JP2016133403A - Motion sensor - Google Patents

Motion sensor Download PDF

Info

Publication number
JP2016133403A
JP2016133403A JP2015008422A JP2015008422A JP2016133403A JP 2016133403 A JP2016133403 A JP 2016133403A JP 2015008422 A JP2015008422 A JP 2015008422A JP 2015008422 A JP2015008422 A JP 2015008422A JP 2016133403 A JP2016133403 A JP 2016133403A
Authority
JP
Japan
Prior art keywords
acceleration
frame
angular velocity
magnet
motion sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015008422A
Other languages
Japanese (ja)
Inventor
徹雄 波多
Tetsuo Hata
徹雄 波多
朋大 森木
Tomohiro Moriki
朋大 森木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2015008422A priority Critical patent/JP2016133403A/en
Publication of JP2016133403A publication Critical patent/JP2016133403A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a motion sensor capable of measuring all of acceleration, angular velocity, and geomagnetism by using only a sensor element of one type and without needing calibration by an externally installed device.SOLUTION: The motion sensor includes a frame; a magnet which is supported by a spiral elastic body one end of which is fixed to the frame, and is capable of freely moving with respect to the frame; and a plurality of magnetic sensors which are fixed to the frame. The motion sensor measures the acceleration by detecting the position of the magnet with the plurality of magnetic sensors, and measures the orientation by detecting the geomagnetism. A plurality of the acceleration and orientation measurement units of such the configuration are arranged so as to calculate the angular velocity by using the measurement values of the acceleration of the plurality of acceleration and orientation measurement units.SELECTED DRAWING: Figure 1

Description

本発明は、加速度、角速度、方位を測定するモーションセンサに関するものである。   The present invention relates to a motion sensor that measures acceleration, angular velocity, and direction.

例えば、特許文献1には、加速度センサ、角速度センサ、磁気センサを備え、これらのセンサの測定値を基に姿勢・方位を算出する小型姿勢センサが開示されている。   For example, Patent Document 1 discloses a small posture sensor that includes an acceleration sensor, an angular velocity sensor, and a magnetic sensor, and calculates posture / orientation based on measurement values of these sensors.

また、特許文献2には、加速度センサ、角速度センサに加え、絶対位置が既知の指標手段と前記指標手段の情報を取得する手段を備え、前記指標手段により前記加速度センサ、前記角速度センサを較正する測位システムが開示されている。   In addition to the acceleration sensor and the angular velocity sensor, Patent Document 2 includes an index unit whose absolute position is known and a unit that acquires information on the index unit, and the acceleration unit and the angular velocity sensor are calibrated by the index unit. A positioning system is disclosed.

特開2013−200162号公報JP 2013-2000162 A 特開2013−185845号公報JP 2013-185845 A

加速度・角速度・方位を測定する従来のモーションセンサは、それぞれの物理量を得るために異なった種類のセンサ素子を組み合わせる必要があり、コストや小型化の点で限界があった。   Conventional motion sensors that measure acceleration, angular velocity, and azimuth need to combine different types of sensor elements in order to obtain their physical quantities, and have limitations in terms of cost and miniaturization.

また、角速度の測定値を積分して方位を得る方式のモーションセンサは、長い距離を移動すると誤差が累積されて大きくなるという欠点があり、これを回避するには外部に設置された装置による較正を必要とする欠点があった。   In addition, the motion sensor that integrates the angular velocity measurement value to obtain the azimuth has the disadvantage that the error accumulates and becomes large when moving over a long distance. To avoid this, calibration by an externally installed device is required. There was a drawback that required.

本発明はこのような事情の下になされたものであり、単一の種類のセンサ素子を用いて加速度・角速度・方位のそれぞれの物理量を得ることができ、かつ外部に設置された装置による較正を必要としないモーションセンサを提供することを目的とする。   The present invention has been made under such circumstances, and each physical quantity of acceleration, angular velocity, and direction can be obtained using a single type of sensor element, and calibration by an apparatus installed outside. An object of the present invention is to provide a motion sensor that does not require a sensor.

フレームと、前記フレームに一端を固定された渦巻状の弾性体で支えられ、前記フレームに対して自由に運動することのできる磁石と、前記フレーム上に固定された複数の磁気センサを備え、前記複数の磁気センサによって前記磁石の位置を検出することで加速度を測定し、地磁気を検出することで方位を測定する。また、前記構成の加速度・方位測定部を複数配置し、前記複数の加速度・方位測定部のそれぞれの加速度の測定値を利用して角速度を算出する。   A frame, a magnet supported by a spiral elastic body having one end fixed to the frame, and capable of moving freely with respect to the frame; and a plurality of magnetic sensors fixed on the frame, The acceleration is measured by detecting the position of the magnet with a plurality of magnetic sensors, and the azimuth is measured by detecting geomagnetism. In addition, a plurality of acceleration / orientation measuring units having the above-described configuration are arranged, and the angular velocity is calculated using the measured acceleration values of the plurality of acceleration / orientation measuring units.

本発明によれば、物理量を検出する素子として磁気センサのみを用いるモーションセンサで加速度・角速度・地磁気の全てを高い精度で測定でき、従来のモーションセンサと比較して低コスト化や小型化が容易となる。   According to the present invention, a motion sensor that uses only a magnetic sensor as an element for detecting a physical quantity can measure all of acceleration, angular velocity, and geomagnetism with high accuracy, and can be easily reduced in cost and size as compared with a conventional motion sensor. It becomes.

また、本発明のモーションセンサでは、角速度と方位を別の物理量として得られるため、角速度を積分して方位を求める必要がなく、長い距離を移動しても誤差が累積されることがない。   In the motion sensor of the present invention, the angular velocity and the azimuth can be obtained as different physical quantities, so there is no need to integrate the angular velocity to obtain the azimuth, and no error is accumulated even when moving a long distance.

また、前記弾性体を渦巻ばね状のものにすることによって、各軸の変位に対する剛性を均一かつ線形性の良いものとすることができる。   Further, by making the elastic body into a spiral spring shape, the rigidity with respect to the displacement of each axis can be made uniform and good in linearity.

下記実施形態における加速度・方位測定部の構成を示した上面図である。It is the top view which showed the structure of the acceleration and the direction measurement part in the following embodiment. 図1のA−A断面図である。It is AA sectional drawing of FIG. 下記実施形態における3軸角速度を測定するモーションセンサの加速度・方位測定部の配列を示した上面図である。It is the top view which showed the arrangement | sequence of the acceleration and direction measurement part of the motion sensor which measures the triaxial angular velocity in the following embodiment. 下記実施形態における1軸角速度を測定するモーションセンサの加速度・方位測定部の配列を示した上面図である。It is the top view which showed the arrangement | sequence of the acceleration and azimuth | direction measurement part of the motion sensor which measures the uniaxial angular velocity in the following embodiment. 実施例における印加した加速度に対する信号強度の測定値のグラフである。It is a graph of the measured value of the signal strength with respect to the applied acceleration in an Example.

(実施の形態)
図1および図2は実施の形態における加速度・方位測定部の構成を示した図である。加速度・方位測定部は、フレーム1と、フレーム1に一端を固定された渦巻状の弾性体2に支えられ自由に運動できる磁石3、フレーム1上に固定されたGMRセンサ4から9を備える。
(Embodiment)
FIG. 1 and FIG. 2 are diagrams showing the configuration of the acceleration / orientation measuring unit in the embodiment. The acceleration / azimuth measuring unit includes a frame 1, a magnet 3 supported by a spiral elastic body 2 having one end fixed to the frame 1, and a GMR sensor 4 to 9 fixed on the frame 1.

GMRセンサ4から9は、加速度・方位測定部の周囲6面に配置され、それぞれの位置における磁束密度を測定する。磁石の変位が微小であれば、それぞれのGMRセンサで測定される磁束密度の変化は磁石の変位に対し線形であるため、それぞれのGMRセンサの測定値から磁石の変位を求めることができる。それぞれの測定値を以下に詳述するような手順で処理することによって加速度・方位を算出する。   The GMR sensors 4 to 9 are arranged on six surfaces around the acceleration / orientation measuring unit, and measure the magnetic flux density at each position. If the displacement of the magnet is very small, the change in magnetic flux density measured by each GMR sensor is linear with respect to the displacement of the magnet, so that the displacement of the magnet can be obtained from the measurement value of each GMR sensor. The acceleration / orientation is calculated by processing each measurement value in the procedure as described in detail below.

X方向加速度が加速度・方位測定部にかけられた場合、磁石3が−X方向に変位するため、GMR5と磁石3間の距離が増大し、GMR7と磁石3間の距離が減少する。これによって求めた磁石3の−X方向変位に弾性体2のX方向に関する剛性を乗じて磁石3の質量で除すことによってX軸方向加速度を求めることができる。以上を数式で表すと次式のようになる。Y方向加速度およびZ方向加速度も同様に求めることができる。

Figure 2016133403
When the acceleration in the X direction is applied to the acceleration / azimuth measuring unit, the magnet 3 is displaced in the −X direction, so that the distance between the GMR 5 and the magnet 3 increases and the distance between the GMR 7 and the magnet 3 decreases. The X-axis direction acceleration can be obtained by multiplying the displacement in the −X direction of the magnet 3 thus obtained by the rigidity in the X direction of the elastic body 2 and dividing the result by the mass of the magnet 3. The above is expressed by the following equation. The Y-direction acceleration and the Z-direction acceleration can be obtained similarly.
Figure 2016133403

加速度・方位測定部に対する地磁気ベクトルが変化した場合、加速度・方位測定部内部で磁石が変位した場合と異なり、向かい合う位置にあるGMRセンサ(GMR4と6、GMR5と7、GMR8と9)で測定される磁束密度に等しい変化が生じる。そのため、向かい合う位置にあるGMRセンサ同士の測定値の平均を取ることで、磁石3の変位による磁場の影響を排除し地磁気の各方向成分のみを抽出することができる。   When the geomagnetic vector for the acceleration / orientation measurement unit changes, it is measured by the GMR sensors (GMR4 and 6, GMR5 and 7, GMR8 and 9) at opposite positions, unlike when the magnet is displaced inside the acceleration / orientation measurement unit. A change equal to the magnetic flux density occurs. Therefore, by taking the average of the measured values of the GMR sensors at the opposite positions, the influence of the magnetic field due to the displacement of the magnet 3 can be eliminated, and only the direction component of geomagnetism can be extracted.

上述した構成の加速度・方位測定部を複数個用いることによって、角速度も測定できるようになる。図3では、上記加速度・方位測定部を等間隔に3個配置してある。X軸周り角速度がかけられた場合、加速度・方位測定部1、2は同じ測定値を示すのに対し、加速度・方位測定部3のY方向加速度の測定値が他の2個より増大するため、この差によりX軸周り加速度を求めることができる。以上を数式で表すと以下のようになる。Y軸周り角速度およびZ軸周り角速度も同様に求めることができる。

Figure 2016133403
なお、前式では角速度が絶対値としてしか求められないため回転方向が分からないという問題が存在するが、角加速度の立ち上がりを観測することでこの問題を回避できる。具体的には、X軸周りにX軸方向から見て時計回りの角加速度がかけられた場合、加速度・方位測定部3のみにZ軸方向加速度が観測されることになるため、この角加速度の絶対値が一定値以上になった場合のみ角速度の測定を開始し、またこの角加速度の符号により回転方向を判断することができる。
また、本実施例では3個の加速度・方位測定部を等間隔に配置してあるが、原理的には必ずしも等間隔である必要はなく、3個とも同一直線状に並んでしまうことさえ避ければ3軸角速度を測定できる。 The angular velocity can be measured by using a plurality of acceleration / orientation measuring units having the above-described configuration. In FIG. 3, three acceleration / azimuth measuring units are arranged at equal intervals. When the angular velocity around the X axis is applied, the acceleration / azimuth measurement units 1 and 2 show the same measurement value, but the measurement value of the acceleration / azimuth measurement unit 3 in the Y direction increases more than the other two. From this difference, the acceleration around the X axis can be obtained. The above is expressed as a mathematical expression as follows. The angular velocity around the Y axis and the angular velocity around the Z axis can be similarly determined.
Figure 2016133403
In the previous equation, since the angular velocity can only be obtained as an absolute value, there is a problem that the rotational direction is unknown, but this problem can be avoided by observing the rising edge of the angular acceleration. Specifically, when a clockwise angular acceleration is applied around the X axis as viewed from the X axis direction, the Z axis direction acceleration is observed only in the acceleration / azimuth measuring unit 3. Measurement of the angular velocity is started only when the absolute value of becomes equal to or greater than a certain value, and the direction of rotation can be determined from the sign of this angular acceleration.
In this embodiment, the three acceleration / azimuth measuring units are arranged at equal intervals. However, in principle, the three acceleration / orientation measuring units do not necessarily have to be equally spaced, and it is possible to avoid that all three are arranged in the same straight line. 3 axis angular velocity can be measured.

また、求めたい角速度が1軸のみである場合は図4のように上記加速度・方位測定部を2個用いることで測定できる。この場合、加速度・方位測定部1と加速度・方位測定部2のX方向加速度の差を利用してZ軸周り角速度を求めることができ、次式のように表される。回転方向の区別については3軸の場合と同様である。

Figure 2016133403
Further, when the desired angular velocity is only one axis, it can be measured by using two acceleration / orientation measuring units as shown in FIG. In this case, the angular velocity around the Z-axis can be obtained using the difference between the accelerations in the X direction of the acceleration / azimuth measuring unit 1 and the acceleration / azimuth measuring unit 2 and is expressed as the following equation. The distinction of the rotation direction is the same as in the case of three axes.
Figure 2016133403

図5は、図1の構造の加速度・方位測定部にX方向加速度を±16Gの範囲で印加した場合の信号強度の測定値の例である。本実施例においては、印加した加速度1Gあたり6.48μVの信号が得られている。   FIG. 5 is an example of signal intensity measurement values when X-direction acceleration is applied in the range of ± 16 G to the acceleration / orientation measurement unit having the structure of FIG. In the present embodiment, a signal of 6.48 μV is obtained per 1 G of applied acceleration.

1 フレーム
2 弾性体
3 磁石
4〜9 GMRセンサ
10〜12 加速度・方位測定部1〜3
DESCRIPTION OF SYMBOLS 1 Frame 2 Elastic body 3 Magnet 4-9 GMR sensor 10-12 Acceleration and direction measurement part 1-3

Claims (1)

フレームと、前記フレームに一端が固定された渦巻ばね状の弾性体で支えられ、前記フレームに対して自由に運動することのできる磁石と、前記フレームに固定された複数の磁気センサを備え、前記複数の磁気センサによって前記磁石の位置を検出することで加速度を測定し、地磁気を検出することで方位を測定する加速度・方位測定部を複数配置し、前記複数の加速度・方位測定部のそれぞれの加速度の測定値から角速度を算出することを特徴とするモーションセンサ。   A frame, a magnet supported by a spiral spring-like elastic body having one end fixed to the frame, and capable of moving freely with respect to the frame; and a plurality of magnetic sensors fixed to the frame, Acceleration is measured by detecting the position of the magnet by a plurality of magnetic sensors, and a plurality of acceleration / azimuth measuring units that measure azimuth by detecting geomagnetism are arranged, and each of the plurality of acceleration / azimuth measuring units is arranged. A motion sensor characterized by calculating an angular velocity from a measured value of acceleration.
JP2015008422A 2015-01-20 2015-01-20 Motion sensor Pending JP2016133403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015008422A JP2016133403A (en) 2015-01-20 2015-01-20 Motion sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015008422A JP2016133403A (en) 2015-01-20 2015-01-20 Motion sensor

Publications (1)

Publication Number Publication Date
JP2016133403A true JP2016133403A (en) 2016-07-25

Family

ID=56437954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015008422A Pending JP2016133403A (en) 2015-01-20 2015-01-20 Motion sensor

Country Status (1)

Country Link
JP (1) JP2016133403A (en)

Similar Documents

Publication Publication Date Title
US10495664B2 (en) Dynamic self-calibration of an accelerometer system
US9229026B2 (en) Accelerometer systems and methods
RU2566427C1 (en) Method of determination of temperature dependences of scaling factors, zero shifts and array of orientation of axes of sensitivity of laser gyroscopes and pendulum accelerometers as part of inertial measuring unit at bench tests
JP6525336B2 (en) 3-axis digital compass
CN109791048A (en) Usage scenario captures the method and system of the component of data calibration Inertial Measurement Unit (IMU)
US9395386B2 (en) Electronic tilt compensation for diaphragm based pressure sensors
EP2581707B1 (en) Contactless magnetic linear position sensor
KR101314151B1 (en) Calibration Method for 6-Axis Vibration Sensors using Periodic Angular Vibration and Its Realization System
CN103471590A (en) Motion inertia tracking system
CN107110919B (en) Apparatus and method for surface shape analysis spatial localization based on magnetic sensors
Łuczak Experimental studies of hysteresis in MEMS accelerometers: a commentary
JP5475873B2 (en) Geomagnetic detector
JP5877728B2 (en) Magnetic detector
JP2016133403A (en) Motion sensor
CN106338618B (en) A kind of uniaxial mems accelerometer based on giant magnetoresistance effect
Choi et al. Calibration of inertial measurement units using pendulum motion
JP2012103207A (en) Output correction circuit of magnetic sensor, output correction method of magnetic sensor, and azimuth angle measurement device
CN106706959B (en) A kind of uniaxial mems accelerometer based on anisotropic-magnetoresistance effect
CN115135962A (en) Method and apparatus for zero g offset calibration of MEMS-based accelerometers
WO2002059627A1 (en) System and method for calibrating an accelerometer assembly
RU168085U1 (en) DEVICE FOR MEASURING ANGULAR ACCELERATION
US10191123B2 (en) Magnetic field measurement device
Oskin et al. Experimental Research of an Array of Gyroscopic Sensors in Static Mode
KR102032463B1 (en) Apparatus for measuring steering angle of vehicle
JP2010025840A (en) Force detector