is eliminated, the measurement was performed at the predetermined time. Based on the amount of change in the voltage of the battery, estimate the open circuit voltage of the battery after the polarization of the battery has been eliminated,
When the predetermined time is longer than the polarization elimination time, the measured voltage of the battery is an open circuit voltage,
A method for controlling a power storage device.
JP2015013798A 2015-01-28 2015-01-28 Power storage device and method for controlling power storage device Active JP6369340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015013798A JP6369340B2 (en) 2015-01-28 2015-01-28 Power storage device and method for controlling power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015013798A JP6369340B2 (en) 2015-01-28 2015-01-28 Power storage device and method for controlling power storage device

Publications (2)

Publication Number Publication Date
JP2016139525A true JP2016139525A (en) 2016-08-04
JP6369340B2 JP6369340B2 (en) 2018-08-08

Family

ID=56560373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015013798A Active JP6369340B2 (en) 2015-01-28 2015-01-28 Power storage device and method for controlling power storage device

Country Status (1)

Country Link
JP (1) JP6369340B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221899A1 (en) * 2016-06-22 2017-12-28 株式会社豊田自動織機 Electricity storage device, and electricity storage device control method
WO2018037761A1 (en) * 2016-08-26 2018-03-01 株式会社豊田自動織機 Electricity storage device
WO2018066298A1 (en) * 2016-10-06 2018-04-12 株式会社豊田自動織機 Electricity storage device
JP2018137885A (en) * 2017-02-21 2018-08-30 トヨタ自動車株式会社 Power supply system
JP2018156759A (en) * 2017-03-16 2018-10-04 プライムアースEvエナジー株式会社 State determination method of secondary cell and state determination device of secondary cell
WO2019049728A1 (en) * 2017-09-06 2019-03-14 株式会社豊田自動織機 Battery pack
JP2020139846A (en) * 2019-02-28 2020-09-03 株式会社デンソーテン State estimation device
JP2020201080A (en) * 2019-06-07 2020-12-17 本田技研工業株式会社 Battery state determination method for lithium ion secondary battery
US11322742B2 (en) 2019-03-13 2022-05-03 Kabushiki Kaisha Toshiba Active material, electrode, secondary battery, battery pack and vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085574A (en) * 2002-05-14 2004-03-18 Yazaki Corp Method and apparatus for estimating charging state of battery
WO2013054414A1 (en) * 2011-10-13 2013-04-18 トヨタ自動車株式会社 Secondary battery control device and method
WO2013171786A1 (en) * 2012-05-15 2013-11-21 トヨタ自動車株式会社 Battery system and polarization determination method for secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085574A (en) * 2002-05-14 2004-03-18 Yazaki Corp Method and apparatus for estimating charging state of battery
WO2013054414A1 (en) * 2011-10-13 2013-04-18 トヨタ自動車株式会社 Secondary battery control device and method
WO2013171786A1 (en) * 2012-05-15 2013-11-21 トヨタ自動車株式会社 Battery system and polarization determination method for secondary battery

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10436850B2 (en) 2016-06-22 2019-10-08 Kabushiki Kaisha Toyota Jidoshokki Power storage apparatus and controlling method for the same
WO2017221899A1 (en) * 2016-06-22 2017-12-28 株式会社豊田自動織機 Electricity storage device, and electricity storage device control method
CN109642928A (en) * 2016-08-26 2019-04-16 株式会社丰田自动织机 Electrical storage device
WO2018037761A1 (en) * 2016-08-26 2018-03-01 株式会社豊田自動織機 Electricity storage device
US11189863B2 (en) 2016-08-26 2021-11-30 Kabushiki Kaisha Toyota Jidoshokki Power storage apparatus
CN109642928B (en) * 2016-08-26 2021-09-10 株式会社丰田自动织机 Electricity storage device
JPWO2018037761A1 (en) * 2016-08-26 2019-01-31 株式会社豊田自動織機 Power storage device
JPWO2018066298A1 (en) * 2016-10-06 2019-09-05 株式会社豊田自動織機 Power storage device
US11095130B2 (en) 2016-10-06 2021-08-17 Kabushiki Kaisha Toyota Jidoshokki Power storage apparatus for estimating an open-circuit voltage
CN109791183A (en) * 2016-10-06 2019-05-21 株式会社丰田自动织机 Electrical storage device
WO2018066298A1 (en) * 2016-10-06 2018-04-12 株式会社豊田自動織機 Electricity storage device
JP2019197056A (en) * 2016-10-06 2019-11-14 株式会社豊田自動織機 Energy storage device
CN109791183B (en) * 2016-10-06 2021-09-03 株式会社丰田自动织机 Electricity storage device
JP2018137885A (en) * 2017-02-21 2018-08-30 トヨタ自動車株式会社 Power supply system
JP2018156759A (en) * 2017-03-16 2018-10-04 プライムアースEvエナジー株式会社 State determination method of secondary cell and state determination device of secondary cell
JP2019045419A (en) * 2017-09-06 2019-03-22 株式会社豊田自動織機 Battery pack
WO2019049728A1 (en) * 2017-09-06 2019-03-14 株式会社豊田自動織機 Battery pack
JP2020139846A (en) * 2019-02-28 2020-09-03 株式会社デンソーテン State estimation device
JP7295658B2 (en) 2019-02-28 2023-06-21 株式会社デンソーテン state estimator
US11322742B2 (en) 2019-03-13 2022-05-03 Kabushiki Kaisha Toshiba Active material, electrode, secondary battery, battery pack and vehicle
JP2020201080A (en) * 2019-06-07 2020-12-17 本田技研工業株式会社 Battery state determination method for lithium ion secondary battery

Also Published As

Publication number Publication date
JP6369340B2 (en) 2018-08-08

Similar Documents

Publication Publication Date Title
JP6369340B2 (en) Power storage device and method for controlling power storage device
JP6528906B2 (en) Power storage device and control method of power storage device
CN109664795B (en) Battery pack passive equalization method and battery management system
JP7036605B2 (en) Battery state estimation device and battery state estimation method
EP2089731B1 (en) Apparatus and method for determination of the state-of-charge of a battery when the battery is not in equilibrium
US10845417B2 (en) Battery state estimation device, battery control device, battery system, battery state estimation method
JP5442583B2 (en) State detection device for power supply and power supply device
JP6509725B2 (en) Estimating the state of charge of the battery
CN107894570B (en) Method and device for estimating SOC (state of charge) of battery pack based on Thevenin model
US11448704B2 (en) Parameter estimation device, parameter estimation method, and computer program
WO2014147899A1 (en) Method for estimating fully-charged power capacity, and device
WO2018066298A1 (en) Electricity storage device
CN105899395B (en) Energy in assessment motor vehicle battery
KR20220011564A (en) Method and device for determining battery capacity, management system and storage medium
WO2014112181A1 (en) State of charge estimating device and state of charge estimating method
JP6828339B2 (en) Power storage device
WO2020026509A1 (en) Cell state estimation device and cell control device
JPWO2019116815A1 (en) Secondary battery monitoring device, secondary battery status calculation device and secondary battery status estimation method
JP2016181991A (en) Charger and control method of charger
JP5851514B2 (en) Battery control device, secondary battery system
JP2014176184A (en) Voltage equalization device, and voltage equalization method
JP2016093030A (en) Device and method for charge control
JP2015208169A (en) Cell balance control device and cell balance control method
JP2021144886A (en) Battery management device, battery management system and battery management method
JP5563048B2 (en) Full charge capacity estimation device, full charge capacity estimation method and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180625

R151 Written notification of patent or utility model registration

Ref document number: 6369340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151