JP2016136565A - Semiconductor manufacturing device and semiconductor manufacturing method - Google Patents

Semiconductor manufacturing device and semiconductor manufacturing method Download PDF

Info

Publication number
JP2016136565A
JP2016136565A JP2015010985A JP2015010985A JP2016136565A JP 2016136565 A JP2016136565 A JP 2016136565A JP 2015010985 A JP2015010985 A JP 2015010985A JP 2015010985 A JP2015010985 A JP 2015010985A JP 2016136565 A JP2016136565 A JP 2016136565A
Authority
JP
Japan
Prior art keywords
processing
oxide semiconductor
thin film
semiconductor manufacturing
processing container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015010985A
Other languages
Japanese (ja)
Other versions
JP6449026B2 (en
Inventor
伸子 福田
Nobuko Fukuda
伸子 福田
晋太郎 小倉
Shintaro Ogura
晋太郎 小倉
聖 植村
Sei Uemura
聖 植村
恵貞 鄭
Heajeong Cheng
恵貞 鄭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2015010985A priority Critical patent/JP6449026B2/en
Publication of JP2016136565A publication Critical patent/JP2016136565A/en
Application granted granted Critical
Publication of JP6449026B2 publication Critical patent/JP6449026B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor manufacturing device capable of manufacturing an oxide semiconductor with high mobility by heating an oxide semiconductor precursor thin film at a low temperature.SOLUTION: A semiconductor manufacturing device 10 manufactures an oxide semiconductor by processing a workpiece W including a substrate S and an oxide semiconductor precursor thin film P formed on the substrate S. The semiconductor manufacturing device 10 comprises a processing container 12 for housing the workpiece W, a treatment board 14 provided in the processing container 12 and for placing the workpiece W, a low pressure mercury lamp 16 provided in the processing container 12 so as to face the treatment board 14, a heater 18 for heating the treatment board 14, and a steam feeder 20 for feeding a gas containing steam into the processing container 12. The processing container 12 is partitioned into the lamp chamber 44 in which the low pressure mercury lamp 16 is arranged and the processing chamber 46 in which the treatment board 14 is arranged by a partition plate 22 transmitting ultraviolet light.SELECTED DRAWING: Figure 1

Description

本発明は、基材上に形成された酸化物半導体前駆体薄膜を処理して、移動度が高い酸化物半導体を製造する半導体製造装置および半導体製造方法に関する。   The present invention relates to a semiconductor manufacturing apparatus and a semiconductor manufacturing method for manufacturing an oxide semiconductor having high mobility by processing an oxide semiconductor precursor thin film formed on a substrate.

基材上に塗布または印刷された酸化物半導体前駆体薄膜を焼成して半導体特性を発現させる場合、最も一般的で単純な方法として電気炉中での加熱が挙げられる。しかしながら、高機能な半導体特性を実現させるには300℃を超える温度での焼成が必要であり、フレキシブルなプラスチック等の基材上への塗布や印刷による酸化物半導体の作製は困難であった。プラスチック等の基材上への塗布や印刷による酸化物半導体の作製のため、低温加熱プロセスが求められている。また、同一面内で複数製造された半導体デバイスの性能のバラつきを抑制することも重要である。   When the oxide semiconductor precursor thin film coated or printed on the substrate is baked to exhibit semiconductor characteristics, heating in an electric furnace is mentioned as the most general and simple method. However, firing at a temperature exceeding 300 ° C. is necessary to realize highly functional semiconductor characteristics, and it has been difficult to produce an oxide semiconductor by coating or printing on a base material such as a flexible plastic. In order to produce an oxide semiconductor by coating or printing on a base material such as plastic, a low temperature heating process is required. It is also important to suppress variations in the performance of a plurality of semiconductor devices manufactured in the same plane.

特開2014−207431号公報JP 2014-207431 A 特開2000−351918号公報JP 2000-351918 A

本発明は、このような事情に鑑みてなされたものであり、酸化物半導体前駆体薄膜を低温加熱して移動度が高い酸化物半導体を製造する半導体製造装置および半導体製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a semiconductor manufacturing apparatus and a semiconductor manufacturing method for manufacturing an oxide semiconductor with high mobility by heating an oxide semiconductor precursor thin film at a low temperature. Objective.

本発明者は、塗布型酸化物半導体の焼成プロセスにおいて、高湿度雰囲気下で紫外光照射と加熱を同時に行うことによって、焼成の低温化、半導体性能の向上、および同一面内で製造された半導体デバイスの性能バラつき抑制が実現できることを見出した。   The present inventor has made it possible to reduce the firing temperature, improve the semiconductor performance, and to manufacture the semiconductor in the same plane by simultaneously performing ultraviolet light irradiation and heating in a high-humidity atmosphere in the firing process of the coated oxide semiconductor. It was found that device performance variation can be suppressed.

本発明の半導体製造装置は、基材と、基材上に形成された酸化物半導体前駆体薄膜とを備える被処理体を処理して酸化物半導体を製造する半導体製造装置であって、被処理体を収容する処理容器と、処理容器内に設けられ、被処理体を載置する処理台と、処理台と対向するように処理容器内に設けられた紫外線ランプと、処理台を加熱するヒーターと、処理容器内に水蒸気を含む気体を供給する水蒸気供給機とを有する。   A semiconductor manufacturing apparatus of the present invention is a semiconductor manufacturing apparatus for manufacturing an oxide semiconductor by processing a target object including a base material and an oxide semiconductor precursor thin film formed on the base material. A processing container for housing a body, a processing table provided in the processing container for mounting a target object, an ultraviolet lamp provided in the processing container so as to face the processing table, and a heater for heating the processing table And a water vapor supply machine for supplying a gas containing water vapor into the processing vessel.

本発明の半導体製造装置において、紫外線ランプが低圧水銀ランプであり、低圧水銀ランプが配置されたランプ室と処理台が配置された処理室とに処理容器を区分するとともに、紫外光が透過する仕切板を処理容器内に備え、ランプ室で発生したオゾンを処理容器外に排出するための排出機構をさらに有することが好ましい。また、本発明の半導体製造装置において、ヒーターを制御して、処理台を100℃〜300℃の所定の温度に維持する温度制御機構をさらに有することが好ましい。   In the semiconductor manufacturing apparatus of the present invention, the ultraviolet lamp is a low-pressure mercury lamp, and the processing vessel is divided into a lamp chamber in which the low-pressure mercury lamp is arranged and a processing chamber in which the treatment table is arranged, and a partition through which ultraviolet light is transmitted. It is preferable that a plate is provided in the processing container and further has a discharge mechanism for discharging ozone generated in the lamp chamber to the outside of the processing container. Moreover, in the semiconductor manufacturing apparatus of this invention, it is preferable to further have a temperature control mechanism which controls a heater and maintains a process stand at the predetermined temperature of 100 to 300 degreeC.

本発明の半導体製造方法は、基材と、基材上に形成された酸化物半導体前駆体薄膜とを備える被処理体を処理して酸化物半導体を製造する半導体製造方法であって、相対湿度80%以上の雰囲気で、被処理体を100℃〜200℃の所定の温度に維持しながら、酸化物半導体前駆体薄膜に紫外光を照射する照射工程と、照射工程で得られた被処理体を200℃〜300℃の所定の温度に維持しながら焼成する焼成工程とを有する。本発明の半導体製造方法において、酸化物半導体前駆体薄膜が、硝酸インジウム、硝酸ガリウム、および硝酸亜鉛を含有する酸化物半導体前駆体液を基材上に塗布または印刷することによって形成されていることが好ましい。   A semiconductor manufacturing method of the present invention is a semiconductor manufacturing method for manufacturing an oxide semiconductor by processing a target object including a base material and an oxide semiconductor precursor thin film formed on the base material, and the relative humidity Irradiation process of irradiating the oxide semiconductor precursor thin film with ultraviolet light while maintaining the object to be processed at a predetermined temperature of 100 ° C. to 200 ° C. in an atmosphere of 80% or more, and the object to be processed obtained in the irradiation process And a firing step of firing while maintaining a predetermined temperature of 200 ° C to 300 ° C. In the semiconductor manufacturing method of the present invention, the oxide semiconductor precursor thin film may be formed by applying or printing an oxide semiconductor precursor liquid containing indium nitrate, gallium nitrate, and zinc nitrate on a substrate. preferable.

本発明によれば、低温加熱処理で高い移動度の酸化物半導体を得ることができる。また、同一面内で製造された半導体デバイスの性能のバラつきを抑制できる。   According to the present invention, an oxide semiconductor with high mobility can be obtained by low-temperature heat treatment. Moreover, the variation in the performance of the semiconductor device manufactured in the same plane can be suppressed.

本発明の実施形態に係る半導体製造装置の断面模式図。The cross-sectional schematic diagram of the semiconductor manufacturing apparatus which concerns on embodiment of this invention. 実施例で得られた酸化物半導体薄膜の伝達特性を示すグラフ。The graph which shows the transfer characteristic of the oxide semiconductor thin film obtained in the Example. 比較例1で得られた酸化物薄膜の伝達特性を示すグラフ。6 is a graph showing transfer characteristics of the oxide thin film obtained in Comparative Example 1. 比較例2で得られた酸化物薄膜の伝達特性を示すグラフ。The graph which shows the transfer characteristic of the oxide thin film obtained by the comparative example 2.

以下、本発明の半導体製造装置と半導体製造方法ついて、図面を参照しながら実施形態と実施例に基づいて説明する。図面は、半導体製造装置、半導体製造装置の構成部材、および半導体製造装置の周辺部材を模式的に表したものであり、図面上の寸法や寸法比は実物と異なる。なお、重複説明は適宜省略する。また、2つの数値の間に「〜」を記載して数値範囲を表す場合には、この2つの数値も数値範囲に含まれるものとする。   Hereinafter, a semiconductor manufacturing apparatus and a semiconductor manufacturing method of the present invention will be described based on embodiments and examples with reference to the drawings. The drawings schematically show a semiconductor manufacturing apparatus, constituent members of the semiconductor manufacturing apparatus, and peripheral members of the semiconductor manufacturing apparatus, and the dimensions and dimensional ratios on the drawings are different from the actual ones. Note that repeated explanation is omitted as appropriate. In addition, when “˜” is described between two numerical values to represent a numerical range, the two numerical values are also included in the numerical range.

図1は、本発明の実施形態に係る半導体製造装置10の断面を模式的に示している。半導体製造装置10は、被処理体Wを処理して酸化物半導体を製造する装置である。被処理体Wは、上下面が正方形や長方形などの多角形または円形等であり、厚さが10mm以下の板状部材である。また、被処理体Wは、シリコンやガラス等からなる基材Sと、基材S上に形成された酸化物半導体前駆体薄膜Pとを備えている。酸化物半導体前駆体薄膜Pの組成や製法等については後述する。   FIG. 1 schematically shows a cross section of a semiconductor manufacturing apparatus 10 according to an embodiment of the present invention. The semiconductor manufacturing apparatus 10 is an apparatus for processing an object to be processed W to manufacture an oxide semiconductor. The workpiece W is a plate-like member whose upper and lower surfaces are polygons such as squares and rectangles or circles, and whose thickness is 10 mm or less. Moreover, the to-be-processed object W is equipped with the base material S which consists of silicon, glass, etc., and the oxide semiconductor precursor thin film P formed on the base material S. The composition and manufacturing method of the oxide semiconductor precursor thin film P will be described later.

半導体製造装置10は、処理容器12と、処理台14と、紫外線ランプである低圧水銀ランプ16と、ヒーター18と、水蒸気供給機20と、仕切板22と、排出機構24とを備えている。処理容器12は、アルミニウムやステンレス等の金属から構成されており、主な外形が円柱や直方体等である中空部材である。処理容器12の内部に被処理体Wが収容される。具体的には、処理容器12内に設けられている処理台14の上に被処理体Wが載置される。処理台14は、上面が正方形や長方形などの多角形または円形等である円柱部材または角柱部材などで、紫外光や結露に対する耐性を有する材質から構成されている。   The semiconductor manufacturing apparatus 10 includes a processing container 12, a processing table 14, a low-pressure mercury lamp 16 that is an ultraviolet lamp, a heater 18, a water vapor feeder 20, a partition plate 22, and a discharge mechanism 24. The processing container 12 is made of a metal such as aluminum or stainless steel, and is a hollow member whose main outer shape is a cylinder or a rectangular parallelepiped. A workpiece W is accommodated inside the processing container 12. Specifically, the workpiece W is placed on the processing table 14 provided in the processing container 12. The processing table 14 is a cylindrical member or prismatic member whose upper surface is a polygon such as a square or a rectangle or a circle, and is made of a material having resistance to ultraviolet light and condensation.

低圧水銀ランプ16は、処理台14と対向するように、すなわち処理容器12内の上方に設けられている。また、低圧水銀ランプ16はAC100Vで駆動し、高密度グリッド形状の合成石英ガラスを管材としている。さらに、低圧水銀ランプ16は、下方に5mm離れた位置での照射光強度が28mWcm-2、均一に照射できる面積が200mm×200mm以上であり、処理容器12外から点灯および消灯が可能である。電源26から給電された低圧水銀ランプ16は、波長84.9nmおよび253.7nmに輝線を有する紫外光を、被処理体Wの酸化物半導体前駆体薄膜Pに照射する。低圧水銀ランプ16に代えて、波長84.9nmおよび253.7nm以外に輝線を有する紫外光が出射する紫外線ランプを使用してもよい。 The low-pressure mercury lamp 16 is provided so as to face the processing table 14, that is, above the processing container 12. Further, the low-pressure mercury lamp 16 is driven at 100 VAC and uses a high-density grid-shaped synthetic quartz glass as a tube material. Further, the low-pressure mercury lamp 16 has an irradiation light intensity of 28 mWcm −2 at a position 5 mm below and an area that can be uniformly irradiated is 200 mm × 200 mm or more, and can be turned on and off from outside the processing container 12. The low pressure mercury lamp 16 fed from the power source 26 irradiates the oxide semiconductor precursor thin film P of the workpiece W with ultraviolet light having emission lines at wavelengths of 84.9 nm and 253.7 nm. Instead of the low-pressure mercury lamp 16, an ultraviolet lamp that emits ultraviolet light having a bright line other than the wavelengths 84.9 nm and 253.7 nm may be used.

ヒーター18は処理台14を加熱する。処理台14を加熱することによって、被処理体Wの基材S側から酸化物半導体前駆体薄膜Pが加熱される。ヒーター18は温度制御機構28に接続されており、AC100Vで作動し、200mm×200mm以上の面積が加熱できる。ヒーター18と温度制御機構28によって、処理台14を100℃〜300℃の所定の温度に維持することができる。このため、被処理体Wの処理温度をほぼ一定に保つことができる。なお、この所定の温度は幅を有していてもよい。また、処理台14の温度のモニターと制御は、処理容器12外から行うことができる。   The heater 18 heats the processing table 14. By heating the processing table 14, the oxide semiconductor precursor thin film P is heated from the base material S side of the workpiece W. The heater 18 is connected to a temperature control mechanism 28, operates at 100 VAC, and can heat an area of 200 mm × 200 mm or more. The processing table 14 can be maintained at a predetermined temperature of 100 ° C. to 300 ° C. by the heater 18 and the temperature control mechanism 28. For this reason, the processing temperature of the to-be-processed object W can be kept substantially constant. The predetermined temperature may have a width. Moreover, monitoring and control of the temperature of the processing table 14 can be performed from outside the processing container 12.

水蒸気供給機20は、導入管40と導入弁42を介して処理容器12内に水蒸気を含む気体を供給する。すなわち、水蒸気供給機20は、水を加熱して水蒸気を発生させ、圧縮空気によって水蒸気を処理容器12内に供給するように構成されている。水の加熱に代えて、水に超音波を照射して水蒸気を発生させてもよい。また、ガス洗浄瓶に水を入れた後、圧縮空気をガス洗浄瓶に流して激しく気泡を発生させ、ここで発生した水蒸気を含む気体を処理容器12内に供給してもよい。水蒸気供給機20から処理容器12内に供給される水蒸気量を調整することによって、被処理体Wの周囲の相対湿度が制御される。すなわち、水蒸気供給機20によって、被処理体Wの周囲の相対湿度を高くすることができる。なお、処理容器12内には湿度モニター(不図示)が設置されている。   The steam supply machine 20 supplies a gas containing water vapor into the processing container 12 through the introduction pipe 40 and the introduction valve 42. That is, the water vapor feeder 20 is configured to heat water to generate water vapor and to supply the water vapor into the processing container 12 by compressed air. Instead of heating the water, water may be irradiated with ultrasonic waves to generate water vapor. Further, after water is put into the gas cleaning bottle, compressed air is allowed to flow through the gas cleaning bottle to generate bubbles violently, and a gas containing water vapor generated here may be supplied into the processing container 12. The relative humidity around the workpiece W is controlled by adjusting the amount of water vapor supplied from the water vapor feeder 20 into the processing container 12. That is, the relative humidity around the workpiece W can be increased by the water vapor feeder 20. A humidity monitor (not shown) is installed in the processing container 12.

仕切板22は、合成石英等の紫外光透過性部材から構成されており、処理容器12内に設置されている。具体的には、低圧水銀ランプ16が配置されたランプ室44と、処理台14が配置された処理室46とを区分するように仕切板22が配置されている。このため、水蒸気が多い、例えば相対湿度80%以上である処理室46と低圧水銀ランプ16を隔離することができ、低圧水銀ランプ16の結露を防止できる。また、仕切板22によって、仕切板22を含めたそれより上のランプ室44を処理室46と切り離せる。このため、低圧水銀ランプ16の交換やランプ室44内のクリーニングなど、ランプ室44のメンテナンスがしやすい。   The partition plate 22 is made of an ultraviolet light transmissive member such as synthetic quartz and is installed in the processing container 12. Specifically, the partition plate 22 is disposed so as to separate the lamp chamber 44 in which the low-pressure mercury lamp 16 is disposed from the processing chamber 46 in which the processing table 14 is disposed. Therefore, the low-pressure mercury lamp 16 can be isolated from the processing chamber 46 having a large amount of water vapor, for example, a relative humidity of 80% or more, and the low-pressure mercury lamp 16 can be prevented. Further, the partition plate 22 can separate the lamp chamber 44 including the partition plate 22 from the processing chamber 46. Therefore, maintenance of the lamp chamber 44 such as replacement of the low-pressure mercury lamp 16 and cleaning of the lamp chamber 44 is facilitated.

さらに、仕切板22は低圧水銀ランプ16を覆うような箱型の構造でもよい。処理室46内の相対湿度が高い場合に、ランプ室44内に水蒸気が侵入して低圧水銀ランプ16の表面に結露が生じるのを抑制できるからである。また、仕切板22の処理室46側の表面には結露防止ヒーター48が設けられており、仕切板22の処理室46側の表面の結露を抑えている。なお、クリーニングのために、仕切板22は、取り外して処理容器12外に搬出できるようになっている。   Further, the partition plate 22 may have a box-type structure that covers the low-pressure mercury lamp 16. This is because when the relative humidity in the processing chamber 46 is high, it is possible to suppress the intrusion of water vapor into the lamp chamber 44 and the formation of condensation on the surface of the low-pressure mercury lamp 16. In addition, a condensation prevention heater 48 is provided on the surface of the partition plate 22 on the processing chamber 46 side to suppress condensation on the surface of the partition plate 22 on the processing chamber 46 side. For cleaning, the partition plate 22 can be removed and carried out of the processing container 12.

排出機構24は、低圧水銀ランプ16から照射される紫外光によってランプ室44内で発生したオゾンを処理容器12外に排出するため、ランプ室44の壁とその外側に設けられている。排出機構24は、排出弁50と、排出管52と、ブロワー54とを備えている。ランプ室44内にオゾンが発生したら、自動または手動で排出弁50を開き、例えばAC100Vで駆動するブロワー54を作動させて、オゾンを処理容器12外に排出する。なお、ブロワー54に代えて排気ポンプを使用してもよい。処理室46の壁には、排気弁56が設けられており、処理室46内の加圧を防止している。すなわち、処理室46内の圧力が高くなったら、自動または手動で排気弁56を開き、排気管58を通じて、処理室46内の気体を処理容器12外に排出する。   The discharge mechanism 24 is provided on the wall of the lamp chamber 44 and the outside thereof in order to discharge ozone generated in the lamp chamber 44 by ultraviolet light irradiated from the low-pressure mercury lamp 16 to the outside of the processing container 12. The discharge mechanism 24 includes a discharge valve 50, a discharge pipe 52, and a blower 54. When ozone is generated in the lamp chamber 44, the discharge valve 50 is opened automatically or manually, and the blower 54 driven by, for example, AC 100V is operated to discharge ozone out of the processing vessel 12. An exhaust pump may be used instead of the blower 54. An exhaust valve 56 is provided on the wall of the processing chamber 46 to prevent pressurization in the processing chamber 46. That is, when the pressure in the processing chamber 46 becomes high, the exhaust valve 56 is automatically or manually opened, and the gas in the processing chamber 46 is discharged out of the processing container 12 through the exhaust pipe 58.

排出される気体には、酸化物半導体前駆体薄膜Pから酸化物半導体薄膜が生成するときに発生する気体、例えば、酸化物半導体前駆体が金属硝酸塩である場合の窒素酸化物やアンモニア等も含まれる。また、半導体製造装置10には、処理台14を昇降させる昇降機構としてジャッキ70が設けられている。昇降機構によって処理台14の高さが変えられるため、低圧水銀ランプ16と被処理体Wの上面との距離が、例えば10mm〜100mmの適切な範囲で制御できる。なお、昇降機構は、被処理体Wが仕切板22に接触しないように構成されている。また、処理容器12には、被処理体Wを出し入れしたり、処理容器12内のメンテナンスを行ったりするための扉(不図示)が設けられている。処理容器12内は扉を閉めた状態で気密である。   The gas discharged includes gas generated when an oxide semiconductor thin film is generated from the oxide semiconductor precursor thin film P, for example, nitrogen oxide or ammonia when the oxide semiconductor precursor is a metal nitrate. It is. Further, the semiconductor manufacturing apparatus 10 is provided with a jack 70 as an elevating mechanism for elevating the processing table 14. Since the height of the processing table 14 is changed by the lifting mechanism, the distance between the low-pressure mercury lamp 16 and the upper surface of the workpiece W can be controlled within an appropriate range of, for example, 10 mm to 100 mm. The lifting mechanism is configured so that the workpiece W does not contact the partition plate 22. Further, the processing container 12 is provided with a door (not shown) for taking in and out the workpiece W and performing maintenance in the processing container 12. The inside of the processing container 12 is airtight with the door closed.

本発明の実施形態に係る半導体製造方法は、被処理体Wを処理して酸化物半導体を製造する方法で、相対湿度80%以上の雰囲気で、被処理体を100℃〜200℃の所定の温度に維持しながら、酸化物半導体前駆体薄膜に紫外光を照射する照射工程と、照射工程で得られた被処理体を200℃〜300℃の所定の温度に維持しながら焼成する焼成工程とを備えている。すなわち、照射工程では、被処理体Wを比較的低温の100℃〜200℃で加熱し、焼成工程では、照射工程で得られた被処理体Wを比較的高温の200℃〜300℃で加熱する。焼成工程では、紫外光を被処理体Wに照射しなくてもよく、被処理体Wの周囲が相対湿度80%以上でなくてもよい。   The semiconductor manufacturing method according to the embodiment of the present invention is a method of manufacturing an oxide semiconductor by processing the object to be processed W. The object to be processed is a predetermined temperature of 100 ° C. to 200 ° C. in an atmosphere having a relative humidity of 80% or more. An irradiation step of irradiating the oxide semiconductor precursor thin film with ultraviolet light while maintaining the temperature, and a baking step of baking the object to be processed obtained in the irradiation step at a predetermined temperature of 200 ° C. to 300 ° C. It has. That is, in the irradiation process, the object to be processed W is heated at a relatively low temperature of 100 ° C. to 200 ° C., and in the baking process, the object to be processed W obtained in the irradiation process is heated at a relatively high temperature of 200 ° C. to 300 ° C. To do. In the firing step, the workpiece W may not be irradiated with ultraviolet light, and the periphery of the workpiece W may not be 80% or higher in relative humidity.

具体的には以下の手順で酸化物半導体を製造する。まず、被処理体Wを準備する。例えば、酸化物半導体前駆体を含有する液体を基材Sに塗布または印刷することによって、酸化物半導体前駆体薄膜Pを表面に備える被処理体Wが作製できる。酸化物半導体前駆体としては、亜鉛、銅、ニッケル、インジウム、カドミウム、ガリウム、スズ、ロジウム、アルミニウム、またはストロンチウム等の金属塩が挙げられる。   Specifically, an oxide semiconductor is manufactured by the following procedure. First, the workpiece W is prepared. For example, the to-be-processed object W provided with the oxide semiconductor precursor thin film P on the surface is producible by apply | coating or printing the liquid containing an oxide semiconductor precursor to the base material S. Examples of the oxide semiconductor precursor include metal salts such as zinc, copper, nickel, indium, cadmium, gallium, tin, rhodium, aluminum, or strontium.

金属の塩としては、金属の塩酸塩、硫酸塩、酢酸塩、または硝酸塩などが挙げられる。この中でも水溶性が大きい硝酸塩が好ましい。特に、硝酸インジウム、硝酸ガリウム、および硝酸亜鉛を含有する液体を酸化物半導体前駆体液として用いたときの酸化物半導体は移動度が高い。つぎに、処理室46の扉を開けて、被処理体Wを処理台14に載置し、扉を閉める。そして、処理台14を所定の高さを調節する。その後、ヒーター18を用いて、高湿度下および紫外光照射下で酸化物半導体前駆体薄膜Pの酸化物半導体薄膜化が進行する温度、例えば100℃〜200℃の所定の温度に処理台14を維持する。   Examples of the metal salt include metal hydrochloride, sulfate, acetate, nitrate, and the like. Of these, nitrates having high water solubility are preferred. In particular, an oxide semiconductor when a liquid containing indium nitrate, gallium nitrate, and zinc nitrate is used as the oxide semiconductor precursor liquid has high mobility. Next, the door of the processing chamber 46 is opened, the workpiece W is placed on the processing table 14, and the door is closed. Then, the processing table 14 is adjusted to a predetermined height. Thereafter, the heater 14 is used to set the treatment table 14 at a predetermined temperature of 100 ° C. to 200 ° C., for example, at a temperature at which the oxide semiconductor precursor thin film P is thinned under high humidity and ultraviolet light irradiation. maintain.

つぎに、処理室46内の相対湿度が80%以上、好ましくは90%以上になるように、水蒸気供給機20から水蒸気を含む気体を処理容器12内に供給する。そして、結露防止ヒーター48と低圧水銀ランプ16を稼動させて、酸化物半導体前駆体薄膜Pに紫外光を照射する(照射工程)。その後、低圧水銀ランプ16の稼動と水蒸気供給機20からの水蒸気を含む気体の供給を停止し、酸化物半導体前駆体薄膜Pの酸化物半導体薄膜化が完了する温度、例えば200℃〜300℃の所定の温度に処理台14を維持しながら被処理体Wを焼成する(焼成工程)。なお、本実施形態では、照射工程および焼成工程は大気圧下で行われる。このように、照射工程と焼成工程を経て、酸化物半導体前駆体薄膜Pから酸化物半導体薄膜が生成する。   Next, a gas containing water vapor is supplied from the water vapor feeder 20 into the processing container 12 so that the relative humidity in the processing chamber 46 is 80% or higher, preferably 90% or higher. Then, the dew condensation prevention heater 48 and the low-pressure mercury lamp 16 are operated to irradiate the oxide semiconductor precursor thin film P with ultraviolet light (irradiation process). Thereafter, the operation of the low-pressure mercury lamp 16 and the supply of the gas containing water vapor from the water vapor feeder 20 are stopped, and the oxide semiconductor precursor thin film P is completed at a temperature at which the oxide semiconductor thin film formation is completed, for example, 200 ° C. to 300 ° C. The object W is fired while maintaining the treatment table 14 at a predetermined temperature (firing step). In the present embodiment, the irradiation process and the baking process are performed under atmospheric pressure. As described above, an oxide semiconductor thin film is generated from the oxide semiconductor precursor thin film P through the irradiation process and the baking process.

以下、実施例と比較例により本発明を更に詳細に説明する。本発明の内容はこの実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The content of the present invention is not limited to this embodiment.

(実施例)
まず、硝酸インジウム0.238gと、硝酸ガリウム0.012gと、硝酸亜鉛0.089gと、水3mLと、2−トリフルオロエタノール7mLとを混合および撹拌して、酸化物半導体前駆体溶液を調製した。つぎに、この酸化物半導体前駆体溶液を熱酸化膜付シリコンウエハ表面にスピンコートして、酸化物半導体前駆体薄膜Pが形成された被処理体Wを作製した。そして、半導体製造装置10の処理台14に被処理体Wを載せ、処理台14の温度を130℃に、被処理体Wの周囲の相対湿度を90%以上にそれぞれ維持しながら、大気圧下で酸化物半導体前駆体薄膜Pに紫外光を30分間照射した。
(Example)
First, 0.238 g of indium nitrate, 0.012 g of gallium nitrate, 0.089 g of zinc nitrate, 3 mL of water, and 7 mL of 2-trifluoroethanol were mixed and stirred to prepare an oxide semiconductor precursor solution. . Next, this oxide semiconductor precursor solution was spin-coated on the surface of a silicon wafer with a thermal oxide film, and the to-be-processed object W in which the oxide semiconductor precursor thin film P was formed was produced. Then, the object to be processed W is placed on the processing table 14 of the semiconductor manufacturing apparatus 10, the temperature of the processing table 14 is maintained at 130 ° C., and the relative humidity around the object to be processed W is maintained at 90% or more. Then, the oxide semiconductor precursor thin film P was irradiated with ultraviolet light for 30 minutes.

その後、水蒸気を含む気体の処理室46への供給および紫外光照射を停止し、被処理体Wを載せたまま処理台14を300℃に昇温し、この温度を60分間維持ながら大気圧下で被処理体Wを焼成して、実施例に係る酸化物薄膜を作製した。得られた酸化物薄膜の伝達特性を図2に示す。図2に示すように、得られた酸化物薄膜は、飽和移動度が4cm2-1-1を示す酸化物半導体であることが明らかとなった。紫外光によって分解された水蒸気から生じたヒドロキシラジカルが、前駆体薄膜に含まれる硝酸イオンを分解し、その後の加熱によってこれが酸化物薄膜から除去されたため、この酸化物薄膜が半導体特性を示すと考えられる。また、ヒドロキシラジカルが酸化物薄膜表面に適量結合し、これが過剰なキャリア輸送を制御するために良好な半導体特性が示されたとも考えられる。 Thereafter, the supply of the gas containing water vapor to the processing chamber 46 and the irradiation with ultraviolet light are stopped, the temperature of the processing table 14 is raised to 300 ° C. while the workpiece W is placed, and the atmospheric pressure is maintained while maintaining this temperature for 60 minutes. The to-be-processed object W was baked and the oxide thin film based on an Example was produced. The transfer characteristics of the obtained oxide thin film are shown in FIG. As shown in FIG. 2, it was revealed that the obtained oxide thin film was an oxide semiconductor having a saturation mobility of 4 cm 2 V −1 g −1 . Hydroxyl radicals generated from water vapor decomposed by ultraviolet light decomposed nitrate ions contained in the precursor thin film, and this was removed from the oxide thin film by subsequent heating. It is done. In addition, it is considered that an appropriate amount of hydroxy radicals are bonded to the surface of the oxide thin film, which controls the excessive carrier transport, and thus shows good semiconductor characteristics.

なお、従来の電気炉を用いて、この金属硝酸塩からなる酸化物半導体前駆体薄膜が表面に形成された被処理体を300℃で焼成したところ、得られた酸化物薄膜の飽和移動度は1cm2-1-1程度であった。本発明の半導体製造装置や半導体製造方法を用いることにより、3cm2-1-1以上高い移動度を示す酸化物半導体を得ることができた。また、本発明の半導体製造装置を用いて、半導体デバイスを同一面内で複数製造したところ、性能、例えば酸化物薄膜の閾値電圧や飽和移動度のバラつき、および伝達特性のヒステリシスを抑制することに成功した。 In addition, when the to-be-processed object in which the oxide semiconductor precursor thin film which consists of this metal nitrate was formed on the surface was baked at 300 degreeC using the conventional electric furnace, the saturation mobility of the obtained oxide thin film was 1 cm It was about 2 V -1 g -1 . By using the semiconductor manufacturing apparatus and the semiconductor manufacturing method of the present invention, an oxide semiconductor having a mobility of 3 cm 2 V −1 g −1 or higher can be obtained. In addition, when a plurality of semiconductor devices are manufactured in the same plane using the semiconductor manufacturing apparatus of the present invention, performance, for example, variation in threshold voltage and saturation mobility of an oxide thin film, and hysteresis in transfer characteristics are suppressed. Successful.

(比較例1)
実施例の相対湿度90%以上の条件を相対湿度50%に変更した点を除き、実施例と同様にして比較例1に係る酸化物薄膜を作製した。得られた酸化物薄膜の伝達特性を図3に示す。図3に示すように、この酸化物薄膜は半導体特性を示さなかった。紫外光によって分解された水蒸気から生じたヒドロキシラジカルの量が少なかったため、酸化物薄膜の表面にヒドロキシル基があまり付着しなかったこと、および酸化物薄膜生成過程で薄膜中に酸素欠陥が生じ、キャリア密度が異常に大きくなってしまったことが原因として考えられる。
(Comparative Example 1)
The oxide thin film which concerns on the comparative example 1 was produced like the Example except the point which changed the conditions of 90% or more of relative humidity of the Example into the relative humidity 50%. The transfer characteristics of the obtained oxide thin film are shown in FIG. As shown in FIG. 3, the oxide thin film did not exhibit semiconductor characteristics. The amount of hydroxyl radicals generated from water vapor decomposed by ultraviolet light was small, so that hydroxyl groups did not adhere to the surface of the oxide thin film, and oxygen defects were generated in the thin film during the oxide thin film formation process. This is probably because the density has become abnormally large.

(比較例2)
実施例の酸化物半導体前駆体薄膜Pに紫外光を照射しなかった点を除き、実施例と同様にして比較例2に係る酸化物薄膜を作製した。得られた酸化物薄膜の伝達特性を図4に示す。図4に示すように、この酸化物薄膜は半導体特性を示したものの、ヒステリシスが観察され、閾値電圧や飽和移動度にもバラつきが見られた。紫外光を照射しなかったために、前駆体薄膜に含まれる硝酸イオンが分解せず、これが遊離物質として存在しているために、上記のような現象が観察されたものと考えられる。
(Comparative Example 2)
The oxide thin film which concerns on the comparative example 2 was produced like the Example except the point which did not irradiate the ultraviolet light to the oxide semiconductor precursor thin film P of the Example. The transfer characteristic of the obtained oxide thin film is shown in FIG. As shown in FIG. 4, although this oxide thin film exhibited semiconductor characteristics, hysteresis was observed, and variations were observed in the threshold voltage and saturation mobility. It is considered that the above phenomenon was observed because nitrate ions contained in the precursor thin film were not decomposed because they were not irradiated with ultraviolet light, and were present as free substances.

本発明の半導体製造装置および半導体製造方法は、電子デバイス製造やフレキシブルエレクトロニクスなどの分野で利用できる。   The semiconductor manufacturing apparatus and semiconductor manufacturing method of the present invention can be used in fields such as electronic device manufacturing and flexible electronics.

10 半導体製造装置 12 処理容器
14 処理台 16 低圧水銀ランプ
18 ヒーター 20 水蒸気供給機
22 仕切板 24 排出機構
26 電源 28 温度制御機構
40 導入管 42 導入弁
44 ランプ室 46 処理室
48 結露防止ヒーター 50 排出弁
52 排出管 54 ブロワー
56 排気弁 58 排気管
70 ジャッキ W 被処理体
S 基材 P 酸化物半導体前駆体薄膜
DESCRIPTION OF SYMBOLS 10 Semiconductor manufacturing apparatus 12 Processing container 14 Processing stand 16 Low pressure mercury lamp 18 Heater 20 Steam supply machine 22 Partition plate 24 Discharge mechanism 26 Power supply 28 Temperature control mechanism 40 Introducing pipe 42 Introducing valve 44 Lamp chamber 46 Processing chamber 48 Condensation prevention heater 50 Exhaust Valve 52 Discharge pipe 54 Blower 56 Exhaust valve 58 Exhaust pipe 70 Jack W Processed object S Base material P Oxide semiconductor precursor thin film

Claims (5)

基材と、前記基材上に形成された酸化物半導体前駆体薄膜とを備える被処理体を処理して酸化物半導体を製造する半導体製造装置であって、
前記被処理体を収容する処理容器と、
前記処理容器内に設けられ、前記被処理体を載置する処理台と、
前記処理台と対向するように前記処理容器内に設けられた紫外線ランプと、
前記処理台を加熱するヒーターと、
前記処理容器内に水蒸気を含む気体を供給する水蒸気供給機と、
を有する半導体製造装置。
A semiconductor manufacturing apparatus for manufacturing an oxide semiconductor by processing a target object including a base material and an oxide semiconductor precursor thin film formed on the base material,
A processing container for containing the object to be processed;
A processing table provided in the processing container and on which the object to be processed is placed;
An ultraviolet lamp provided in the processing container so as to face the processing table;
A heater for heating the processing table;
A water vapor supply machine for supplying a gas containing water vapor into the processing vessel;
A semiconductor manufacturing apparatus.
請求項1において、
前記紫外線ランプが低圧水銀ランプであり、
前記低圧水銀ランプが配置されたランプ室と前記処理台が配置された処理室とに前記処理容器を区分するとともに、紫外光が透過する仕切板を前記処理容器内に備え、
前記ランプ室で発生したオゾンを前記処理容器外に排出するための排出機構をさらに有する半導体製造装置。
In claim 1,
The ultraviolet lamp is a low-pressure mercury lamp,
The processing container is divided into a lamp chamber in which the low-pressure mercury lamp is disposed and a processing chamber in which the processing table is disposed, and a partition plate that transmits ultraviolet light is provided in the processing container.
A semiconductor manufacturing apparatus further comprising a discharge mechanism for discharging ozone generated in the lamp chamber out of the processing container.
請求項1または2において、
前記ヒーターを制御して、前記処理台を100℃〜300℃の所定の温度に維持する温度制御機構をさらに有する半導体製造装置。
In claim 1 or 2,
The semiconductor manufacturing apparatus which further has a temperature control mechanism which controls the said heater and maintains the said process stand at the predetermined temperature of 100 to 300 degreeC.
基材と、前記基材上に形成された酸化物半導体前駆体薄膜とを備える被処理体を処理して酸化物半導体を製造する半導体製造方法であって、
相対湿度80%以上の雰囲気で、前記被処理体を100℃〜200℃の所定の温度に維持しながら、前記酸化物半導体前駆体薄膜に紫外光を照射する照射工程と、
前記照射工程で得られた前記被処理体を200℃〜300℃の所定の温度に維持しながら焼成する焼成工程と、
を有する半導体製造方法。
A semiconductor manufacturing method for manufacturing an oxide semiconductor by processing a target object including a base material and an oxide semiconductor precursor thin film formed on the base material,
An irradiation step of irradiating the oxide semiconductor precursor thin film with ultraviolet light while maintaining the object to be processed at a predetermined temperature of 100 ° C. to 200 ° C. in an atmosphere having a relative humidity of 80% or more;
A firing step in which the object to be processed obtained in the irradiation step is fired while being maintained at a predetermined temperature of 200 ° C. to 300 ° C .;
A semiconductor manufacturing method comprising:
請求項4において、
前記酸化物半導体前駆体薄膜が、硝酸インジウム、硝酸ガリウム、および硝酸亜鉛を含有する酸化物半導体前駆体液を前記基材上に塗布または印刷することによって形成されている半導体製造方法。
In claim 4,
The semiconductor manufacturing method by which the said oxide semiconductor precursor thin film is formed by apply | coating or printing on the said base material the oxide semiconductor precursor liquid containing an indium nitrate, a gallium nitrate, and a zinc nitrate.
JP2015010985A 2015-01-23 2015-01-23 Semiconductor manufacturing apparatus and semiconductor manufacturing method Active JP6449026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015010985A JP6449026B2 (en) 2015-01-23 2015-01-23 Semiconductor manufacturing apparatus and semiconductor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015010985A JP6449026B2 (en) 2015-01-23 2015-01-23 Semiconductor manufacturing apparatus and semiconductor manufacturing method

Publications (2)

Publication Number Publication Date
JP2016136565A true JP2016136565A (en) 2016-07-28
JP6449026B2 JP6449026B2 (en) 2019-01-09

Family

ID=56512722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015010985A Active JP6449026B2 (en) 2015-01-23 2015-01-23 Semiconductor manufacturing apparatus and semiconductor manufacturing method

Country Status (1)

Country Link
JP (1) JP6449026B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074178A (en) * 2001-10-02 2009-04-09 National Institute Of Advanced Industrial & Technology Method for producing thin metal oxide film
JP2013197539A (en) * 2012-03-22 2013-09-30 National Institute Of Advanced Industrial & Technology Method of manufacturing oxide semiconductor film, and oxide semiconductor film
JP2014207431A (en) * 2013-03-19 2014-10-30 富士フイルム株式会社 Metal oxide film, manufacturing method thereof, thin-film transistor, display device, image sensor and x-ray sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074178A (en) * 2001-10-02 2009-04-09 National Institute Of Advanced Industrial & Technology Method for producing thin metal oxide film
JP2013197539A (en) * 2012-03-22 2013-09-30 National Institute Of Advanced Industrial & Technology Method of manufacturing oxide semiconductor film, and oxide semiconductor film
JP2014207431A (en) * 2013-03-19 2014-10-30 富士フイルム株式会社 Metal oxide film, manufacturing method thereof, thin-film transistor, display device, image sensor and x-ray sensor

Also Published As

Publication number Publication date
JP6449026B2 (en) 2019-01-09

Similar Documents

Publication Publication Date Title
KR102118752B1 (en) Substrate processing apparatus
US8963050B2 (en) Apparatus for and method of heat-treating thin film on surface of substrate
KR101688689B1 (en) Device and method for processing substrate
TWI590318B (en) Substrate processing apparatus and substrate processing method
TWI547989B (en) Substrate processing apparatus
US20150357188A1 (en) Film forming method, computer storage medium, and film forming system
TW201316413A (en) Heat treatment method and heat treatment apparatus of thin film
TWI649822B (en) Substrate processing apparatus and substrate processing method
JP2001145689A (en) Plasma sterilizing treatment apparatus and plasma sterilizing treatment method
JP2006185939A (en) Solvent remover and removing method
US9343311B2 (en) Substrate treatment method
JP5712101B2 (en) Substrate processing method and substrate processing apparatus
JP5765504B1 (en) Light irradiation device
JP6449026B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
TWI620479B (en) Desmear treatment device and desmear treatment method
JP6135764B2 (en) Desmear processing device
JP2008135286A (en) Plasma surface treatment apparatus
CN109923641B (en) Method for depositing or implanting dopant species in a workpiece and method for treating a workpiece
JP2015085267A (en) Desmear treatment device
TW202213489A (en) Substrate processing method and substrate processing apparatus
US20070131539A1 (en) Combination heater/generator for generating negatively charged oxygen atoms
JP2019098282A (en) Light irradiation device and thin film formation device
TWI682566B (en) Sheet secondary battery manufacturing apparatus and sheet secondary battery manufacturing method
JP6174210B2 (en) Mounting table and plasma processing apparatus
JP2019121643A (en) Device formation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181205

R150 Certificate of patent or registration of utility model

Ref document number: 6449026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250