JP2016132770A - Molding material for heat compression molding and molded article thereof - Google Patents

Molding material for heat compression molding and molded article thereof Download PDF

Info

Publication number
JP2016132770A
JP2016132770A JP2015010294A JP2015010294A JP2016132770A JP 2016132770 A JP2016132770 A JP 2016132770A JP 2015010294 A JP2015010294 A JP 2015010294A JP 2015010294 A JP2015010294 A JP 2015010294A JP 2016132770 A JP2016132770 A JP 2016132770A
Authority
JP
Japan
Prior art keywords
mass
molding
alcohol
heat compression
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015010294A
Other languages
Japanese (ja)
Other versions
JP6432365B2 (en
Inventor
澤田 栄嗣
Eiji Sawada
栄嗣 澤田
三輪 広治
Koji Miwa
広治 三輪
木村 正昭
Masaaki Kimura
正昭 木村
達郎 嘉納
Tatsuro Kano
達郎 嘉納
隆平 黒川
Ryuhei Kurokawa
隆平 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2015010294A priority Critical patent/JP6432365B2/en
Publication of JP2016132770A publication Critical patent/JP2016132770A/en
Application granted granted Critical
Publication of JP6432365B2 publication Critical patent/JP6432365B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Macromonomer-Based Addition Polymer (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a molding material for heat compression molding good in moldability as appropriate flow resistance are generated during molding, capable of providing a molded article having good appearance even with long term storage and excellent in storage stability.SOLUTION: A molding material for heat compression molding obtained by impregnating a resin composition (A) containing an unsaturated polyester resin (a1), a radical polymerizable diluent (a2), alcohol having 2 hydroxyl groups in a molecule (a3), alcohol having 3 or more hydroxyl groups in a molecule (a4), magnesium oxide and a polymerization initiator into a glass fiber (B), where the resin composition (A) contains 100 pts.mass of the unsaturated polyester resin (a1), 0.1 to 1.0 pts.mass of the alcohol (a3), 0.02 to 0.5 pts.mass of the alcohol (a4) and 0.1 to 5 pts.mass of the magnesium oxide, is used.SELECTED DRAWING: None

Description

本発明は、加熱圧縮成形法により得られる成形品の外観品質が優れ、且つ、長期保存安定性が良好な加熱圧縮成形用成形材料及びその成形品に関する。   The present invention relates to a molding material for heat compression molding having excellent appearance quality of a molded product obtained by a heat compression molding method and good long-term storage stability, and the molded product thereof.

一般に、不飽和ポリエステル樹脂をマトリックス樹脂とした、シートモールディングコンパウンド(SMC)と呼ばれるシート状の成形材料、バルクモールディングコンパウンド(BMC)と呼ばれる塊状の成形材料は、バスタブ・浴室洗い場・防水パン・キッチンカウンター・洗面カウンター等の住宅設備部材、浄化槽部材、水タンクパネル部材、自動車部材、鉄道車両部材、船舶部材、電気部材、建築・土木材料部材等に広く用いられている。   In general, sheet molding compound (SMC), which is made of unsaturated polyester resin as matrix resin, and bulk molding compound called bulk molding compound (BMC) are used in bathtubs, bathrooms, waterproof pans and kitchen counters. -Widely used in housing equipment members such as wash counters, septic tank members, water tank panel members, automobile members, railway vehicle members, ship members, electrical members, construction / civil engineering materials members, etc.

SMCは、マトリックス樹脂、無機充填剤、硬化剤、増粘剤、その他添加剤からなる液状の樹脂コンパウンドをドクターナイフコーター方式等により、キャリアフィルム上に一定の厚みで塗布した2組の樹脂コンパウンド層の間に、0.5〜3インチ長にカットしたガラス繊維や炭素繊維等からなる繊維強化材を挟み込み、繊維強化材に樹脂コンパウンドを含浸させ、その後に樹脂コンパウンドを増粘させることで、取り扱いに優れたシート状の成形材料として得られるものである。この樹脂コンパウンドは、キャリアフィルム上に一定の厚みで塗布する際には液状で、繊維強化材に含浸させた後には増粘することが求められる(Bステージ化)。なお、これらシート状成形材料をプリプレグと呼ぶ場合がある。
一方、BMCは、マトリックス樹脂、無機充填剤、硬化剤、増粘剤、その他充填剤、及びチョップドストランドと呼ばれる比較的短くカットされた繊維強化材を、ニーダー混練機などで混合し、増粘させることで塊状の成形材料として得られる。
SMC is a set of two resin compound layers in which a liquid resin compound consisting of a matrix resin, inorganic filler, curing agent, thickener, and other additives is applied to a carrier film with a constant thickness by a doctor knife coater method. The fiber reinforcement made of glass fiber, carbon fiber, etc. cut to a length of 0.5 to 3 inches is sandwiched between them, the fiber reinforcement is impregnated with resin compound, and then the resin compound is thickened to handle It is obtained as a sheet-shaped molding material excellent in the above. This resin compound is required to be in a liquid state when applied to a carrier film with a certain thickness and to thicken after being impregnated into a fiber reinforcement (B-stage formation). These sheet-shaped molding materials are sometimes referred to as prepregs.
On the other hand, BMC is mixed with a matrix resin, an inorganic filler, a curing agent, a thickener, other fillers, and a relatively short cut fiber reinforcing material called chopped strands to increase the viscosity. In this way, it is obtained as a massive molding material.

また、前記SMC及びBMCの成形方法としては、加熱圧縮成形法または射出成形法等が挙げられる。加熱圧縮成形法は、プレス機を用いて、高温に加熱した金型内にSMCまたはBMCを投入して金型を閉め切った後に、金型内で樹脂を硬化反応させて、成形品を得る方法である。射出成形法は、射出成形機を用いて、常温から中温のSMCまたはBMCを、高温の金型内に注入した後に、金型内で樹脂を硬化反応させて、成形品を得る方法である。   Examples of the molding method of the SMC and BMC include a heat compression molding method and an injection molding method. The heat compression molding method is a method of using a press machine to insert SMC or BMC into a mold heated to a high temperature and closing the mold, and then curing the resin in the mold to obtain a molded product. It is. The injection molding method is a method of obtaining a molded product by injecting SMC or BMC having a normal temperature to a medium temperature into a high-temperature mold using an injection molding machine and then curing the resin in the mold.

前記SMC及びBMCのマトリックス樹脂としては、成形材料の量産性やコストの観点から、カルボン酸基を有する不飽和ポリエステル樹脂を用いて、カルボン酸と酸化マグネシウムとを反応させて増粘させる場合が多い。このカルボン酸と酸化マグネシウムの増粘反応は、水分の影響を受け、また、経過時間とともに徐々に進行するため、これらの成形材料は製品ライフが短いという欠点がある。   As the matrix resin of SMC and BMC, an unsaturated polyester resin having a carboxylic acid group is often used to increase the viscosity by reacting carboxylic acid and magnesium oxide from the viewpoint of mass productivity and cost of molding materials. . The thickening reaction between the carboxylic acid and magnesium oxide is affected by moisture and gradually proceeds with the passage of time, so that these molding materials have a drawback that the product life is short.

SMC及びBMCの成形材料を加熱圧縮成形または射出成形する際、コンパウンド中にエアを巻き込み、成形品表面にピンホール等の外観不良を発生する場合がある。前記増粘反応が強いほど、成形時にコンパウンドの流動抵抗が高くなるためエアを巻き込み難くなるため、前記のピンホール不良は発生し難くなるが、増粘反応が強すぎると、SMC及びBMCの製造時に樹脂コンパウンドのガラス繊維への含浸が不十分となり、逆に成形時のピンホール発生が多くなる場合や、成形時の流動抵抗が高すぎて金型端末までコンパウンドとガラス繊維が流動しないショートショットと呼ばれる不良が発生する場合がある。逆に、前記増粘反応が弱すぎると、成形時のコンパウンドの流動抵抗が低くなるためエアを巻き込み易くなり、前記のピンホール不良が発生し易くなることに加えて、コンパウンドとガラス繊維が一緒に流動せず、製品端末のガラス含有率が低くなり、クラックや割れが発生する場合がある。   When the SMC and BMC molding materials are subjected to heat compression molding or injection molding, air may be involved in the compound to cause appearance defects such as pinholes on the surface of the molded product. The stronger the thickening reaction, the higher the flow resistance of the compound during molding, making it difficult to entrain air. Therefore, the pinhole defect is less likely to occur, but if the thickening reaction is too strong, the production of SMC and BMC Sometimes the resin compound is not sufficiently impregnated into the glass fiber, and conversely, pinholes are often generated during molding, or the flow resistance during molding is too high and the compound and glass fiber do not flow to the mold end. There is a case where a defect called as occurs. On the other hand, if the thickening reaction is too weak, the flow resistance of the compound at the time of molding becomes low, which makes it easy to entrain air and the above-mentioned pinhole failure easily occurs. In addition, the compound and glass fiber are mixed together. In some cases, the glass content of the product terminal is low, and cracks and cracks may occur.

この不飽和ポリエステル樹脂中のカルボン酸基と酸化マグネシウムの増粘反応は、常温で保存した場合に、時間の経過とともに進行するため、SMC及びBMCは保存安定性に劣り、製品ライフが短いという問題を抱えている。すなわち、加熱圧縮成形性または射出成形性が良好で、且つ、保存安定性に優れるSMC及びBMCの成形材料を得ることはこれまで困難であった。   The thickening reaction of carboxylic acid groups and magnesium oxide in the unsaturated polyester resin proceeds with time when stored at room temperature, so SMC and BMC are inferior in storage stability and have a short product life. Have That is, it has been difficult to obtain molding materials for SMC and BMC that have good heat compression moldability or injection moldability and excellent storage stability.

このような課題に対し、例えば、不飽和ポリエステル樹脂、低収縮化剤、増粘剤、増粘安定剤、充填剤及び繊維強化材を含有し、前記増粘安定剤が水酸基を有する(メタ)アクリレートであり、その量が不飽和ポリエステル樹脂と低収縮化剤の合計100重量部に対して0.2〜20重量部であることを特徴とするSMCが提案されている(特許文献1)。しかしながら、前記増粘安定剤を前記範囲内で添加すると増粘反応が早すぎて、SMC製造時にコンパウンドのガラス繊維への含浸性が悪くなるため、加熱圧縮成形時にエアの巻き込みによるピンホールが発生する問題や、成形時の過剰流動抵抗によりガラス繊維が成形品表面に偏在する問題が生じ、外観良好な成形品を得ることは困難である。   For such a problem, for example, it contains an unsaturated polyester resin, a low shrinkage agent, a thickening agent, a thickening stabilizer, a filler and a fiber reinforcing material, and the thickening stabilizer has a hydroxyl group (meta) SMC, which is an acrylate and whose amount is 0.2 to 20 parts by weight with respect to a total of 100 parts by weight of an unsaturated polyester resin and a low shrinkage agent, has been proposed (Patent Document 1). However, if the thickening stabilizer is added within the above range, the thickening reaction is too early, and the impregnation property of the compound into the glass fiber deteriorates during SMC production, so that pinholes are generated due to air entrainment during heat compression molding. And a problem that the glass fibers are unevenly distributed on the surface of the molded product due to excessive flow resistance at the time of molding, and it is difficult to obtain a molded product with a good appearance.

また、不飽和ポリエステル樹脂、重合性単量体、低収縮剤、硬化剤および充填材の総量に対して、水分吸着剤及び増粘開始剤である水酸基を有するアルコール化合物を0.05〜10重量%を含有するSMCが提案されている(特許文献2)。しかしながら、このSMCではハンドリング性は良好となるが、加熱圧縮成形性及び保存安定性が不十分である。   Further, 0.05 to 10 weight percent of an alcohol compound having a hydroxyl group which is a moisture adsorbent and a thickening initiator with respect to the total amount of unsaturated polyester resin, polymerizable monomer, low shrinkage agent, curing agent and filler. % SMC has been proposed (Patent Document 2). However, with this SMC, the handleability is good, but the heat compression moldability and storage stability are insufficient.

特開平8−104800号公報JP-A-8-104800 特開2003−213020号公報Japanese Patent Laid-Open No. 2003-213020

本発明が解決しようとする課題は、成形時に適正な流動抵抗が生じるため成形性が良好で、且つ、長期間保存しても外観良好な成形品が得られる、保存安定性に優れる加熱圧縮成形用成形材料を提供することである。   The problem to be solved by the present invention is a heat compression molding that has good moldability because of proper flow resistance at the time of molding, and can obtain a molded product having a good appearance even when stored for a long period of time. Is to provide a molding material.

本発明者等は、不飽和ポリエステル樹脂、ラジカル重合性希釈剤、特定のアルコール、酸化マグネシウム及び重合開始剤を特定比率で含有する樹脂組成物を、ガラス繊維に含浸して得られる加熱圧縮成形用成形材料が、成形性および保存安定性に優れることを見出し、本発明を完成した。   The present inventors are for heat compression molding obtained by impregnating glass fibers with a resin composition containing an unsaturated polyester resin, a radical polymerizable diluent, a specific alcohol, magnesium oxide and a polymerization initiator in a specific ratio. The present inventors have found that the molding material is excellent in moldability and storage stability and completed the present invention.

すなわち、不飽和ポリエステル樹脂(a1)、ラジカル重合性希釈剤(a2)、1分子中に2つの水酸基を有するアルコール(a3)、1分子中に3つ以上の水酸基を有するアルコール(a4)、酸化マグネシウム、及び重合開始剤を含有する樹脂組成物(A)を、ガラス繊維(B)に含浸して得られる加熱圧縮成形用成形材料であって、前記樹脂組成物(A)が、前記不飽和ポリエステル樹脂(a1)100質量部に対して、前記アルコール(a3)を0.1〜1.0質量部、前記アルコール(a4)を0.02〜0.5質量部、前記酸化マグネシウムを0.1〜5質量部含有するものであることを特徴とする加熱圧縮成形用成形材料に関する。   That is, unsaturated polyester resin (a1), radical polymerizable diluent (a2), alcohol having two hydroxyl groups in one molecule (a3), alcohol having three or more hydroxyl groups in one molecule (a4), oxidation A molding composition for heat compression molding obtained by impregnating glass fiber (B) with a resin composition (A) containing magnesium and a polymerization initiator, wherein the resin composition (A) is unsaturated. 0.1 to 1.0 part by mass of the alcohol (a3), 0.02 to 0.5 part by mass of the alcohol (a4), and 0.02 to 0.5 parts by mass of the magnesium oxide with respect to 100 parts by mass of the polyester resin (a1). It is related with the molding material for heat compression molding characterized by containing 1-5 mass parts.

本発明の加熱圧縮成形用成形材料は、保存安定性に優れ、高温時の流動抵抗が高いため、加熱圧縮成形時のピンホール等の外観不良が発生し難く、且つ、表面外観が良好であるため、SMC及びBMC用途として一般的であるバスタブやキッチンカウンター等の住宅設備部材に加えて、自動車部材、船舶部材、航空機部材等の外観品質が求められる用途や、成形品表面に塗装を施す用途などに好適に用いることができる。   The molding material for heat compression molding of the present invention is excellent in storage stability and has high flow resistance at high temperature, so that appearance defects such as pinholes at the time of heat compression molding hardly occur and the surface appearance is good. Therefore, in addition to housing equipment members such as bathtubs and kitchen counters that are commonly used for SMC and BMC applications, applications that require the appearance quality of automobile members, ship members, aircraft members, etc., and applications that apply to the surface of molded products It can use suitably for.

本発明の加熱圧縮成形用成形材料は、不飽和ポリエステル樹脂(a1)、ラジカル重合性希釈剤(a2)、1分子中に2つの水酸基を有するアルコール(a3)、1分子中に3つ以上の水酸基を有するアルコール(a4)、酸化マグネシウム、及び重合開始剤を含有する樹脂組成物(A)を、ガラス繊維(B)に含浸して得られる加熱圧縮成形用成形材料であって、前記樹脂組成物(A)が、前記不飽和ポリエステル樹脂(a1)100質量部に対して、前記アルコール(a3)を0.1〜1.0質量部、前記アルコール(a4)を0.02〜0.5質量部、前記酸化マグネシウムを0.1〜5質量部含有するものである。   The molding material for heat compression molding of the present invention comprises an unsaturated polyester resin (a1), a radical polymerizable diluent (a2), an alcohol having two hydroxyl groups in one molecule (a3), and three or more in one molecule. A molding material for heat compression molding obtained by impregnating a glass fiber (B) with a resin composition (A) containing a hydroxyl group-containing alcohol (a4), magnesium oxide, and a polymerization initiator, wherein the resin composition The product (A) is 0.1 to 1.0 part by mass of the alcohol (a3) and 0.02 to 0.5 part of the alcohol (a4) with respect to 100 parts by mass of the unsaturated polyester resin (a1). It contains 0.1 to 5 parts by mass of the magnesium oxide.

まず、前記樹脂組成物(A)について説明する。前記樹脂組成物(A)は、不飽和ポリエステル樹脂(a1)、ラジカル重合性希釈剤(a2)、1分子中に2つの水酸基を有するアルコール(a3)、1分子中に3つ以上の水酸基を有するアルコール(a4)、酸化マグネシウム、及び重合開始剤を含有するものである。   First, the resin composition (A) will be described. The resin composition (A) comprises an unsaturated polyester resin (a1), a radical polymerizable diluent (a2), an alcohol (a3) having two hydroxyl groups in one molecule, and three or more hydroxyl groups in one molecule. It contains alcohol (a4), magnesium oxide, and a polymerization initiator.

前記不飽和ポリエステル樹脂(a1)は、多塩基酸成分と多価アルコール成分とを縮合重合して得られた不飽和ポリエステル樹脂であり、酸価が5〜40(mgKOH/g)の範囲のものが、本発明の高温成形時の流動性が良好で、且つ、保存安定性が優れることから好ましく、酸価が10〜30(mgKOH/g)の範囲のものが、更に好ましい。   The unsaturated polyester resin (a1) is an unsaturated polyester resin obtained by condensation polymerization of a polybasic acid component and a polyhydric alcohol component, and has an acid value in the range of 5 to 40 (mgKOH / g). However, it is preferable because the fluidity during high-temperature molding of the present invention is good and the storage stability is excellent, and the acid value is more preferably in the range of 10 to 30 (mgKOH / g).

前記不飽和ポリエステル樹脂(a1)の原料となる多塩基酸成分としては、例えば、マレイン酸、フマル酸、イタコン酸、シトラコン酸及びこれら二塩基酸の無水物、アジピン酸、セバシン酸、コハク酸、グルコン酸、フタル酸無水物、イソフタル酸、テレフタル酸、テトラヒドロフタル酸無水物、クロレンド酸無水物等が挙げられる。これらの多塩基酸成分は、単独で用いることも2種以上併用することもできる。   Examples of the polybasic acid component used as a raw material for the unsaturated polyester resin (a1) include maleic acid, fumaric acid, itaconic acid, citraconic acid and anhydrides of these dibasic acids, adipic acid, sebacic acid, succinic acid, Examples include gluconic acid, phthalic anhydride, isophthalic acid, terephthalic acid, tetrahydrophthalic anhydride, and chlorendic anhydride. These polybasic acid components can be used alone or in combination of two or more.

前記不飽和ポリエステル樹脂(a1)の原料となる前記多価アルコール成分としては、例えば、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,3−ブタンジオール、1,4−ブタンジオール、ネオペンチルグリコール、3−メチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、シクロヘキサンジオール、水素添加ビスフェノールA、ジオキシエチレングリコール、トリオキシエチレングリコール、ジオキシプロピレングリコール、トリオキシプロピレングリコール、オクチルアルコール、オレイルアルコール、トリメチロールプロパン等が挙げられる。これらの多価アルコール成分は、単独で用いることも2種以上併用することもできる。   Examples of the polyhydric alcohol component that is a raw material of the unsaturated polyester resin (a1) include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4- Butanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, cyclohexanediol, hydrogenated bisphenol A, dioxyethylene glycol, trioxyethylene glycol, dioxypropylene glycol, trioxy Examples include propylene glycol, octyl alcohol, oleyl alcohol, and trimethylolpropane. These polyhydric alcohol components can be used alone or in combination of two or more.

前記ラジカル重合性希釈剤(a2)としては、スチレン、α−メチルスチレン等のビニル単量体;(メタ)アクリル酸メチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸エステル単量体などが挙げられる。また、これらの重合性不飽和単量体は、単独で用いることも2種以上併用することもできる。   Examples of the radical polymerizable diluent (a2) include vinyl monomers such as styrene and α-methylstyrene; (meth) acrylate monomers such as methyl (meth) acrylate and butyl (meth) acrylate, and the like. Is mentioned. These polymerizable unsaturated monomers can be used alone or in combination of two or more.

本発明において「(メタ)アクリル」の表記は、「アクリル」及び「メタクリル」のいずれか一方または両方を表すものである。   In the present invention, the notation “(meth) acryl” represents one or both of “acryl” and “methacryl”.

前記ラジカル重合性希釈剤(a2)の添加量は、前記樹脂組成物(A)の粘度調整のため適宜調整すればよく、特に限定されるものではないが、SMC等の加熱圧縮成形用成形材料が作製し易く、且つ、高温時の硬化反応性に優れることから、不飽和ポリエステル樹脂(a1)100質量部に対して、50〜150質量部の範囲が好ましく、80〜120質量部の範囲がより好ましい。   The addition amount of the radical polymerizable diluent (a2) may be appropriately adjusted for adjusting the viscosity of the resin composition (A), and is not particularly limited, but is a molding material for heat compression molding such as SMC. However, the range of 50 to 150 parts by mass is preferable with respect to 100 parts by mass of the unsaturated polyester resin (a1), and the range of 80 to 120 parts by mass is preferable. More preferred.

前記不飽和ポリエステル樹脂(a1)は、高粘度であることから、他の成分と混合する前に前記ラジカル重合性希釈剤(a2)で希釈しておくことが好ましい。具体的には、不飽和ポリエステル樹脂(a1)100質量部に対して、ラジカル重合性希釈剤(a2)50〜100質量部で希釈しておくことが好ましい。   Since the unsaturated polyester resin (a1) has a high viscosity, it is preferably diluted with the radical polymerizable diluent (a2) before mixing with the other components. Specifically, it is preferable to dilute with 50 to 100 parts by mass of the radical polymerizable diluent (a2) with respect to 100 parts by mass of the unsaturated polyester resin (a1).

前記1分子中に2つの水酸基を有するアルコール(a3)としては、特に限定されないが、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、オクタンジオール、ヘキサンジオール、ビスフェノールA等が挙げられる。特に、本発明の効果が高く、得られる成形品の変色が少ないことから、プロピレングリコールが好ましい。   Although it does not specifically limit as alcohol (a3) which has two hydroxyl groups in the said molecule | numerator, For example, ethylene glycol, propylene glycol, butanediol, octanediol, hexanediol, bisphenol A etc. are mentioned. In particular, propylene glycol is preferred because the effects of the present invention are high and the resulting molded article has little discoloration.

前記1分子中に3つ以上の水酸基を有するアルコール(a4)としては、特に限定されないが、グリセリン、トリメチロールプロパン等の三価アルコール、ペンタエリスリトール等の四価アルコール、デキストリン等の糖類、ポリビニルアルコール等の水溶性高分子、およびこれらの誘導体などが挙げられる。これらの中でも、前記不飽和ポリエステル樹脂(a1)、前記ラジカル重合性希釈剤(a2)との相溶性が良好なことから、トリメチロールプロパン、グリセリン等の三価アルコールが好ましく、グリセリンが特に好ましい。また、四価以上のアルコールや水溶性高分子は、極性が高く、前記ラジカル重合性希釈剤(a2)との相溶性が劣るものが多いため、水酸基の一部をアルコキシル化したものが好ましい。例えば、サイクロデキストリン等の多糖類が有する水酸基の一部をメトキシ基に置き換えたものが挙げられる。   The alcohol (a4) having three or more hydroxyl groups in one molecule is not particularly limited, but trivalent alcohols such as glycerin and trimethylolpropane, tetrahydric alcohols such as pentaerythritol, saccharides such as dextrin, polyvinyl alcohol, and the like. And water-soluble polymers such as these, and derivatives thereof. Among these, trivalent alcohols such as trimethylolpropane and glycerin are preferable, and glycerin is particularly preferable because of good compatibility with the unsaturated polyester resin (a1) and the radical polymerizable diluent (a2). Further, since tetrahydric or higher alcohols and water-soluble polymers have high polarity and are often incompatible with the radical polymerizable diluent (a2), those obtained by alkoxylating a part of the hydroxyl groups are preferable. For example, what substituted some hydroxyl groups which polysaccharides, such as a cyclodextrin, have with a methoxy group is mentioned.

前記アルコール(a3)は、前記不飽和ポリエステル樹脂(a1)の原料である多価アルコール成分と同一である場合もあるが、一般的に、不飽和ポリエステル製造時の多価アルコール残留量は、不飽和ポリエステル樹脂100質量部に対して0.1質量部未満であり、本発明の前記アルコール(a3)及び前記アルコール(a4)は不飽和ポリエステル樹脂(a1)の製造時の残留分ではない。   The alcohol (a3) may be the same as the polyhydric alcohol component that is the raw material of the unsaturated polyester resin (a1), but generally the residual amount of polyhydric alcohol during the production of the unsaturated polyester is It is less than 0.1 parts by mass with respect to 100 parts by mass of the saturated polyester resin, and the alcohol (a3) and the alcohol (a4) of the present invention are not residues at the production of the unsaturated polyester resin (a1).

また、水、または、メタノール、エタノール、イソプロピルアルコール等の一価アルコールでも、不飽和ポリエステル樹脂中のカルボン酸基と酸化マグネシウムの増粘反応を促進することができるが、これらは本発明の圧縮成形用成形材料の成形温度より沸点が低いため、高温下での流動性を制御することが難しい。   Further, water or a monohydric alcohol such as methanol, ethanol or isopropyl alcohol can accelerate the thickening reaction between the carboxylic acid group and the magnesium oxide in the unsaturated polyester resin. Since the boiling point is lower than the molding temperature of the molding material, it is difficult to control the fluidity at high temperatures.

前記樹脂組成物(A)は、前記不飽和ポリエステル樹脂(a1)100質量部に対して、前記アルコール(a3)を0.1〜1.0質量部含有するものである。前記アルコール(a3)が前記範囲より少ないと、不飽和ポリエステル樹脂中のカルボン酸と酸化マグネシウムの増粘反応が不十分となり、成形材料としてのハンドリング性(べたつき等)が悪化する場合や、高温時の流動抵抗が不十分となり加熱圧縮成形性が悪化する場合がある。また、前記範囲より多いと、前記増粘反応が強すぎて成形材料としてのハンドリング性(カット性等)が悪化する場合や、逆に、時間経過とともに増粘戻りと呼ばれる現象が生じてハンドリング性(べたつき等)が悪化する場合がある。   The resin composition (A) contains 0.1 to 1.0 part by mass of the alcohol (a3) with respect to 100 parts by mass of the unsaturated polyester resin (a1). When the alcohol (a3) is less than the above range, the thickening reaction between the carboxylic acid and the magnesium oxide in the unsaturated polyester resin becomes insufficient, and the handling property (such as stickiness) as a molding material is deteriorated, or at high temperature The flow resistance of the resin becomes insufficient, and the heat compression moldability may deteriorate. On the other hand, if the amount exceeds the above range, the thickening reaction is too strong and the handling properties (cutting properties, etc.) as a molding material deteriorate, and conversely, a phenomenon called a thickening return occurs with the passage of time, resulting in handling properties. (Stickiness, etc.) may deteriorate.

前記樹脂組成物(A)は、前記不飽和ポリエステル樹脂(a1)100質量部に対して、前記アルコール(a4)を0.02〜0.5質量部含有するものである。前記アルコール(a4)が、前記範囲より少ないと、不飽和ポリエステル樹脂中のカルボン酸と酸化マグネシウムの増粘反応が不十分となり、成形材料としてのハンドリング性(べたつき等)が悪化する場合や、高温時の流動抵抗が不十分となり加熱圧縮成形性が悪化する場合がある。逆に、前記範囲より多いと、前記増粘反応が強すぎて成形材料としてのハンドリング性(カット性等)が悪化する場合や、高温時の流動抵抗が高すぎて外観不良を発生する場合や、保存安定性が悪化する場合がある。   The resin composition (A) contains 0.02 to 0.5 parts by mass of the alcohol (a4) with respect to 100 parts by mass of the unsaturated polyester resin (a1). When the alcohol (a4) is less than the above range, the thickening reaction between the carboxylic acid and the magnesium oxide in the unsaturated polyester resin becomes insufficient, and handling properties (such as stickiness) as a molding material deteriorate, The flow resistance at the time becomes insufficient, and the heat compression moldability may deteriorate. On the other hand, if the amount is more than the above range, the thickening reaction is too strong and the handling properties (cutting properties, etc.) as a molding material are deteriorated, or the flow resistance at high temperature is too high, resulting in poor appearance or , Storage stability may deteriorate.

前記アルコール(a4)は、前記アルコール(a3)100質量部に対して、10〜70質量部の範囲とすることが、成形材料としてのハンドリング性や、成形品の外観が良好であり、且つ、保存安定性に優れることから好ましい。 The alcohol (a4) is in the range of 10 to 70 parts by mass with respect to 100 parts by mass of the alcohol (a3), the handling property as a molding material and the appearance of the molded product are good, and It is preferable because of excellent storage stability.

前記樹脂組成物(A)中の前記酸化マグネシウムの含有量は、前記不飽和ポリエステル樹脂(a1)100質量部に対して、0.1〜5質量部の範囲である。前記範囲より少ないと、前期増粘反応が不十分となり成形材料としてのハンドリング性(べたつき等)が悪化する場合や、高温時の流動抵抗が不十分となり加熱圧縮成形性が悪化する場合がある。逆に、前記範囲より多いと、前記増粘反応が強すぎて成形材料としてのハンドリング性(カット性等)が悪化する場合や、高温時に流動抵抗が高すぎて外観不良を発生する場合や、保存安定性が悪化する場合がある。これらの各性能を向上させる観点から、前記酸化マグネシウムの含有量は、不飽和ポリエステル樹脂(a1)100質量部に対して、0.3〜3質量部の範囲が好ましい。 Content of the said magnesium oxide in the said resin composition (A) is the range of 0.1-5 mass parts with respect to 100 mass parts of said unsaturated polyester resins (a1). If the amount is less than the above range, the thickening reaction may be insufficient in the previous period and handling properties (stickiness, etc.) as a molding material may be deteriorated, or the flow resistance at high temperatures may be insufficient and the heat compression moldability may be deteriorated. On the other hand, if the amount is more than the above range, the thickening reaction is too strong and the handling properties as a molding material (cutting properties, etc.) are deteriorated, or the flow resistance is too high at high temperatures to cause poor appearance, Storage stability may deteriorate. From the viewpoint of improving these performances, the magnesium oxide content is preferably in the range of 0.3 to 3 parts by mass with respect to 100 parts by mass of the unsaturated polyester resin (a1).

前記重合開始剤は、特に限定されないが、有機過酸化物が好ましく、例えば、ジアシルパーオキサイド化合物、パーオキシエステル化合物、ハイドロパーオキサイド化合物、ケトンパーオキサイド化合物、アルキルパーエステル化合物、パーカーボネート化合物等が挙げられ、成形条件に応じて適宜選択できる。これらの重合開始剤は、単独で用いることも2種以上併用することもできる。これらの重合開始剤は、前記不飽和ポリエステル樹脂(a1)100質量部に対して、0.4〜4.0質量部含有することが好ましい。   The polymerization initiator is not particularly limited, but is preferably an organic peroxide, such as a diacyl peroxide compound, a peroxy ester compound, a hydroperoxide compound, a ketone peroxide compound, an alkyl perester compound, a carbonate compound, and the like. And can be appropriately selected according to the molding conditions. These polymerization initiators can be used alone or in combination of two or more. These polymerization initiators are preferably contained in an amount of 0.4 to 4.0 parts by mass with respect to 100 parts by mass of the unsaturated polyester resin (a1).

前記樹脂組成物(A)には、前記不飽和ポリエステル樹脂(a1)、前記ラジカル重合性希釈剤(a2)、前記アルコール(a3)、前記アルコール(a4)、前記酸化マグネシウム及び前記重合開始剤以外の成分として、ラジカル重合性不飽和結合およびカルボン酸基を有する樹脂、低収縮化剤、無機充填材、重合禁止剤、離型剤、顔料、減粘剤、老化防止剤、可塑剤、難燃剤、抗菌剤、安定剤、補強材、光硬化剤等を含有することができる。 The resin composition (A) includes the unsaturated polyester resin (a1), the radical polymerizable diluent (a2), the alcohol (a3), the alcohol (a4), the magnesium oxide, and the polymerization initiator. Resin having radical polymerizable unsaturated bond and carboxylic acid group, low shrinkage agent, inorganic filler, polymerization inhibitor, mold release agent, pigment, viscosity reducer, anti-aging agent, plasticizer, flame retardant , Antibacterial agents, stabilizers, reinforcing materials, photocuring agents, and the like.

前記樹脂組成物(A)中のラジカル重合性不飽和結合およびカルボン酸基を有する樹脂としては、ビニルエステル樹脂(エポキシアクリレート樹脂)、フェノール樹脂、メラミン樹脂、フラン樹脂等で、カルボン酸基を有するものが挙げられる。 The resin having a radically polymerizable unsaturated bond and a carboxylic acid group in the resin composition (A) is a vinyl ester resin (epoxy acrylate resin), a phenol resin, a melamine resin, a furan resin, or the like, and has a carboxylic acid group. Things.

前記樹脂組成物(A)中の低収縮化剤としては、例えば、ナイロン樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリカーボネート樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、ポリスチレン樹脂、アクリル樹脂、およびこれらを共重合等により変性した樹脂などの熱可塑性樹脂が挙げられる。これらの中でも、ポリスチレン樹脂、スチレン−アクリル酸共重合体、スチレン−酢酸ビニル共重合体、スチレン−ブタジエン共重合体、スチレン−オレフィン共重合体、ポリ(メタ)アクリル酸エステルが好ましい。これらの低収縮化剤は、単独で用いることも、2種以上を併用することもできる。   Examples of the low shrinkage agent in the resin composition (A) include nylon resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polycarbonate resin, polypropylene resin, polyethylene resin, polystyrene resin, acrylic resin, and copolymers thereof. And thermoplastic resins such as resins modified by the above. Among these, a polystyrene resin, a styrene-acrylic acid copolymer, a styrene-vinyl acetate copolymer, a styrene-butadiene copolymer, a styrene-olefin copolymer, and a poly (meth) acrylic acid ester are preferable. These low shrinkage agents can be used alone or in combination of two or more.

前記低収縮剤を添加する場合、これらの熱可塑性樹脂は固体であるため、本発明の効果を阻害しない範囲で、前記ラジカル重合性希釈剤(a2)を用いて事前に希釈しておくことが好ましい。具体的には、前記熱可塑性樹脂100質量部に対して、ラジカル重合性希釈剤(a2)100〜300質量部で希釈しておくことが好ましい。   When the low shrinkage agent is added, since these thermoplastic resins are solid, it may be diluted in advance with the radical polymerizable diluent (a2) within a range that does not impair the effects of the present invention. preferable. Specifically, it is preferable to dilute with 100 to 300 parts by mass of the radical polymerizable diluent (a2) with respect to 100 parts by mass of the thermoplastic resin.

本発明の樹脂組成物(A)中の前記低収縮化剤の含有量は、加熱圧縮成形性及び得られる成形品の外観が良好であることから、前記不飽和ポリエステル樹脂(a1)100質量部に対して、100質量部以下であることが好ましく、60質量部以下であることがより好ましい。   Since the content of the low shrinkage agent in the resin composition (A) of the present invention is good in heat compression moldability and the appearance of the resulting molded product, 100 parts by mass of the unsaturated polyester resin (a1). Is preferably 100 parts by mass or less, and more preferably 60 parts by mass or less.

前記樹脂組成物(A)中の無機充填材としては、例えば、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、マイカ、タルク、カオリン、クレー、セライト、アスベスト、バーライト、バライタ、シリカ、ケイ砂、ドロマイト石灰石、石こう、アルミニウム微粉、中空バルーン、アルミナ、ガラス粉、水酸化アルミニウム、寒水石、酸化ジルコニウム、三酸化アンチモン、酸化チタン、二酸化モリブデン、鉄粉、カーボンブラックなどが挙げられる。これらの無機充填剤は、単独で用いることも、2種以上を併用することもできる。   Examples of the inorganic filler in the resin composition (A) include calcium carbonate, magnesium carbonate, barium sulfate, mica, talc, kaolin, clay, celite, asbestos, barite, baryta, silica, silica sand, and dolomite limestone. , Gypsum, aluminum fine powder, hollow balloon, alumina, glass powder, aluminum hydroxide, cryolite, zirconium oxide, antimony trioxide, titanium oxide, molybdenum dioxide, iron powder, carbon black and the like. These inorganic fillers can be used alone or in combination of two or more.

また、前記樹脂組成物(A)中の無機充填材の含有量は、特に限定されず、加熱圧縮成形性や得られる成形品の外観から適宜調整すればよいが、加熱圧縮成形性や成形品外観のバランスから、前記不飽和ポリエステル樹脂(a1)100質量部に対して、100〜500質量部の範囲が好ましい。   Further, the content of the inorganic filler in the resin composition (A) is not particularly limited, and may be appropriately adjusted from the heat compression moldability and the appearance of the obtained molded product. The range of 100-500 mass parts is preferable with respect to 100 mass parts of said unsaturated polyester resin (a1) from the balance of an external appearance.

前記樹脂組成物(A)中の重合禁止剤としては、例えば、ハイドロキノン、トリメチルハイドロキノン、p−t−ブチルカテコール、t−ブチルハイドロキノン、トルハイドロキノン、p−ベンゾキノン、ナフトキノン、ハイドロキノンモノメチルエーテル、フェノチアジン、ナフテン酸銅、塩化銅等が挙げられる。これらの重合禁止剤は、単独で用いることも、2種以上を併用することもできる。これらの重合禁止剤は、前記不飽和ポリエステル樹脂(a1)100質量部に対して、0.01〜0.5質量部含有することが好ましい。   Examples of the polymerization inhibitor in the resin composition (A) include hydroquinone, trimethylhydroquinone, pt-butylcatechol, t-butylhydroquinone, toluhydroquinone, p-benzoquinone, naphthoquinone, hydroquinone monomethyl ether, phenothiazine, and naphthene. Examples include acid copper and copper chloride. These polymerization inhibitors can be used alone or in combination of two or more. These polymerization inhibitors are preferably contained in an amount of 0.01 to 0.5 parts by mass with respect to 100 parts by mass of the unsaturated polyester resin (a1).

前記樹脂組成物(A)中の離型剤としては、例えば、ステアリン酸、ステアリン酸マグネシウム、ステアリン酸亜鉛、ステアリン酸カルシウム、パラフィンワックス、ポリエチレンワックス、カルナバワックスなどが挙げられる。これらの離型剤は、単独で用いることも、2種以上を併用することもできる。 Examples of the release agent in the resin composition (A) include stearic acid, magnesium stearate, zinc stearate, calcium stearate, paraffin wax, polyethylene wax, and carnauba wax. These mold release agents can be used alone or in combination of two or more.

前記ガラス繊維(B)としては、例えば、ロービングと呼ばれる長繊維をカットした繊維、予め短くカットされたチョップドストランドと呼ばれる短繊維等が挙げられる。また、ガラス繊維を平織り、朱子織り、不織布、マット状の形態にしたものも使用できる。これらのガラス繊維は、単独で用いることも、2種以上を併用することもできる。 Examples of the glass fiber (B) include fibers obtained by cutting long fibers called roving, short fibers called chopped strands that have been cut short in advance. Further, glass fibers in a plain weave, satin weave, non-woven fabric, or mat shape can be used. These glass fibers can be used alone or in combination of two or more.

前記ガラス繊維(B)の種類としては、例えば、Eガラス、Cガラス、Rガラス、ARガラス、または低ホウ素含有率ガラス等を、繊維径10〜25μmで、線密度1000〜5000g/km(TEX)で集束したものなどを用いることができる。また、集束剤(サイジング剤)としては、例えば、アクリル樹脂、ウレタン樹脂、ビニル樹脂等の熱可塑性樹脂と、シランカップリング剤とを併用することが好ましい。   As the kind of the glass fiber (B), for example, E glass, C glass, R glass, AR glass, low boron content glass, etc., with a fiber diameter of 10 to 25 μm and a linear density of 1000 to 5000 g / km (TEX) ) Or the like converged at (). Moreover, as a sizing agent (sizing agent), it is preferable to use together thermoplastic resins, such as an acrylic resin, a urethane resin, a vinyl resin, and a silane coupling agent, for example.

本発明の加熱圧縮成形用成形材料は、前記樹脂組成物(A)を、前記ガラス繊維(B)に含浸させて得られるものであるが、加熱圧縮成形用成形材料中の前記ガラス繊維(B)の含有率は、得られる成形品の強度及び表面平滑性がより向上することから、5〜50質量%の範囲が好ましく、10〜40質量%の範囲がより好ましい。   The molding material for heat compression molding of the present invention is obtained by impregnating the glass fiber (B) with the resin composition (A), but the glass fiber (B in the molding material for heat compression molding is used. ) Content is preferably in the range of 5 to 50% by mass, more preferably in the range of 10 to 40% by mass, since the strength and surface smoothness of the resulting molded product are further improved.

また、本発明の加熱成形用成形材料は、成形材料としての取り扱いや成形性の観点から、シートモールディングコンパウンド(SMC)又はバルクモールディングコンパウンド(BMC)であることが好ましい。   In addition, the molding material for heat molding of the present invention is preferably a sheet molding compound (SMC) or a bulk molding compound (BMC) from the viewpoint of handling as a molding material and moldability.

前記SMCの製造方法としては、通常のロール、インターミキサー、プラネタリーミキサー、ニーダー、押し出し機などの混合機を用いて、前記不飽和ポリエステル樹脂(a1)、前記ラジカル重合性希釈剤(a2)、前記アルコール(a3)、前記アルコール(a4)、前記酸化マグネシウム、及び前記重合開始剤等の樹脂組成物(A)の各成分を混合分散し、上下に設置されたキャリアフィルムに均一な厚さになるように塗布し、所定の長さにカットされたガラス繊維(B)を、前記上下に設置されたキャリアフィルムの樹脂コンパウンドに挟み込み、次いで、全体を含浸ロールの間に通して、圧力を加えて繊維補強材に樹脂コンパウンドを含浸させた後、ロール状に巻き取るか又はつづら折りに畳んでSMCが得られる。必要に応じて、この後に熟成等を行う。増粘剤を配合した場合は、25〜60℃の温度で熟成することが好ましい。キャリアフィルムとしては、ポリエチレンフィルム、ポリプロピレンフィルム、ナイロンフィルム、及びこれらの多層フィルム等を用いることができる。SMCの場合、前記ガラス繊維(B)の長さとしては、ガラス繊維自体のカット性や樹脂組成物(A)との含浸性の観点から、10〜60mm長さの範囲が好ましい。また、異なる長さのガラス繊維を混合させても良い。   As a method for producing the SMC, the unsaturated polyester resin (a1), the radical polymerizable diluent (a2), a mixer such as a normal roll, an intermixer, a planetary mixer, a kneader, and an extruder are used. Each component of the resin composition (A) such as the alcohol (a3), the alcohol (a4), the magnesium oxide, and the polymerization initiator is mixed and dispersed, and a uniform thickness is formed on the carrier film installed above and below. The glass fiber (B) that has been coated and cut to a predetermined length is sandwiched between the resin compounds of the carrier film placed above and below, and then the whole is passed between impregnating rolls to apply pressure. After impregnating the fiber reinforcing material with the resin compound, the SMC is obtained by winding it in a roll or folding it into a spell. This is followed by aging as necessary. When a thickener is blended, aging is preferably performed at a temperature of 25 to 60 ° C. As the carrier film, a polyethylene film, a polypropylene film, a nylon film, and a multilayer film thereof can be used. In the case of SMC, the length of the glass fiber (B) is preferably in the range of 10 to 60 mm from the viewpoint of the cutability of the glass fiber itself and the impregnation property with the resin composition (A). Moreover, you may mix the glass fiber of different length.

前記BMCの製造方法としては、前記SMCの製造方法と同様に、通常のロール、インターミキサー、プラネタリーミキサー、ニーダー、押し出し機などの混合機を用いて、前記不飽和ポリエステル樹脂成分(a1)、前記ラジカル重合性希釈剤(a2)、前記アルコール(a3)、前記アルコール(a4)、前記酸化マグネシウム、及び前記重合開始剤等を含む前記樹脂組成物(A)を分散させた後、最後に前記ガラス繊維(B)を混合・分散させる方法が好ましい。BMCの場合、前記ガラス繊維(B)としては、分散性の観点から比較的短繊維を使用するのが好ましく、例えば、5〜13mm長さの範囲である。   As the method for producing the BMC, similarly to the method for producing the SMC, the unsaturated polyester resin component (a1), using a mixer such as a normal roll, an intermixer, a planetary mixer, a kneader, and an extruder, After the resin composition (A) containing the radical polymerizable diluent (a2), the alcohol (a3), the alcohol (a4), the magnesium oxide, the polymerization initiator, and the like is dispersed, A method of mixing and dispersing the glass fiber (B) is preferable. In the case of BMC, it is preferable to use a relatively short fiber as the glass fiber (B) from the viewpoint of dispersibility, for example, in the range of 5 to 13 mm in length.

本発明の成形品は、前記加熱成形用成形材料より得られるが、成形方法は特に限定されるものではなく、加熱圧縮成形法や射出成形法等が挙げられる。これらの中でも、成形材料としての取り扱いや成形性の観点から、SMC又はBMCの加熱圧縮成形法が好ましい。   The molded product of the present invention can be obtained from the molding material for heat molding, but the molding method is not particularly limited, and examples thereof include a heat compression molding method and an injection molding method. Among these, the heat compression molding method of SMC or BMC is preferable from the viewpoint of handling as a molding material and moldability.

前記加熱圧縮成形法としては、例えば、SMC及びBMC等の成形材料を所定量計量し、予め110〜180℃に加熱した金型に投入し、プレス成形機にて型締めを行い、成形材料を賦型させ、0.1〜20MPaの成形圧力を保持することによって、成形材料を硬化させ、その後成形品を取り出し成形品を得る製造方法が用いられる。この場合、シェアエッジを有する金型内で金型温度120〜160℃にて、成形品の厚さ1mm当たり1〜2分間という規定の時間、1〜15MPaの成形圧力を保持し、加熱圧縮成形する製造方法が好ましい。   As the heat compression molding method, for example, a predetermined amount of a molding material such as SMC and BMC is weighed, put into a mold heated in advance to 110 to 180 ° C., clamped by a press molding machine, and the molding material is A manufacturing method is used in which the molding material is cured by holding the molding pressure of 0.1 to 20 MPa and then the molding material is cured, and then the molded product is taken out. In this case, in a mold having a shear edge, at a mold temperature of 120 to 160 ° C., a prescribed time of 1 to 2 minutes per 1 mm of the thickness of the molded product is maintained, and a molding pressure of 1 to 15 MPa is maintained. The manufacturing method is preferred.

また、本発明の加熱圧縮成形用成形材料は、射出成形法により成形することができる。前記射出成形法としては、例えば、SMC及びBMC等の成形材料を射出成形機のホッパーに投入し、シリンダ温度30〜60℃で、予め110〜180℃に加熱した金型内に、射出圧力1〜20MPa、保圧圧力0.2〜5MPaの射出圧力で射出成形し、0.2〜3分間保持することで成形材料を硬化させ、その後成形品を取り出し成形品を得る製造方法が用いられる。   The molding material for heat compression molding of the present invention can be molded by an injection molding method. As the injection molding method, for example, a molding material such as SMC and BMC is put into a hopper of an injection molding machine, and a cylinder temperature of 30 to 60 ° C. and a mold heated in advance to 110 to 180 ° C. are injected with an injection pressure of 1 A production method is used in which injection molding is performed at an injection pressure of ˜20 MPa and a holding pressure of 0.2 to 5 MPa, the molding material is cured by holding for 0.2 to 3 minutes, and then the molded product is taken out to obtain a molded product.

本発明の加熱圧縮成形用成形材料は、保存安定性に優れ、高温時の流動抵抗が高いため、加熱圧縮成形時のピンホール等の外観不良が発生し難く、且つ、表面外観が良好であるため、SMC及びBMC用途として一般的であるバスタブやキッチンカウンター等の住宅設備部材に加えて、自動車部材、船舶部材、航空機部材等の外観品質が求められる用途や、成形品表面に塗装を施す用途などに好適に用いることができる。   The molding material for heat compression molding of the present invention is excellent in storage stability and has high flow resistance at high temperature, so that appearance defects such as pinholes at the time of heat compression molding hardly occur and the surface appearance is good. Therefore, in addition to housing equipment members such as bathtubs and kitchen counters that are commonly used for SMC and BMC applications, applications that require the appearance quality of automobile members, ship members, aircraft members, etc., and applications that apply to the surface of molded products It can use suitably for.

以下に本発明を具体的な実施例を挙げてより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to specific examples.

(製造例1:樹脂組成物(A−1)の製造)
不飽和ポリエステル樹脂(a1−1)100質量部とスチレン69.5質量部の混合物(ディーエイチマテリアル株式会社製「PS−520」)169.5質量部に、ポリスチレン樹脂8.2質量部とスチレン15.2質量部の混合物(ディーエイチマテリアル株式会社製「PS−954N」)23.4質量部、炭酸カルシウム(平均粒子径1.1μm)254質量部、プロピレングリコール0.4質量部、グリセリン0.2質量部、酸化マグネシウム2質量部、重合開始剤(1)(化薬アクゾ株式会社製「カヤカルボンBIC−75」)2質量部、ステアリン酸亜鉛7質量部をディゾルバーにより混合し、樹脂組成物(A−1)458.5質量部を得た。樹脂組成物(A−1)中のスチレンは合計で84.7質量部となった。
(Production Example 1: Production of Resin Composition (A-1))
A mixture of 100 parts by weight of unsaturated polyester resin (a1-1) and 69.5 parts by weight of styrene (“PS-520” manufactured by DH Material Co., Ltd.), 169.5 parts by weight, 8.2 parts by weight of polystyrene resin and styrene 15.2 parts by mass of a mixture (“PS-954N” manufactured by DH Material Co., Ltd.) 23.4 parts by mass, 254 parts by mass of calcium carbonate (average particle size 1.1 μm), propylene glycol 0.4 parts by mass, glycerin 0 2 parts by weight, 2 parts by weight of magnesium oxide, 2 parts by weight of a polymerization initiator (1) (“Kaya-Carbon BIC-75” manufactured by Kayaku Akzo Co., Ltd.) and 7 parts by weight of zinc stearate are mixed with a dissolver to obtain a resin composition (A-1) 458.5 parts by mass were obtained. The total amount of styrene in the resin composition (A-1) was 84.7 parts by mass.

(製造例2:樹脂組成物(A−2)の製造)
製造例1で用いたグリセリン0.2質量部を、トリメチロールプロパン0.2質量部に変更した以外は、製造例1と同様に操作することにより、樹脂組成物(A−2)458.5質量部を得た。
(Production Example 2: Production of Resin Composition (A-2))
Resin composition (A-2) 458.5 by operating in the same manner as in Production Example 1 except that 0.2 parts by mass of glycerin used in Production Example 1 was changed to 0.2 parts by mass of trimethylolpropane. A mass part was obtained.

(製造例3:樹脂組成物(A−3)の製造)
製造例1で用いたグリセリン0.2質量部を、メチル化−β−サイクロデキストリン(純正化学株式会社製)0.2質量部に変更した以外は、製造例1と同様に操作することにより、樹脂組成物(A−3)458.5質量部を得た。
(Production Example 3: Production of Resin Composition (A-3))
By operating in the same manner as in Production Example 1 except that 0.2 parts by mass of glycerin used in Production Example 1 was changed to 0.2 parts by mass of methylated-β-cyclodextrin (manufactured by Junsei Chemical Co., Ltd.), 458.5 mass parts of resin compositions (A-3) were obtained.

(製造例4:比較用樹脂組成物(RA−1)の製造)
製造例1で用いたプロピレングリコール0.4質量部及びグリセリン0.2質量部を用いなかった以外は、製造例1と同様に操作することにより、樹脂組成物(RA−1)457.9質量部を得た。
(Production Example 4: Production of Comparative Resin Composition (RA-1))
Resin composition (RA-1) 457.9 masses by operating in the same manner as in Production Example 1 except that 0.4 parts by mass of propylene glycol and 0.2 parts by mass of glycerin used in Production Example 1 were not used. Got a part.

(製造例5:比較用樹脂組成物(RA−2)の製造)
製造例1で用いたグリセリン0.2質量部を用いなかった以外は、製造例1と同様に操作することにより、樹脂組成物(RA−2)458.3質量部を得た。
(Production Example 5: Production of comparative resin composition (RA-2))
458.3 mass parts of resin compositions (RA-2) were obtained by operating like the manufacture example 1 except not having used 0.2 mass part of glycerol used in the manufacture example 1. FIG.

(製造例6:比較用樹脂組成物(RA−3)の製造)
製造例1で用いたプロピレングリコール0.4質量部を用いず、グリセリン0.2質量部を0.4質量部に変更した以外は、製造例1と同様に操作することにより、樹脂組成物(RA−3)458.3質量部を得た。
(Production Example 6: Production of comparative resin composition (RA-3))
By operating in the same manner as in Production Example 1 except that 0.4 parts by mass of propylene glycol used in Production Example 1 was not used and 0.2 parts by mass of glycerin was changed to 0.4 parts by mass, the resin composition ( RA-3) 458.3 parts by mass were obtained.

(製造例7:比較用樹脂組成物(RA−4)の製造)
製造例1で用いたプロピレングリコール0.4質量部を用いず、グリセリン0.2質量部を2質量部に変更した以外は、製造例1と同様に操作することにより、比較用樹脂組成物(RA−4)459.9質量部を得た。
(Production Example 7: Production of comparative resin composition (RA-4))
By using the same procedure as in Production Example 1 except that 0.4 parts by mass of propylene glycol used in Production Example 1 was not used and 0.2 parts by mass of glycerin was changed to 2 parts by mass, a comparative resin composition ( RA-4) 459.9 parts by mass were obtained.

上記で得られた樹脂組成物(A−1)〜(A−3)及び(RA−1)〜(RA−4)の組成を表1に示す。   Table 1 shows the compositions of the resin compositions (A-1) to (A-3) and (RA-1) to (RA-4) obtained above.

Figure 2016132770
Figure 2016132770

(実施例1:加熱圧縮成形用成形材料(1)の製造及び評価)
製造例1で得られた樹脂組成物(A−1)458.5質量部を上下に設置された2枚のポリプロピレン製キャリアフィルム上に均一な厚さになるように塗布し、25.4mmにカットしたガラス繊維(B−1)(日東紡績株式会社製「PG−571」)153質量部を前記上下に設置されたキャリアフィルム上の樹脂組成物の間に挟み込み、全体を含浸ロールの間に通して圧力を加えて樹脂組成物(A−1)をガラス繊維(B−1)に含浸させた後、45℃で24時間養生し、ガラス繊維含有率が25質量%の加熱圧縮成形用成形材料(1)を得た。この加熱圧縮成形用成形材料(1)の単位重量は34.3N/mであった。
(Example 1: Production and evaluation of molding material (1) for heat compression molding)
458.5 parts by mass of the resin composition (A-1) obtained in Production Example 1 was applied on two polypropylene carrier films installed one above the other so as to have a uniform thickness, to 25.4 mm. 153 parts by weight of the cut glass fiber (B-1) (“PG-571” manufactured by Nitto Boseki Co., Ltd.) is sandwiched between the resin compositions on the carrier film placed above and below, and the whole is sandwiched between impregnation rolls. The resin composition (A-1) is impregnated into the glass fiber (B-1) by applying pressure through it, then cured at 45 ° C. for 24 hours, and the glass fiber content is 25% by mass for compression molding. Material (1) was obtained. The unit weight of the molding material (1) for heat compression molding was 34.3 N / m 2 .

上記で得られた加熱圧縮成形用成形材料(1)について、作製後25℃で保管し、1週間後(初期)及び1ヶ月後(長期保管後)に下記の評価を行った。   The molding material for heat compression molding (1) obtained above was stored at 25 ° C. after preparation, and the following evaluation was performed after 1 week (initial) and 1 month (after long-term storage).

[高温流動性評価]
島津製作所製フローテスタCFT−500Dを用いて、上記で得られた加熱圧縮成形用成形材料(1)の高温流動性評価を行った。ノズル直径2.095mm(ノズル長さ8mm)を用いて、加熱圧縮成形用成形材料(1)を約5mm角にカットし、重量3.7gに調整したサンプルを60℃に加熱したシリンダ内にセットし、印加荷重15kgfで2分保持した後、昇温速度6℃/minで加熱して、ノズル先端からサンプルが吐出される際のせん断速度を測定し、せん断速度が極大値を示すピーク温度を記録した。1サンプルについて3回測定し、3回の平均値から前記ピーク温度を算出した。
初期の加熱圧縮成形用成形材料(1)のせん断速度ピーク温度と長期保管後のせん断速度ピーク温度とを比較し、以下の基準にしたがって保存安定性を評価した。
〔評価基準〕
○:せん断速度のピーク温度の経時変化が5℃未満
△:せん断速度のピーク温度の経時変化が5℃以上10℃未満
×:せん断速度のピーク温度の経時変化が10℃以上
[High-temperature fluidity evaluation]
Using a flow tester CFT-500D manufactured by Shimadzu Corporation, the high-temperature fluidity evaluation of the molding material for heat compression molding (1) obtained above was performed. Using a nozzle diameter of 2.095 mm (nozzle length of 8 mm), cut the molding material for heat compression molding (1) into about 5 mm square, and set the sample adjusted to a weight of 3.7 g in a cylinder heated to 60 ° C. Then, after holding at an applied load of 15 kgf for 2 minutes, the sample is heated at a heating rate of 6 ° C./min, the shear rate when the sample is discharged from the nozzle tip is measured, and the peak temperature at which the shear rate reaches the maximum value is measured. Recorded. One sample was measured three times, and the peak temperature was calculated from the average value of the three times.
The shear rate peak temperature of the initial molding material for heat compression molding (1) was compared with the shear rate peak temperature after long-term storage, and the storage stability was evaluated according to the following criteria.
〔Evaluation criteria〕
○: Change in the peak temperature of the shear rate is less than 5 ° C Δ: Change in the peak temperature of the shear rate is not less than 5 ° C and less than 10 ° C ×: Change in the peak temperature of the shear rate is not less than 10 ° C

[成形板の作製]
実施例1で得られた加熱圧縮成形用成形材料(1)を250×250mmにカットし、3枚重ねて合計650gになるようにサンプルを調整し、300×300mmの金型の中央にサンプルを置いて加熱圧縮成形し、厚さ4mmの平板状の成形板(1)を得た。加熱圧縮成形条件は、金型温度(下)130℃/(上)145℃、キープ時間6分間、圧力10MPaであった。
[Production of molded plate]
The molding material (1) for heat compression molding obtained in Example 1 was cut into 250 × 250 mm, and the sample was adjusted so that a total of 650 g was obtained by stacking three sheets, and the sample was placed in the center of a 300 × 300 mm mold. The plate was placed and heat compression molded to obtain a 4 mm thick flat plate (1). The heat compression molding conditions were a mold temperature (lower) of 130 ° C./(upper) 145 ° C., a keeping time of 6 minutes, and a pressure of 10 MPa.

[外観(成形性)評価]
得られた成形板(1)の表面を黒色の水性マジックで軽く塗った後、イソプロピルアルコールを浸した布で良く拭き取り、ピンホール発生の有無を確認した。
〔評価基準〕
○:ピンホールが無く、表面光沢が良好である。
△:ピンホールが若干有る、表面光沢がやや劣る、これらの何れかに該当する。
×:ピンホールが有る、表面光沢が劣る、色調が明らかに黄変している、これら何れかに該当する。
[Appearance (formability) evaluation]
The surface of the resulting molded plate (1) was lightly coated with a black aqueous magic, and then thoroughly wiped with a cloth soaked with isopropyl alcohol to confirm the occurrence of pinholes.
〔Evaluation criteria〕
○: No pinhole and surface gloss is good.
(Triangle | delta): It corresponds to either of these which has a little pinhole and surface gloss is a little inferior.
X: There is a pinhole, the surface gloss is inferior, the color tone is clearly yellowed, and any of these.

(実施例2〜3:加熱圧縮成形用成形材料(2)〜(3)の製造及び評価)
実施例1で用いた樹脂組成物(A−1)を、樹脂組成物(A−2)〜(A−3)に変更した以外は、実施例1と同様に操作することにより、ガラス繊維含有率が25質量%の加熱圧縮成形用成形材料(2)〜(3)を得た。これらの加熱圧縮成形用成形材料(2)〜(3)の単位重量は34.3N/mであった。
(Examples 2-3: Production and evaluation of molding materials (2) to (3) for heat compression molding)
Glass fiber-containing by operating in the same manner as in Example 1 except that the resin composition (A-1) used in Example 1 was changed to resin compositions (A-2) to (A-3). Molding materials (2) to (3) for heat compression molding having a rate of 25% by mass were obtained. The unit weight of these molding materials for heat compression molding (2) to (3) was 34.3 N / m 2 .

実施例1で用いた加熱圧縮成形用成形材料(1)を、上記で得られた加熱圧縮成形用成形材料(2)〜(3)に変更した以外は、実施例1と同様に操作することにより、高温流動性、成形板の外観を評価した。   The same operation as in Example 1 is performed except that the molding material for heat compression molding (1) used in Example 1 is changed to the molding material for heat compression molding (2) to (3) obtained above. Thus, the high temperature fluidity and the appearance of the molded plate were evaluated.

(比較例1〜4:加熱圧縮成形用成形材料(R−1)〜(R−4)の製造及び評価)
実施例1で用いた樹脂組成物(A−1)を、樹脂組成物(RA−1)〜(RA−4)に変更した以外は実施例1と同様に操作することにより、ガラス繊維含有率25質量%の加熱圧縮成形用成形材料(R−1)〜(R−4)を得た。これらの加熱圧縮成形用成形材料(R−1)〜(R−4)の単位重量は34.3N/mであった。
(Comparative Examples 1-4: Production and Evaluation of Molding Materials for Heat Compression Molding (R-1) to (R-4))
By operating in the same manner as in Example 1 except that the resin composition (A-1) used in Example 1 was changed to resin compositions (RA-1) to (RA-4), the glass fiber content rate 25% by mass of molding materials (R-1) to (R-4) for heat compression molding were obtained. The unit weight of these heat compression molding materials (R-1) to (R-4) was 34.3 N / m 2 .

実施例1で用いた加熱圧縮成形用成形材料(1)を、上記で得られた加熱圧縮成形用成形材料(R−1)〜(R−4)に変更した以外は、実施例1と同様に操作することにより、高温流動性、成形板の外観を評価した。   Except for changing the heat compression molding material (1) used in Example 1 to the heat compression molding materials (R-1) to (R-4) obtained above, the same as in Example 1. The high temperature fluidity and the appearance of the molded plate were evaluated.

上記で得られた加熱圧縮成形用成形材料(1)〜(3)及び(R−1)〜(R−4)の評価結果を表2に示す。   Table 2 shows the evaluation results of the molding materials for heat compression molding (1) to (3) and (R-1) to (R-4) obtained above.

Figure 2016132770
Figure 2016132770

実施例1〜3の加熱圧縮成形用成形材料(1)〜(3)は、高温流動性の経時変化が小さく保存安定性に優れ、成形品の外観も良好であることが分かった。   It turned out that the molding materials (1) to (3) for heat compression molding of Examples 1 to 3 have small changes in high-temperature fluidity with time, excellent storage stability, and good appearance of the molded products.

一方、比較例1は、樹脂組成物(A)に、1分子中に2つの水酸基を有するアルコール(a3)、1分子中に3つ以上の水酸基を有するアルコール(a4)を含まない例であるが、高温流動性の経時変化が大きく保存安定性が不良であった。また、1週間保管品から得られる成形品でピンホールが若干発生し、外観(成形性)が不十分であり、1ヶ月保管品から得られる成形品で表面光沢がやや劣り、外観(光沢)が不十分であった。   On the other hand, Comparative Example 1 is an example in which the resin composition (A) does not contain an alcohol (a3) having two hydroxyl groups in one molecule and an alcohol (a4) having three or more hydroxyl groups in one molecule. However, the change in high-temperature fluidity with time was large and the storage stability was poor. In addition, some pinholes occur in the molded product obtained from the one-week storage product, and the appearance (moldability) is insufficient. The molded product obtained from the one-month storage product has a slightly inferior surface gloss, and the appearance (glossy). Was insufficient.

比較例2は、樹脂組成物(A)に、1分子中に3つ以上の水酸基を有するアルコール(a4)を含まない例であるが、高温流動性の経時変化が大きく、保存安定性が不良であり、1ヶ月保管品から得られる成形品の外観(光沢)が不良であった。   Comparative Example 2 is an example in which the resin composition (A) does not contain an alcohol (a4) having three or more hydroxyl groups in one molecule, but the change in high-temperature fluidity with time is large and storage stability is poor. The appearance (gloss) of the molded product obtained from the one-month storage product was poor.

比較例3は、樹脂組成物(A)に、1分子中に2つの水酸基を有するアルコール(a3)を含まない例であるが、1ヶ月保管品から得られる成形品は外観(光沢)が不良であった。   Comparative Example 3 is an example in which the resin composition (A) does not contain an alcohol (a3) having two hydroxyl groups in one molecule, but a molded product obtained from a one-month storage product has a poor appearance (gloss). Met.

比較例4は、樹脂組成物(A)に、1分子中に2つの水酸基を有するアルコール(a3)を含まず、1分子中に3つ以上の水酸基を有するアルコール(a4)を多量に含む例であるが、流動抵抗が高すぎるため、高温流動性を評価できなかった。また、得られる成形品は外観が不良(著しく黄変)であった。更に、長期保管品から得られる成形品も外観が不良(光沢、著しく黄変)であった。   Comparative Example 4 is an example in which the resin composition (A) does not contain an alcohol (a3) having two hydroxyl groups in one molecule and contains a large amount of an alcohol (a4) having three or more hydroxyl groups in one molecule. However, since the flow resistance is too high, the high temperature fluidity could not be evaluated. Further, the molded product obtained had a poor appearance (remarkably yellowing). Furthermore, the molded product obtained from the long-term storage product also had a poor appearance (glossy and marked yellowing).

Claims (4)

不飽和ポリエステル樹脂(a1)、ラジカル重合性希釈剤(a2)、1分子中に2つの水酸基を有するアルコール(a3)、1分子中に3つ以上の水酸基を有するアルコール(a4)、酸化マグネシウム、及び重合開始剤を含有する樹脂組成物(A)を、ガラス繊維(B)に含浸して得られる加熱圧縮成形用成形材料であって、前記樹脂組成物(A)が、前記不飽和ポリエステル樹脂(a1)100質量部に対して、前記アルコール(a3)を0.1〜1.0質量部、前記アルコール(a4)を0.02〜0.5質量部、前記酸化マグネシウムを0.1〜5質量部含有するものであることを特徴とする加熱圧縮成形用成形材料。   Unsaturated polyester resin (a1), radical polymerizable diluent (a2), alcohol having two hydroxyl groups in one molecule (a3), alcohol having three or more hydroxyl groups in one molecule (a4), magnesium oxide, And a resin composition (A) containing a polymerization initiator, which is obtained by impregnating glass fibers (B) into a heat compression molding material, wherein the resin composition (A) is the unsaturated polyester resin. (A1) 0.1 to 1.0 parts by mass of the alcohol (a3), 0.02 to 0.5 parts by mass of the alcohol (a4), and 0.1 to 0.1 parts of the magnesium oxide with respect to 100 parts by mass. A molding material for heat compression molding comprising 5 parts by mass. 前記アルコール(a3)が、プロピレングリコールである請求項1記載の加熱圧縮成形用成形材料。   The molding material for heat compression molding according to claim 1, wherein the alcohol (a3) is propylene glycol. 請求項1又は2記載の加熱圧縮成形用成形材料を成形して得られることを特徴とする成形品。   A molded product obtained by molding the molding material for heat compression molding according to claim 1 or 2. シートモールディングコンパウンド(SMC)又はバルクモールディングコンパウンド(BMC)の加熱圧縮成形法により得られるものである請求項3記載の成形品。   The molded article according to claim 3, which is obtained by a heat compression molding method of sheet molding compound (SMC) or bulk molding compound (BMC).
JP2015010294A 2015-01-22 2015-01-22 Molding material for heat compression molding and molded product thereof Active JP6432365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015010294A JP6432365B2 (en) 2015-01-22 2015-01-22 Molding material for heat compression molding and molded product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015010294A JP6432365B2 (en) 2015-01-22 2015-01-22 Molding material for heat compression molding and molded product thereof

Publications (2)

Publication Number Publication Date
JP2016132770A true JP2016132770A (en) 2016-07-25
JP6432365B2 JP6432365B2 (en) 2018-12-05

Family

ID=56425870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015010294A Active JP6432365B2 (en) 2015-01-22 2015-01-22 Molding material for heat compression molding and molded product thereof

Country Status (1)

Country Link
JP (1) JP6432365B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7534867B2 (en) 2020-04-24 2024-08-15 ジャパンコンポジット株式会社 Press molding materials, moldings and tanks

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5598216A (en) * 1979-01-18 1980-07-26 Kuraray Co Ltd Unshrinkable unsaturated polyester resin composition
JPS5859210A (en) * 1981-10-05 1983-04-08 Hitachi Chem Co Ltd Thickening of alpha,beta-unsaturated polyester
JPH01229067A (en) * 1988-03-09 1989-09-12 Hitachi Chem Co Ltd Thixotropic unsaturated polyester resin composition
JPH0826806A (en) * 1994-07-21 1996-01-30 Inax Corp Composition for artificial marble
JP2003213020A (en) * 2002-01-23 2003-07-30 Hitachi Housetec Co Ltd Sheet-molding compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5598216A (en) * 1979-01-18 1980-07-26 Kuraray Co Ltd Unshrinkable unsaturated polyester resin composition
JPS5859210A (en) * 1981-10-05 1983-04-08 Hitachi Chem Co Ltd Thickening of alpha,beta-unsaturated polyester
JPH01229067A (en) * 1988-03-09 1989-09-12 Hitachi Chem Co Ltd Thixotropic unsaturated polyester resin composition
JPH0826806A (en) * 1994-07-21 1996-01-30 Inax Corp Composition for artificial marble
JP2003213020A (en) * 2002-01-23 2003-07-30 Hitachi Housetec Co Ltd Sheet-molding compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7534867B2 (en) 2020-04-24 2024-08-15 ジャパンコンポジット株式会社 Press molding materials, moldings and tanks

Also Published As

Publication number Publication date
JP6432365B2 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
JP6156612B1 (en) Molding material for heat compression molding, molded product using the same, and method for producing the same
JP5950050B2 (en) Molding material for heat compression molding, molded product using the same, and method for producing the same
BRPI0608808B1 (en) sheet molding compound paste formulation, sheet molding compound, article of manufacture, process for manufacturing composite molded parts of vehicles and construction, and method for manufacturing a article of manufacture
KR20110118826A (en) Use of vinyl ester copolymers as low-profile additives (lpas)
JPH04342757A (en) Thickened, curable molding composition of unsaturated polyester resin
JPH09241496A (en) Unsaturated polyester resin composition and sheet-like molding material
JP6432365B2 (en) Molding material for heat compression molding and molded product thereof
JP6988979B2 (en) Thermosetting resin composition and its resin molded product
JP2010202812A (en) Diallyl phthalate crosslinked low shrinkage unsaturated polyester resin composition for molding and molded article of the same
JP4634781B2 (en) Prepreg for fiber reinforced resin composite material
JP5885053B1 (en) Molding material for heat compression molding and molded product thereof
JP2018087274A (en) Resin molding material and molding thereof
JP4727441B2 (en) Black vinyl ester resin molding material
JP2017193599A (en) Sheet molding compound, method for producing the same, and molded article
JP2022041470A (en) Resin composition, molding material and molded article of the same
JPH06122812A (en) Unsaturated polyester resin composition, molding material and molded article
JP2021014523A (en) Thermosetting (meth)acrylic resin composition and molded article of the same
JP2015183025A (en) Molding material for hot compression molding and molded part thereof
KR102365248B1 (en) Sheet molding compound used unsaturated polyester resin compositions comprising the same and cured product thereof
JPWO2021111885A1 (en) Sheet molding compound and its molded products
KR910008607B1 (en) Curing composition
JP6390328B2 (en) Molding material for heat compression molding and molded product thereof
JP2009234200A (en) Decorative board with high sharpness
JP2021138792A (en) Resin composition, molding material and molding thereof
JPS599346B2 (en) Fiber reinforced unsaturated polyester resin laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171121

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181022

R151 Written notification of patent or utility model registration

Ref document number: 6432365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250