JP2015183025A - Molding material for hot compression molding and molded part thereof - Google Patents

Molding material for hot compression molding and molded part thereof Download PDF

Info

Publication number
JP2015183025A
JP2015183025A JP2014058141A JP2014058141A JP2015183025A JP 2015183025 A JP2015183025 A JP 2015183025A JP 2014058141 A JP2014058141 A JP 2014058141A JP 2014058141 A JP2014058141 A JP 2014058141A JP 2015183025 A JP2015183025 A JP 2015183025A
Authority
JP
Japan
Prior art keywords
mass
molding
heat compression
compression molding
molding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014058141A
Other languages
Japanese (ja)
Inventor
達郎 嘉納
Tatsuro Kano
達郎 嘉納
木村 正昭
Masaaki Kimura
正昭 木村
道成 兼本
Michinari Kanemoto
道成 兼本
澤田 栄嗣
Eiji Sawada
栄嗣 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2014058141A priority Critical patent/JP2015183025A/en
Publication of JP2015183025A publication Critical patent/JP2015183025A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a molding material for hot compression molding obtainable without using conductive fiber and also capable of obtaining a molded part having excellent conductivity and appearance.SOLUTION: Provided is a molding material for hot compression molding obtained by impregnating a glass fiber (B) with a length of 5 to 60 mm with a compound composition (A) comprising a resin component (a1) essentially consisting of a thermosetting resin, an inorganic filler (a2) with the average particle diameter of 5 μm, carbon black (a3) with the average particle diameter of 1 μm or lower, a polymerization initiator and a thickner, regarding the contents thereof, to 100 pts.mass of the resin component (a1), the range of the inorganic filler (a2) is 50 to 300 pts.mass, the range of the carbon black (a3) is 0.5 to 5 pts.mass, and the range of the glass fiber (B) is 25 to 125 pts.mass.

Description

本発明は、加熱圧縮成形法により成形可能で、且つ導電性に優れる成形品が得られる加熱圧縮成形用成形材料及びその成形品に関する。   The present invention relates to a molding material for heat compression molding that can be molded by a heat compression molding method and that provides a molded product having excellent conductivity, and the molded product.

導電性プラスチックは、その軽量性を活かして、電気・電子分野、オプトエレクトロニクス分野、エネルギー分野などで検討されている。実用化の中心となっているのは、導電性フィルム・シートであり、マトリックス・ポリマーとして、合成ゴム、ポリオレフィン、塩化ビニル、ポリスチレン、ABS、ナイロン、エチレン酢ビ共重合体、ポリエステル、アクリル、エポキシ、ウレタン樹脂などが利用されている。   Conductive plastics are being studied in the electrical / electronic field, optoelectronics field, energy field, etc., taking advantage of their light weight. The center of practical use is conductive films and sheets. As matrix polymers, synthetic rubber, polyolefin, vinyl chloride, polystyrene, ABS, nylon, ethylene vinyl acetate copolymer, polyester, acrylic, epoxy Urethane resin is used.

これらの樹脂に導電性を付与する方法としては、炭素繊維を用いる方法が知られており、導電性繊維の連続層を少なくとも一つ有するシート状熱硬化性樹脂成形材料(SMC)が提案されている(例えば、特許文献1参照。)。また、ガラス繊維を用いる方法としては、導電性粒子を含むサイジング剤で表面処理したガラス繊維を用いたSMC及びBMCが提案されている(例えば、特許文献2参照。)。   As a method for imparting conductivity to these resins, a method using carbon fibers is known, and a sheet-like thermosetting resin molding material (SMC) having at least one continuous layer of conductive fibers has been proposed. (For example, refer to Patent Document 1). As a method using glass fiber, SMC and BMC using glass fiber surface-treated with a sizing agent containing conductive particles have been proposed (for example, see Patent Document 2).

しかしながら、これらの導電性繊維を用いる方法はコスト面での課題があるため、低コストで得られ、かつ、優れた導電性を有するプラスチック成形品を得られる成形材料が求められていた。   However, since the method using these conductive fibers has a problem in terms of cost, there has been a demand for a molding material that can be obtained at a low cost and can obtain a plastic molded article having excellent conductivity.

国際公開WO99/61239号公報International Publication WO99 / 61239 特表2008−516887号公報Special table 2008-516887

本発明が解決しようとする課題は、導電性繊維を用いずに得られ、かつ、優れた導電性及び外観を有する成形品を得ることができる加熱圧縮成形用成形材料を提供することである。   The problem to be solved by the present invention is to provide a molding material for heat compression molding that can be obtained without using conductive fibers and can obtain a molded product having excellent conductivity and appearance.

本発明者等は、熱硬化性樹脂を必須成分とする樹脂成分、無機充填材、カーボンブラック、5〜60mmのガラス繊維を特定の質量比で含有する加熱成形用成形材料から得られる成形品が優れた導電性を有することを見出し、本発明を完成した。   The present inventors have obtained a molded product obtained from a molding material for thermoforming containing a resin component having an essential component of thermosetting resin, an inorganic filler, carbon black, and a glass fiber of 5 to 60 mm in a specific mass ratio. The present invention was completed by finding that it has excellent electrical conductivity.

すなわち、熱硬化性樹脂を必須成分とする樹脂成分(a1)、平均粒子径5μm以下の無機充填材(a2)、平均粒子径1μm以下のカーボンブラック(a3)、重合開始剤および増粘剤を含有するコンパウンド組成物(A)を、長さ5〜60mmのガラス繊維(B)に含浸させて得られた加熱圧縮成形用成形材料であって、これらの含有量が、前記樹脂成分(a1)100質量部に対して、前記無機充填材(a2)が50〜300質量部の範囲であり、前記カーボンブラック(a3)が0.5〜5質量部の範囲であり、前記ガラス繊維(B)が25〜125質量部の範囲であることを特徴とする加熱圧縮成形用成形材料に関する。   That is, a resin component (a1) having a thermosetting resin as an essential component, an inorganic filler (a2) having an average particle size of 5 μm or less, carbon black (a3) having an average particle size of 1 μm or less, a polymerization initiator, and a thickener. A molding material for heat compression molding obtained by impregnating a glass composition (B) having a length of 5 to 60 mm with the compound composition (A) to be contained, the content of which is the resin component (a1) The inorganic filler (a2) is in the range of 50 to 300 parts by mass with respect to 100 parts by mass, the carbon black (a3) is in the range of 0.5 to 5 parts by mass, and the glass fiber (B). Is in the range of 25 to 125 parts by mass.

本発明の加熱圧縮成形用成形材料から得られる成形品は、優れた導電性を有することから、電子部品用トレー、電気回路ボックス、圧力容器、クリーンルーム部材等の静電気防止部材、静電塗装用自動車部材、電磁波シールド部材、面状発熱部材等に好適に用いることができる。   Since the molded product obtained from the molding material for heat compression molding of the present invention has excellent conductivity, it is an antistatic member such as an electronic component tray, an electric circuit box, a pressure vessel, a clean room member, and an automobile for electrostatic coating. It can be suitably used for a member, an electromagnetic shielding member, a planar heating member, and the like.

本発明の加熱圧縮用成形材料は、熱硬化性樹脂を必須成分とする樹脂成分(a1)、平均粒子径5μm以下の無機充填材(a2)、平均粒子径1μm以下のカーボンブラック(a3)、重合開始剤および増粘剤を含有するコンパウンド組成物(A)を、5〜60mmのガラス繊維(B)に含浸させて得られる加熱成形用成形材料であって、これらの含有量が、前記樹脂成分(a1)100質量部に対して、前記無機充填材(a2)が50〜300質量部の範囲であり、前記カーボンブラック(a3)が0.5〜5質量部の範囲であり、前記ガラス繊維(B)が25〜125質量部の範囲であるものである。   The molding material for heat compression of the present invention includes a resin component (a1) containing a thermosetting resin as an essential component, an inorganic filler (a2) having an average particle size of 5 μm or less, carbon black (a3) having an average particle size of 1 μm or less, A molding material for thermoforming obtained by impregnating 5-60 mm glass fiber (B) with a compound composition (A) containing a polymerization initiator and a thickener, the content of which is the resin The inorganic filler (a2) is in the range of 50 to 300 parts by mass with respect to 100 parts by mass of the component (a1), the carbon black (a3) is in the range of 0.5 to 5 parts by mass, and the glass The fiber (B) is in the range of 25 to 125 parts by mass.

まず、前記コンパウンド組成物(A)について説明する。前記コンパウンド組成物(A)は、熱硬化性樹脂を必須成分とする樹脂成分(a1)、平均粒子径5μm以下の無機充填材(a2)、平均粒子径1μm以下のカーボンブラック(a3)、重合開始剤および増粘剤を含有するものである。   First, the compound composition (A) will be described. The compound composition (A) comprises a resin component (a1) containing a thermosetting resin as an essential component, an inorganic filler (a2) having an average particle size of 5 μm or less, carbon black (a3) having an average particle size of 1 μm or less, polymerization It contains an initiator and a thickener.

前記樹脂成分(a1)は、熱硬化性樹脂を必須成分とするものである。前記熱硬化性樹脂としては、例えば、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、メラミン樹脂、フラン樹脂等が挙げられ、これらの中でも、加熱圧縮成形性が良好であることから、不飽和ポリエステル樹脂又はビニルエステル樹脂が好ましい。なお、これらの熱硬化性樹脂は、単独で用いることも2種以上併用することもできる。   The resin component (a1) contains a thermosetting resin as an essential component. Examples of the thermosetting resin include unsaturated polyester resins, vinyl ester resins, phenol resins, melamine resins, furan resins, etc. Among these, unsaturated polyesters have good heat compression moldability. Resins or vinyl ester resins are preferred. These thermosetting resins can be used alone or in combination of two or more.

また、前記樹脂成分(a1)中には、低収縮化剤として熱可塑性樹脂を含有することができる。前記熱可塑性樹脂としては、例えば、ナイロン樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリカーボネート樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、ポリスチレン樹脂、アクリル樹脂、およびこれらを共重合等により変性させたものが挙げられる。これら熱可塑性樹脂を低収縮化剤として使用する場合には、なかでも、ポリスチレン樹脂、スチレン−アクリル酸共重合体、スチレン−酢酸ビニル共重合体、スチレン−ブタジエン共重合体、ポリ(メタ)アクリル酸エステルが好ましい。   The resin component (a1) can contain a thermoplastic resin as a low shrinkage agent. Examples of the thermoplastic resin include nylon resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polycarbonate resin, polypropylene resin, polyethylene resin, polystyrene resin, acrylic resin, and those modified by copolymerization or the like. . When these thermoplastic resins are used as a low shrinkage agent, among others, polystyrene resin, styrene-acrylic acid copolymer, styrene-vinyl acetate copolymer, styrene-butadiene copolymer, poly (meth) acrylic. Acid esters are preferred.

前記樹脂成分(a1)中の前記熱硬化性樹脂の質量割合は、加熱圧縮成形性及び得られる成形品の外観が向上することから、50質量%以上であることが好ましく、60質量%以上であることがより好ましい。   The mass ratio of the thermosetting resin in the resin component (a1) is preferably 50% by mass or more, and is preferably 60% by mass or more because the heat compression moldability and the appearance of the obtained molded product are improved. More preferably.

前記無機充填材(a2)は、その平均粒子径が5μmを越えると、前記コンパウンド組成物(A)中および本発明の加熱圧縮成形用成形材料中で、前記カーボンブラック(a3)の分散性が悪くなり、得られる成形品の導電性が低下することから、平均粒子径が5μm以下であることが重要であり、好ましくは3μm以下である。   When the average particle size of the inorganic filler (a2) exceeds 5 μm, the dispersibility of the carbon black (a3) is increased in the compound composition (A) and the molding material for heat compression molding of the present invention. It becomes important that the average particle size is 5 μm or less, preferably 3 μm or less, because the conductivity of the molded product obtained is deteriorated.

前記無機充填材(a2)としては、例えば、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、マイカ、タルク、カオリン、クレー、セライト、アスベスト、バーライト、バライタ、シリカ、ケイ砂、ドロマイト石灰石、石こう、アルミニウム微粉、中空バルーン、アルミナ、ガラス粉、水酸化アルミニウム、寒水石、酸化ジルコニウム、三酸化アンチモン、酸化チタン、二酸化モリブデン、鉄粉などが挙げられる。これらの無機充填材(a2)は、本発明の成形材料中およびその成形品中で、前記カーボンブラック(a3)が、前記ガラス繊維(B)に沿って配向させる効果があり、カーボンブラック(a3)の添加量が少ない場合であっても、得られる成形品が優れた導電性を有すると考えられる。   Examples of the inorganic filler (a2) include calcium carbonate, magnesium carbonate, barium sulfate, mica, talc, kaolin, clay, celite, asbestos, barite, baryta, silica, silica sand, dolomite limestone, gypsum, and aluminum fine powder. , Hollow balloon, alumina, glass powder, aluminum hydroxide, cryolite, zirconium oxide, antimony trioxide, titanium oxide, molybdenum dioxide, iron powder and the like. These inorganic fillers (a2) have an effect of orienting the carbon black (a3) along the glass fiber (B) in the molding material of the present invention and in the molded product thereof. ), It is considered that the obtained molded product has excellent conductivity.

また、前記コンパウンド組成物(A)中の前記無機充填材(a2)の含有量は、導電性に優れる成形品が得られることから、前記樹脂成分(a1)100質量部に対して、25〜300質量部の範囲である。前記範囲より少ないと、得られる成形品の導電性が劣り、前記範囲を超えると加熱圧縮成形性が悪くなる。   Moreover, since content of the said inorganic filler (a2) in the said compound composition (A) can obtain the molded article which is excellent in electroconductivity, it is 25-25 with respect to 100 mass parts of said resin components (a1). The range is 300 parts by mass. When the amount is less than the above range, the resulting molded article has poor conductivity, and when it exceeds the above range, the heat compression moldability deteriorates.

前記カーボンブラック(a3)は、導電性に優れる成形品が得られることから、平均粒子径が1μm以下のものであり、100nm以下のものであることが好ましい。   The carbon black (a3) has a mean particle size of 1 μm or less and preferably 100 nm or less because a molded product having excellent conductivity can be obtained.

前記カーボンブラック(a3)としては、例えば、チャンネルブラック、ファーネスブラック、サーマルブラック、ガスブラック、アントラセンブラック、アセチレンブラック、ケッチェンカーボンブラック、ランプブラック等が挙げられるが、これらのなかでも、得られる成形品の導電性が優れることから、アセチレンブラック、ケッチェンカーボンブラックが好ましい。なお、これらのカーボンブラック(a3)は、単独で用いることも2種以上併用することもできる。   Examples of the carbon black (a3) include channel black, furnace black, thermal black, gas black, anthracene black, acetylene black, ketjen carbon black, and lamp black. Among these, molding is obtained. Acetylene black and ketjen carbon black are preferred because of their excellent electrical conductivity. These carbon blacks (a3) can be used alone or in combination of two or more.

また、前記コンパウンド組成物(A)中の前記カーボンブラック(a3)の含有量は、前記樹脂成分(a1)100質量部に対して、0.5〜5質量部の範囲である。前記範囲より少ないと、得られる成形品の導電性が不十分となる。逆に、前記範囲より多くすると、後述のコンパウンド組成物(A)の粘度が著しく高くなるため、得られる成形品の外観が悪くなるとともに、導電性が低下する。   Moreover, content of the said carbon black (a3) in the said compound composition (A) is the range of 0.5-5 mass parts with respect to 100 mass parts of said resin components (a1). When the amount is less than the above range, the resulting molded article has insufficient conductivity. On the contrary, if it exceeds the said range, since the viscosity of the below-mentioned compound composition (A) will become remarkably high, while the external appearance of the molded article obtained will worsen, electroconductivity will fall.

前記重合開始剤は、特に限定されないが、有機過酸化物が好ましく、例えば、ジアシルパーオキサイド化合物、パーオキシエステル化合物、ハイドロパーオキサイド化合物、ケトンパーオキサイド化合物、アルキルパーエステル化合物、パーカーボネート化合物等が挙げられ、成形条件に応じて適宜選択できる。これらの重合開始剤は、単独で用いることも2種以上併用することもできる。   The polymerization initiator is not particularly limited, but is preferably an organic peroxide, such as a diacyl peroxide compound, a peroxy ester compound, a hydroperoxide compound, a ketone peroxide compound, an alkyl perester compound, a carbonate compound, and the like. And can be appropriately selected according to the molding conditions. These polymerization initiators can be used alone or in combination of two or more.

また、前記コンパウンド組成物(A)中の前記重合開始剤の含有量は、本発明の目的を達成する範囲であれば特に限定されるものではないが、本発明の成形材料の硬化特性と保存安定性が共に優れることから、前記樹脂成分(a1)に対して、0.3〜3質量%の範囲が好ましい。   Further, the content of the polymerization initiator in the compound composition (A) is not particularly limited as long as the object of the present invention is achieved, but the curing characteristics and storage of the molding material of the present invention are not limited. Since both stability is excellent, the range of 0.3-3 mass% is preferable with respect to the said resin component (a1).

前記増粘剤は、特に限定されないが、例えば、酸化マグネシウム、水酸化マグネシウム、酸化カルシウム、水酸化カルシウム等の金属酸化物や金属水酸化物、イソシアネート化合物等が挙げられ、本発明の加熱圧縮成形材料の取り扱い性によって適宜選択肢でき、成形材料の硬さは添加量で調整できる。これらの増粘剤は、単独で用いることも、2種以上を併用することもできる。これらの中でも、前記熱硬化性樹脂として、不飽和ポリエステル樹脂を用いる場合は、酸化マグネシウムが好ましく、前記熱硬化性樹脂として、ビニルエステル樹脂を用いる場合は、イソシアネート化合物が好ましい。   The thickener is not particularly limited, and examples thereof include metal oxides such as magnesium oxide, magnesium hydroxide, calcium oxide, and calcium hydroxide, metal hydroxides, isocyanate compounds, and the like. The material can be appropriately selected depending on the handleability of the material, and the hardness of the molding material can be adjusted by the addition amount. These thickeners can be used alone or in combination of two or more. Among these, when an unsaturated polyester resin is used as the thermosetting resin, magnesium oxide is preferable, and when a vinyl ester resin is used as the thermosetting resin, an isocyanate compound is preferable.

また、前記不飽和ポリエステル中の前記酸化マグネシウムの含有量は、前記樹脂成分(a1)に対して、0.3〜3質量%の範囲が好ましい。また、イソシアネート化合物の含有量としては、前記ビニルエステル樹脂中の水酸基と、前記イソシアネート化合物中のモル比が、0.2〜0.8の範囲内であることが好ましい。   The content of the magnesium oxide in the unsaturated polyester is preferably in the range of 0.3 to 3% by mass with respect to the resin component (a1). Moreover, as content of an isocyanate compound, it is preferable that the hydroxyl group in the said vinyl ester resin and the molar ratio in the said isocyanate compound exist in the range of 0.2-0.8.

前記コンパウンド組成物(A)には、前記樹脂成分(a1)、前記無機充填材(a2)、前記カーボンブラック(a3)、前記重合開始剤および前記増粘剤以外の成分として、重合禁止剤、離型剤、顔料、減粘剤、老化防止剤、可塑剤、難燃剤、抗菌剤、安定剤、補強材、光硬化剤等を含有することができる。   In the compound composition (A), as a component other than the resin component (a1), the inorganic filler (a2), the carbon black (a3), the polymerization initiator and the thickener, a polymerization inhibitor, Release agents, pigments, thickening agents, anti-aging agents, plasticizers, flame retardants, antibacterial agents, stabilizers, reinforcing materials, photocuring agents, and the like can be contained.

前記重合禁止剤としては、例えば、ハイドロキノン、トリメチルハイドロキノン、p−t−ブチルカテコール、t−ブチルハイドロキノン、トルハイドロキノン、p−ベンゾキノン、ナフトキノン、ハイドロキノンモノメチルエーテル、フェノチアジン、ナフテン酸銅、塩化銅等が挙げられる。これらの重合禁止剤は、単独で用いることも、2種以上を併用することもできる。これらの重合禁止剤は、前記コンパウンド組成物(A)中に、10〜1000ppm含有することが好ましい。   Examples of the polymerization inhibitor include hydroquinone, trimethylhydroquinone, pt-butylcatechol, t-butylhydroquinone, toluhydroquinone, p-benzoquinone, naphthoquinone, hydroquinone monomethyl ether, phenothiazine, copper naphthenate, copper chloride and the like. It is done. These polymerization inhibitors can be used alone or in combination of two or more. These polymerization inhibitors are preferably contained in the compound composition (A) in an amount of 10 to 1000 ppm.

前記離型剤としては、例えば、ステアリン酸亜鉛、ステアリン酸カルシウム、パラフィンワックス、ポリエチレンワックス、カルナバワックスなどが挙げられる。好ましくは、パラフィンワックス、ポリエチレンワックス、カルナバワックス等が挙げられる。これらの離型剤は、単独で用いることも、2種以上を併用することもできる。   Examples of the mold release agent include zinc stearate, calcium stearate, paraffin wax, polyethylene wax, carnauba wax and the like. Preferably, paraffin wax, polyethylene wax, carnauba wax and the like are used. These mold release agents can be used alone or in combination of two or more.

前記ガラス繊維(B)は、5〜60mm長さのものであり、例えば、ロービングと呼ばれる長繊維をカットした繊維、予め短くカットされたチョップドストランドと呼ばれる短繊維等が挙げられる。前記ガラス繊維(B)の長さが、前記範囲より短いと得られる成形品の導電性が十分発現せず、前記範囲を越えると加熱圧縮成形時にガラス繊維(B)の流動性が悪くなるため、得られる成形品の導電性が部位によって変化し、均一で安定した導電性を得られない。   The glass fiber (B) has a length of 5 to 60 mm, and examples thereof include fibers obtained by cutting long fibers called roving, short fibers called chopped strands that have been cut in advance. If the length of the glass fiber (B) is shorter than the above range, the resulting molded article will not exhibit sufficient conductivity, and if it exceeds the above range, the fluidity of the glass fiber (B) will deteriorate during heat compression molding. The conductivity of the resulting molded product varies depending on the site, and uniform and stable conductivity cannot be obtained.

前記ガラス繊維(B)の種類としては、例えば、Eガラス、Cガラス、Rガラス、ARガラス、または低ホウ素含有率ガラス等を、繊維径10〜25μmで、線密度1000〜5000g/km(TEX)で集束したものなどを用いることができる。また、集束剤(サイジング剤)としては、例えば、アクリル樹脂、ウレタン樹脂、ビニル樹脂等の熱可塑性樹脂と、シランカップリング剤とを併用することが好ましい。   As the kind of the glass fiber (B), for example, E glass, C glass, R glass, AR glass, low boron content glass, etc., with a fiber diameter of 10 to 25 μm and a linear density of 1000 to 5000 g / km (TEX) ) Or the like converged at (). Moreover, as a sizing agent (sizing agent), it is preferable to use together thermoplastic resins, such as an acrylic resin, a urethane resin, a vinyl resin, and a silane coupling agent, for example.

本発明の加熱圧縮成形用成形材料は、前記コンパウンド組成物(A)を、前記ガラス繊維(B)に含浸させて得られるものであるが、加熱圧縮成形用成形材料中の前記ガラス繊維(B)の含有率は、前記樹脂成分(a1)100質量部に対して、25〜125質量部である。前記ガラス繊維(B)の含有率が、前記範囲より小さいと、得られる成形品の導電性が不十分となり、前記範囲より大きいと、得られる成形品の表面品質が低下する。   The molding material for heat compression molding according to the present invention is obtained by impregnating the glass fiber (B) with the compound composition (A), but the glass fiber (B ) Content is 25 to 125 parts by mass with respect to 100 parts by mass of the resin component (a1). When the content of the glass fiber (B) is smaller than the above range, the resulting molded article has insufficient conductivity, and when it is larger than the above range, the surface quality of the obtained molded article is deteriorated.

本発明の加熱圧縮成形用成形材料中およびその成形品中において、前記カーボンブラック(a3)は、前記ガラス繊維(B)に沿って配向しており、優れた導電性を有すると考えられる。すなわち本発明では、ガラス繊維(B)と、カーボンブラック(a3)には適切な比率があり、より優れた導電性を有する成形品が得られることから、前記ガラス繊維(B)1質量部に対して、前記カーボンブラック(a3)が0.015〜0.06質量部の範囲が好ましく、0.03〜0.06の範囲がより好ましい。   In the molding material for heat compression molding of the present invention and the molded product thereof, the carbon black (a3) is oriented along the glass fiber (B) and is considered to have excellent conductivity. That is, in the present invention, there is an appropriate ratio between the glass fiber (B) and the carbon black (a3), and a molded product having better conductivity can be obtained, so that 1 part by mass of the glass fiber (B) is obtained. On the other hand, the carbon black (a3) is preferably in the range of 0.015 to 0.06 parts by mass, and more preferably in the range of 0.03 to 0.06.

また、本発明の加熱成形用成形材料は、成形材料としての取り扱いや成形性の観点から、シートモールディングコンパウンド(以下、SMCと略記する。)又はバルクモールディングコンパウンド(以下、BMCと略記する。)であることが好ましい。   The molding material for heat molding of the present invention is a sheet molding compound (hereinafter abbreviated as SMC) or a bulk molding compound (hereinafter abbreviated as BMC) from the viewpoint of handling as a molding material and moldability. Preferably there is.

前記SMCの製造方法としては、通常のロール、インターミキサー、プラネタリーミキサー、ニーダー、押し出し機などの混合機を用いて、前記樹脂組成物(a1)、前記無機充填材(a2)及び前記カーボンブラック(a3)等の樹脂コンパウンド(D)の各成分を混合分散し、上下に設置されたキャリアフィルムに均一な厚さになるように塗布し、所定の長さにカットされたガラス繊維(B)を、前記上下に設置されたキャリアフィルムの樹脂コンパウンドに挟み込み、次いで、全体を含浸ロールの間に通して、圧力を加えて繊維補強材に樹脂コンパウンドを含浸させた後、ロール状に巻き取るか又はつづら折りに畳んでSMCが得られる。必要に応じて、この後に熟成等を行う。増粘剤を配合した場合は、25〜60℃の温度で熟成することが好ましい。キャリアフィルムとしては、ポリエチレンフィルム、ポリプロピレンフィルム等を用いることができる。   As the method for producing the SMC, the resin composition (a1), the inorganic filler (a2), and the carbon black are mixed using a mixer such as a normal roll, an intermixer, a planetary mixer, a kneader, or an extruder. The glass fiber (B) cut and mixed to a predetermined length by mixing and dispersing each component of the resin compound (D) such as (a3), applying it to the carrier film installed above and below to a uniform thickness Is inserted into the resin compound of the carrier film installed above and below, and then the whole is passed between impregnating rolls, and the fiber reinforcing material is impregnated with the resin compound by applying pressure, and then wound into a roll shape. Alternatively, the SMC is obtained by folding in a spell. This is followed by aging as necessary. When a thickener is blended, aging is preferably performed at a temperature of 25 to 60 ° C. As the carrier film, a polyethylene film, a polypropylene film, or the like can be used.

前記BMCの製造方法としては、前記SMCの製造方法と同様に、通常のロール、インターミキサー、プラネタリーミキサー、ニーダー、押し出し機などの混合機を用いて、前記樹脂組成物(a1)、前記無機充填材(a2)、前記カーボンブラック(a3)、重合開始剤及び増粘剤を含む前記コンパウンド組成物(A)を分散させた後、最後に前記ガラス繊維(B)を混合・分散させる方法が好ましい。BMCの場合、前記ガラス繊維(B)としては、分散性の観点から比較的短繊維を使用するのが好ましく、例えば、5〜13mm長さの範囲である。また、SMCと同様に増粘剤を混合した場合は、25〜60℃の温度で熟成することが好ましい。   As the method for producing the BMC, in the same manner as the method for producing the SMC, the resin composition (a1), the inorganic material, and the like can be obtained using a mixer such as a normal roll, an intermixer, a planetary mixer, a kneader, and an extruder. After dispersing the compound composition (A) containing the filler (a2), the carbon black (a3), a polymerization initiator and a thickener, finally mixing and dispersing the glass fiber (B). preferable. In the case of BMC, it is preferable to use a relatively short fiber as the glass fiber (B) from the viewpoint of dispersibility, for example, in the range of 5 to 13 mm in length. Moreover, when a thickener is mixed similarly to SMC, it is preferable to age | cure | ripen at the temperature of 25-60 degreeC.

本発明の成形品は、前記加熱成形用成形材料より得られるが、成形材料としての取り扱いや成形性の観点から、その成形方法としては、SMC又はBMCの加熱圧縮成形法が好ましい。   The molded product of the present invention can be obtained from the molding material for heat molding. From the viewpoints of handling as a molding material and moldability, the molding method is preferably SMC or BMC heat compression molding.

前記加熱圧縮成形法としては、例えば、SMC、BMC等の成形材料を所定量計量し、予め110℃〜180℃に加熱した金型に投入し、圧縮成形機にて型締めを行い、成形材料を賦型させ、0.1〜20MPaの成形圧力を保持することによって、成形材料を硬化させ、その後成形品を取り出し成形品を得る製造方法が用いられる。この場合シェアエッジを有する金型内で金型温度120℃〜160℃にて、成形品の厚さ1mm当たり1〜2分間という規定の時間、1〜10MPaの成形圧力を保持し、加熱圧縮成形する製造方法が好ましい。   As the heat compression molding method, for example, a predetermined amount of a molding material such as SMC, BMC, etc. is weighed, put into a mold heated in advance to 110 ° C. to 180 ° C., clamped with a compression molding machine, and molded material Is used, and the molding material is cured by holding a molding pressure of 0.1 to 20 MPa, and then the molded product is taken out to obtain a molded product. In this case, the molding pressure of 1 to 10 MPa is maintained for 1 to 2 minutes per 1 mm of the thickness of the molded product at a mold temperature of 120 ° C. to 160 ° C. in a mold having a shear edge, and heat compression molding is performed. The manufacturing method is preferred.

本発明の成形品は、表面抵抗値が10Ω/□未満であることが好ましく、体積抵抗値が1012Ω・cm未満であることが好ましい。 The molded product of the present invention preferably has a surface resistance value of less than 10 9 Ω / □ and a volume resistance value of less than 10 12 Ω · cm.

本発明の加熱圧縮成形用成形材料から得られる成形品は、優れた導電性を有することから、電子部品用トレー、電気回路ボックス、圧力容器、クリーンルーム部材等の静電気防止部材、静電塗装用自動車部材、電磁波シールド部材、面状発熱部材等に好適に用いることができる。   Since the molded product obtained from the molding material for heat compression molding of the present invention has excellent conductivity, it is an antistatic member such as an electronic component tray, an electric circuit box, a pressure vessel, a clean room member, and an automobile for electrostatic coating. It can be suitably used for a member, an electromagnetic shielding member, a planar heating member, and the like.

以下に本発明を具体的な実施例を挙げてより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to specific examples.

(実施例1:加熱圧縮成形用成形材料(1)の製造及び評価)
不飽和ポリエステル樹脂の61質量%のスチレン溶液(ディーエイチ・マテリアル株式会社製「PS−276」)131質量部およびポリスチレン樹脂の35質量%のスチレン溶液(ディーエイチ・マテリアル株式会社製「PS−954N」)57質量部、炭酸カルシウム100質量部(平均粒子径1.8μm)、ケッチェンブラック(ライオン株式会社製「ライオナイトCB」、平均粒子径39.5nm)1.5質量部、重合開始剤(化薬アクゾ株式会社製「カヤカルボン BIC−75」)1質量部、及び酸化マグネシウム1.5質量部をディゾルバーにより混合し、コンパウンド組成物(A−1)を得た。次いで、得られたコンパウンド組成物(A−1)を上下に設置された2枚のポリプロピレン製キャリアフィルム上に均一な厚さになるように塗布し、25.4mmにカットしたガラス繊維(日東紡績株式会社製「PB−549」、以下「ガラス繊維(B−1)」と略記する。)68質量部を前記上下に設置されたキャリアフィルム上の樹脂コンパウンドの間に挟み込み、全体を含浸ロールの間に通して圧力を加えて樹脂コンパウンド(1)をガラス繊維に含浸させた後、45℃で24時間養生し、ガラス繊維含有率が25質量%の加熱圧縮成形用成形材料(SMC)(1)を得た。
(Example 1: Production and evaluation of molding material (1) for heat compression molding)
131 parts by mass of styrene solution of 61% by weight of unsaturated polyester resin (“PS-276” manufactured by DH Material Co., Ltd.) and 35% by weight of styrene solution of polystyrene resin (“PS-954N by DH Material Co., Ltd.) ”) 57 parts by mass, calcium carbonate 100 parts by mass (average particle size 1.8 μm), ketjen black (“ Lionite CB ”manufactured by Lion Corporation, average particle size 39.5 nm) 1.5 parts by mass, polymerization initiator (Kayakaku Akzo Co., Ltd. "Kayacaron BIC-75") 1 mass part and magnesium oxide 1.5 mass part were mixed with the dissolver, and the compound composition (A-1) was obtained. Next, the obtained compound composition (A-1) was coated on two polypropylene carrier films installed on the top and bottom so as to have a uniform thickness, and was cut to 25.4 mm (Nitto Boseki) "PB-549" manufactured by Co., Ltd., hereinafter abbreviated as "glass fiber (B-1).") 68 parts by mass are sandwiched between the resin compounds on the carrier film installed above and below, and the whole of the impregnating roll The resin compound (1) was impregnated into the glass fiber by applying pressure therebetween, and then cured at 45 ° C. for 24 hours, and the compression molding material (SMC) (1) having a glass fiber content of 25% by mass )

上記で得られた加熱圧縮成形用成形材料(1)を用いて、下記の成形品の評価を行った。   The following molded products were evaluated using the molding material for heat compression molding (1) obtained above.

[成形品の作製]
上記で得られた加熱圧縮成形用成形材料(1)640gを300×300mmの金型を用いて加熱圧縮成形し、厚さ4mmの平板状の成形品(1)を得た。加熱圧縮成形条件は、金型温度(下)130℃/(上)145℃、キープ時間6分間、圧力5MPaであった。
[Production of molded products]
640 g of the molding material for heat compression molding (1) obtained above was subjected to heat compression molding using a 300 × 300 mm mold to obtain a flat molded product (1) having a thickness of 4 mm. The heat compression molding conditions were a mold temperature (lower) of 130 ° C./(upper) 145 ° C., a keeping time of 6 minutes, and a pressure of 5 MPa.

[成形品の導電性の評価]
上記で得られた成形品(1)を、JIS K 6911に準じ、23℃、50%RHの恒温恒湿室に24時間静置した後、株式会社アドバンテスト製のデジタル超高抵抗計R8340A及びレジスティビティ・チェンバR12704Aを用いて、印加電圧5V、印加時間1分間、測定時間1分間で表面抵抗値および体積抵抗値を測定し、導電性を評価した。
[Evaluation of conductivity of molded products]
The molded product (1) obtained above was allowed to stand for 24 hours in a constant temperature and humidity chamber at 23 ° C. and 50% RH in accordance with JIS K 6911, and then a digital ultrahigh resistance meter R8340A manufactured by Advantest Co., Ltd. and Regis The conductivity was evaluated by measuring the surface resistance value and the volume resistance value at an applied voltage of 5 V, an application time of 1 minute, and a measurement time of 1 minute by using the activity chamber R12704A.

[成形品の外観の評価]
上記で得られた成形品(1)の表面を目視で確認し、下記の基準により、外観を評価した。
○:表面のうねりが小さい
×:表面のうねりが大きい
[Evaluation of appearance of molded product]
The surface of the molded product (1) obtained above was visually confirmed, and the appearance was evaluated according to the following criteria.
○: Surface undulation is small ×: Surface undulation is large

(実施例2:加熱圧縮成形用成形材料(2)の製造)
実施例1で用いたケッチェンブラックの量を1.5質量部から、2.5質量部に変更した以外は、実施例1と同様に操作することにより、ガラス繊維含有率が25質量%の加熱圧縮成形用成形材料(2)を得た。
(Example 2: Production of molding material (2) for heat compression molding)
By operating in the same manner as in Example 1 except that the amount of ketjen black used in Example 1 was changed from 1.5 parts by mass to 2.5 parts by mass, the glass fiber content was 25% by mass. A molding material (2) for heat compression molding was obtained.

(実施例3:加熱圧縮成形用成形材料(3)の製造)
実施例1で用いたケッチェンブラックの量を1.5質量部から3.8質量部に変更した以外は、実施例1と同様に操作することによりガラス繊維含有率が25質量%の加熱圧縮成形用成形材料(3)を得た。
(Example 3: Production of molding material (3) for heat compression molding)
Except that the amount of ketjen black used in Example 1 was changed from 1.5 parts by mass to 3.8 parts by mass, the same operation as in Example 1 was carried out so that the glass fiber content was 25% by mass. A molding material (3) for molding was obtained.

(実施例4:加熱圧縮成形用成形材料(4)の製造)
実施例1で用いたガラス繊維の量を68質量部から31質量部に変更した以外は、実施例1と同様に操作することによりガラス繊維含有率が13質量%の加熱圧縮成形用成形材料(4)を得た。
(Example 4: Production of molding material for heat compression molding (4))
Except that the amount of glass fiber used in Example 1 was changed from 68 parts by mass to 31 parts by mass, the same operation as in Example 1 was carried out to perform a molding composition for heat compression molding having a glass fiber content of 13% by mass 4) was obtained.

(実施例5:加熱圧縮成形用成形材料(5)の製造)
実施例1で用いたガラス繊維の量を68質量部から51質量部に変更した以外は、実施例1と同様に操作することによりガラス繊維含有率が20質量%の加熱圧縮成形用成形材料(5)を得た。
(Example 5: Production of molding material for heat compression molding (5))
Except that the amount of glass fiber used in Example 1 was changed from 68 parts by mass to 51 parts by mass, the same operation as in Example 1 was carried out to obtain a molding material for heat compression molding having a glass fiber content of 20% by mass ( 5) was obtained.

(実施例6:加熱圧縮成形用成形材料(6)の製造)
実施例1で用いたガラス繊維の量を68質量部から88質量部に変更した以外は、実施例1と同様に操作することによりガラス繊維含有率が30質量%の加熱圧縮成形用成形材料(6)を得た。
(Example 6: Production of molding material for heat compression molding (6))
Except that the amount of glass fiber used in Example 1 was changed from 68 parts by mass to 88 parts by mass, the same operation as in Example 1 was carried out, whereby a molding material for heat compression molding having a glass fiber content of 30 mass% ( 6) was obtained.

(加熱圧縮成形用成形材料(2)〜(6)の評価)
実施例1で用いた加熱圧縮成形用成形材料(1)を、上記で得られた加熱圧縮成形用成形材料(2)〜(6)に変更した以外は、実施例1と同様に操作することにより、成形品(2)〜(6)を作製して、成形品の導電性及び外観を評価した。
(Evaluation of molding materials for heat compression molding (2) to (6))
The same operation as in Example 1 is carried out except that the molding material for heat compression molding (1) used in Example 1 is changed to the molding material for heat compression molding (2) to (6) obtained above. Thus, molded products (2) to (6) were produced, and the conductivity and appearance of the molded products were evaluated.

(比較例1:加熱圧縮成形用成形材料(R−1)の製造)
実施例1で用いたケッチェンブラック1.5質量部を添加しなかった以外は、実施例1と同様に操作することにより、ガラス繊維含有率が25質量%の加熱圧縮成形用成形材料(R−1)を得た。
(Comparative Example 1: Production of molding material for heat compression molding (R-1))
By operating in the same manner as in Example 1 except that 1.5 parts by mass of ketjen black used in Example 1 was not added, a molding compound for heat compression molding having a glass fiber content of 25% by mass (R -1) was obtained.

(比較例2:加熱圧縮成形用成形材料(R−2)の製造)
実施例1で用いたガラス繊維68質量部を添加しなかった以外は、実施例1と同様に操作することにより、ガラス繊維含有率が0質量%の加熱圧縮成形用成形材料(R−2)を得た。
(Comparative Example 2: Production of molding material for heat compression molding (R-2))
Except that 68 parts by mass of the glass fiber used in Example 1 was not added, the same operation as in Example 1 was carried out, whereby a molding material for heat compression molding (R-2) having a glass fiber content of 0% by mass. Got.

(比較例3:加熱圧縮成形用成形材料(R−3)の製造)
実施例1で用いたガラス繊維の量を68質量部から23質量部に変更した以外は、実施例1と同様に操作することによりガラス繊維含有率が10質量%の加熱圧縮成形用成形材料(R−3)を得た。
(Comparative Example 3: Production of molding material for heat compression molding (R-3))
Except that the amount of the glass fiber used in Example 1 was changed from 68 parts by mass to 23 parts by mass, the same operation as in Example 1 was carried out, whereby a molding material for heat compression molding having a glass fiber content of 10% by mass ( R-3) was obtained.

(比較例4:加熱圧縮成形用成形材料(R−4)の製造)
実施例1で用いたガラス繊維の量を68質量部から136質量部に変更した以外は、実施例1と同様に操作することによりガラス繊維含有率が40質量%の加熱圧縮成形用成形材料(R−4)を得た。
(Comparative Example 4: Production of molding material for heat compression molding (R-4))
Except that the amount of glass fiber used in Example 1 was changed from 68 parts by mass to 136 parts by mass, the same operation as in Example 1 was carried out to obtain a molding material for heat compression molding having a glass fiber content of 40% by mass ( R-4) was obtained.

(比較例5:加熱圧縮成形用成形材料(R−5)の製造)
実施例1で用いた炭酸カルシウム100質量部を添加しなかったこと及びガラス繊維の量を68質量部から35質量部に変更した以外は、実施例1と同様に操作することによりガラス繊維含有率が25質量%の加熱圧縮成形用成形材料(R−5)を得た。
(Comparative Example 5: Production of molding material for heat compression molding (R-5))
Glass fiber content by operating in the same manner as in Example 1 except that 100 parts by mass of calcium carbonate used in Example 1 was not added and the amount of glass fiber was changed from 68 parts by mass to 35 parts by mass. Of 25% by mass was obtained as a compression-molding molding material (R-5).

(加熱圧縮成形用成形材料(R−1)〜(R−5)の評価)
実施例1の加熱圧縮成形用成形材料(1)を、上記で得られた加熱圧縮成形用成形材料(R−1)〜(R−5)に変更した以外は、実施例1と同様に操作することにより、成形品(R−1)〜(R−5)を作製して、成形品の導電性及び外観を評価した。
(Evaluation of molding materials for heat compression molding (R-1) to (R-5))
The same operation as in Example 1, except that the heat compression molding material (1) of Example 1 was changed to the heat compression molding materials (R-1) to (R-5) obtained above. Thus, molded products (R-1) to (R-5) were produced, and the conductivity and appearance of the molded products were evaluated.

上記で得られた加熱圧縮成形用成形材料(1)〜(6)の組成及び評価結果を表1に示す。   Table 1 shows the compositions and evaluation results of the heat compression molding materials (1) to (6) obtained above.

Figure 2015183025
Figure 2015183025

上記で得られた加熱圧縮成形用成形材料(R−1)〜(R−5)の組成及び評価結果を表2に示す。   Table 2 shows the compositions and evaluation results of the molding compounds (R-1) to (R-5) for heat compression molding obtained above.

Figure 2015183025
Figure 2015183025

実施例1〜6の本発明の加熱圧縮成形用成形材料から得られる成形品は、表面抵抗値が1010Ω/□未満であり、且つ体積抵抗値が1013Ω・cm未満であったことから、優れた導電性を有することが確認された。また、成形品の外観も良好であることが確認された。 The molded products obtained from the molding materials for heat compression molding of Examples 1 to 6 of the present invention had a surface resistance value of less than 10 10 Ω / □ and a volume resistance value of less than 10 13 Ω · cm. From this, it was confirmed that it has excellent conductivity. It was also confirmed that the appearance of the molded product was good.

一方、比較例1は、加熱圧縮成形用成形材料中にカーボンブラックを含有しない例であるが、得られる成形品の表面抵抗値及び体積抵抗値が高く、導電性に劣ることが確認された。   On the other hand, although the comparative example 1 is an example which does not contain carbon black in the molding material for heat compression molding, it was confirmed that the obtained molded article has a high surface resistance value and volume resistance value and is inferior in conductivity.

比較例2は、加熱圧縮成形用成形材料中にガラス繊維を含有しない例であるが、得られる成形品の表面抵抗値及び体積抵抗値が高く、導電性に劣ることが確認された。   Although the comparative example 2 is an example which does not contain glass fiber in the molding material for heat compression molding, it was confirmed that the surface resistance value and volume resistance value of the obtained molded article are high, and it is inferior to electroconductivity.

比較例3は、加熱圧縮成形用成形材料中の樹脂成分100質量部に対するガラス繊維の含有量が、本発明の下限である25質量部未満の例であるが、得られる成形品の表面抵抗値及び体積抵抗値が高く、導電性に劣ることが確認された。   Comparative Example 3 is an example in which the content of the glass fiber relative to 100 parts by mass of the resin component in the molding material for heat compression molding is less than 25 parts by mass which is the lower limit of the present invention, but the surface resistance value of the obtained molded product Further, it was confirmed that the volume resistance value was high and the conductivity was inferior.

比較例4は、加熱圧縮成形用成形材料中の樹脂成分100質量部に対するガラス繊維の含有量が、本発明の上限である125質量部を超える例であるが、得られる成形品の外観が不良であることが確認された。   Comparative Example 4 is an example in which the content of the glass fiber with respect to 100 parts by mass of the resin component in the molding material for heat compression molding exceeds 125 parts by mass which is the upper limit of the present invention, but the appearance of the obtained molded product is poor. It was confirmed that.

比較例5は、加熱圧縮成形用成形材料中に無機充填剤を含有しない例であるが、得られる成形品の表面抵抗値が高く、導電性に劣ることが確認された。   Although the comparative example 5 is an example which does not contain an inorganic filler in the molding material for heat compression molding, it was confirmed that the obtained molded article has a high surface resistance value and is inferior in conductivity.

Claims (6)

熱硬化性樹脂を必須成分とする樹脂成分(a1)、平均粒子径5μm以下の無機充填材(a2)、平均粒子径1μm以下のカーボンブラック(a3)、重合開始剤および増粘剤を含有するコンパウンド組成物(A)を、長さ5〜60mmのガラス繊維(B)に含浸させて得られた加熱圧縮成形用成形材料であって、これらの含有量が、前記樹脂成分(a1)100質量部に対して、前記無機充填材(a2)が50〜300質量部の範囲であり、前記カーボンブラック(a3)が0.5〜5質量部の範囲であり、前記ガラス繊維(B)が25〜125質量部の範囲であることを特徴とする加熱圧縮成形用成形材料。   A resin component (a1) having a thermosetting resin as an essential component, an inorganic filler (a2) having an average particle size of 5 μm or less, carbon black (a3) having an average particle size of 1 μm or less, a polymerization initiator, and a thickener are contained. It is a molding material for heat compression molding obtained by impregnating the compound composition (A) into a glass fiber (B) having a length of 5 to 60 mm, and the content thereof is 100 masses of the resin component (a1). Part of the inorganic filler (a2) is in the range of 50 to 300 parts by mass, the carbon black (a3) is in the range of 0.5 to 5 parts by mass, and the glass fiber (B) is 25. A molding material for heat compression molding characterized by being in a range of ˜125 parts by mass. 前記カーボンブラック(a3)の含有量が、前記ガラス繊維(B)1質量部に対して0.015〜0.06質量部の範囲である請求項1記載の加熱圧縮成形用成形材料。   The molding material for heat compression molding according to claim 1, wherein a content of the carbon black (a3) is in a range of 0.015 to 0.06 parts by mass with respect to 1 part by mass of the glass fiber (B). 樹脂成分(a1)が、不飽和ポリエステル樹脂、及び/又はビニルエステル樹脂を50質量%以上含有するものである請求項1又は2記載の加熱圧縮成形用成形材料。   The molding material for heat compression molding according to claim 1 or 2, wherein the resin component (a1) contains 50% by mass or more of an unsaturated polyester resin and / or a vinyl ester resin. 請求項1〜3のいずれか1項記載の加熱圧縮成形用成形材料を成形して得られたものであることを成形品。   A molded product that is obtained by molding the molding material for heat compression molding according to any one of claims 1 to 3. シートモールディングコンパウンド(SMC)、またはバルクモールディングコンプパウンド(BMC)の加熱圧縮成形法により得られたものである請求項4記載の成形品。   The molded article according to claim 4, wherein the molded article is obtained by a heat compression molding method of sheet molding compound (SMC) or bulk molding compound (BMC). 表面抵抗値が10Ω/□未満であり、且つ体積抵抗値が1012Ω・cm未満である請求項4又は5項記載の成形品。 The molded product according to claim 4 or 5, wherein the surface resistance value is less than 10 9 Ω / □ and the volume resistance value is less than 10 12 Ω · cm.
JP2014058141A 2014-03-20 2014-03-20 Molding material for hot compression molding and molded part thereof Pending JP2015183025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014058141A JP2015183025A (en) 2014-03-20 2014-03-20 Molding material for hot compression molding and molded part thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014058141A JP2015183025A (en) 2014-03-20 2014-03-20 Molding material for hot compression molding and molded part thereof

Publications (1)

Publication Number Publication Date
JP2015183025A true JP2015183025A (en) 2015-10-22

Family

ID=54349960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014058141A Pending JP2015183025A (en) 2014-03-20 2014-03-20 Molding material for hot compression molding and molded part thereof

Country Status (1)

Country Link
JP (1) JP2015183025A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110912A1 (en) * 2015-12-24 2017-06-29 三菱レイヨン株式会社 Fiber-reinforced resin material molding, method for manufacturing fiber-reinforced resin material molding, and method for manufacturing fiber-reinforced resin material
KR101806834B1 (en) * 2016-07-27 2017-12-08 주식회사씨애치씨랩 Permanent antistatic table

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0939103A (en) * 1995-07-31 1997-02-10 Sekisui Chem Co Ltd Sheet for decorative laminate and manufacture of decorative molded article
US5869557A (en) * 1995-06-30 1999-02-09 Atohaas Holding C.V. Moldable and pigmentable heat-curable compositions capable of being used for obtaining molded articles with zero shrinkage or small expansion
WO1999061239A1 (en) * 1998-05-26 1999-12-02 Takeda Chemical Industries, Ltd. Material for molding thermosetting resin sheet, production process, and molded product
JP2001115000A (en) * 1999-10-22 2001-04-24 Hitachi Chem Co Ltd Unsaturated polyester resin composition, sheet molding compound, and molding made from the compound
US20020042468A1 (en) * 2000-08-19 2002-04-11 Choi Chi Hoon Thermosetting resin composition for outer panel of automobile
JP2003212979A (en) * 2002-01-22 2003-07-30 Bridgestone Corp Unsaturated polyester resin, unsaturated polyester resin composition, and thermosetting molding material using the composition
JP2011089068A (en) * 2009-10-23 2011-05-06 Panasonic Electric Works Co Ltd Unsaturated polyester resin molded article

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5869557A (en) * 1995-06-30 1999-02-09 Atohaas Holding C.V. Moldable and pigmentable heat-curable compositions capable of being used for obtaining molded articles with zero shrinkage or small expansion
JPH0939103A (en) * 1995-07-31 1997-02-10 Sekisui Chem Co Ltd Sheet for decorative laminate and manufacture of decorative molded article
WO1999061239A1 (en) * 1998-05-26 1999-12-02 Takeda Chemical Industries, Ltd. Material for molding thermosetting resin sheet, production process, and molded product
JP2001115000A (en) * 1999-10-22 2001-04-24 Hitachi Chem Co Ltd Unsaturated polyester resin composition, sheet molding compound, and molding made from the compound
US20020042468A1 (en) * 2000-08-19 2002-04-11 Choi Chi Hoon Thermosetting resin composition for outer panel of automobile
JP2003212979A (en) * 2002-01-22 2003-07-30 Bridgestone Corp Unsaturated polyester resin, unsaturated polyester resin composition, and thermosetting molding material using the composition
JP2011089068A (en) * 2009-10-23 2011-05-06 Panasonic Electric Works Co Ltd Unsaturated polyester resin molded article

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110912A1 (en) * 2015-12-24 2017-06-29 三菱レイヨン株式会社 Fiber-reinforced resin material molding, method for manufacturing fiber-reinforced resin material molding, and method for manufacturing fiber-reinforced resin material
JPWO2017110912A1 (en) * 2015-12-24 2017-12-28 三菱ケミカル株式会社 Fiber-reinforced resin material molded body, method for manufacturing fiber-reinforced resin material molded body, and method for manufacturing fiber-reinforced resin material
US10933563B2 (en) 2015-12-24 2021-03-02 Mitsubishi Chemical Corporation Fiber-reinforced resin material molding, method for manufacturing fiber-reinforced resin material molding, and method for manufacturing fiber-reinforced resin material
US11660783B2 (en) 2015-12-24 2023-05-30 Mitsubishi Chemical Corporation Fiber-reinforced resin material molding, method for manufacturing fiber-reinforced resin material molding, and method for manufacturing fiber-reinforced resin material
KR101806834B1 (en) * 2016-07-27 2017-12-08 주식회사씨애치씨랩 Permanent antistatic table

Similar Documents

Publication Publication Date Title
Razzaq et al. Magnetic memory effect of nanocomposites
WO2020196839A1 (en) Filament for 3d modeling, roll, and cartridge for 3d printer
EP3378886B1 (en) Polyester powder compositions, methods and articles
US10150256B2 (en) Polyester powder compositions, methods and articles
KR101851952B1 (en) Electrically conductive resin composition and method of preparing the same
US20170173869A1 (en) Filament for 3d printing and method for producing crystalline soft resin molded article
CN108084627B (en) HIPS (high impact polystyrene) based conductive master batch based on carbon nano tube and graphene compound system and preparation method thereof
JPWO2018056433A1 (en) Electronic device case and method of manufacturing the same
US20230076268A1 (en) Foamed sheet, manufacture, and method for producing foamed sheet
JP2018012836A (en) Plate-like molded body and method for producing the same
JP2021116412A (en) Foam sheet, product, and method for producing foam sheet
JP2015183025A (en) Molding material for hot compression molding and molded part thereof
TW553985B (en) Electroconductive polypropylene type resin foamed sheet and container
KR20190058198A (en) Electrically conductive resin composition and method of preparing the same
KR20170060059A (en) Thin wall moldable conductive compositions with improved physical properties and uses thereof
JP6641918B2 (en) Housing using fiber-reinforced plastic molded body and method of manufacturing the same
JPH07126496A (en) Polyester resin composition and molded product therefrom
WO2022138954A1 (en) Filament for three-dimensional shaping
KR20120136883A (en) Conductive unsaturated polyester resin composition for sheet molding compound, preparing method thereof and thermosetting resin composition comprising the same
JPH11353947A (en) Antistatic resin molding and secondary molding thereof
JP2023012300A (en) Foam sheet, product and method for producing foam sheet
JP2017078122A (en) Thermally conductive filler and transparent thermally conductive resin composition
JP2018090695A (en) Arc resistant bmc
Sawallisch Compounding of sheet molding compound
JP6432365B2 (en) Molding material for heat compression molding and molded product thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180619