JP2016132684A - Method for producing friction material for sliding component, and friction material produced thereby - Google Patents
Method for producing friction material for sliding component, and friction material produced thereby Download PDFInfo
- Publication number
- JP2016132684A JP2016132684A JP2015006116A JP2015006116A JP2016132684A JP 2016132684 A JP2016132684 A JP 2016132684A JP 2015006116 A JP2015006116 A JP 2015006116A JP 2015006116 A JP2015006116 A JP 2015006116A JP 2016132684 A JP2016132684 A JP 2016132684A
- Authority
- JP
- Japan
- Prior art keywords
- friction material
- granulated powder
- producing
- friction
- phenol resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002783 friction material Substances 0.000 title claims abstract description 68
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 239000000843 powder Substances 0.000 claims abstract description 43
- 239000002245 particle Substances 0.000 claims abstract description 29
- 239000002994 raw material Substances 0.000 claims abstract description 19
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 15
- 239000004917 carbon fiber Substances 0.000 claims abstract description 15
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 15
- 239000011148 porous material Substances 0.000 claims abstract description 12
- 238000000465 moulding Methods 0.000 claims abstract description 11
- 229910052882 wollastonite Inorganic materials 0.000 claims abstract description 11
- 239000010456 wollastonite Substances 0.000 claims abstract description 11
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 29
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 28
- 239000000463 material Substances 0.000 claims description 24
- 239000005011 phenolic resin Substances 0.000 claims description 23
- 239000012779 reinforcing material Substances 0.000 claims description 7
- 239000011347 resin Substances 0.000 claims description 7
- 229920005989 resin Polymers 0.000 claims description 7
- 239000000314 lubricant Substances 0.000 claims description 6
- 239000007787 solid Substances 0.000 claims description 6
- 229920001187 thermosetting polymer Polymers 0.000 claims description 5
- 239000008187 granular material Substances 0.000 claims description 2
- 230000003014 reinforcing effect Effects 0.000 claims 1
- 229910021383 artificial graphite Inorganic materials 0.000 abstract description 17
- 238000010438 heat treatment Methods 0.000 abstract description 6
- 239000010419 fine particle Substances 0.000 abstract description 4
- 230000005484 gravity Effects 0.000 abstract description 2
- 238000012856 packing Methods 0.000 abstract 1
- 238000006073 displacement reaction Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000010687 lubricating oil Substances 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000013011 mating Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000007730 finishing process Methods 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910004762 CaSiO Inorganic materials 0.000 description 1
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000011329 calcined coke Substances 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 239000011294 coal tar pitch Substances 0.000 description 1
- GPWDPLKISXZVIE-UHFFFAOYSA-N cyclo[18]carbon Chemical compound C1#CC#CC#CC#CC#CC#CC#CC#CC#C1 GPWDPLKISXZVIE-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000011271 tar pitch Substances 0.000 description 1
Landscapes
- Mechanical Operated Clutches (AREA)
- Gear-Shifting Mechanisms (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Abstract
Description
本発明は、シンクロリング等の摺動部品に一体に接合される摺動部品の摩擦材の製造方法及びその摩擦材に関するものである。 The present invention relates to a method of manufacturing a friction material for a sliding component that is integrally joined to a sliding component such as a synchro ring, and the friction material.
車両用変速機の同期装置としてのシンクロリングには、相手ギヤコーンとの摩擦係数を高めるために摩擦材が接合される。 A friction material is joined to a synchronizing ring as a synchronizing device of a vehicle transmission in order to increase a coefficient of friction with a counterpart gear cone.
従来、摩擦材として、燒結金属等で形成されていたが、耐摩耗性に劣るため、耐摩耗性と耐熱性に優れると共に長期間使用しても摩擦係数が低下しないカーボン摩擦材が用いられるようになってきている。 Conventionally, the friction material has been formed of sintered metal or the like. However, since it is inferior in wear resistance, a carbon friction material that has excellent wear resistance and heat resistance and does not decrease the friction coefficient even when used for a long time seems to be used. It is becoming.
このカーボン摩擦材は、固体潤滑剤としての人造黒鉛と、ウォラストナイト等の補強材と、カーボンファイバと、熱伝導性を高めるための銅合金粒子とを、フェノール樹脂と共に混合して加熱、加圧して成形される。 This carbon friction material is prepared by mixing artificial graphite as a solid lubricant, a reinforcing material such as wollastonite, carbon fiber, and copper alloy particles for enhancing thermal conductivity together with a phenol resin, and heating and adding the mixture. Molded by pressing.
摩擦材は、相手ギヤコーンと接触して同期を得るためには高い動摩擦係数が必要であると共に、相手ギヤコーンに制動を加えた時に発生する摩擦熱を逃がすことが必要である。 The friction material needs to have a high dynamic friction coefficient in order to obtain synchronization in contact with the mating gear cone, and it is necessary to release the frictional heat generated when braking is applied to the mating gear cone.
このためには、高い動摩擦係数には相手ギヤコーンと接触する時に界面に油が無い状態にして、油膜を切る必要があり、また摩擦熱を逃がすためには、カーボン摩擦材でも燒結金属製の摩擦材と同様に、気孔率を高くして潤滑油による排熱を行うことが必要である。 For this purpose, it is necessary to cut the oil film at the interface when there is no oil at the time of contact with the counterpart gear cone, and to dissipate the heat of friction, a carbon friction material made of sintered metal As with the material, it is necessary to increase the porosity and exhaust heat with the lubricating oil.
しかし、カーボン摩擦材では、人造黒鉛、ウォラストナイト、カーボンファイバ、銅合金粒子をフェノール樹脂で混練して成形するもので、気孔率は、ほぼゼロであり、燒結金属のように気孔率を高くして、潤滑油による放熱を行うことはできない問題がある。 However, the carbon friction material is formed by kneading artificial graphite, wollastonite, carbon fiber, and copper alloy particles with a phenol resin, and the porosity is almost zero, which is as high as that of sintered metal. Thus, there is a problem that heat cannot be dissipated by the lubricating oil.
すなわち、人造黒鉛、ウォラストナイト、カーボンファイバ、銅合金粒子は、それぞれ比重・粒子サイズが相違するため、成形時に、細かい粒の素材と大きな粒の素材を混合されると、細かい粒が隙間を埋めてしまい、気孔を安定して作ることができない。 In other words, artificial graphite, wollastonite, carbon fiber, and copper alloy particles have different specific gravity and particle size, so when fine particles and large particles are mixed at the time of molding, the fine particles leave gaps. It fills up and the pores cannot be made stably.
そこで、本発明の目的は、上記課題を解決し、気孔を安定して作ることができる摺動部品の摩擦材の製造方法及びその摩擦材を提供することにある。 SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide a method for manufacturing a friction material for a sliding part and a friction material that can stably form pores.
上記目的を達成するために本発明は、摩擦材の原料を混合して一定の粒径の全材料造粒粉を形成し、該全材料造粒粉を成形型に充填すると共に加熱、加圧成形して気孔を有する摩擦材を製造することを特徴とする摺動部品の摩擦材の製造方法である。 In order to achieve the above object, the present invention mixes the raw materials of the friction material to form a whole material granulated powder having a constant particle size, fills the whole material granulated powder into a mold, and heats and pressurizes it. A friction material manufacturing method for a sliding part, characterized in that a friction material having pores is formed by molding.
補強材とカーボンファイバとを熱硬化性樹脂を用いてそれぞれ原料造粒粉を形成し、これら原料造粒粉と銅合金粒子と熱硬化性樹脂と固体潤滑材とを加えて混合した後、その混合物から全材料造粒粉を形成するのが好ましい。 Reinforcing material and carbon fiber are each formed into raw material granulated powder using thermosetting resin, and after these raw material granulated powder, copper alloy particles, thermosetting resin and solid lubricant are added and mixed, It is preferred to form all-material granulated powder from the mixture.
前記補強材と前記カーボンファイバの原料造粒粉は、各々50μm以上500μm以下に形成されるのが好ましい。 It is preferable that the reinforcing material and the raw material granulated powder of the carbon fiber are each formed to be 50 μm or more and 500 μm or less.
前記固体潤滑材は、皮の厚さ5〜20μm、枚数3〜10で、粒径50〜500μmのミルフィーユカーボンからなるのが好ましい。 The solid lubricant is preferably made of millefeuille carbon having a skin thickness of 5 to 20 μm, a number of 3 to 10 and a particle size of 50 to 500 μm.
前記補強材としてウォラストナイトをフェノール樹脂と混合し、フェノール樹脂が半硬化状態の原料造粒粉を形成するのが好ましい。 It is preferable that wollastonite is mixed with a phenol resin as the reinforcing material to form a raw material granulated powder in which the phenol resin is in a semi-cured state.
前記カーボンファイバをフェノール樹脂と混合し、フェノール樹脂が半硬化状態の原料造粒粉を形成するのが好ましい。 It is preferable that the carbon fiber is mixed with a phenol resin to form a raw material granulated powder in which the phenol resin is in a semi-cured state.
前記全材料造粒粉は、フェノール樹脂を半硬化状態にして、粒径0.5〜1.0mmに形成されるのが好ましい。 The all-material granulated powder is preferably formed to a particle size of 0.5 to 1.0 mm by making the phenol resin a semi-cured state.
また、本発明は、上述の摺動部品の摩擦材の製造方法で製造され、気孔率が5〜10%であることを特徴とする摺動部品の摩擦材である。 Moreover, this invention is manufactured with the manufacturing method of the friction material of the above-mentioned sliding components, and is a friction material of the sliding components characterized by the porosity being 5-10%.
本発明は、摩擦材の原料から一定の粒径の全材料造粒粉を形成し、この全材料造粒粉で加熱、加圧成形することで、気孔率をもった摩擦材を得ることができるという優れた効果を発揮する。 The present invention can form a friction material having porosity by forming all-material granulated powder having a constant particle size from the raw material of the friction material, and heating and pressing with this all-material granulated powder. Demonstrate the excellent effect of being able to.
以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。 A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.
図1は、本発明の摺動部品の摩擦材の製造方法の一実施の形態を示したものである。 FIG. 1 shows an embodiment of a method for producing a friction material for a sliding part according to the present invention.
先ず、ウォラストナイト(CaSiO3)などの補強材と熱硬化性樹脂としてのフェノール樹脂粉とを混合し、フェノール樹脂を半硬化させて、粒径50μm以上500μm以下の原料造粒粉10を造粒形成する。 First, a reinforcing material such as wollastonite (CaSiO 3 ) and phenol resin powder as a thermosetting resin are mixed, and the phenol resin is semi-cured to produce a raw material granulated powder 10 having a particle size of 50 μm to 500 μm. Grain formation.
このウォラストナイトからなる原料造粒粉10は、ウォラストナイト100massに対してフェノール樹脂を15mass〜40mass加え、これを温度80〜120℃で、0.5〜5時間加熱してフェノール樹脂を半硬化状態とし、これを粒径50μm以上500μm以下にして造粒形成する。 This raw granulated powder 10 made of wollastonite is added with 15 mass to 40 mass of phenol resin to 100 mass of wollastonite, and this is heated at a temperature of 80 to 120 ° C. for 0.5 to 5 hours to make the phenol resin halfway. A cured state is obtained, and this is granulated to a particle size of 50 μm or more and 500 μm or less.
同様に、カーボンファイバ(線径7〜15μm、長さ80〜150μm)とフェノール樹脂粉とを混合し、フェノール樹脂を半硬化させて、粒径50μm以上500μm以下の原料造粒粉11を造粒形成する。 Similarly, carbon fiber (wire diameter: 7 to 15 μm, length: 80 to 150 μm) and phenol resin powder are mixed and the phenol resin is semi-cured to granulate raw material granulated powder 11 having a particle size of 50 μm to 500 μm. Form.
このカーボンファイバからなる原料造粒粉11は、カーボンファイバ100massに対してフェノール樹脂を15mass〜40mass加えて形成し、これを温度80〜120℃で、0.5〜5時間加熱してフェノール樹脂を半硬化状態とし、これを粒径50μm以上500μm以下にして造粒形成する。 The raw material granulated powder 11 made of the carbon fiber is formed by adding 15 mass to 40 mass of phenol resin to 100 mass of the carbon fiber, and heating the phenol resin at a temperature of 80 to 120 ° C. for 0.5 to 5 hours. A semi-cured state is formed and granulated with a particle size of 50 μm or more and 500 μm or less.
次に、原料造粒粉10、11をミキサー21に投入すると共に黄銅粉などの粒径50μm±20μmの銅合金粒子12を加えて混合して予混合物13とする。 Next, the raw granulated powders 10 and 11 are put into a mixer 21 and copper alloy particles 12 having a particle diameter of 50 μm ± 20 μm such as brass powder are added and mixed to obtain a premix 13.
予混合物13の配合は、ウォラストナイトからなる原料造粒粉10が、8mass〜20mass、カーボンファイバからなる原料造粒粉11が、8mass〜20mass、銅合金粒子12が、5mass〜15massである。 The mixture of the premix 13 is 8 mass to 20 mass for the raw granulated powder 10 made of wollastonite, 8 mass to 20 mass for the raw granulated powder 11 made of carbon fiber, and 5 mass to 15 mass for the copper alloy particles 12.
この予混合物の100massに対して、フェノール樹脂14を10mass〜25mass加えて樹脂添加混合物15とした後、樹脂添加混合物15に100mass対して、固体潤滑材としてのミルフィーユカーボン16を45mass〜55mass加えて全材料混合物17とする。 10 mass to 25 mass of phenol resin 14 is added to 100 mass of this premix to make resin addition mixture 15, and then 45 mass to 55 mass of millefeuille carbon 16 as a solid lubricant is added to 100 mass of resin addition mixture 15 to add 100%. This is material mixture 17.
ミルフィーユカーボン16は、スーペリアグラファイト社製のか焼コークスであり、石油系直留重質油、コールタールピッチなどを流動層内で、250〜450℃の間で加熱して得られたもので、コールタールピッチなどの成分留である軽質留分が蒸発してメソフェーズ状の薄片状の皮が層状に重なって粒状に形成されるもので、皮の厚さが5〜20μm、枚数が3〜10枚で、粒径が50〜500μmのメソフェーズ球体からなる。 Millefeuille carbon 16 is calcined coke made by Superior Graphite Co., which is obtained by heating petroleum-based straight-run heavy oil, coal tar pitch, etc. in a fluidized bed at 250-450 ° C. Light fraction, which is a component fraction such as tar pitch, evaporates and mesophase-like flaky skin is layered and formed into a granular shape. The thickness of the skin is 5 to 20 μm, and the number is 3 to 10 And a mesophase sphere having a particle size of 50 to 500 μm.
ミルフィーユカーボン16を加えた全材料混合物17に、熱を加えてフェノール樹脂14を半硬化状態とすると共にこれを0.5〜1.0mmの全材料造粒粉18とする。 Heat is applied to the total material mixture 17 to which the millefeuille carbon 16 has been added to bring the phenol resin 14 into a semi-cured state, and this is made into a 0.5-1.0 mm total material granulated powder 18.
この造粒した全材料造粒粉18を、成形型22A、22Вに充填し、加熱、加圧することで、摩擦材20が成形される。 This granulated all-material granulated powder 18 is filled into molding dies 22A and 22В, and heated and pressurized, whereby the friction material 20 is molded.
成形された摩擦材20は、全材料造粒粉18が、0.5〜1.0mmの範囲で一定の粒径のものを用いて成型されるため、全材料造粒粉18同士が加熱、加圧されても全材料造粒粉18同士の空間が保持されて、内部に気孔が形成されると共に内部の気孔同士が繋がって形成される。これにより、気孔内に流入した潤滑油は移動可能となり、摩擦により発生する熱を潤滑油で放熱することが可能となる。 The formed friction material 20 is formed by using all the material granulated powder 18 having a constant particle diameter in the range of 0.5 to 1.0 mm. Even if it pressurizes, the space between all the material granulated powders 18 is maintained, and pores are formed inside and the pores inside are connected to each other. As a result, the lubricating oil flowing into the pores can move, and the heat generated by the friction can be dissipated by the lubricating oil.
この摩擦材20は、成型後に摺動部品に貼り付けるようにしても或いは成形と共に摺動部品に接合するようにしてもいずれでもよい。 The friction material 20 may be attached to the sliding component after molding, or may be joined to the sliding component together with molding.
図1においては、シンクロリングのリング粗材19に予め接着剤23を塗布して乾燥し、これを成形型22Aにセットし、リング粗材19と成形型22В間に、全材料造粒粉18を充填した後、加熱、加圧(温度180℃〜200℃、圧力200〜600kg/cm2、時間30分)することで、摩擦材20の成形と共にリング粗材19に接合する。 In FIG. 1, the adhesive 23 is applied in advance to the ring ring rough material 19 of the synchro ring and dried, and this is set on the molding die 22A, and the entire material granulated powder 18 is placed between the ring rough material 19 and the molding die 22В. Then, the friction material 20 is molded and joined to the ring coarse material 19 by heating and pressurizing (temperature 180 ° C. to 200 ° C., pressure 200 to 600 kg / cm 2 , time 30 minutes).
接合後は、摩擦材20の表面を所定の厚さ(0.7mm)になるように切削して仕上げ加工してシンクロリングとする。 After joining, the surface of the friction material 20 is cut so as to have a predetermined thickness (0.7 mm) and finished to form a synchro ring.
図2は、シンクロリングを製造する工程図を示したものである。 FIG. 2 is a process diagram for manufacturing the synchro ring.
先ず、粗材を鍛造にてリング状に形成し、さらに所定の寸法となるように加工する。 First, a rough material is formed into a ring shape by forging and further processed to have a predetermined dimension.
次に浸炭焼き入れしたものを鉄基材とする(S1)、摩擦材を接合する面にショットブラストを行って表面を粗面化する(S2)。 Next, the carburized and hardened steel is used as an iron base (S1), and the surface to be joined with the friction material is shot blasted to roughen the surface (S2).
粗面化した鉄基材に摩擦材を直接成形するカーボンコンポジット(CC)成膜を行い(S3)、その後成膜した摩擦材の表面を仕上げ加工し(S4)、検査(S5)を行ってシンクロリングの製品とする。 A carbon composite (CC) film for directly forming a friction material on a roughened iron base is formed (S3), and then the surface of the formed friction material is finished (S4) and an inspection (S5) is performed. It is a product of synchro ring.
カーボンコンポジット成膜(S3)は、鉄基材を粗面化した面に接着剤を塗布・乾燥(S3−1)し、これを成形型にセットし(S3−2)、その成形型内に、図1で説明した混合・造粒(S3−4)工程で、別途製造した全材料造粒粉18である原料を充填し(S3−3)、加熱加圧成形(S3−5)することで、粗面化した面に接着剤で接合された摩擦材が成形され、その後、成形型の型ばらし(S3−6)が行われて、カーボンコンポジット成膜(S3)が完了する。 In carbon composite film formation (S3), an adhesive is applied to the roughened surface of the iron base and dried (S3-1), and this is set in a mold (S3-2). In the mixing and granulation (S3-4) step described in FIG. 1, the raw material which is the all-material granulated powder 18 separately manufactured is filled (S3-3), and is heated and pressed (S3-5). Thus, the friction material joined to the roughened surface with the adhesive is molded, and then the mold is released (S3-6), and the carbon composite film formation (S3) is completed.
図3は、本発明で得られた摩擦材の内部をレーザー顕微鏡で撮影したもので、ミルフィーユカーボンの周囲に気孔が多数形成されていることが分かる。 FIG. 3 is an image of the inside of the friction material obtained by the present invention taken with a laser microscope. It can be seen that many pores are formed around the millefeuille carbon.
図4は、従来の人造黒鉛を用い、ウォラストナイト、カーボンファイバ、銅合金粒子をフェノール樹脂で混練して摩擦材とし、その摩擦材の内部をレーザー顕微鏡で撮影したもので、気孔が全く形成されていないことが分かる。 Fig. 4 shows a conventional artificial graphite, wollastonite, carbon fiber, and copper alloy particles kneaded with phenol resin to make a friction material, and the inside of the friction material was photographed with a laser microscope. You can see that it was not done.
図5は、図2で製造した仕上げ加工で形成された摩擦材の表面をレーザー顕微鏡で撮影したものである。 FIG. 5 is an image of the surface of the friction material formed by the finishing process produced in FIG. 2 taken with a laser microscope.
この図5によれば、切削仕上げ加工により摩擦材の表面に露出したミルフィーユカーボンは、切削により脱落して表面に、ミルフィーユカーボンの脱落痕としてのディンプルが形成されていることが見てとれる。 According to FIG. 5, it can be seen that the millefeuille carbon exposed on the surface of the friction material by the cutting finishing process is dropped by cutting and dimples are formed on the surface as the millefeuille carbon drop mark.
このディンプルは、ミルフィーユカーボンの外層の皮が1乃至2枚程度表面に残った状態であり、ミルフィーユカーボンの外層の皮で、ディンプルが形成されていることが確認できた。このディンプルの径は、ミルフィーユカーボンの粒径にほぼ等しく、全ディンプルの面積率は、20〜25%である。またミルフィーユカーボンの外層の皮で形成されるディンプルは、外層の皮が脱落の際に表面にひびが観測された。 This dimple is in a state in which about one or two outer skins of millefeuille carbon remain on the surface, and it was confirmed that dimples were formed on the outer skin of millefeuille carbon. The diameter of this dimple is substantially equal to the particle diameter of millefeuille carbon, and the area ratio of all the dimples is 20 to 25%. The dimples formed by the outer layer of millefeuille carbon were cracked on the surface when the outer layer peeled off.
このように表面にひびが入ったディンプルを摩擦材の表面に形成することで、摩擦材は、相手ギヤコーンとの接触面積を小さくすることができ、またディンプルに潤滑油を保持できるため静摩擦係数を小さくできる。また、相手ギヤコーンとの動摩擦で摩擦熱が発生する際には、潤滑油は、その摩擦熱を受け、ディンプルや気孔を通して移動して放熱することが可能となる。 By forming dimples with cracks on the surface of the friction material in this way, the friction material can reduce the contact area with the mating gear cone, and can retain lubricating oil in the dimple, so that the coefficient of static friction is increased. Can be small. When frictional heat is generated by dynamic friction with the counterpart gear cone, the lubricating oil receives the frictional heat and can move through the dimples and pores to dissipate heat.
図6は、図4で説明した、従来の人造黒鉛を用いて摩擦材を切削仕上げ加工した表面を電子顕微鏡で撮影したものである。 FIG. 6 is an electron microscope image of the surface of the friction material cut and finished using the conventional artificial graphite described in FIG.
人造黒鉛では、切削仕上げ加工しても表面に脱落痕は見られず、目詰まりを起こしているような状態であった。 Artificial graphite was not clogged on the surface even after cutting and was clogged.
図7は、ミルフィーユカーボンを破壊したときの変位と試験力との関係を測定した図であり、図8は、人造黒鉛を破壊したときの変位と試験力との関係を測定した図で、共に試料数は5個で行った。 FIG. 7 is a diagram showing the relationship between the displacement and the test force when the millefeuille carbon is destroyed, and FIG. 8 is a diagram showing the relationship between the displacement and the test force when the artificial graphite is destroyed. The number of samples was five.
ミルフィーユカーボンは、図7に黒丸で示されるように、試験力が増大しても変位は少なく、ある試験力を超えると外層の皮からパキパキと砕けてその薄皮が無くなって大きく変位する特性がある。 As shown by the black circles in FIG. 7, the millefeuille carbon has a characteristic that the displacement is small even when the test force is increased, and when the test force exceeds a certain test force, the outer skin is crushed into pieces and the thin skin disappears, resulting in a large displacement. .
従って、成形した摩擦材の表面を切削仕上げ加工することで、ミルフィーユカーボンの外層の皮が砕けてディンプルを容易に形成できる。 Therefore, by cutting and finishing the surface of the formed friction material, the outer layer of the millefeuille carbon is broken and the dimples can be easily formed.
これに対して人造黒鉛は、点線領域Rで示すように、試験力が増大するにつれて変位も増加する。これは人造黒鉛には、弾力性があるため砕けずに粘る性質があり、また破壊強度も高いことが分かる。 On the other hand, as shown by the dotted region R, the artificial graphite increases in displacement as the test force increases. This indicates that artificial graphite has a property of sticking without breaking because of its elasticity, and also has a high breaking strength.
図9は、ミルフィーユカーボンと人造黒鉛の破壊強度を測定したもので、5つの試料平均の破壊強度は、ミルフィーユカーボンが24.8MPa、人造黒鉛が31.0MPaであった。 FIG. 9 shows the measurement of the fracture strength of millefeuille carbon and artificial graphite. The average fracture strength of the five samples was 24.8 MPa for millefeuille carbon and 31.0 MPa for artificial graphite.
図10は、ミルフィーユカーボンと人造黒鉛を摩擦材に用いたときの長時間摩耗試験をした結果を示したものである。 FIG. 10 shows the results of a long-time wear test when millefeuille carbon and artificial graphite are used as friction materials.
この図10によれば、ミルフィーユカーボンを摩擦材に用いることで、人造黒鉛を用いた摩擦材より長時間摩耗係数の低下が少ないことがわかる。 According to FIG. 10, it can be seen that the use of millefeuille carbon as a friction material results in less reduction in the wear coefficient for a long time than the friction material using artificial graphite.
以上、本発明は、全材料を含む全材料造粒粉を作製し、その後、加熱・加圧成形することで、摩擦材の気孔率を向上させることができる。 As mentioned above, this invention can improve the porosity of a friction material by producing all-material granulated powder containing all the materials, and heating-pressurizing after that.
10 原料造粒粉
16 ミルフィーユカーボン
18 全材料造粒粉
20 摩擦材
22A、22B 成形型
10 Raw material granulated powder 16 Mille-feu carbon 18 All material granulated powder 20 Friction material 22A, 22B Mold
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015006116A JP6464761B2 (en) | 2015-01-15 | 2015-01-15 | Method of manufacturing friction material for sliding part and friction material thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015006116A JP6464761B2 (en) | 2015-01-15 | 2015-01-15 | Method of manufacturing friction material for sliding part and friction material thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016132684A true JP2016132684A (en) | 2016-07-25 |
JP6464761B2 JP6464761B2 (en) | 2019-02-06 |
Family
ID=56437584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015006116A Expired - Fee Related JP6464761B2 (en) | 2015-01-15 | 2015-01-15 | Method of manufacturing friction material for sliding part and friction material thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6464761B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07102080A (en) * | 1993-10-08 | 1995-04-18 | Osaka Gas Co Ltd | Production of friction material |
JPH09264358A (en) * | 1996-03-28 | 1997-10-07 | Akebono Brake Res & Dev Center Ltd | Manufacture of grain and frictional material |
JPH115966A (en) * | 1997-06-19 | 1999-01-12 | Akebono Brake Res & Dev Center Ltd | Production of granulated article and friction material |
WO2004109138A1 (en) * | 2003-06-04 | 2004-12-16 | Tanaka Seimitsu Kogyo Co., Ltd. | Friction material for transmission |
-
2015
- 2015-01-15 JP JP2015006116A patent/JP6464761B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07102080A (en) * | 1993-10-08 | 1995-04-18 | Osaka Gas Co Ltd | Production of friction material |
JPH09264358A (en) * | 1996-03-28 | 1997-10-07 | Akebono Brake Res & Dev Center Ltd | Manufacture of grain and frictional material |
JPH115966A (en) * | 1997-06-19 | 1999-01-12 | Akebono Brake Res & Dev Center Ltd | Production of granulated article and friction material |
WO2004109138A1 (en) * | 2003-06-04 | 2004-12-16 | Tanaka Seimitsu Kogyo Co., Ltd. | Friction material for transmission |
Also Published As
Publication number | Publication date |
---|---|
JP6464761B2 (en) | 2019-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3091247B1 (en) | Methods for the preparation of a friction material and for the manufacturing of a brake pad using such friction material | |
WO2013046543A1 (en) | Friction material manufacturing method | |
US10702918B2 (en) | Iron-based composite powder | |
JP6855385B2 (en) | Friction materials, specifically friction materials for the manufacture of brake pads, and related preparation methods. | |
JPH0240130B2 (en) | ||
US8846780B2 (en) | Friction element for synchronizing device | |
KR101167712B1 (en) | Synchronizer ring | |
JP6464761B2 (en) | Method of manufacturing friction material for sliding part and friction material thereof | |
EP3124814B1 (en) | Ceramic material for brake discs | |
JP6464760B2 (en) | Method of manufacturing friction material for sliding part and friction material thereof | |
JPWO2004109138A1 (en) | Friction material for transmission | |
JP6476880B2 (en) | Synchro ring manufacturing method and synchro ring | |
JP6507658B2 (en) | Method of manufacturing friction material for sliding part and friction material therefor | |
JP5765490B2 (en) | Sliding member and manufacturing method of sliding member | |
JP2006334916A (en) | Method for producing friction material | |
JP2002147617A (en) | Seal ring for mechanical seal, and mechanical seal using the same | |
TWI601586B (en) | Braking pad | |
JP6641932B2 (en) | Manufacturing method of carbon friction material | |
JP5546485B2 (en) | Sliding resin composition | |
JP6030465B2 (en) | Sliding member and manufacturing method thereof | |
JP2011127710A (en) | Method for manufacturing disc brake pad | |
JPS63265850A (en) | Self-lubricative composite ceramics material and its production | |
JP2005029648A (en) | Friction material composition | |
JP2014152914A (en) | Resin bearing, manufacturing method of the same, and component member separation method of the same | |
JP2016147968A (en) | Granulated substance for friction material and manufacturing method of friction material using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171227 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181017 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181030 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181211 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181224 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6464761 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |