JP2016135615A - Method for producing joined body of cubic network structure and foam - Google Patents

Method for producing joined body of cubic network structure and foam Download PDF

Info

Publication number
JP2016135615A
JP2016135615A JP2016092581A JP2016092581A JP2016135615A JP 2016135615 A JP2016135615 A JP 2016135615A JP 2016092581 A JP2016092581 A JP 2016092581A JP 2016092581 A JP2016092581 A JP 2016092581A JP 2016135615 A JP2016135615 A JP 2016135615A
Authority
JP
Japan
Prior art keywords
network structure
foam
dimensional network
raw material
foam raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016092581A
Other languages
Japanese (ja)
Inventor
宗 北本
Hajime KITAMOTO
宗 北本
拓也 長瀬
Takuya Nagase
拓也 長瀬
貴史 恋田
Takashi Koida
貴史 恋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagase and Co Ltd
Toyobo Co Ltd
Original Assignee
Nagase and Co Ltd
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagase and Co Ltd, Toyobo Co Ltd filed Critical Nagase and Co Ltd
Priority to JP2016092581A priority Critical patent/JP2016135615A/en
Publication of JP2016135615A publication Critical patent/JP2016135615A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a joined body of a cubic network structure and a foam having improved joining strength.SOLUTION: A foam raw material 40 is impregnated into a cubic network structure 11 via an osmosis membrane 21a. Further, the foam raw material 40 is solidified. The foam raw material 40 impregnated into the cubic network structure 11 is solidified while being in contact with of a plurality of resin wire rods 12 in the cubic network structure 11 at a wide area. Thus, a joined body 100 between the cubic network structure 11 and the foam 41 having improved joining strength can be produced.SELECTED DRAWING: Figure 15

Description

本発明は、立体網状構造体と発泡体との接合体の製造方法に関する。   The present invention relates to a method for manufacturing a joined body of a three-dimensional network structure and a foam.

特許文献1には、弾性を有する複数の樹脂の線材が互いに絡み合いながら湾曲しつつ複数の接着点で互いに接着されることにより形成された立体網状構造体が開示されている。このような立体網状構造体は緩衝材として優れた特性を有する。また、このような立体網状構造体は通気性に優れる。   Patent Document 1 discloses a three-dimensional network structure formed by bonding a plurality of elastic resin wires to each other at a plurality of adhesion points while curving while being entangled with each other. Such a three-dimensional network structure has excellent properties as a cushioning material. Moreover, such a three-dimensional network structure is excellent in air permeability.

特開平7−60861号公報Japanese Patent Laid-Open No. 7-60861

ところで、緩衝材としては、液状の発泡体原料が発泡しつつ固化することにより形成される発泡体がある。産業上で立体網状構造体及び発泡体のそれぞれの特性を活用するために、上記の立体網状構造体と発泡体とを接合させた接合体を製造することが要求されている。しかし、接着剤や両面テープを用いた接着では、立体網状構造体と発泡体との接合強度は不十分である。そこで、立体網状構造体と発泡体との接合強度の改善が要求されている。   By the way, as a buffer material, there exists a foam formed when a liquid foam raw material solidifies while foaming. In order to utilize the respective characteristics of the three-dimensional network structure and the foam in the industry, it is required to manufacture a joined body obtained by joining the three-dimensional network structure and the foam. However, in bonding using an adhesive or a double-sided tape, the bonding strength between the three-dimensional network structure and the foam is insufficient. Therefore, it is required to improve the bonding strength between the three-dimensional network structure and the foam.

本発明は上記課題を考慮してなされたものであり、接合強度を向上させた立体網状構造体と発泡体との接合体を製造することが望まれている。   The present invention has been made in consideration of the above problems, and it is desired to produce a joined body of a three-dimensional network structure and a foam with improved joint strength.

本発明は、樹脂の線材を立体的に組み合わせることにより形成された立体網状構造体及び発泡体原料を配置する工程と、発泡体原料を立体網状構造体に含浸させる工程と、発泡体原料を固化させる工程とを含む立体網状構造体と発泡体との接合体の製造方法である。   The present invention includes a step of arranging a three-dimensional network structure and a foam material formed by three-dimensionally combining resin wires, a step of impregnating the three-dimensional network structure with the foam material, and solidifying the foam material A process for producing a joined body of a three-dimensional network structure and a foam.

この構成によれば、発泡体原料が立体網状構造体に含浸させられる。また、発泡体原料が固化させられる。立体網状構造体に含浸させられた発泡体原料は、立体網状構造体の複数の線材と広い面積で接しつつ固化させられる。このため、接合強度を向上させた立体網状構造体と発泡体との接合体を製造することができる。   According to this configuration, the three-dimensional network structure is impregnated with the foam material. Also, the foam material is solidified. The foam material impregnated in the three-dimensional network structure is solidified while being in contact with a plurality of wires of the three-dimensional network structure over a wide area. For this reason, it is possible to manufacture a joined body of a three-dimensional network structure and a foam with improved joint strength.

この場合、立体網状構造体及び発泡体原料を配置する工程の前に、発泡体原料が浸透可能な浸透膜を立体網状構造体の外表面に配置する工程をさらに含み、発泡体原料を立体網状構造体に含浸させる工程では、浸透膜を介して発泡体原料を立体網状構造体に含浸させることができる。   In this case, before the step of arranging the three-dimensional network structure and the foam raw material, the method further includes a step of arranging an osmotic membrane through which the foam raw material can permeate on the outer surface of the three-dimensional network structure. In the step of impregnating the structure, the three-dimensional network structure can be impregnated with the foam raw material through the permeable membrane.

この構成によれば、浸透膜を介して発泡体原料を立体網状構造体に含浸させる。よって、浸透膜の発泡体原料が浸透可能な量を調整することにより、発泡体原料が立体網状構造体に含浸した後に固化したことにより形成される含浸部の幅を調整することができる。   According to this configuration, the three-dimensional network structure is impregnated with the foam raw material via the osmotic membrane. Therefore, the width of the impregnation part formed by solidifying the foam raw material after impregnating the three-dimensional network structure can be adjusted by adjusting the amount that the foam raw material of the osmotic membrane can permeate.

また、浸透膜は、繊維により形成された布であり、布を形成する繊維は、表面が露出しないように樹脂により被覆されていることができる。   The osmotic membrane is a cloth formed of fibers, and the fibers forming the cloth can be coated with a resin so that the surface is not exposed.

この構成によれば、浸透膜は繊維により形成された布であり、布を形成する繊維は表面が露出しないように樹脂により被覆されている。このため、発泡体原料が浸透膜を介して立体網状構造体に含浸する際に、発泡体原料の気泡が布を形成する繊維の凹凸により消滅し難い。よって、発泡体原料の気泡が消滅することにより、立体網状構造体の発泡体原料が含浸した部分が硬化することを防止することができる。   According to this configuration, the osmotic membrane is a cloth formed of fibers, and the fibers forming the cloth are covered with the resin so that the surface is not exposed. For this reason, when the foam material is impregnated into the three-dimensional network structure through the osmotic membrane, the bubbles of the foam material are difficult to disappear due to the unevenness of the fibers forming the cloth. Therefore, it can prevent that the part which the foam raw material of the three-dimensional network structure impregnated hardens | cures by the bubble of a foam raw material disappearing.

また、浸透膜は、モノフィラメントの繊維により形成された不織布であることができる。   The osmotic membrane can be a nonwoven fabric formed of monofilament fibers.

この構成によれば、浸透膜は、モノフィラメントの繊維により形成された不織布である。モノフィラメントの繊維は、マルチフィラメントの繊維のような表面の凹凸が無い。また、不織布は、織物の布に比べて発泡体原料が浸透する部分の凹凸が少ない。このため、発泡体原料が浸透膜を介して立体網状構造体に含浸する際に、発泡体原料の気泡が布を形成する繊維の凹凸により消滅し難い。よって、発泡体原料の気泡が消滅することにより、立体網状構造体の発泡体原料が含浸した部分が硬化することを防止することができる。   According to this configuration, the osmotic membrane is a nonwoven fabric formed of monofilament fibers. Monofilament fibers do not have surface irregularities like multifilament fibers. In addition, the nonwoven fabric has less irregularities in the portion where the foam material penetrates than the fabric of the fabric. For this reason, when the foam material is impregnated into the three-dimensional network structure through the osmotic membrane, the bubbles of the foam material are difficult to disappear due to the unevenness of the fibers forming the cloth. Therefore, it can prevent that the part which the foam raw material of the three-dimensional network structure impregnated hardens | cures by the bubble of a foam raw material disappearing.

また、浸透膜は、孔部及びスリット部のいずれかを有する樹脂のフィルムであることができる。   The osmotic membrane can be a resin film having either a hole or a slit.

この構成によれば、浸透膜は、孔部及びスリット部のいずれかを有する樹脂のフィルムである。樹脂のフィルムは、織物の布のような繊維による凹凸が無い。このため、発泡体原料が浸透膜を介して立体網状構造体に含浸する際に、発泡体原料の気泡が布を形成する繊維の凹凸により消滅しない。よって、発泡体原料の気泡が消滅することにより、立体網状構造体の発泡体原料が含浸した部分が硬化することを防止することができる。   According to this configuration, the permeable membrane is a resin film having either a hole or a slit. The resin film has no unevenness due to fibers such as a fabric cloth. For this reason, when the foam material is impregnated into the three-dimensional network structure through the permeable membrane, the bubbles of the foam material do not disappear due to the unevenness of the fibers forming the cloth. Therefore, it can prevent that the part which the foam raw material of the three-dimensional network structure impregnated hardens | cures by the bubble of a foam raw material disappearing.

また、浸透膜は、頂部で曲がった複数のスリット部を有する樹脂のフィルムであり、複数のスリット部の中の一対のスリット部は、互いに反対の方向に曲がり、頂部同士が互いに対向するように配置されていることができる。   Further, the osmotic membrane is a resin film having a plurality of slit portions bent at the top, and the pair of slit portions in the plurality of slit portions bend in directions opposite to each other so that the tops face each other. Can be arranged.

この構成によれば、頂部同士が互いに対向する一対の頂部で曲がったスリット部は、互いに他のスリット部の方向に発泡体原料を浸透させる。そのため、一対の互いに頂部で対向するスリット部から浸透した発泡体原料は、少量であっても互いに他のスリット部から浸透した発泡体原料と結合し易くなる。そのため、より少ない含浸量により、より強い接合強度を得ることができる。   According to this structure, the slit part bent by a pair of top part which top parts mutually oppose mutually makes a foam raw material osmose | permeate in the direction of another slit part. Therefore, the foam raw material permeated from the pair of slit portions facing each other at the tops easily binds to the foam raw material permeated from the other slit portions even in a small amount. Therefore, stronger bonding strength can be obtained with a smaller amount of impregnation.

また、浸透膜は、頂部で曲がった複数のスリット部を有する樹脂のフィルムであり、複数のスリット部の中の一対のスリット部は、互いに同じ方向に曲がり、頂部同士が互いに同じ方向に向くように配置されていることができる。   The osmotic membrane is a resin film having a plurality of slit portions bent at the top, and the pair of slit portions in the plurality of slit portions bend in the same direction, and the tops are directed in the same direction. Can be arranged.

この構成によれば、頂部同士が互いに同じ方向を向く一対の頂部で曲がったスリット部は、互いに同じ方向に発泡体原料を浸透させる。そのため、一対の互いに同じ方向を向く頂部を有するスリット部から浸透した発泡体原料は、浸透膜からより近い距離で固化し易くなる。そのため、より少ない含浸量により、より強い接合強度を得ることができる。   According to this configuration, the slit portions bent at the pair of top portions whose top portions face each other in the same direction allow the foam raw material to permeate in the same direction. Therefore, the foam raw material that has permeated through a pair of slits having apexes facing in the same direction is easily solidified at a closer distance from the permeable membrane. Therefore, stronger bonding strength can be obtained with a smaller amount of impregnation.

また、立体網状構造体及び発泡体原料を配置する工程の前に、発泡体原料が浸透不可能な含浸防止膜を立体網状構造体の内部に配置する工程をさらに含み、発泡体原料を立体網状構造体に含浸させる工程では、含浸防止膜により浸透不可能とされなかった立体網状構造体の部位に発泡体原料を含浸させることができる。   Further, before the step of arranging the three-dimensional network structure and the foam raw material, the method further includes a step of arranging an impregnation preventing film into which the foam raw material cannot penetrate inside the three-dimensional network structure, In the step of impregnating the structure, the foam raw material can be impregnated into a portion of the three-dimensional network structure that has not been made impossible to penetrate by the impregnation prevention film.

この構成によれば、含浸防止膜は発泡体原料が浸透不可能であり、含浸防止膜により浸透不可能とされなかった立体網状構造体の部位に発泡体原料が含浸した後に固化したことにより、立体網状構造体と発泡体とが接合される。よって、含浸防止膜の配置を調整することにより、発泡体原料が立体網状構造体に含浸した後に固化したことにより形成される含浸部の幅を調整することができる。   According to this configuration, the impregnation preventing film is impervious to the foam raw material, and is solidified after the foam raw material is impregnated into the portion of the three-dimensional network structure that has not been impregnated by the impregnation preventing film. The three-dimensional network structure and the foam are joined. Therefore, by adjusting the arrangement of the impregnation prevention film, the width of the impregnated portion formed by solidifying the foam raw material after impregnating the solid network structure can be adjusted.

また、立体網状構造体の一部に、立体網状構造体の一部以外の部分よりも硬度が低い低硬度部を有し、発泡体原料を立体網状構造体に含浸させる工程では、低硬度部に発泡体原料を含浸させることができる。   Further, in the step of having a low hardness part having a lower hardness than a part other than a part of the three-dimensional network structure in a part of the three-dimensional network structure, and in the step of impregnating the three-dimensional network structure with the foam raw material, the low hardness part Can be impregnated with a foam material.

この構成によれば、立体網状構造体の一部に立体網状構造体の一部以外の部分よりも硬度が低い低硬度部を有し、低硬度部に発泡体原料を含浸させる。このため、発泡体原料が立体網状構造体に含浸した後に固化したことにより形成される含浸部の硬度と、立体網状構造体及び発泡体との硬度の差を少なくすることができる。   According to this configuration, a part of the three-dimensional network structure has a low hardness part having a lower hardness than parts other than a part of the three-dimensional network structure, and the low hardness part is impregnated with the foam raw material. For this reason, the difference of the hardness of the impregnation part formed when the foam raw material solidifies after impregnating the solid network structure and the hardness of the solid network structure and the foam can be reduced.

本発明の立体網状構造体と発泡体との接合体の製造方法によれば、接合強度を向上させた立体網状構造体と発泡体との接合体を製造することができる。   According to the method for producing a joined body of a three-dimensional network structure and a foam according to the present invention, a joined body of a three-dimensional network structure and a foam with improved joint strength can be produced.

第1実施形態の立体網状構造体を示す斜視図である。It is a perspective view which shows the solid network structure of 1st Embodiment. 図1の立体網状構造体の拡大視である。FIG. 2 is an enlarged view of the three-dimensional network structure of FIG. 1. 立体網状構造体の外表面に浸透膜を配置した状態を示す斜視図である。It is a perspective view which shows the state which has arrange | positioned the permeable membrane on the outer surface of a three-dimensional network structure. 図3の浸透膜の拡大視である。FIG. 4 is an enlarged view of the osmotic membrane of FIG. 3. 図4の浸透膜に対して空隙部をより小さくした浸透膜の例を示す拡大視である。FIG. 5 is an enlarged view showing an example of an osmosis membrane in which a gap is made smaller than that of the osmosis membrane of FIG. 4. モノフィラメント繊維により形成された不織布の浸透膜の例を示す拡大視である。It is an enlarged view which shows the example of the permeable membrane of the nonwoven fabric formed with the monofilament fiber. 発泡体原料が浸透可能な孔部を有する樹脂フィルムの浸透膜の例を示す拡大視である。It is an enlarged view which shows the example of the osmosis | permeation film of the resin film which has the hole which can penetrate a foam raw material. 発泡体原料が浸透可能なスリット部を有する樹脂フィルムの浸透膜の例を示す拡大視である。It is an enlarged view which shows the example of the permeable membrane of the resin film which has a slit part which a foam raw material can osmose | permeate. 発泡体原料が互いに対向する方向に浸透可能な複数の屈曲したスリット部を有する樹脂フィルムの浸透膜の例を示す拡大視である。It is an enlarged view which shows the example of the osmosis | permeation film of the resin film which has the some bent slit part which can osmose | permeate the foam raw material in the direction which mutually opposes. 発泡体原料が互いに対向する方向に浸透可能な複数の湾曲したスリット部を有する樹脂フィルムの浸透膜の例を示す拡大視である。It is an enlarged view which shows the example of the osmosis | permeation film of the resin film which has the some curved slit part which can osmose | permeate the foam raw material in the direction which mutually opposes. 発泡体原料が同じ方向に浸透可能な複数の屈曲したスリット部を有する樹脂フィルムの浸透膜の例を示す拡大視である。It is an enlarged view which shows the example of the osmosis | permeation film of the resin film which has the some bent slit part which a foam raw material can osmose | permeate in the same direction. 発泡体原料が同じ方向に浸透可能な複数の湾曲したスリット部を有する樹脂フィルムの浸透膜の例を示す拡大視である。It is an enlarged view which shows the example of the osmosis | permeation film | membrane of the resin film which has the some curved slit part which a foam raw material can osmose | permeate in the same direction. 図3の浸透膜を配置された立体網状構造体が型の中に入れられた状態を示す斜視図である。It is a perspective view which shows the state by which the three-dimensional network structure in which the permeable membrane of FIG. 3 is arrange | positioned was put in the type | mold. 図13の浸透膜に隣接するように液状の発泡体原料が型の中に入れられた状態を示す斜視図である。It is a perspective view which shows the state in which the liquid foam raw material was put in the type | mold so that it might adjoin to the osmosis | permeation membrane of FIG. 図14の浸透膜を介して発泡体原料が立体網状構造体に含浸させられた状態を示す斜視図である。It is a perspective view which shows the state by which the foam raw material was impregnated into the three-dimensional network structure through the osmosis membrane of FIG. 図9に示すスリット部を有する樹脂フィルムの浸透膜を発泡体材料が浸透する状態を示す図である。It is a figure which shows the state which a foam material osmose | permeates the permeable membrane of the resin film which has a slit part shown in FIG. 図11に示すスリット部を有する樹脂フィルムの浸透膜を発泡体材料が浸透する状態を示す図である。It is a figure which shows the state which a foam material osmose | permeates the permeable membrane of the resin film which has a slit part shown in FIG. 図15の発泡体原料が固化させられた後の立体網状構造体と発泡体との接合体を示す斜視図である。FIG. 16 is a perspective view showing a joined body of a three-dimensional network structure and a foam after the foam raw material of FIG. 15 is solidified. 第2実施形態において、ノズルからゲル状防止膜原料を立体網状構造体の内部に滴下させることにより、立体網状構造体の内部に含浸防止膜を形成する態様を示す斜視図である。In 2nd Embodiment, it is a perspective view which shows the aspect which forms an impregnation prevention film | membrane in the inside of a three-dimensional network structure by dripping the gel-form prevention film raw material from the nozzle in the inside of a three-dimensional network structure. 第3実施形態において、立体網状構造体を光硬化溶液に浸漬し、溶液表面に光を照射することにより、立体網状構造体の内部に含浸防止膜を形成する態様を示す斜視図である。In 3rd Embodiment, it is a perspective view which shows the aspect which forms an impregnation prevention film | membrane inside a solid network structure by immersing a solid network structure in a photocuring solution, and irradiating light to the solution surface. 第4実施形態において、低硬度部を形成した立体網状構造体を示す斜視図である。In 4th Embodiment, it is a perspective view which shows the solid network structure which formed the low-hardness part. 第5実施形態において、立体網状構造体と発泡体原料を配置する位置との距離を変更することにより、含浸量を制御する態様を示す図である。In 5th Embodiment, it is a figure which shows the aspect which controls the amount of impregnations by changing the distance of the position which arrange | positions a solid network structure and a foam raw material. 第6実施形態において、立体網状構造体と発泡体原料との間に設けられた突起物の高さを変更することにより、含浸量を制御する態様を示す図である。In 6th Embodiment, it is a figure which shows the aspect which controls the amount of impregnations by changing the height of the protrusion provided between the solid network structure and the foam raw material. 様々な種類の浸透膜に対する含浸部の硬度を示すグラフである。It is a graph which shows the hardness of the impregnation part with respect to various kinds of permeable membranes.

以下、図面を参照して、本発明の実施形態に係る立体網状構造体と発泡体との接合体の製造方法について詳細に説明する。図1及び図2に示すように、第1実施形態の立体網状構造体11は、樹脂線材12を立体的に組み合わせることにより形成されている。より詳細には、立体網状構造体11は、弾性を有する複数の樹脂線材12が互いに絡み合いながら湾曲しつつ複数の接着点13で互いに接着されることにより形成されている。樹脂線材12は、熱可塑性樹脂により形成されている。熱可塑性樹脂としては、ポリエチレン、ポリプロピレンなどのポリオレフィン系、ポリエステル系ポリマー、ポリエステルエラストマー及びポリウレタン系ポリマーを適用することができる。   Hereinafter, with reference to drawings, the manufacturing method of the joined object of the solid network structure and foam concerning the embodiment of the present invention is explained in detail. As shown in FIGS. 1 and 2, the three-dimensional network structure 11 of the first embodiment is formed by three-dimensionally combining resin wires 12. More specifically, the three-dimensional network structure 11 is formed by bonding a plurality of elastic resin wires 12 to each other at a plurality of bonding points 13 while curving while being intertwined with each other. The resin wire 12 is formed of a thermoplastic resin. As the thermoplastic resin, polyolefins such as polyethylene and polypropylene, polyester polymers, polyester elastomers, and polyurethane polymers can be applied.

樹脂線材12の外周径は0.1〜7mmとすることができる。樹脂線材12は、内部が中空の線材とすることができる。樹脂線材12の内部の中空率は5〜80%とすることができる。樹脂線材12によって立体網状構造体11を形成する際には、熱可塑性樹脂が押出機により溶融される。溶融された熱可塑性樹脂は、ノズルより複数の樹脂線材12として射出され、自然落下させられる。未だ溶融状態の間に複数の樹脂線材12を互いに接着点13で接着させる。接着された樹脂線材12が固化されることにより、立体網状構造体11を製造することができる。   The outer peripheral diameter of the resin wire 12 can be 0.1 to 7 mm. The resin wire 12 can be a wire with a hollow inside. The hollow ratio inside the resin wire 12 can be 5 to 80%. When the three-dimensional network structure 11 is formed by the resin wire 12, the thermoplastic resin is melted by an extruder. The molten thermoplastic resin is injected from the nozzle as a plurality of resin wires 12 and is allowed to fall naturally. The plurality of resin wires 12 are bonded to each other at the bonding points 13 while still in the molten state. The solid network structure 11 can be manufactured by solidifying the bonded resin wire 12.

図3に示すように、発泡体原料が浸透可能な浸透膜21aが立体網状構造体11の外表面に配置される。図4に示すように、浸透膜21aは、繊維22が織り込まれて形成された布である。浸透膜21aの繊維22は、表面が露出しないように塩化ビニル等の樹脂による樹脂被覆23により被覆されている。繊維22と繊維22との間には、発泡体原料が浸透可能な空隙部24を有する。浸透膜22aには、例えば、発泡塩化ビニル等により製造された滑り止めシート等を適用することができる。   As shown in FIG. 3, a permeable membrane 21 a through which the foam material can permeate is disposed on the outer surface of the three-dimensional network structure 11. As shown in FIG. 4, the permeable membrane 21 a is a cloth formed by weaving fibers 22. The fibers 22 of the osmotic membrane 21a are covered with a resin coating 23 made of a resin such as vinyl chloride so that the surface is not exposed. Between the fiber 22 and the fiber 22, it has the space | gap part 24 which a foam raw material can osmose | permeate. For example, a non-slip sheet made of foamed vinyl chloride or the like can be applied to the permeable membrane 22a.

発泡体原料の立体網状構造体11への含浸量を調整するために、単位時間当たりに浸透膜21aを浸透する発泡体原料の量は適宜調整される。例えば、発泡体原料の立体網状構造体11への含浸量を調整するために、浸透膜21aが複数枚に重ねて立体網状構造体11の外表面に配置されていても良い。また、浸透膜22aの空隙部24の大きさを変更することにより、単位時間当たりに浸透膜21aを浸透する発泡体原料の量を調整することができる。例えば、図5に示す浸透膜21bのように、繊維22を被覆する樹脂被覆23の量を増加させることにより、空隙部24の大きさをより小さくした浸透膜21bを製造することができる。   In order to adjust the amount of the foam material impregnated into the three-dimensional network structure 11, the amount of the foam material permeating the permeable membrane 21a per unit time is appropriately adjusted. For example, in order to adjust the amount of the foam material impregnated into the three-dimensional network structure 11, a plurality of permeation membranes 21 a may be arranged on the outer surface of the three-dimensional network structure 11. Moreover, the quantity of the foam raw material which osmose | permeates the permeable membrane 21a per unit time can be adjusted by changing the magnitude | size of the space | gap part 24 of the permeable membrane 22a. For example, like the osmotic membrane 21b shown in FIG. 5, by increasing the amount of the resin coating 23 that covers the fibers 22, it is possible to manufacture the osmotic membrane 21b in which the size of the gap portion 24 is further reduced.

なお、本実施形態では、浸透膜21aの代わりに、図6に示すように、モノフィラメント繊維26により形成された不織布25である浸透膜21cを適用することができる。また、本実施形態では、浸透膜21aの代わりに、図7に示すように、発泡体原料が浸透可能な孔部28を有する樹脂フィルム27である浸透膜21dを適用することができる。また、本実施形態では、図8に示すように、浸透膜21aの代わりに、発泡体原料が浸透可能なスリット部29aを有する樹脂フィルム27である浸透膜21eを適用することができる。   In this embodiment, instead of the osmotic membrane 21a, as shown in FIG. 6, an osmotic membrane 21c, which is a nonwoven fabric 25 formed of monofilament fibers 26, can be applied. In this embodiment, instead of the osmotic membrane 21a, as shown in FIG. 7, an osmotic membrane 21d, which is a resin film 27 having a hole 28 through which the foam material can permeate, can be applied. Moreover, in this embodiment, as shown in FIG. 8, the permeable membrane 21e which is the resin film 27 which has the slit part 29a which can permeate | foam a foam raw material can be applied instead of the permeable membrane 21a.

また、図9に示すように、浸透膜21aの代わりに、樹脂フィルム27の表面において、頂部29pで屈曲したスリット部29bを有する樹脂フィルム27である浸透膜21fを適用することができる。樹脂フィルム27の表面において、互いに反対の方向に屈曲する一対のスリット部29b同士は、それぞれの頂部29p同士が互いに対向するように配置されている。後述するように、頂部29pで互いに対向するスリット部29bは、互いに発泡体原料を方向Dに向けて浸透させる。これにより、一対の頂部29pが互いに対向するスリット部29bから浸透した発泡体原料は、少量であっても互いに他のスリット部29bから浸透した発泡体原料と結合し易くなる。   As shown in FIG. 9, instead of the osmotic membrane 21a, a osmotic membrane 21f that is a resin film 27 having a slit portion 29b bent at the top 29p on the surface of the resin film 27 can be applied. On the surface of the resin film 27, the pair of slit portions 29b that are bent in opposite directions are arranged so that the top portions 29p face each other. As will be described later, the slit portions 29b facing each other at the top portion 29p permeate the foam raw materials in the direction D. Thereby, even if a small amount, the foam raw material which permeated from the slit part 29b which a pair of top parts 29p oppose mutually becomes easy to couple | bond with the foam raw material which permeate | transmitted from the other slit part 29b.

あるいは、図10に示すように、浸透膜21aの代わりに、樹脂フィルム27の表面において、頂部29pで湾曲したスリット部29cを有する樹脂フィルム27である浸透膜21gを適用することができる。樹脂フィルム27の表面において、互いに反対の方向に湾曲する一対のスリット部29c同士は、それぞれの頂部29p同士が互いに対向するように配置されている。湾曲したスリット部29cを有する浸透膜21gは、上記浸透膜21fと同様の作用を有する。   Alternatively, as shown in FIG. 10, instead of the osmotic membrane 21 a, a osmotic membrane 21 g that is a resin film 27 having a slit portion 29 c curved at the top 29 p can be applied on the surface of the resin film 27. On the surface of the resin film 27, the pair of slit portions 29c that are curved in directions opposite to each other are arranged such that the respective top portions 29p face each other. The osmotic membrane 21g having the curved slit portion 29c has the same function as the osmotic membrane 21f.

また、図11に示すように、浸透膜21aの代わりに、樹脂フィルム27の表面において、頂部29pで屈曲したスリット部29dを有する樹脂フィルム27である浸透膜21hを適用することができる。樹脂フィルム27の表面において、互いに同じ方向に屈曲する一対のスリット部29d同士は、それぞれの頂部29pが互いに同じ方向に向くように配置されている。後述するように、頂部29pで互いに同じ方向を向くスリット部29dは、互いに発泡体原料を同じ方向Dに向けて浸透させる。これにより、一対の頂部29pが互いに同じ方向を向くスリット部29dから浸透した発泡体原料は、浸透膜21hからより近い距離で固化し易くなる。   As shown in FIG. 11, instead of the osmotic membrane 21a, a osmotic membrane 21h, which is a resin film 27 having a slit portion 29d bent at the top 29p on the surface of the resin film 27, can be applied. On the surface of the resin film 27, the pair of slit portions 29 d that are bent in the same direction are arranged so that the top portions 29 p face each other in the same direction. As will be described later, the slit portions 29d facing the same direction at the top portion 29p infiltrate the foam raw materials in the same direction D. Thereby, the foam raw material which permeate | transmitted from the slit part 29d in which a pair of top part 29p faces mutually the same direction becomes easy to solidify at a nearer distance from the osmosis membrane 21h.

あるいは、図12に示すように、浸透膜21aの代わりに、樹脂フィルム27の表面において、頂部29pで湾曲したスリット部29eを有する樹脂フィルム27である浸透膜21iを適用することができる。樹脂フィルム27の表面において、互いに同じ方向に湾曲する一対のスリット部29e同士は、それぞれの頂部29pが互いに同じ方向を向くように配置されている。湾曲したスリット部29eを有する浸透膜21iは、上記浸透膜21hと同様の作用を有する。   Alternatively, as shown in FIG. 12, instead of the osmotic membrane 21a, a osmotic membrane 21i that is a resin film 27 having a slit portion 29e curved at the top 29p on the surface of the resin film 27 can be applied. On the surface of the resin film 27, the pair of slit portions 29e that are curved in the same direction are arranged such that the respective top portions 29p face the same direction. The osmotic membrane 21i having the curved slit portion 29e has the same function as the osmotic membrane 21h.

図13に示すように、外表面に浸透膜21aを配置された立体網状構造体11が型30の中に入れられる。図14に示すように、発泡しつつ固化することにより発泡体を形成する液状の発泡体原料40が型30の中に入れられる。これにより、浸透膜21aに隣接するように液状の発泡体原料40が配置される。図15に示すように、浸透膜21aを介して発泡体原料40の一部が立体網状構造体11に含浸させられる。浸透膜21aの重ね合せた枚数又は空隙部24の大きさに応じた含浸量52の含浸部51が形成される。なお、本実施形態では、発泡体原料40の全てが立体網状構造体11に含浸させられても良い。   As shown in FIG. 13, the three-dimensional network structure 11 in which the permeable membrane 21 a is disposed on the outer surface is placed in a mold 30. As shown in FIG. 14, a liquid foam material 40 that forms a foam by solidifying while foaming is placed in a mold 30. Thereby, the liquid foam raw material 40 is arrange | positioned so that the permeable membrane 21a may be adjoined. As shown in FIG. 15, a part of the foam raw material 40 is impregnated into the three-dimensional network structure 11 through the osmotic membrane 21a. An impregnation portion 51 having an impregnation amount 52 corresponding to the number of the permeable membranes 21 a overlapped or the size of the void portion 24 is formed. In the present embodiment, all of the foam raw material 40 may be impregnated in the three-dimensional network structure 11.

ここで、図9に示したような頂部29pで屈曲したスリット部29bを有する樹脂フィルム27の浸透膜21fを浸透膜21aに替えて使用した場合は、図16に示すように、頂部29pで互いに対向するスリット部29b同士は、互いに発泡体原料を方向Dに向けて浸透させる。これにより、一対の互いに頂部29pで対向するスリット部29bから浸透した発泡体原料は、少量であっても互いに他のスリット部29bから浸透した発泡体原料と結合し易くなる。そのため、より少ない含浸量52により、より強い接合強度を得ることができる。   Here, when the permeable membrane 21f of the resin film 27 having the slit portion 29b bent at the top 29p as shown in FIG. 9 is used instead of the permeable membrane 21a, as shown in FIG. The opposing slit portions 29b allow the foam raw material to permeate in the direction D. Thereby, even if a small quantity, the foam raw material which permeate | transmitted from the slit part 29b which mutually opposes by a pair of top part 29p becomes easy to couple | bond with the foam raw material which permeate | transmitted from the other slit part 29b. Therefore, a stronger bonding strength can be obtained with a smaller amount of impregnation 52.

あるいは、図11に示したような頂部29pで屈曲したスリット部29dを有する樹脂フィルム27の浸透膜21hを浸透膜21aに替えて使用した場合は、図17に示すように、頂部29pで互いに同じ方向を向くスリット部29d同士は、互いに発泡体原料を同じ方向Dに向けて浸透させる。これにより、一対の頂部29pが互いに同じ方向を向くスリット部29dから浸透した発泡体原料は、浸透膜21hからより近い距離で固化し易くなる。そのため、より少ない含浸量52により、より強い接合強度を得ることができる。   Alternatively, when the permeable membrane 21h of the resin film 27 having the slit portion 29d bent at the top 29p as shown in FIG. 11 is used instead of the permeable membrane 21a, as shown in FIG. 17, the top 29p is the same as each other. The slit portions 29d facing each other permeate the foam raw material in the same direction D. Thereby, the foam raw material which permeate | transmitted from the slit part 29d in which a pair of top part 29p faces mutually the same direction becomes easy to solidify at a nearer distance from the osmosis membrane 21h. Therefore, a stronger bonding strength can be obtained with a smaller amount of impregnation 52.

図18に示すように、発泡体原料40が固化することにより、発泡体41が形成される。立体網状構造体11の含浸部51に含浸させられた発泡体原料40が固化することにより、立体網状構造体11と発泡体41とが接合される。立体網状構造体11と発泡体41とが接合された接合体100が型30から取り出される。   As shown in FIG. 18, the foam material 41 is formed by solidifying the foam material 40. When the foam raw material 40 impregnated in the impregnation portion 51 of the three-dimensional network structure 11 is solidified, the three-dimensional network structure 11 and the foam 41 are joined. The joined body 100 in which the three-dimensional network structure 11 and the foamed body 41 are joined is taken out from the mold 30.

本実施形態によれば、浸透膜21aを介して発泡体原料40が立体網状構造体11に含浸させられる。また、発泡体原料40が固化させられる。立体網状構造体11に含浸させられた発泡体原料40は、立体網状構造体11の複数の樹脂線材12と広い面積で接しつつ固化させられる。このため、接合強度を向上させた立体網状構造体11と発泡体41との接合体100を製造することができる。   According to this embodiment, the foam material 40 is impregnated into the three-dimensional network structure 11 through the osmotic membrane 21a. Further, the foam material 40 is solidified. The foam material 40 impregnated in the three-dimensional network structure 11 is solidified while being in contact with the plurality of resin wires 12 of the three-dimensional network structure 11 over a wide area. For this reason, the joined body 100 of the three-dimensional network structure 11 and the foamed body 41 with improved joint strength can be manufactured.

また、本実施形態によれば、浸透膜21aに隣接するように発泡体原料40を配置し、浸透膜21aを介して発泡体原料40を立体網状構造体11に含浸させる。よって、浸透膜21aの発泡体原料40が浸透可能な量を調整することにより、発泡体原料40が立体網状構造体11に含浸した後に固化したことにより形成される含浸部51の幅を調整することができる。   Moreover, according to this embodiment, the foam raw material 40 is arrange | positioned so that the permeable membrane 21a may be adjoined, and the three-dimensional network structure 11 is impregnated with the foam raw material 40 through the permeable membrane 21a. Therefore, the width of the impregnation part 51 formed by the solidification of the three-dimensional network structure 11 after the foam raw material 40 is impregnated is adjusted by adjusting the amount of the foam raw material 40 that can penetrate the permeation membrane 21a. be able to.

また、本実施形態によれば、浸透膜21aは繊維22により形成された布であり、布を形成する繊維22は表面が露出しないように樹脂被覆23により被覆されている。このため、発泡体原料40が浸透膜21aを介して立体網状構造体11に含浸する際に、発泡体原料40の気泡が布を形成する繊維22の凹凸により消滅し難い。よって、発泡体原料40の気泡が消滅することにより、立体網状構造体11の発泡体原料40が含浸した含浸部51が硬化することを防止することができる。この場合、浸透膜21bのように、空隙部24の大きさをより小さくすることにより、含浸量52を減少させることができる。   Moreover, according to this embodiment, the osmosis | permeation film | membrane 21a is the cloth formed with the fiber 22, and the fiber 22 which forms the cloth is coat | covered with the resin coating 23 so that the surface may not be exposed. For this reason, when the foam raw material 40 impregnates the three-dimensional network structure 11 through the osmotic membrane 21a, the bubbles of the foam raw material 40 are difficult to disappear due to the unevenness of the fibers 22 forming the cloth. Therefore, it is possible to prevent the impregnated portion 51 impregnated with the foam material 40 of the three-dimensional network structure 11 from being cured by the disappearance of the bubbles of the foam material 40. In this case, the impregnation amount 52 can be reduced by reducing the size of the gap 24 as in the osmosis membrane 21b.

あるいは、本実施形態では、浸透膜21cは、モノフィラメント繊維26により形成された不織布25である。モノフィラメント繊維26は、マルチフィラメントの繊維のような表面の凹凸が無い。また、不織布25は、織物の布に比べて発泡体原料40が浸透する部分の凹凸が少ない。このため、発泡体原料40が浸透膜21cを介して立体網状構造体11に含浸する際に、発泡体原料40の気泡が布を形成する繊維の凹凸により消滅し難い。よって、発泡体原料40の気泡が消滅することにより、立体網状構造体11の発泡体原料40が含浸した含浸部51が硬化することを防止することができる。   Alternatively, in the present embodiment, the permeable membrane 21 c is a nonwoven fabric 25 formed by monofilament fibers 26. The monofilament fiber 26 does not have surface irregularities like a multifilament fiber. Moreover, the nonwoven fabric 25 has less unevenness | corrugation of the part which the foam raw material 40 osmose | permeates compared with the fabric of a textile fabric. For this reason, when the foam raw material 40 impregnates the three-dimensional network structure 11 through the osmotic membrane 21c, the bubbles of the foam raw material 40 are difficult to disappear due to the unevenness of the fibers forming the cloth. Therefore, it is possible to prevent the impregnated portion 51 impregnated with the foam material 40 of the three-dimensional network structure 11 from being cured by the disappearance of the bubbles of the foam material 40.

あるいは、本実施形態では、浸透膜21dは孔部28を有する樹脂フィルム27である。また、浸透膜21eはスリット部29を有する樹脂フィルム27である。樹脂フィルム27は、織物の布のような繊維による凹凸が無い。このため、発泡体原料40が浸透膜21c,21dを介して立体網状構造体11に含浸する際に、発泡体原料40の気泡が布を形成する繊維の凹凸により消滅しない。よって、発泡体原料40の気泡が消滅することにより、立体網状構造体11の発泡体原料40が含浸した含浸部51が他の部分に比べて硬化することを防止することができる。   Alternatively, in this embodiment, the permeable membrane 21 d is a resin film 27 having a hole 28. The permeable membrane 21 e is a resin film 27 having a slit portion 29. The resin film 27 has no irregularities due to fibers such as a woven cloth. For this reason, when the foam raw material 40 impregnates the three-dimensional network structure 11 through the permeable membranes 21c and 21d, the bubbles of the foam raw material 40 do not disappear due to the unevenness of the fibers forming the cloth. Therefore, it is possible to prevent the impregnated portion 51 impregnated with the foam raw material 40 of the three-dimensional network structure 11 from being hardened as compared with other portions by the disappearance of the bubbles of the foam raw material 40.

加えて、浸透膜21fは、その表面において、頂部29pで屈曲したスリット部29bを有する樹脂フィルム27である。樹脂フィルム27の表面において、互いに異なる方向に屈曲する一対のスリット部29b同士は、それぞれの頂部29pが互いに対向するように配置されている。このため、一対の互いに頂部29pで対向するスリット部29bから浸透した発泡体原料は、少量であっても互いに他のスリット部29bから浸透した発泡体原料と結合し易くなる。そのため、より少ない含浸量52により、より強い接合強度を得ることができる。その表面において、頂部29pで湾曲したスリット部29cを有する樹脂フィルム27である浸透膜21gも、上記浸透膜21gと同様の効果を奏する。   In addition, the osmotic membrane 21f is a resin film 27 having a slit portion 29b bent at the top 29p on the surface thereof. On the surface of the resin film 27, the pair of slit portions 29b that are bent in different directions are arranged such that the respective top portions 29p face each other. For this reason, even if a small quantity, the foam raw material which permeate | transmitted from the slit part 29b which opposes a pair of top part 29p mutually becomes easy to couple | bond with the foam raw material which permeate | transmitted from the other slit part 29b. Therefore, a stronger bonding strength can be obtained with a smaller amount of impregnation 52. On the surface, the permeable membrane 21g which is the resin film 27 having the slit portion 29c curved at the top 29p also has the same effect as the permeable membrane 21g.

あるいは、浸透膜21hは、その表面において、頂部29pで屈曲したスリット部29dを有する樹脂フィルム27である。樹脂フィルム27の表面において、互いに同じ方向に屈曲する一対のスリット部29d同士は、それぞれの頂部29pが互いに同じ方向を向くように配置されている。このため、一対の互いに頂部29pで同じ方向を向くスリット部29dから浸透した発泡体原料は、浸透膜21hからより近い距離で固化し易くなる。そのため、より少ない含浸量52により、より強い接合強度を得ることができる。その表面において、頂部29pで湾曲したスリット部29eを有する樹脂フィルム27である浸透膜21iも、上記浸透膜21hと同様の効果を奏する。   Alternatively, the permeable membrane 21h is a resin film 27 having a slit portion 29d bent at the top portion 29p on the surface thereof. On the surface of the resin film 27, the pair of slit portions 29d that bend in the same direction are arranged so that the top portions 29p face each other in the same direction. For this reason, the foam raw material that has permeated from the slit portions 29d facing the same direction at the pair of top portions 29p is easily solidified at a closer distance from the permeable membrane 21h. Therefore, a stronger bonding strength can be obtained with a smaller amount of impregnation 52. On the surface, the permeable membrane 21i, which is the resin film 27 having the slit portion 29e curved at the top 29p, also has the same effect as the permeable membrane 21h.

以下、本発明の第2実施形態について説明する。上記第1実施形態では、浸透膜21a〜21iを浸透する発泡体原料40の量を設定することにより、含浸量52を設定した。図19に示すように、本実施形態では、立体網状構造体11の内部に発泡体原料40が浸透不可能な含浸防止膜61を形成することにより、含浸量52が設定される。立体網状構造体11の内部における所望の含浸部51の終端部に、ノズル65から任意の粘度に調整されたゲル状防止膜原料62が滴下される。ゲル状防止膜原料62には、熱可逆性エラストマー、揮発性ジェル及び光硬化樹脂などを適用することができる。発泡体原料40を立体網状構造体11に含浸させる工程では、含浸防止膜61により浸透不可能とされなかった立体網状構造体11の部位に発泡体原料40が含浸させられる。立体網状構造体11に発泡体41を接合するために必要最小限の含浸量52に対応する位置に、発泡体原料40が浸透不可能な含浸防止膜61を形成することにより、上記第1実施形態の浸透膜21a〜21iを配置することと同様の効果を奏する。   Hereinafter, a second embodiment of the present invention will be described. In the said 1st Embodiment, the amount 52 of impregnations was set by setting the quantity of the foam raw material 40 which osmose | permeates the permeable membranes 21a-21i. As shown in FIG. 19, in the present embodiment, the impregnation amount 52 is set by forming an impregnation prevention film 61 through which the foam raw material 40 cannot permeate inside the three-dimensional network structure 11. A gel-like prevention film raw material 62 adjusted to have an arbitrary viscosity is dropped from a nozzle 65 to a terminal portion of a desired impregnation portion 51 inside the three-dimensional network structure 11. A thermoreversible elastomer, a volatile gel, a photo-curing resin, or the like can be applied to the gel-like prevention film material 62. In the step of impregnating the three-dimensional network structure 11 with the foam raw material 40, the foam raw material 40 is impregnated into the portion of the three-dimensional network structure 11 that is not allowed to penetrate by the impregnation preventing film 61. By forming the impregnation preventing film 61 into which the foam raw material 40 cannot permeate at a position corresponding to the minimum impregnation amount 52 required for joining the foam 41 to the three-dimensional network structure 11, the first implementation described above is performed. The same effects as the arrangement of the osmotic membranes 21a to 21i are obtained.

以下、本発明の第3実施形態について説明する。本実施形態では、図20に示すように、立体網状構造体11は、溶液槽66内の光硬化溶液63に所望の含浸量52の深さに浸漬させられる。立体網状構造体11が光硬化溶液63に浸漬させられた状態で、溶液表面64に光源67から光が照射され、溶液表面64のみが硬化させられる。これにより、立体網状構造体11の内部に含浸防止膜61を形成することができる。光硬化溶液63以外にも、乳酸カルシウム水溶液中に立体網状構造体11を所望の含浸量52の深さに浸漬させつつ、アルギン酸ナトリウム水溶液等を乳酸カルシウム水溶液の表面に噴霧することによっても、立体網状構造体11の内部に含浸防止膜61を形成することができる。   Hereinafter, a third embodiment of the present invention will be described. In the present embodiment, as shown in FIG. 20, the three-dimensional network structure 11 is immersed in a desired impregnation amount 52 in the photocuring solution 63 in the solution tank 66. In a state where the three-dimensional network structure 11 is immersed in the photo-curing solution 63, the solution surface 64 is irradiated with light from the light source 67, and only the solution surface 64 is cured. Thereby, the impregnation preventing film 61 can be formed inside the three-dimensional network structure 11. In addition to the photo-curing solution 63, the three-dimensional network structure 11 is immersed in the calcium lactate aqueous solution at a desired impregnation amount 52 while spraying a sodium alginate aqueous solution or the like on the surface of the calcium lactate aqueous solution. An impregnation preventing film 61 can be formed inside the network structure 11.

以下、本発明の第4実施形態について説明する。後述の実験例に示すように、含浸部51の硬度は、立体網状構造体11の網状の樹脂同士が発泡体41により架橋されるため、立体網状構造体11と発泡体41との硬度を加算したものよりも高くなる。含浸部51の硬度と、立体網状構造体11及び発泡体41との硬度の差を少なくするために、図21に示すように、立体網状構造体11の一部に、立体網状構造体11の全体の硬度よりも硬度を低くした低硬度部16を形成することができる。発泡体原料40を配置する工程では、低硬度部16に隣接するように発泡体原料40を配置する。発泡体原料40を立体網状構造体11に含浸させる工程では、低硬度部16に発泡体原料40を含浸させる。   The fourth embodiment of the present invention will be described below. As shown in an experimental example to be described later, the hardness of the impregnated portion 51 is obtained by adding the hardness of the three-dimensional network structure 11 and the foam 41 to each other because the resin in the three-dimensional network structure 11 is cross-linked by the foam 41. It will be higher than what you did. In order to reduce the difference between the hardness of the impregnation part 51 and the hardness of the three-dimensional network structure 11 and the foam 41, as shown in FIG. The low hardness portion 16 having a lower hardness than the overall hardness can be formed. In the step of disposing the foam material 40, the foam material 40 is disposed so as to be adjacent to the low hardness portion 16. In the step of impregnating the three-dimensional network structure 11 with the foam raw material 40, the low hardness part 16 is impregnated with the foam raw material 40.

低硬度部16は、立体網状構造体11の製造時に、低硬度部16の部分において、成型に用いるノズルを変更し、ノズルから射出される樹脂の線材の径を細くすることにより形成することができる。また、立体網状構造体11が、全体として成型に用いるノズルから内部が中空の樹脂の線材が射出されることにより製造されている場合は、低硬度部16の部分において、成型に用いるノズルを変更し、低硬度部16以外の部分よりも直径が細く、中空ではない樹脂の線材が射出されることにより、低硬度部16を形成することができる。   The low hardness portion 16 can be formed by changing the nozzle used for molding in the portion of the low hardness portion 16 and reducing the diameter of the resin wire injected from the nozzle when the three-dimensional network structure 11 is manufactured. it can. In addition, when the three-dimensional network structure 11 is manufactured by injecting a resin wire having a hollow inside from a nozzle used for molding as a whole, the nozzle used for molding is changed in the portion of the low hardness portion 16. However, the low-hardness portion 16 can be formed by injecting a resin wire that is thinner than the portion other than the low-hardness portion 16 and is not hollow.

立体網状構造体11の素材は低硬度部16と低硬度部16以外の箇所とで同一とされる。このため、立体網状構造体11及び発泡体41との接合力は低下することが無い。また、低硬度部16を含浸部51とすることで、含浸部51の硬度と、立体網状構造体11及び発泡体41との硬度の差を少なくすることができる。   The material of the three-dimensional network structure 11 is the same in the low hardness portion 16 and the portions other than the low hardness portion 16. For this reason, the joining force between the three-dimensional network structure 11 and the foam 41 does not decrease. Moreover, by making the low hardness part 16 into the impregnated part 51, the difference between the hardness of the impregnated part 51 and the hardness of the three-dimensional network structure 11 and the foam 41 can be reduced.

以下、本発明の第5実施形態について説明する。図22に示すように、本実施形態では、上記第1実施形態の浸透膜21a〜21iや、上記第2実施形態及び第3実施形態の含浸防止膜61を用いず、立体網状構造体11と発泡体原料40を配置する位置との距離Lを変更することにより、含浸量52を制御する。例えば、発泡体原料40をノズル70から型30の中に吐出する位置を、型30の中の立体網状構造体11から最も遠い位置に設定する。これにより、図22中で破線により示すように、立体網状構造体11に到達する前に発泡の過程にある発泡体原料40の表面粘度を上げることで、含浸量52を一定かつ最小に制御することが可能となる。なお、本実施形態の製造方法は、上記第1実施形態の浸透膜21a〜21iを用いる場合にも適用することができる。   The fifth embodiment of the present invention will be described below. As shown in FIG. 22, in the present embodiment, the three-dimensional network structure 11 and the permeable membranes 21 a to 21 i of the first embodiment and the impregnation preventing film 61 of the second and third embodiments are not used. The impregnation amount 52 is controlled by changing the distance L from the position where the foam material 40 is disposed. For example, the position where the foam material 40 is discharged from the nozzle 70 into the mold 30 is set to a position farthest from the three-dimensional network structure 11 in the mold 30. Thereby, as shown by a broken line in FIG. 22, the impregnation amount 52 is controlled to be constant and minimum by increasing the surface viscosity of the foam raw material 40 in the foaming process before reaching the three-dimensional network structure 11. It becomes possible. In addition, the manufacturing method of this embodiment is applicable also when using the permeable membranes 21a-21i of the said 1st Embodiment.

以下、本発明の第6実施形態について説明する。図23に示すように、本実施形態では、上記第1実施形態の浸透膜21a〜21iや、上記第2実施形態及び第3実施形態の含浸防止膜61を用いず、型30内で立体網状構造体11と発泡体原料40との間に設けられた突起物であるリブ31の高さを変更することにより、含浸量52を制御する態様を示す図である。リブ31は、型30内で立体網状構造体11の下端部に接しつつ保持する。立体網状構造体11の下端部からのリブ31の上端部の高さは1mm〜50mmに設定される。リブ31は、発泡する前の発泡体原料40の立体網状構造体11への流入を防止する。   The sixth embodiment of the present invention will be described below. As shown in FIG. 23, in this embodiment, the permeation membranes 21a to 21i of the first embodiment and the impregnation prevention film 61 of the second and third embodiments are not used, and a three-dimensional network is formed in the mold 30. It is a figure which shows the aspect which controls the amount of impregnations 52 by changing the height of the rib 31 which is the protrusion provided between the structure 11 and the foam raw material 40. FIG. The rib 31 is held in the mold 30 while being in contact with the lower end portion of the three-dimensional network structure 11. The height of the upper end portion of the rib 31 from the lower end portion of the three-dimensional network structure 11 is set to 1 mm to 50 mm. The rib 31 prevents the foam material 40 before foaming from flowing into the three-dimensional network structure 11.

図23中で破線により示すように、発泡体原料40の水平方向への発泡を抑制し、立体網状構造体11に含浸する前に垂直方向への発泡が進行し、型30内の空隙に充満したのちに余剰の発泡分が立体網状構造体11に含浸することで、発泡体原料40の投入量の調整のみで含浸量52を一定かつ最小に制御することが可能となる。なお、本実施形態の製造方法は、上記第1実施形態の浸透膜21a〜21iを用いる場合にも適用することができる。   As shown by a broken line in FIG. 23, foaming of the foam material 40 in the horizontal direction is suppressed, and foaming in the vertical direction proceeds before impregnating the three-dimensional network structure 11, filling the voids in the mold 30. After that, the excess foam is impregnated into the three-dimensional network structure 11, so that the impregnation amount 52 can be controlled to be constant and minimum only by adjusting the input amount of the foam raw material 40. In addition, the manufacturing method of this embodiment is applicable also when using the permeable membranes 21a-21i of the said 1st Embodiment.

(実験例)
以下、上記第1実施形態の実験例を示す。図18に示したような立体網状構造体11と発泡体41との接合体100に対して、接合部である浸透膜21aに垂直な方向に張力を加えた。張力を徐々に増大させると、母材である発泡体41の部分が破断した。接合部である浸透膜21aや含浸部51の部分に破断は生じなかった。
(Experimental example)
Hereinafter, experimental examples of the first embodiment will be described. A tension was applied to the joined body 100 of the three-dimensional network structure 11 and the foamed body 41 as shown in FIG. When the tension was gradually increased, the portion of the foam 41 that was the base material was broken. No breakage occurred in the osmotic membrane 21a or the impregnated portion 51, which was a joint.

また、浸透膜21a,21cを適用して接合体100を製造した場合及び浸透膜21a,21cの代わりに他の種類の浸透膜を適用して接合体100を製造した場合の含浸部51の硬度を測定した。浸透膜として、以下の表1に示す種類の浸透膜を適用した。製造された接合体100それぞれについて、浸透膜に平行であって立体網状構造体11の外表面に垂直な方向に含浸部51に対して荷重を加えた。含浸部51を10mm変形させた時の荷重を含浸部51の硬度として測定した。

Figure 2016135615

The hardness of the impregnated portion 51 when the joined body 100 is manufactured by applying the osmotic membranes 21a and 21c and when the joined body 100 is manufactured by applying another type of osmotic membrane instead of the permeable membranes 21a and 21c. Was measured. As the osmotic membrane, the type of osmotic membrane shown in Table 1 below was applied. For each of the manufactured joined bodies 100, a load was applied to the impregnated portion 51 in a direction parallel to the permeable membrane and perpendicular to the outer surface of the three-dimensional network structure 11. The load when the impregnated part 51 was deformed by 10 mm was measured as the hardness of the impregnated part 51.
Figure 2016135615

上記表1及び図24に測定の結果を示す。表1及び図24で「浸透膜無し含浸部」と示されている値のように、浸透膜21aを用いずに立体網状構造体11に発泡体原料40を含浸させると、含浸部51の硬度は、立体網状構造体11の硬度と発泡体41の硬度とを加算した値よりも大きくなる。表1及び図19で、「樹脂被覆布」と示されている浸透膜21a及び「モノフィラメント不織布」と示されている浸透膜21bによる含浸部51は、「浸透膜無し含浸部」による含浸部51と同様の硬度であることが判る。一方、「不織布A」、「不織布B」「メッシュ素材A」及び「メッシュ素材B」による含浸部51は、「浸透膜無し含浸部」による含浸部51に比べて硬い硬度であることが判る。「不織布C」による含浸部51は、「浸透膜無し含浸部」による含浸部51と同様の硬度であったが、含浸量52のバラツキが大きく、含浸部51の上部で含浸量52が小さく、含浸部51の下部で含浸量52が大きい傾向が見られた。   The measurement results are shown in Table 1 and FIG. When the foam material 40 is impregnated into the three-dimensional network structure 11 without using the osmotic membrane 21a as shown in Table 1 and FIG. 24, the hardness of the impregnated portion 51 is obtained. Is larger than the value obtained by adding the hardness of the solid network structure 11 and the hardness of the foam 41. In Table 1 and FIG. 19, the impregnation part 51 by the osmosis membrane 21a indicated as “resin-coated cloth” and the osmosis membrane 21b indicated as “monofilament nonwoven fabric” is the impregnation part 51 by “impregnation part without osmosis membrane”. It can be seen that the hardness is the same. On the other hand, it can be seen that the impregnated portion 51 made of “nonwoven fabric A”, “nonwoven fabric B”, “mesh material A”, and “mesh material B” has a harder hardness than the impregnated portion 51 made of “impregnated portion without permeation membrane”. The impregnation part 51 by “nonwoven fabric C” had the same hardness as the impregnation part 51 by “impregnation part without osmosis membrane”, but the variation of the impregnation amount 52 was large, and the impregnation amount 52 was small at the upper part of the impregnation part 51, There was a tendency for the impregnation amount 52 to be large at the bottom of the impregnation portion 51.

尚、本発明の実施形態の立体網状構造体と発泡体との接合体の製造方法は、上記した実施の形態に限定されるものではなく、本発明の実施形態の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   In addition, the manufacturing method of the joined body of the three-dimensional network-structure body and foam of embodiment of this invention is not limited to above-described embodiment, In the range which does not deviate from the summary of embodiment of this invention. Of course, various changes can be made.

11…立体網状構造体、12…樹脂線材、13…接着点、16…低硬度部、21a〜21i…浸透膜、22…繊維、23…樹脂被覆、24…空隙部、25…不織布、26…モノフィラメント繊維、27…樹脂フィルム、28…孔部、29a〜29e…スリット部、29p…頂部、30…型、31…リブ、40…発泡体原料、41…発泡体、51…含浸部、52…含浸量、61…含浸防止膜、62…ゲル状防止膜原料、63…光硬化溶液、64…溶液表面、65…ノズル、66…溶液槽、67…光源、70…ノズル、100…接合体、D…方向、L…距離。   DESCRIPTION OF SYMBOLS 11 ... Three-dimensional network structure, 12 ... Resin wire, 13 ... Adhesion point, 16 ... Low hardness part, 21a-21i ... Osmosis membrane, 22 ... Fiber, 23 ... Resin coating, 24 ... Cavity part, 25 ... Nonwoven fabric, 26 ... Monofilament fiber, 27 ... resin film, 28 ... hole, 29a to 29e ... slit, 29p ... top, 30 ... mold, 31 ... rib, 40 ... foam raw material, 41 ... foam, 51 ... impregnated part, 52 ... Impregnation amount, 61: impregnation prevention film, 62: gel-like prevention film raw material, 63: photocuring solution, 64 ... solution surface, 65 ... nozzle, 66 ... solution tank, 67 ... light source, 70 ... nozzle, 100 ... joined body, D ... direction, L ... distance.

Claims (1)

樹脂の線材を立体的に組み合わせることにより形成された立体網状構造体及び発泡体原料を配置する工程と、
前記発泡体原料を前記立体網状構造体に含浸させる工程と、
前記発泡体原料を固化させる工程と、を含む立体網状構造体と発泡体との接合体の製造方法。
Arranging a three-dimensional network structure and a foam raw material formed by three-dimensionally combining resin wires; and
Impregnating the three-dimensional network structure with the foam raw material;
A process for solidifying the foam material, and a method for producing a joined body of a three-dimensional network structure and a foam.
JP2016092581A 2016-05-02 2016-05-02 Method for producing joined body of cubic network structure and foam Pending JP2016135615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016092581A JP2016135615A (en) 2016-05-02 2016-05-02 Method for producing joined body of cubic network structure and foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016092581A JP2016135615A (en) 2016-05-02 2016-05-02 Method for producing joined body of cubic network structure and foam

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014087954A Division JP6038836B2 (en) 2014-04-22 2014-04-22 Method for manufacturing joined body of three-dimensional network structure and foam

Publications (1)

Publication Number Publication Date
JP2016135615A true JP2016135615A (en) 2016-07-28

Family

ID=56512398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016092581A Pending JP2016135615A (en) 2016-05-02 2016-05-02 Method for producing joined body of cubic network structure and foam

Country Status (1)

Country Link
JP (1) JP2016135615A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018035698A (en) * 2016-08-29 2018-03-08 トヨタ紡織株式会社 Intake system component for internal combustion engine and method for manufacturing intake system component for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018035698A (en) * 2016-08-29 2018-03-08 トヨタ紡織株式会社 Intake system component for internal combustion engine and method for manufacturing intake system component for internal combustion engine

Similar Documents

Publication Publication Date Title
WO2015163188A1 (en) Cushion structure, cushion structure component and cushion structure manufacturing method
JP6038836B2 (en) Method for manufacturing joined body of three-dimensional network structure and foam
JP5730287B2 (en) Fiber composite material and method for producing the fiber composite material
CN103052791B (en) Use multiple basic core to form the cored structure of wind turbine rotor blade
JPWO2015181870A1 (en) COMPOSITE MATERIAL MOLDED BODY AND MANUFACTURING METHOD THEREOF
KR20060134097A (en) Composite part
JP4974221B2 (en) Needle glass mat
RU2015123699A (en) METHOD OF STACKING INTERMEDIATE MATERIAL, ALLOWING TO PROVIDE THE LAST COGESIS, METHOD OF PRODUCING MULTILAYERED SYSTEM INTENDED FOR MANUFACTURE OF COMPOSITE PRODUCTS FROM
JP2009537691A5 (en)
HU227725B1 (en) A woven carbon fiber fabric, a fiber reinforced plastic molding obtained by using the woven fabric, and a production method of the molding
CN107107490A (en) Compound structure for increasing service life
JPS6147697B2 (en)
JP7098658B2 (en) A molded structure, a composite material component including the molded structure, and a method for manufacturing the composite material component.
CN103958142B (en) The manufacture method of performing member and the manufacture method of fiber-reinforced plastic formed body
JP2016135615A (en) Method for producing joined body of cubic network structure and foam
CN109070524A (en) Sheet material and bar-like member
JP4589003B2 (en) Fiber structure for composite material production
US20210129420A1 (en) Method for producing a three-dimensional, multi-layer fibre composite component
JP2019043108A (en) Fiber reinforced composite material
US20110268957A1 (en) Needle bonded complex
TWM568861U (en) Long fiber sheet-like molding compound
CN110549711A (en) Long-fiber sheet molding compound and manufacturing method thereof
JP6786989B2 (en) Composite material molding method
CN114630245B (en) Loudspeaker diaphragm
JP5010159B2 (en) Vacuum injection molding method of spiral guide plate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160513