JP2016093030A - Device and method for charge control - Google Patents

Device and method for charge control Download PDF

Info

Publication number
JP2016093030A
JP2016093030A JP2014226929A JP2014226929A JP2016093030A JP 2016093030 A JP2016093030 A JP 2016093030A JP 2014226929 A JP2014226929 A JP 2014226929A JP 2014226929 A JP2014226929 A JP 2014226929A JP 2016093030 A JP2016093030 A JP 2016093030A
Authority
JP
Japan
Prior art keywords
voltage
charging
internal resistance
constant
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014226929A
Other languages
Japanese (ja)
Inventor
俊雄 小田切
Toshio Odagiri
俊雄 小田切
中村 知広
Tomohiro Nakamura
知広 中村
加藤 崇行
Takayuki Kato
崇行 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2014226929A priority Critical patent/JP2016093030A/en
Publication of JP2016093030A publication Critical patent/JP2016093030A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a method suable for measuring internal resistance for use to determine a threshold voltage in constant-voltage charge of constant-current constant-voltage charge.SOLUTION: A charge control device 1 includes: a measuring unit 7 which measures the internal resistance of a battery 4 when the measured voltage of the battery 4 approaches a target voltage set in the constant-voltage constant-current charge; and a determination unit 8 which, after the measurement of the internal resistance, determines a threshold voltage for use in the constant-voltage charge performed in the constant-voltage constant-current charge to a higher voltage than a target voltage, according to the measured internal resistance.SELECTED DRAWING: Figure 1

Description

電池の充電を制御する充電制御装置および充電制御方法に関する。   The present invention relates to a charge control device and a charge control method for controlling charging of a battery.

電池の充電として定電流充電をしたのち定電圧充電に切り替えて充電をする定電流定電圧充電が知られている。また、定電流定電圧充電のひとつとして、定電圧充電において電池に印加する定電圧を、目標とするSOC(State of Charge)に相当する目標電圧より高い閾値電圧まで引き上げ、その閾値電圧を用いて定電圧充電をする方法が知られている。   Constant current constant voltage charging is known in which charging is performed by switching to constant voltage charging after performing constant current charging as battery charging. As one of constant current and constant voltage charging, the constant voltage applied to the battery in constant voltage charging is raised to a threshold voltage higher than a target voltage corresponding to a target SOC (State of Charge), and the threshold voltage is used. A method of performing constant voltage charging is known.

ところが、電池の劣化が進むと、当初の閾値電圧を用いて定電圧充電をしても、目標電圧まで達しなくなるという問題がある。そこで、電池の劣化に応じて閾値電圧を決定し、決定した閾値電圧を用いて定電圧充電をすることで、劣化をした場合であっても、目標電圧まで充電を可能にする提案がされている。例えば、特許文献1を参照。   However, as the battery deteriorates, there is a problem that even if constant voltage charging is performed using the initial threshold voltage, the target voltage is not reached. Therefore, a proposal has been made to determine the threshold voltage according to the deterioration of the battery, and perform charging at a constant voltage using the determined threshold voltage, so that charging can be performed up to the target voltage even in the case of deterioration. Yes. See, for example, US Pat.

ただし、閾値電圧を決定する際には、電池の劣化を精度よく検出しなければならない。電池の劣化は、例えば、計測した電池の内部抵抗から検知することができる。引用文献2には、充電と放電を繰り返して電池電圧の増減幅に基づいて内部抵抗を計測する提案がされている。   However, when determining the threshold voltage, it is necessary to accurately detect battery deterioration. The deterioration of the battery can be detected from the measured internal resistance of the battery, for example. Cited Document 2 proposes to measure internal resistance based on the increase / decrease width of the battery voltage by repeating charging and discharging.

また、引用文献1、3によれば、電池の充電に用いられる閾値電圧を、内部抵抗の大きさに応じて変更する提案がされている。   Moreover, according to the cited documents 1 and 3, the proposal which changes the threshold voltage used for charge of a battery according to the magnitude | size of internal resistance is made.

国際公開第2012/043744号International Publication No. 2012/043744 特開2004−236381号公報JP 2004236363 A 特開2011−061947号公報JP 2011-061947 A

しかしながら、上記提案には、閾値電圧の決定に用いる内部抵抗の計測をするのに適した方法は開示されていない。
本発明の一側面に係る目的は、定電流定電圧充電の定電圧充電において、閾値電圧の決定に用いる内部抵抗の計測に適した方法を提供することである。
However, the above proposal does not disclose a method suitable for measuring the internal resistance used for determining the threshold voltage.
An object of one aspect of the present invention is to provide a method suitable for measuring an internal resistance used for determining a threshold voltage in constant voltage charging of constant current constant voltage charging.

本発明の態様のひとつである充電制御装置は計測部と決定部を有する。
計測部は、電池の計測電圧が、定電流定電圧充電において設定した目標電圧に近づくと、電池の内部抵抗を計測する。
The charge control device which is one aspect of the present invention includes a measurement unit and a determination unit.
A measurement part measures the internal resistance of a battery, when the measurement voltage of a battery approaches the target voltage set in constant current constant voltage charge.

決定部は、内部抵抗を計測したのち、計測した内部抵抗に応じて、定電流定電圧充電において行う定電圧充電に用いる閾値電圧を、目標電圧より高い電圧に決定する。
また、計測部は定電圧充電後に所定時間充電をして内部抵抗を計測してもよい。
After determining the internal resistance, the determination unit determines a threshold voltage used for constant voltage charging performed in constant current and constant voltage charging to be a voltage higher than the target voltage in accordance with the measured internal resistance.
The measuring unit may measure the internal resistance by charging for a predetermined time after the constant voltage charging.

また、計測部は定電圧充電後に計測電圧の変化から内部抵抗を計測してもよい。
また、計測部は定電流定電圧充電において定電流充電から定電圧充電に移行する前に、充電を停止し、計測電圧の変化から内部抵抗を計測し、決定部は計測した内部抵抗に応じて、移行後の定電圧充電に用いる閾値電圧を決定してもよい。
Further, the measurement unit may measure the internal resistance from the change of the measurement voltage after constant voltage charging.
In addition, the measurement unit stops charging before shifting from constant current charging to constant voltage charging in constant current constant voltage charging, measures the internal resistance from the change in the measured voltage, and the determination unit responds to the measured internal resistance. The threshold voltage used for the constant voltage charge after the transition may be determined.

実施の態様によれば、定電流定電圧充電の定電圧充電に適した、閾値電圧の決定に用いる内部抵抗を計測することができる。   According to the embodiment, it is possible to measure the internal resistance used for determining the threshold voltage, which is suitable for constant voltage charging of constant current constant voltage charging.

図1は、充電制御装置との一実施例を示す図である。FIG. 1 is a diagram illustrating an embodiment of the charging control apparatus. 図2は、実施形態1の定電流定電圧充電における電流と電圧の関係を示す図である。FIG. 2 is a diagram illustrating a relationship between current and voltage in constant current and constant voltage charging according to the first embodiment. 図3は、定電流定電圧充電の動作の一実施例を示すフロー図である。FIG. 3 is a flowchart showing an embodiment of the constant current and constant voltage charging operation. 図4は、実施形態2の定電流定電圧充電における電流と電圧の関係を示す図である。FIG. 4 is a diagram illustrating a relationship between current and voltage in constant current and constant voltage charging according to the second embodiment. 図5は、実施形態3の定電流定電圧充電における電流と電圧の関係を示す図である。FIG. 5 is a diagram illustrating a relationship between current and voltage in constant current and constant voltage charging according to the third embodiment. 図6は、実施形態3の定電流定電圧充電の動作の一実施例を示すフロー図である。FIG. 6 is a flowchart illustrating an example of the operation of constant current constant voltage charging according to the third embodiment.

以下図面に基づいて実施形態について詳細に説明する。
実施形態1について説明する。
図1は、充電制御装置の一実施例を示す図である。図1に示す充電制御装置1は例えば電池パックである。本例において充電制御装置1は、一つ以上の電池4を有する組電池2、充電制御装置1を制御する制御部3、電池4の電圧を計測する電圧計5、組電池2に流れる電流を計測する電流計6、組電池2または電池4の温度または周辺温度などを計測する温度計10、を有している。電池4はリチウムイオン電池などの二次電池、または、蓄電素子などである。なお、温度計10はなくてもよい。
Hereinafter, embodiments will be described in detail with reference to the drawings.
The first embodiment will be described.
FIG. 1 is a diagram illustrating an embodiment of a charge control device. The charge control device 1 shown in FIG. 1 is, for example, a battery pack. In this example, the charging control device 1 includes an assembled battery 2 having one or more batteries 4, a control unit 3 that controls the charging control device 1, a voltmeter 5 that measures the voltage of the battery 4, and a current flowing through the assembled battery 2. It has the ammeter 6 to measure, and the thermometer 10 to measure the temperature of the assembled battery 2 or the battery 4 or the ambient temperature. The battery 4 is a secondary battery such as a lithium ion battery or a storage element. The thermometer 10 may not be provided.

制御部3は計測部7、決定部8、記憶部9を有している。また。制御部3は、例えば、CPU(Central Processing Unit)、マルチコアCPU、プログラマブルなデバイス(FPGA(Field Programmable Gate Array)やPLD(Programmable Logic Device)など)を用いた回路が考えられ、制御部3の内部または外部に備えられている記憶部9に記憶されている充電制御装置1の各部を制御するプログラムを読み出して実行する。なお、本例においては制御部3を用いて説明をするが、制御部3が実行する制御を、例えば車両に搭載されている一つ以上のECU(Electronic Control Unit)などに行わせてもよい。   The control unit 3 includes a measurement unit 7, a determination unit 8, and a storage unit 9. Also. The control unit 3 may be, for example, a circuit using a CPU (Central Processing Unit), a multi-core CPU, or a programmable device (FPGA (Field Programmable Gate Array), PLD (Programmable Logic Device), etc.). Or the program which controls each part of the charging control apparatus 1 memorize | stored in the memory | storage part 9 provided outside is read and executed. In this example, the control unit 3 is used for description. However, the control executed by the control unit 3 may be performed by, for example, one or more ECUs (Electronic Control Units) mounted on the vehicle. .

記憶部9はROM(Read Only Memory)、RAM(Random Access Memory)などのメモリで、パラメータ値、変数値などのデータを記憶してもよいし、実行時のワークエリアとして用いてもよい。なお、記憶部9は制御部3と別に設けてもよい。   The storage unit 9 is a memory such as a ROM (Read Only Memory) or a RAM (Random Access Memory), and may store data such as parameter values and variable values, or may be used as a work area at the time of execution. The storage unit 9 may be provided separately from the control unit 3.

計測部7は、電圧計5を用いて計測した電池4の計測電圧が、定電流定電圧充電(Constant Current Constant Voltage充電、以下CCCV充電)において設定した定電圧充電(CV充電)を終了させる目標電圧に近づくと、電池4の内部抵抗を計測する。実施形態1の計測部7ではCV充電後に所定時間充電をして内部抵抗を計測する。ここで、目標電圧はOCV(Open Circuit Voltage:開回路電圧)である。また、目標電圧は、満充電電圧または設定した目標値が示すSOCに相当する電圧で、充電後の電池4において内部抵抗による電圧降下がなく、分極も解消された状態の電圧である。   The measurement unit 7 is a target for terminating the constant voltage charging (CV charging) set in the constant current constant voltage charging (hereinafter referred to as CCCV charging) by the measured voltage of the battery 4 measured using the voltmeter 5. When the voltage approaches, the internal resistance of the battery 4 is measured. In the measurement part 7 of Embodiment 1, it charges for predetermined time after CV charge, and measures internal resistance. Here, the target voltage is OCV (Open Circuit Voltage). The target voltage is a voltage corresponding to the SOC indicated by the fully charged voltage or the set target value, and is a voltage in a state where there is no voltage drop due to internal resistance and the polarization is eliminated in the battery 4 after charging.

決定部8は、電池4の内部抵抗に応じて、CCCV充電において行うCV充電に用いる閾値電圧を決定する。ただし、内部抵抗を求めるタイミングと閾値電圧を決定するタイミングは同じではない。実施形態1の決定部8では、次回以降のCCCV充電のときに、計測した内部抵抗に応じて閾値電圧を求め、その閾値電圧をCV充電に用いる。   The determination unit 8 determines a threshold voltage used for CV charging performed in CCCV charging according to the internal resistance of the battery 4. However, the timing for obtaining the internal resistance and the timing for determining the threshold voltage are not the same. The determination unit 8 according to the first embodiment obtains a threshold voltage according to the measured internal resistance at the time of CCCV charging after the next time, and uses the threshold voltage for CV charging.

CCCV充電において内部抵抗を求める方法について説明をする。
図2は、実施形態1の定電流定電圧充電における電流と電圧の関係を示す図である。縦軸には電流と電圧を示し、横軸には時間が示されている。図2の時間t0から時間t1の期間では電池4に対して定電流充電(CC充電)を行う。CC充電では、電池4の電圧が閾値電圧V1になるまで、組電池2に定電流I1を流す。閾値電圧V1は目標電圧V2より高い電圧で、電池4の劣化を示す内部抵抗Raに応じて決定された電圧である。
A method for obtaining the internal resistance in CCCV charging will be described.
FIG. 2 is a diagram illustrating a relationship between current and voltage in constant current and constant voltage charging according to the first embodiment. The vertical axis represents current and voltage, and the horizontal axis represents time. In the period from time t0 to time t1 in FIG. 2, constant current charging (CC charging) is performed on the battery 4. In CC charging, the constant current I1 is supplied to the assembled battery 2 until the voltage of the battery 4 reaches the threshold voltage V1. The threshold voltage V1 is higher than the target voltage V2, and is a voltage determined according to the internal resistance Ra indicating the deterioration of the battery 4.

図2の時間t1から時間t2の期間では電池4に対してCV充電を行う。電池4に定電圧(=閾値電圧V1)を印加し、電流計6を用いて計測した組電池2に流れる計測電流が所定電流I2(=終止電流I2)になると(時間t2)、CV充電を終了する。   In the period from time t1 to time t2 in FIG. When a constant voltage (= threshold voltage V1) is applied to the battery 4 and the measured current flowing through the assembled battery 2 measured using the ammeter 6 reaches a predetermined current I2 (= end current I2) (time t2), CV charging is performed. finish.

図2の時間t2においてCV充電を終了してから時間t3を経過した後、つまり電池4の計測電圧が目標電圧V2に近づくと、内部抵抗Raの計測を開始する。本例では、目標電圧V2に近づいたことを示す内部抵抗Raを求めるために設定した設定電圧V3(V2<V3<V1)に、電圧計5が計測した電池4の計測電圧が達すると、内部抵抗Raの計測を開始する。   After the end of CV charging at time t2 in FIG. 2, after the time t3 has elapsed, that is, when the measured voltage of the battery 4 approaches the target voltage V2, measurement of the internal resistance Ra is started. In this example, when the measured voltage of the battery 4 measured by the voltmeter 5 reaches the set voltage V3 (V2 <V3 <V1) set to obtain the internal resistance Ra indicating that the target voltage V2 has been approached, The measurement of the resistance Ra is started.

図2の時間t3から時間t4の期間(所定時間)では、電池4に対して定電流を流して充電をする。例えば、10秒のあいだ定電流I1を電池4に流すことが考えられる。ただし、定電流を流す時間は10秒に限定されるものではない。また、定電流はI1に限定されるものではない。しかし、内部抵抗Raを精度よく計測できる時間と定電流であることが望ましい。   In the period (predetermined time) from time t3 to time t4 in FIG. 2, the battery 4 is charged by flowing a constant current. For example, a constant current I1 may be passed through the battery 4 for 10 seconds. However, the time for flowing the constant current is not limited to 10 seconds. The constant current is not limited to I1. However, it is desirable that the time and the constant current be such that the internal resistance Ra can be accurately measured.

また、時間t3から時間t4の期間に内部抵抗Raを求める理由は、充電を開始した直後より、目標電圧V2に近づいてからの方が、閾値電圧V1を決定するための内部抵抗Raの精度が高いからである。すなわち、高いSOCにおける内部抵抗Raを用いて閾値電圧V1を決めた方がよい。なお、CV充電終了後の計測電圧はOCVである。   Further, the reason why the internal resistance Ra is obtained in the period from time t3 to time t4 is that the accuracy of the internal resistance Ra for determining the threshold voltage V1 is closer to the target voltage V2 than immediately after the start of charging. Because it is expensive. That is, it is better to determine the threshold voltage V1 using the internal resistance Ra at a high SOC. Note that the measured voltage after the end of CV charging is OCV.

図2の時間t4になると電圧計5を用いて計測された計測電圧V4を取得する。続いて、予め設定されている内部抵抗Raを計測するための設定電圧V3から計測電圧V4に上昇した分の差分電圧dV(=V4−V3)を求める。そして、差分電圧dVを定電流I1で除算して内部抵抗Ra(=dV/I1)を求める。なお、求めた内部抵抗RaにはIRドロップと分極による抵抗が含まれている。   At time t4 in FIG. 2, the measurement voltage V4 measured using the voltmeter 5 is acquired. Subsequently, a differential voltage dV (= V4−V3) corresponding to a rise from the set voltage V3 for measuring the preset internal resistance Ra to the measured voltage V4 is obtained. Then, the internal voltage Ra (= dV / I1) is obtained by dividing the differential voltage dV by the constant current I1. The obtained internal resistance Ra includes resistance due to IR drop and polarization.

閾値電圧の決定方法の一例について説明する。
決定部8は、内部抵抗Raを計測したのち、計測した内部抵抗Raに応じて、CCCV充電において行うCV充電に用いる閾値電圧V1を、目標電圧V2より高い電圧に決定する。閾値電圧V1は、例えば、内部抵抗Ra、終止電流I2、温度などを用いて求められる。本例では、内部抵抗Raは充電後に求める値である。終止電流I2はその後の充電のときに決める値である。温度は充電中に計測した値である。すなわち、温度は充電中に変わってしまうので、例えば、CC充電からCV充電に変わる前に温度を求め、その時の温度と内部抵抗Raと終止電流I2を用いて閾値電圧V1を求める。終止電流I2を使う理由はCV充電終了直前の電流I2によって、内部抵抗Raによる電圧降下(=Ra×I2)と、分極による電圧降下と、が変わるためである。
An example of a method for determining the threshold voltage will be described.
After determining the internal resistance Ra, the determination unit 8 determines the threshold voltage V1 used for CV charging performed in CCCV charging to be higher than the target voltage V2 in accordance with the measured internal resistance Ra. The threshold voltage V1 is obtained using, for example, the internal resistance Ra, the end current I2, and the temperature. In this example, the internal resistance Ra is a value obtained after charging. The end current I2 is a value determined at the time of subsequent charging. The temperature is a value measured during charging. That is, since the temperature changes during charging, for example, the temperature is obtained before changing from CC charging to CV charging, and the threshold voltage V1 is obtained using the temperature at that time, the internal resistance Ra, and the end current I2. The reason for using the termination current I2 is that the voltage drop (= Ra × I2) due to the internal resistance Ra and the voltage drop due to polarization change depending on the current I2 immediately before the end of CV charging.

実施形態1の動作について説明する。
図3は、定電流定電圧充電の動作の一実施例を示すフロー図である。
ステップS1では制御部3が定電流充電処理を開始する。定電流充電処理は、電池4の計測電圧が閾値電圧V1になるまで定電流I1でCC充電をし、電池4の計測電圧が閾値電圧V1に達すると、CC充電からCV充電に移行する。
The operation of the first embodiment will be described.
FIG. 3 is a flowchart showing an embodiment of the constant current and constant voltage charging operation.
In step S1, the control unit 3 starts a constant current charging process. In the constant current charging process, CC charging is performed with the constant current I1 until the measured voltage of the battery 4 reaches the threshold voltage V1, and when the measured voltage of the battery 4 reaches the threshold voltage V1, the CC charging is shifted to CV charging.

ステップS2では制御部3が定電圧充電処理を開始する。定電圧充電処理は、組電池2に流れる電流が所定電流I2になるまで定電圧(=閾値電圧V1)でCV充電をし、組電池2に流れる計測電流が所定電流I2になると、CV充電を終了する。   In step S2, the control unit 3 starts a constant voltage charging process. The constant voltage charging process performs CV charging at a constant voltage (= threshold voltage V1) until the current flowing through the assembled battery 2 reaches the predetermined current I2, and when the measured current flowing through the assembled battery 2 reaches the predetermined current I2, the CV charging is performed. finish.

ステップS3では制御部3が内部抵抗計測処理を開始する。内部抵抗計測処理は、電池4の計測電圧が目標電圧V2に近づくと(設定電圧V3になると)、所定時間(時間t3から時間t4)だけ組電池2に定電流を流して充電をする。続いて、時間t3における電圧である設定電圧V3と、時間t4において計測した計測電圧V4と、を取得し、差分電圧dVを求める。そして差分電圧dVと組電池2に流している定電流(本例ではI1)を用いて、内部抵抗Raを求める。   In step S3, the control unit 3 starts an internal resistance measurement process. In the internal resistance measurement process, when the measured voltage of the battery 4 approaches the target voltage V2 (becomes the set voltage V3), the battery pack 2 is charged by flowing a constant current for a predetermined time (from time t3 to time t4). Subsequently, the set voltage V3, which is the voltage at time t3, and the measured voltage V4 measured at time t4 are acquired, and the differential voltage dV is obtained. Then, the internal resistance Ra is obtained using the differential voltage dV and a constant current (I1 in this example) flowing through the assembled battery 2.

ステップS4では、内部抵抗Raを計測したのち、計測した内部抵抗Raに応じて、CCCV充電において行うCV充電に用いる閾値電圧V1を、目標電圧V2より高い電圧に決定する。すなわち、新たにCCCV充電を開始すると、該CCCV充電のCV充電に用いるため閾値電圧V1を決定するために、制御部3が閾値電圧決定処理を開始する。閾値電圧決定処理において、内部抵抗Ra、終止電流I2、温度を用いて決定された閾値電圧V1は記憶部9に記憶する。   In step S4, after measuring the internal resistance Ra, the threshold voltage V1 used for CV charging performed in CCCV charging is determined to be higher than the target voltage V2 in accordance with the measured internal resistance Ra. That is, when a new CCCV charge is started, the control unit 3 starts a threshold voltage determination process in order to determine the threshold voltage V1 to be used for the CV charge of the CCCV charge. In the threshold voltage determination process, the threshold voltage V1 determined using the internal resistance Ra, the end current I2, and the temperature is stored in the storage unit 9.

実施形態1によれば、CCCV充電のCV充電に適した、閾値電圧V1を決定するために用いる内部抵抗Raの計測ができる。なお、充電後に所定時間充電したあとに、所定時間放電してもよい。CCCV充電により満充電電圧まで充電した後に、内部抵抗Raを求めるために所定時間充電しても、所定時間放電することで、過充電を防止することができる。   According to the first embodiment, the internal resistance Ra used for determining the threshold voltage V1 suitable for CV charging of CCCV charging can be measured. The battery may be discharged for a predetermined time after being charged for a predetermined time after charging. Even after charging for a predetermined time to obtain the internal resistance Ra after charging to the full charge voltage by CCCV charging, overcharging can be prevented by discharging for a predetermined time.

また、実施形態1によれば、温度による内部抵抗の変化にも対応することができるため、さらに精度のよい閾値電圧を求められる。
実施形態2について説明する。
Further, according to the first embodiment, it is possible to cope with a change in internal resistance due to temperature, so that a more accurate threshold voltage can be obtained.
Embodiment 2 will be described.

実施形態2では、計測部7はCV充電後に計測電圧の変化から内部抵抗Rbを計測し、決定部8は計測した内部抵抗に応じて閾値電圧を求め、その閾値電圧を次回以降のCV充電に用いる。   In the second embodiment, the measurement unit 7 measures the internal resistance Rb from the change in the measurement voltage after CV charging, and the determination unit 8 obtains a threshold voltage according to the measured internal resistance, and the threshold voltage is used for the subsequent CV charging. Use.

CCCV充電において内部抵抗を求める方法について説明をする。
図4は、実施形態2の定電流定電圧充電における電流と電圧の関係を示す図である。縦軸には電流と電圧を示し、横軸には時間が示されている。図4の時間t0から時間t1の期間では電池4に対してCC充電を行う。
A method for obtaining the internal resistance in CCCV charging will be described.
FIG. 4 is a diagram illustrating a relationship between current and voltage in constant current and constant voltage charging according to the second embodiment. The vertical axis represents current and voltage, and the horizontal axis represents time. In the period from the time t0 to the time t1 in FIG.

図4の時間t1から時間t2の期間では電池4に対してCV充電を行う。電池4に定電圧(=閾値電圧V1)を印加し、電流計6が計測した組電池2に流れる計測電流が、所定電流I2になると(時間t2)、CV充電を終了する。   In the period from time t1 to time t2 in FIG. When a constant voltage (= threshold voltage V1) is applied to the battery 4 and the measured current flowing through the assembled battery 2 measured by the ammeter 6 reaches a predetermined current I2 (time t2), the CV charging is terminated.

図4の時間t2から時間taの期間において、つまりCV充電終了後から所定時間において、電池4の電圧を計測する。例えば、10秒のあいだ電池4の電圧を計測することが考えられる。ただし、定電流を流す時間は10秒に限定されるものではなく、内部抵抗を精度よく計測できる時間であることが望ましい。   The voltage of the battery 4 is measured in the period from time t2 to time ta in FIG. 4, that is, for a predetermined time after the end of CV charging. For example, it is conceivable to measure the voltage of the battery 4 for 10 seconds. However, the time during which the constant current is applied is not limited to 10 seconds, and it is desirable that the internal resistance can be accurately measured.

図4の時間taになると、電池4の計測電圧の所定時間における変化を求める。図4の例では、時間t2における計測電圧(=閾値電圧V1)から所定時間経過後に計測電圧Vaまで電圧降下した分の差分電圧dVa(=V1−Va)を求める。   When the time ta in FIG. 4 is reached, a change in the measured voltage of the battery 4 in a predetermined time is obtained. In the example of FIG. 4, a differential voltage dVa (= V1−Va) corresponding to a voltage drop from the measured voltage (= threshold voltage V1) at time t2 to the measured voltage Va after a predetermined time has elapsed is obtained.

続いて、差分電圧dVaを所定電流I2で除算して内部抵抗Rb(=dVa/I2)を求める。なお、求めた内部抵抗RbにはIRドロップと分極による抵抗が含まれている。
また、時間t2から時間taの期間に内部抵抗Rbを求める理由は、充電を開始した直後より、目標電圧V2に近づいてからの方が、閾値電圧V1を決定するための内部抵抗Rbの精度が高いからである。すなわち、高いSOCにおける内部抵抗Rbを用いて閾値電圧V1を決めた方がよい。なお、CV充電終了後の計測電圧はOCVである。
Subsequently, the differential voltage dVa is divided by a predetermined current I2 to obtain an internal resistance Rb (= dVa / I2). The obtained internal resistance Rb includes resistance due to IR drop and polarization.
Further, the reason why the internal resistance Rb is obtained during the period from the time t2 to the time ta is that the accuracy of the internal resistance Rb for determining the threshold voltage V1 is closer to the target voltage V2 than immediately after the start of charging. Because it is expensive. That is, it is better to determine the threshold voltage V1 using the internal resistance Rb at a high SOC. Note that the measured voltage after the end of CV charging is OCV.

閾値電圧の決定方法の一例について説明する。
決定部8は、内部抵抗Rbを計測したのち、計測した内部抵抗Rbに応じて、CCCV充電において行うCV充電に用いる閾値電圧V1を、目標電圧V2より高い電圧に決定する。閾値電圧V1は、例えば、内部抵抗Rb、終止電流I2、温度などを用いて求められる。本例では、内部抵抗Rbは充電後に求める値である。終止電流I2はその後の充電のときに決める値である。温度は充電中に計測した値である。すなわち、温度は充電中に変わってしまうので、例えば、CC充電からCV充電に変わる前に温度を求め、その時の温度と内部抵抗Rbと終止電流I2を用いて閾値電圧V1を求める。終止電流I2を使う理由はCV充電終了直前の電流I2によって、内部抵抗Rbによる電圧降下(=Rb×I2)と、分極による電圧降下が変わるためである。
An example of a method for determining the threshold voltage will be described.
After determining the internal resistance Rb, the determination unit 8 determines the threshold voltage V1 used for CV charging performed in CCCV charging to be higher than the target voltage V2 according to the measured internal resistance Rb. The threshold voltage V1 is obtained using, for example, the internal resistance Rb, the end current I2, the temperature, and the like. In this example, the internal resistance Rb is a value obtained after charging. The end current I2 is a value determined at the time of subsequent charging. The temperature is a value measured during charging. That is, since the temperature changes during charging, for example, the temperature is obtained before changing from CC charging to CV charging, and the threshold voltage V1 is obtained using the temperature at that time, the internal resistance Rb, and the end current I2. The reason for using the end current I2 is that the voltage drop due to the internal resistance Rb (= Rb × I2) and the voltage drop due to polarization change depending on the current I2 immediately before the end of CV charging.

実施形態2の動作について説明する。
図3を用いて、実施形態2のCCCV充電の動作について説明する。実施形態2において、図3のステップS1、S2は実施形態1と同じ動作であるため説明を省略する。
The operation of the second embodiment will be described.
The operation of CCCV charging according to the second embodiment will be described with reference to FIG. In the second embodiment, steps S1 and S2 in FIG. 3 are the same as those in the first embodiment, and a description thereof will be omitted.

実施形態2のステップS3では、制御部3が実施形態2の内部抵抗計測処理を開始する。内部抵抗計測処理は、CV充電終了後から所定時間(図4の時間t2から時間ta)において、電池4の電圧を計測し、所定時間経過後(図4の時間taになると)、電池4の計測電圧の所定時間における変化を求める。図4の例では、所定時間経過した後に、時間t2における計測電圧(=閾値電圧V1)が計測電圧Vaまで電圧降下した分の差分電圧dVa(=V1−Va)を求める。そして求めた差分電圧dVaを所定電流I2で除算して内部抵抗Rb(=dVa/I2)を求める。   In step S3 of the second embodiment, the control unit 3 starts the internal resistance measurement process of the second embodiment. In the internal resistance measurement process, the voltage of the battery 4 is measured for a predetermined time (from time t2 to time ta in FIG. 4) after the end of CV charging, and after the predetermined time has elapsed (when time ta in FIG. 4 is reached), A change in the measurement voltage at a predetermined time is obtained. In the example of FIG. 4, after a predetermined time has elapsed, the differential voltage dVa (= V1−Va) corresponding to the voltage drop at the measurement voltage (= threshold voltage V1) at time t2 to the measurement voltage Va is obtained. Then, the obtained differential voltage dVa is divided by a predetermined current I2 to obtain an internal resistance Rb (= dVa / I2).

ステップS4では、内部抵抗Rbを計測したのち、計測した内部抵抗Rbに応じて、CCCV充電において行うCV充電に用いる閾値電圧V1を、目標電圧V2より高い電圧に決定する。すなわち、新たにCCCV充電を開始すると、該CCCV充電のCV充電に用いるため閾値電圧V1を決定するために、制御部3が実施形態2の閾値電圧決定処理を開始する。閾値電圧決定処理において、内部抵抗Rb、終止電流I2、温度を用いて決定された閾値電圧V1は記憶部9に記憶する。   In step S4, after measuring the internal resistance Rb, the threshold voltage V1 used for CV charging performed in CCCV charging is determined to be higher than the target voltage V2 in accordance with the measured internal resistance Rb. That is, when a new CCCV charge is started, the control unit 3 starts the threshold voltage determination process of the second embodiment in order to determine the threshold voltage V1 to be used for the CV charge of the CCCV charge. In the threshold voltage determination process, the threshold voltage V1 determined using the internal resistance Rb, the end current I2, and the temperature is stored in the storage unit 9.

実施形態2によれば、CCCV充電のCV充電に適した、閾値電圧V1を決定するために用いる内部抵抗Rbの計測ができる。
また、実施形態2によれば、温度による内部抵抗の変化にも対応することができるため、さらに精度のよい閾値電圧を求められる。
According to the second embodiment, the internal resistance Rb used for determining the threshold voltage V1 suitable for CV charging of CCCV charging can be measured.
Further, according to the second embodiment, it is possible to cope with a change in internal resistance due to temperature, so that a more accurate threshold voltage can be obtained.

実施形態3について説明する。
実施形態3の計測部7はCCCV充電においてCC充電からCV充電に移行する前に、充電を停止し、計測電圧の変化から内部抵抗Rcを計測し、決定部8は計測した内部抵抗Rcに応じて閾値電圧V1を求め、その閾値電圧V1を移行後のCV充電に用いる。
A third embodiment will be described.
The measuring unit 7 of the third embodiment stops charging before shifting from CC charging to CV charging in CCCV charging, and measures the internal resistance Rc from the change in the measured voltage. The determining unit 8 responds to the measured internal resistance Rc. Then, the threshold voltage V1 is obtained, and the threshold voltage V1 is used for CV charging after the transition.

CCCV充電において内部抵抗Rcを求める方法について説明をする。
図5は、実施形態3の定電流定電圧充電における電流と電圧の関係を示す図である。縦軸には電流と電圧を示し、横軸には時間が示されている。図5の時間t0から時間tfの期間では電池4に対してCC充電を行う。ただし、電池4の電圧が目標電圧V2に近づくあるいは目標電圧V2になるとCC充電を一旦停止(時間tc)し、所定時間経過後CC充電を再開(時間td)し、閾値電圧V1に達するまでCC充電をする(時間te)。所定時間は、例えば、10秒とすることが考えられる。ただし、所定時間は10秒に限定されるものではなく、内部抵抗Rcを精度よく計測できる時間であることが望ましい。
A method for obtaining the internal resistance Rc in CCCV charging will be described.
FIG. 5 is a diagram illustrating a relationship between current and voltage in constant current and constant voltage charging according to the third embodiment. The vertical axis represents current and voltage, and the horizontal axis represents time. In the period from time t0 to time tf in FIG. However, when the voltage of the battery 4 approaches the target voltage V2 or reaches the target voltage V2, CC charging is temporarily stopped (time tc), CC charging is restarted after a predetermined time (time td), and the CC charging is continued until the threshold voltage V1 is reached. Charge (time te). For example, the predetermined time may be 10 seconds. However, the predetermined time is not limited to 10 seconds, and is preferably a time during which the internal resistance Rc can be accurately measured.

図5の時間teから時間tfの期間では電池4に対してCV充電を行う。電池4に定電圧(=閾値電圧V1)を印加し、電流計6が計測した組電池2に流れる計測電流が、所定電流I2になると(時間tf)、CV充電を終了する。   In the period from time te to time tf in FIG. When a constant voltage (= threshold voltage V1) is applied to the battery 4 and the measured current flowing through the assembled battery 2 measured by the ammeter 6 reaches a predetermined current I2 (time tf), the CV charging is terminated.

実施形態3では、図5の時間tcから時間tdの期間における電池4の電圧を計測し、計測電圧V2から所定時間経過後の計測電圧Vcまで降下した分の差分電圧dVc(=V2−Vc)を求める。なお、時間tcから時間tdの期間の計測電圧はCCV(Close Circuit Voltage:閉回路電圧)である。   In the third embodiment, the voltage of the battery 4 during the period from time tc to time td in FIG. 5 is measured, and the difference voltage dVc (= V2−Vc) corresponding to the drop from the measurement voltage V2 to the measurement voltage Vc after a predetermined time has elapsed. Ask for. Note that the measurement voltage during the period from time tc to time td is CCV (Close Circuit Voltage).

続いて、差分電圧dVcをCC充電のときの定電流I1で除算して内部抵抗Rc(=dVc/I1)を求める。なお、求めた内部抵抗RcにはIRドロップと分極による抵抗が含まれている。   Subsequently, the internal voltage Rc (= dVc / I1) is obtained by dividing the differential voltage dVc by the constant current I1 during CC charging. The obtained internal resistance Rc includes resistance due to IR drop and polarization.

また、時間tcから時間tdの期間の内部抵抗Rcを求める理由は、充電を開始した直後より、目標電圧V2に近づいてからの方が、閾値電圧V1を決定するための内部抵抗Rcの精度が高いからである。すなわち、高いSOCにおける内部抵抗Rcを用いて閾値電圧V1を決めた方がよい。   The reason why the internal resistance Rc during the period from time tc to time td is obtained is that the accuracy of the internal resistance Rc for determining the threshold voltage V1 is closer to the target voltage V2 than immediately after the start of charging. Because it is expensive. That is, it is better to determine the threshold voltage V1 using the internal resistance Rc at a high SOC.

閾値電圧の決定方法の一例について説明する。
決定部8は、内部抵抗Rcを計測したのち、計測した内部抵抗Rcに応じて、CCCV充電において行うCV充電に用いる閾値電圧V1を、目標電圧V2より高い電圧に決定する。閾値電圧V1は、例えば、内部抵抗Rc、終止電流I2、温度などを用いて求められる。本例では、内部抵抗RcはCC充電からCV充電に移行する前に求める値である。終止電流I2はその後の充電のときに決める値である。温度は充電中に計測した値である。すなわち、温度は充電中に変わってしまうので、例えば、CC充電からCV充電に変わる前に温度を求め、その時の温度と内部抵抗Rcと終止電流I2を用いて閾値電圧V1を求める。終止電流I2を使う理由はCV充電終了直前の電流I2によって、内部抵抗Rcによる電圧降下(=Rc×I2)と、分極による電圧降下が変わるためである。
An example of a method for determining the threshold voltage will be described.
After determining the internal resistance Rc, the determination unit 8 determines the threshold voltage V1 used for CV charging performed in CCCV charging to be higher than the target voltage V2 in accordance with the measured internal resistance Rc. The threshold voltage V1 is obtained using, for example, the internal resistance Rc, the end current I2, the temperature, and the like. In this example, the internal resistance Rc is a value obtained before shifting from CC charging to CV charging. The end current I2 is a value determined at the time of subsequent charging. The temperature is a value measured during charging. That is, since the temperature changes during charging, for example, the temperature is obtained before changing from CC charging to CV charging, and the threshold voltage V1 is obtained using the temperature at that time, the internal resistance Rc, and the end current I2. The reason for using the end current I2 is that the voltage drop due to the internal resistance Rc (= Rc × I2) and the voltage drop due to polarization change depending on the current I2 immediately before the end of CV charging.

実施形態3の動作について説明する。
図6を用いて、実施形態3のCCCV充電の動作について説明する。図6は、実施形態3の定電流定電圧充電の動作の一実施例を示すフロー図である。
The operation of the third embodiment will be described.
The operation of CCCV charging according to the third embodiment will be described with reference to FIG. FIG. 6 is a flowchart illustrating an example of the operation of constant current constant voltage charging according to the third embodiment.

ステップS601では制御部3が実施形態3の定電流充電処理を開始する。組電池2に定電流I1を流すCC充電を開始する。
ステップS602では、電池4の計測した電圧が目標電圧V2に達すると、制御部3がCC充電を一旦停止(時間tc)し、所定時間経過した後にCC充電を再開させる(時間td)。実施形態3の内部抵抗計測処理は、電池4の計測電圧が目標電圧V2に達したことを検出すると、時間tcにおいて計測した計測電圧V2を取得し、所定時間経過後の時間tdにおいて計測した計測電圧Vcを取得し、計測電圧V2と計測電圧Vcとの差分電圧dVcを求める。そして差分電圧dVcと組電池2に流している定電流(本例ではI1)を用いて、内部抵抗Rcを求める。
In step S601, the control unit 3 starts the constant current charging process of the third embodiment. CC charging is started to flow a constant current I1 to the assembled battery 2.
In step S602, when the voltage measured by the battery 4 reaches the target voltage V2, the control unit 3 temporarily stops CC charging (time tc), and restarts CC charging after a predetermined time has elapsed (time td). In the internal resistance measurement process of the third embodiment, when it is detected that the measured voltage of the battery 4 has reached the target voltage V2, the measured voltage V2 measured at time tc is acquired, and the measurement measured at time td after a predetermined time has elapsed. The voltage Vc is acquired, and a differential voltage dVc between the measurement voltage V2 and the measurement voltage Vc is obtained. Then, the internal resistance Rc is obtained using the differential voltage dVc and the constant current (I1 in this example) flowing through the assembled battery 2.

ステップS603では制御部3が実施形態3の閾値電圧決定処理を開始する。閾値電圧決定処理において、内部抵抗Rc、終止電流I2、温度を用いて閾値電圧V1を決定し、決定した閾値電圧V1を移行後のCV充電として用いるために記憶部9に記憶する。   In step S603, the control unit 3 starts the threshold voltage determination process of the third embodiment. In the threshold voltage determination process, the threshold voltage V1 is determined using the internal resistance Rc, the end current I2, and the temperature, and the determined threshold voltage V1 is stored in the storage unit 9 for use as the CV charge after the transition.

ステップS604では制御部3が実施形態3の定電流充電処理を終了する。電池4の計測電圧が閾値電圧V1に達すると、CC充電からCV充電に移行する。
ステップS605では制御部3が実施形態3の定電圧充電処理を開始する。定電圧充電処理は、組電池2に流れる電流が所定電流I2になるまで定電圧V1(=閾値電圧V1)でCV充電をし、組電池2に流れる計測電流が所定電流I2になると、CV充電を終了して移行する。
In step S604, the control unit 3 ends the constant current charging process of the third embodiment. When the measured voltage of the battery 4 reaches the threshold voltage V1, the CC charging is shifted to the CV charging.
In step S605, the control unit 3 starts the constant voltage charging process of the third embodiment. In the constant voltage charging process, CV charging is performed at a constant voltage V1 (= threshold voltage V1) until the current flowing through the assembled battery 2 reaches the predetermined current I2, and when the measured current flowing through the assembled battery 2 reaches the predetermined current I2, CV charging is performed. Quit and migrate.

実施形態3によれば、CCCV充電のCV充電に適した、閾値電圧V1を決定するために用いる内部抵抗Rcの計測ができる。
また、実施形態3によれば、温度による内部抵抗Rcの変化にも対応することができるため、さらに精度のよい閾値電圧V1を求められる。
According to the third embodiment, the internal resistance Rc used for determining the threshold voltage V1 suitable for CV charging of CCCV charging can be measured.
Further, according to the third embodiment, it is possible to cope with a change in the internal resistance Rc due to temperature, and therefore, a more accurate threshold voltage V1 can be obtained.

実施形態1から3に示した充電制御装置1および充電制御方法は、急速充電に用いてもよい。
また、本発明は、実施形態1から3に限定されるものでなく、本発明の要旨を逸脱しない範囲内で種々の改良、変更が可能である。
The charge control device 1 and the charge control method shown in the first to third embodiments may be used for quick charging.
The present invention is not limited to the first to third embodiments, and various improvements and modifications can be made without departing from the gist of the present invention.

1 充電制御装置、
2 組電池、
3 制御部、
4 電池、
5 電圧計、
6 電流計、
7 計測部、
8 決定部、
9 記憶部、
10 温度計、
1 charge control device,
2 battery packs,
3 Control unit,
4 batteries,
5 Voltmeter,
6 Ammeter,
7 Measuring unit,
8 decision part,
9 Memory part,
10 thermometer,

Claims (5)

電池の計測電圧が、定電流定電圧充電において設定した目標電圧に近づくと、前記電池の内部抵抗を計測する計測部と、
前記内部抵抗を計測したのち、計測した前記内部抵抗に応じて、定電流定電圧充電において行う定電圧充電に用いる閾値電圧を、前記目標電圧より高い電圧に決定する決定部と、
を備えることを特徴とする充電制御装置。
When the measurement voltage of the battery approaches the target voltage set in constant current and constant voltage charging, a measurement unit that measures the internal resistance of the battery,
After measuring the internal resistance, a determination unit that determines a threshold voltage used for constant voltage charging performed in constant current and constant voltage charging to be higher than the target voltage according to the measured internal resistance;
A charge control device comprising:
請求項1に記載の充電制御装置であって、
前記計測部は、前記定電圧充電後に所定時間充電をして内部抵抗を計測する、
ことを特徴とする充電制御装置。
The charge control device according to claim 1,
The measurement unit measures the internal resistance by charging for a predetermined time after the constant voltage charge,
The charge control apparatus characterized by the above-mentioned.
請求項1に記載の充電制御装置であって、
前記計測部は、前記定電圧充電後に前記計測電圧の変化から内部抵抗を計測する、
ことを特徴とする充電制御装置。
The charge control device according to claim 1,
The measurement unit measures internal resistance from a change in the measurement voltage after the constant voltage charge,
The charge control apparatus characterized by the above-mentioned.
請求項1に記載の充電制御装置であって、
前記計測部は、前記定電流定電圧充電において定電流充電から前記定電圧充電に移行する前に、充電を停止し、前記計測電圧の変化から内部抵抗を計測し、
前記決定部は、計測した前記内部抵抗に応じて、移行後の前記定電圧充電に用いる前記閾値電圧を決定する、ことを特徴とする充電制御装置。
The charge control device according to claim 1,
The measuring unit stops charging before shifting from constant current charging to the constant voltage charging in the constant current constant voltage charging, measures the internal resistance from the change in the measurement voltage,
The said determination part determines the said threshold voltage used for the said constant voltage charge after transfer according to the measured said internal resistance, The charging control apparatus characterized by the above-mentioned.
充電制御装置の充電制御方法であって、
前記電池の計測電圧が、定電流定電圧充電において設定した目標電圧に近づくと、前記電池の内部抵抗を計測し、
前記内部抵抗を計測したのち、前記内部抵抗に応じて、定電流定電圧充電において行う定電圧充電に用いる閾値電圧を、前記目標電圧より高い電圧に決定する、
ことを特徴とする充電制御方法。
A charge control method for a charge control device, comprising:
When the measured voltage of the battery approaches the target voltage set in constant current constant voltage charging, the internal resistance of the battery is measured,
After measuring the internal resistance, a threshold voltage used for constant voltage charging performed in constant current constant voltage charging is determined as a voltage higher than the target voltage according to the internal resistance.
The charge control method characterized by the above-mentioned.
JP2014226929A 2014-11-07 2014-11-07 Device and method for charge control Pending JP2016093030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014226929A JP2016093030A (en) 2014-11-07 2014-11-07 Device and method for charge control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014226929A JP2016093030A (en) 2014-11-07 2014-11-07 Device and method for charge control

Publications (1)

Publication Number Publication Date
JP2016093030A true JP2016093030A (en) 2016-05-23

Family

ID=56018961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014226929A Pending JP2016093030A (en) 2014-11-07 2014-11-07 Device and method for charge control

Country Status (1)

Country Link
JP (1) JP2016093030A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019165557A (en) * 2018-03-19 2019-09-26 Tdk株式会社 Battery device and battery system
CN111712985A (en) * 2018-09-06 2020-09-25 Oppo广东移动通信有限公司 Charging method, terminal and computer storage medium
CN112542863A (en) * 2019-09-23 2021-03-23 北京小米移动软件有限公司 Charging method and device and readable storage medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019165557A (en) * 2018-03-19 2019-09-26 Tdk株式会社 Battery device and battery system
JP7073821B2 (en) 2018-03-19 2022-05-24 Tdk株式会社 Battery device and battery system
CN111712985A (en) * 2018-09-06 2020-09-25 Oppo广东移动通信有限公司 Charging method, terminal and computer storage medium
CN112542863A (en) * 2019-09-23 2021-03-23 北京小米移动软件有限公司 Charging method and device and readable storage medium
CN112542863B (en) * 2019-09-23 2023-07-18 北京小米移动软件有限公司 Charging method and device, and readable storage medium

Similar Documents

Publication Publication Date Title
JP6528906B2 (en) Power storage device and control method of power storage device
US9081068B2 (en) Method and apparatus for determining a capacity of a battery
WO2014112181A1 (en) State of charge estimating device and state of charge estimating method
JP6106991B2 (en) State management device and method for equalizing storage elements
JP6369340B2 (en) Power storage device and method for controlling power storage device
JP6200359B2 (en) Secondary battery internal temperature estimation device and secondary battery internal temperature estimation method
JP5929778B2 (en) CHARGE RATE ESTIMATION DEVICE AND CHARGE RATE ESTIMATION METHOD
JP6440377B2 (en) Secondary battery state detection device and secondary battery state detection method
JP2015153750A (en) Method and apparatus for estimating battery internal resistance
JP6558108B2 (en) Power storage device and power storage method
JP2016176780A (en) Battery residual amount prediction device and battery pack
JP2020521947A (en) Battery equivalent circuit model parameter estimation method, apparatus and recording medium
JP6648709B2 (en) Battery module controller
JP6452403B2 (en) Secondary battery state detection device and secondary battery state detection method
TWI613454B (en) Full charge capacity (fcc) calibration method
JP2016122531A (en) Voltage adjusting method for secondary battery
JP2013108919A (en) Soc estimator
JP2015171275A (en) Charger and charging method of secondary battery
JP2018085781A (en) Estimation device of expansion amount of battery
JP2016093030A (en) Device and method for charge control
JP6210552B2 (en) Secondary battery state detection device and secondary battery state detection method
JP2016181991A (en) Charger and control method of charger
JP6350174B2 (en) Battery system control device and battery system control method
JP2014176184A (en) Voltage equalization device, and voltage equalization method
JP2013096803A (en) Secondary battery measuring apparatus