JP2016131278A - Polarization sharing antenna - Google Patents

Polarization sharing antenna Download PDF

Info

Publication number
JP2016131278A
JP2016131278A JP2015004139A JP2015004139A JP2016131278A JP 2016131278 A JP2016131278 A JP 2016131278A JP 2015004139 A JP2015004139 A JP 2015004139A JP 2015004139 A JP2015004139 A JP 2015004139A JP 2016131278 A JP2016131278 A JP 2016131278A
Authority
JP
Japan
Prior art keywords
antenna
dipole antenna
reflector
dual
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015004139A
Other languages
Japanese (ja)
Inventor
木村 泰子
Yasuko Kimura
泰子 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP2015004139A priority Critical patent/JP2016131278A/en
Publication of JP2016131278A publication Critical patent/JP2016131278A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a polarization sharing antenna having a structure capable of making the beam width within the horizontal plane of a dipole antenna for vertical polarization coincident with the beam width within the horizontal plane of a dipole antenna for horizontal polarization.SOLUTION: A polarization sharing antenna contains a cross dipole antenna 20 configured so that two dipole antennas 21, 23 having the same resonance frequency are arranged to be perpendicular to each other, and a reflector 10. The reflector 10 contains a partial spherical surface reflection part 11 having a reflection face. One spherical plane is divided into two curved planes by a circle corresponding to an intersection line between the spherical plane and one flat plane, and the reflection face of the reflector 10 has the shape of one of the curved planes which has a smaller area. The cross dipole antenna 20 is located at a position which is away from the intersection point between the reflection face and a line connecting the center of a spherical body having the spherical plane on the surface thereof and the center of the circle toward the circle along the line by the distance corresponding to a quarter of the wavelength corresponding to the resonance frequency so that the line is perpendicular to the respective extension directions of the antenna elements 21a, 23a constituting each dipole antenna 21, 23.SELECTED DRAWING: Figure 2

Description

本発明は、移動体無線通信や固定無線通信などに利用可能な偏波共用アンテナに関する。   The present invention relates to a polarization sharing antenna that can be used for mobile radio communication, fixed radio communication, and the like.

近年、移動体通信のトラフィックは2倍/年のペースで増大しているため、無線リソースの効率化が望まれている。このため、移動体通信用基地局アンテナでは、周波数利用効率と無線伝送速度をあげるMIMO(multiple-input and multiple-output)技術が採用されている。MIMO技術によると、多くのアンテナが必要であるが、基地局アンテナを設置するスペースの制約を考慮して、直交する垂直偏波と水平偏波を共用する偏波共用アンテナが多く使われている。しかし、大地と垂直に配置された垂直偏波用ダイポールアンテナと大地と水平に配置された水平偏波用ダイポールアンテナとで構成される偏波共用アンテナによると、垂直偏波用ダイポールアンテナの水平面内ビーム幅と水平偏波用ダイポールアンテナの水平面内ビーム幅とが異なることが知られている。このため、このような偏波共用アンテナにおいて両者の水平面内ビーム幅をできるだけ一致させるために、様々な技術が開発されている(例えば特許文献1、非特許文献1参照)。   In recent years, the traffic of mobile communication has increased at a rate of 2 times / year, so that the efficiency of radio resources is desired. For this reason, MIMO (multiple-input and multiple-output) technology that increases frequency utilization efficiency and wireless transmission speed is employed in mobile communication base station antennas. According to MIMO technology, a large number of antennas are required, but taking into account the space restrictions for installing the base station antenna, a dual-polarized antenna that shares orthogonal vertical polarization and horizontal polarization is often used. . However, according to the dual-polarized antenna, which consists of a vertically polarized dipole antenna arranged perpendicular to the ground and a horizontally polarized dipole antenna placed horizontally with the earth, the horizontal polarization plane of the vertically polarized dipole antenna It is known that the beam width differs from the horizontal plane beam width of the horizontally polarized dipole antenna. For this reason, in such a dual-polarized antenna, various techniques have been developed in order to match the beam widths in the horizontal plane as much as possible (see, for example, Patent Document 1 and Non-Patent Document 1).

特開平09-98019号公報JP 09-98019 A

木村泰子、恵比根佳雄、“移動通信における基地局用3セクタ偏波ダイバーシチアンテナの狭ビーム化”、信学技報、AP2005-94、pp.623-67、Oct.2005.Yasuko Kimura, Yoshio Ebine, “Narrow beam of 3 sector polarization diversity antenna for base station in mobile communication”, IEICE Technical Report, AP2005-94, pp.623-67, Oct.2005.

例えば、特許文献1に開示されている発明によると、一つの平板状反射器に対して、二つの垂直偏波用ダイポールアンテナと一つの水平偏波用ダイポールアンテナを組み合わせる必要があり、さらに、二つの垂直偏波用ダイポールアンテナによる水平面内ビーム幅と一つの水平偏波用ダイポールアンテナの水平面内ビーム幅を一致させるために、各ダイポールアンテナを構成する各アンテナ素子と平板状反射器との距離だけでなく、二つの垂直偏波用ダイポールアンテナを構成する各アンテナ素子の水平距離も調整する必要がある。このため、部品点数ならびに調整すべき要素が多いという問題があった。   For example, according to the invention disclosed in Patent Document 1, it is necessary to combine two vertically polarized dipole antennas and one horizontally polarized dipole antenna with respect to one flat reflector. To make the beam width in the horizontal plane of two vertically polarized dipole antennas equal to the beam width in the horizontal plane of one horizontally polarized dipole antenna, only the distance between each antenna element constituting each dipole antenna and the flat reflector In addition, it is necessary to adjust the horizontal distance between the antenna elements constituting the two vertically polarized dipole antennas. For this reason, there has been a problem that the number of parts and many elements to be adjusted are large.

本発明は、垂直偏波用ダイポールアンテナの水平面内ビーム幅と水平偏波用ダイポールアンテナの水平面内ビーム幅とを一致させることのできる簡易な構成を持つ偏波共用アンテナを提供することを目的とする。   An object of the present invention is to provide a dual-polarized antenna having a simple configuration capable of matching the horizontal plane beam width of a vertically polarized dipole antenna with the horizontal plane beam width of a horizontally polarized dipole antenna. To do.

本発明の偏波共用アンテナは、共振周波数が同じ二つのダイポールアンテナを直交配置して構成されたクロスダイポールアンテナと、反射器とを含む偏波共用アンテナであって、反射器は、一つの球面と一つの平面との交線である円で当該球面を分けて得られる曲面のうち面積が大きくない方の形状を反射面として持つ部分球面反射部を含み、クロスダイポールアンテナは、上記球面を表面に持つ球体の中心と上記円の中心とを結ぶ直線と上記反射面との交点から当該直線に沿って上記円に向かって共振周波数に対応する波長の1/4の長さ離れた位置に、当該直線が各ダイポールアンテナを構成するアンテナ素子それぞれの延伸方向と直交するように配置されていることを特徴とする。   The dual-polarized antenna according to the present invention is a dual-polarized antenna including a cross dipole antenna configured by orthogonally arranging two dipole antennas having the same resonance frequency, and a reflector, and the reflector is a single spherical surface. Including a partial spherical reflector having a reflective surface with a shape having a smaller area among the curved surfaces obtained by dividing the spherical surface by a circle that is an intersection line with the one plane. In a position separated from the intersection of the straight line connecting the center of the sphere with the center of the circle and the reflection surface and the reflection surface toward the circle along the straight line by a quarter of the wavelength corresponding to the resonance frequency, The straight line is arranged so as to be orthogonal to the extending direction of each antenna element constituting each dipole antenna.

本発明に拠れば、一つの垂直偏波用ダイポールアンテナと一つの水平偏波用ダイポールアンテナとで構成されるクロスダイポールアンテナに対して上記部分球面反射部を組み合わせた簡易な構成でありながら、垂直偏波用ダイポールアンテナの水平面内ビーム幅と水平偏波用ダイポールアンテナの水平面内ビーム幅とを一致させることができる。   According to the present invention, a simple configuration combining the partial spherical reflector with a crossed dipole antenna composed of one vertically polarized dipole antenna and one horizontally polarized dipole antenna is used. The beam width in the horizontal plane of the polarization dipole antenna can be matched with the beam width in the horizontal plane of the horizontal polarization dipole antenna.

実施形態の偏波共用アンテナの正面図。The front view of the polarization sharing antenna of an embodiment. 実施形態の偏波共用アンテナの断面図(A-A’線断面図)。Sectional drawing (A-A 'sectional view taken on the line) of the polarization sharing antenna of embodiment. 実施形態の偏波共用アンテナにおける、垂直偏波用ダイポールアンテナの水平面内ビーム幅と水平偏波用ダイポールアンテナの水平面内ビーム幅(R=0.35λ)。The horizontal plane beam width of the vertically polarized dipole antenna and the horizontal plane beam width of the horizontally polarized dipole antenna (R = 0.35λ) in the dual polarization antenna of the embodiment. 実施形態の偏波共用アンテナにおける、垂直偏波用ダイポールアンテナの水平面内ビーム幅と水平偏波用ダイポールアンテナの水平面内ビーム幅(R=0.53λ)。The beam width in the horizontal plane of the vertically polarized dipole antenna and the beam width in the horizontal plane of the horizontally polarized dipole antenna (R = 0.53λ) in the dual polarization antenna of the embodiment. 実施形態の偏波共用アンテナにおける、垂直偏波用ダイポールアンテナの水平面内ビーム幅と水平偏波用ダイポールアンテナの水平面内ビーム幅(R=0.70λ)。In the dual-polarized antenna according to the embodiment, the horizontal plane beam width of the vertically polarized dipole antenna and the horizontal plane beam width of the horizontally polarized dipole antenna (R = 0.70λ). 参考例の偏波共用アンテナ。(a)正面図。(b)断面図(B-B’線断面図)。Polarization antenna for reference example. (A) Front view. (B) Sectional drawing (B-B 'line sectional drawing). 参考例の偏波共用アンテナにおける、垂直偏波用ダイポールアンテナの水平面内ビーム幅と水平偏波用ダイポールアンテナの水平面内ビーム幅。The horizontal plane beam width of the vertically polarized dipole antenna and the horizontal plane beam width of the horizontally polarized dipole antenna in the dual polarization antenna of the reference example.

図面を参照して本発明の実施形態を説明する。図1と図2に示すように、本実施形態の偏波共用アンテナ100は、クロスダイポールアンテナ20と反射器10を含む。   Embodiments of the present invention will be described with reference to the drawings. As shown in FIGS. 1 and 2, the dual-polarized antenna 100 according to this embodiment includes a cross dipole antenna 20 and a reflector 10.

<クロスダイポールアンテナ>
クロスダイポールアンテナ20は、従来から知られている構成を持ち、共振周波数fが同じ二つのダイポールアンテナ21,23で構成されている。また、これら二つのダイポールアンテナ21,23は直交配置されている。以下、この構成について説明する。
<Cross dipole antenna>
The cross dipole antenna 20 has a conventionally known configuration and is composed of two dipole antennas 21 and 23 having the same resonance frequency f. The two dipole antennas 21 and 23 are arranged orthogonally. Hereinafter, this configuration will be described.

ダイポールアンテナ21は、大地に対して垂直な仮想直線L21に沿って間隔を少し開けて配置された一対のアンテナ素子21aと、対向する二つのアンテナ素子21aの一端のそれぞれに接続されている給電線21bとで構成されている。ダイポールアンテナ21が半波長ダイポールアンテナである場合、アンテナ素子21aはそれぞれ、通常、仮想直線L21と平行な方向に延伸形成された形状を持つ電気伝導体であり、共振周波数fに対応する波長λの1/4の長さよりも数パーセントの短縮率だけ短い長さを有する。各給電線21bは例えば同軸ケーブルである。以下、ダイポールアンテナ21を垂直偏波用ダイポールアンテナ21と呼称する。 Dipole antenna 21, feed which is connected to one end of each of the two antenna elements 21a to slightly open the pair of antenna elements 21a which are arranged, opposite apart along the perpendicular imaginary line L 21 to the ground It is comprised with the electric wire 21b. If the dipole antenna 21 is a half-wave dipole antenna, each antenna element 21a is typically an electrical conductor having a shape which is stretched formed in a direction parallel to the imaginary straight line L 21, the wavelength corresponding to the resonance frequency f lambda It has a length shorter by a shortening rate of several percent than the length of 1/4. Each feeder line 21b is a coaxial cable, for example. Hereinafter, the dipole antenna 21 is referred to as a vertically polarized dipole antenna 21.

また、ダイポールアンテナ23は、大地に対して水平な仮想直線L23に沿って間隔を少し開けて配置された一対のアンテナ素子23aと、対向する二つのアンテナ素子23aの一端のそれぞれに接続されている給電線23bとで構成されている。ダイポールアンテナ23が半波長ダイポールアンテナである場合、アンテナ素子23aはそれぞれ、通常、仮想直線L23と平行な方向に延伸形成された形状を持つ電気伝導体であり、上記波長λの1/4の長さよりも数パーセントの短縮率だけ短い長さを有する。各給電線23bは例えば同軸ケーブルである。以下、ダイポールアンテナ23を水平偏波用ダイポールアンテナ23と呼称する。 Further, the dipole antenna 23 includes a pair of antenna elements 23a which are spaced slightly apart along the horizontal imaginary line L 23 to the ground, is connected to one end of each of the two antenna elements 23a facing And the feeder line 23b. If the dipole antenna 23 is a half-wave dipole antenna, each antenna element 23a is typically an electrical conductor having a shape which is stretched formed in a direction parallel to the imaginary straight line L 23, 1/4 of the wavelength λ It has a length that is a few percent shorter than the length. Each feeder line 23b is a coaxial cable, for example. Hereinafter, the dipole antenna 23 is referred to as a horizontally polarized dipole antenna 23.

仮想直線L21および仮想直線L23に垂直な方向から垂直偏波用ダイポールアンテナ21と水平偏波用ダイポールアンテナ23を見たとき(図1参照)、対向する二つのアンテナ素子21a間の空隙と対向する二つのアンテナ素子23a間の空隙とが部分一致するように、垂直偏波用ダイポールアンテナ21と水平偏波用ダイポールアンテナ23が配置されている。特に、本実施形態では、仮想直線L21と仮想直線L23は交点P(図示せず)を持ち、一対のアンテナ素子21aは、この交点Pに関して対称となるように仮想直線L21に沿って配置されており、一対のアンテナ素子23aは、この交点Pに関して対称となるように仮想直線L23に沿って配置されている。 When the vertically polarized dipole antenna 21 and the horizontally polarized dipole antenna 23 are viewed from the direction perpendicular to the virtual straight line L 21 and the virtual straight line L 23 (see FIG. 1), the gap between the two antenna elements 21a facing each other is The vertically polarized dipole antenna 21 and the horizontally polarized dipole antenna 23 are arranged so that the gap between the two opposing antenna elements 23a partially matches. In particular, in the present embodiment, the virtual straight line L 21 and the virtual straight line L 23 have an intersection point P (not shown), and the pair of antenna elements 21a are along the virtual straight line L 21 so as to be symmetric with respect to the intersection point P. are disposed, a pair of antenna elements 23a are arranged along a virtual straight line L 23 so as to be symmetrical with respect to the intersection point P.

<反射器>
反射器10は、部分球面を反射面として持つ部分球面反射部11と、必要に応じて、筒状の反射面を持つ筒状反射部13を含む。以下、この構成について説明する。
<Reflector>
The reflector 10 includes a partial spherical reflecting portion 11 having a partial spherical surface as a reflecting surface, and a cylindrical reflecting portion 13 having a cylindrical reflecting surface as necessary. Hereinafter, this configuration will be described.

上記部分球面は、正確には、一つの球面と一つの平面Hとの交線である円でこの球面を分けて得られる曲面のうち面積が大きくない方の形状を有する。部分球面反射部11は、このような部分球面を電磁波の反射面として持てば十分であり、この他の条件に特段の限定は無いが、例えば、肉薄の金属で形成される。   To be precise, the partial spherical surface has a shape having a smaller area among curved surfaces obtained by dividing the spherical surface by a circle that is an intersection line of one spherical surface and one flat surface H. It is sufficient for the partial spherical reflecting portion 11 to have such a partial spherical surface as an electromagnetic wave reflecting surface, and other conditions are not particularly limited, but are formed of, for example, a thin metal.

筒状反射部13の筒状反射面の直径は上記円の直径と等しい。筒状反射部13は、このような筒状反射面を電磁波の反射面として持てば十分であり、この他の条件に特段の限定は無いが、例えば、肉薄の金属で形成される。筒状反射部13は、筒状反射部13の反射面が部分球面反射部11の反射面に接続するように配置されている。特に、本実施形態では、部分球面反射部11と筒状反射部13は一体に形成されており、筒状反射部13の反射面は部分球面反射部11の反射面に連続的に接続している。   The diameter of the cylindrical reflecting surface of the cylindrical reflecting portion 13 is equal to the diameter of the circle. The cylindrical reflecting portion 13 is sufficient if it has such a cylindrical reflecting surface as an electromagnetic wave reflecting surface, and other conditions are not particularly limited, but are formed of, for example, a thin metal. The cylindrical reflecting portion 13 is arranged so that the reflecting surface of the cylindrical reflecting portion 13 is connected to the reflecting surface of the partial spherical reflecting portion 11. In particular, in this embodiment, the partial spherical reflector 11 and the cylindrical reflector 13 are integrally formed, and the reflective surface of the cylindrical reflector 13 is continuously connected to the reflective surface of the partial spherical reflector 11. Yes.

<クロスダイポールアンテナと反射器の配置関係>
クロスダイポールアンテナ20は、上記球面を表面に持つ球体の中心Gと上記円の中心とを結ぶ仮想直線L1と部分球面反射部11の反射面との交点C(図示せず)から仮想直線L1に沿って上記円に向かって上記波長λのほぼ1/4の長さdだけ離れた位置に配置されている。特に、本実施形態では、仮想直線L21と仮想直線L23との交点Pは仮想直線L1上にあり、交点Pと上記交点Cとの距離がdである。また、各ダイポールアンテナ21,23を構成するアンテナ素子21a,23aそれぞれの延伸方向(つまり、仮想直線L21および仮想直線L23)は仮想直線L1と直交している。換言すれば、仮想直線L21が上記平面Hと平行であるか平面H上にあり、且つ、仮想直線L23が上記平面Hと平行であるか平面H上にあるように、反射器10に対してクロスダイポールアンテナ20が配置されている。
<Relationship between crossed dipole antenna and reflector>
The cross dipole antenna 20 includes a virtual straight line L from an intersection C (not shown) between a virtual straight line L 1 connecting the center G of the sphere having the spherical surface and the center of the circle and the reflecting surface of the partial spherical reflecting portion 11. It is arranged at a position along the circle 1 by a length d that is approximately ¼ of the wavelength λ toward the circle. In particular, in the present embodiment, the intersection P between the virtual straight line L 21 and the virtual straight line L 23 is on the virtual straight line L 1 , and the distance between the intersection P and the intersection C is d. Further, the extending directions of the antenna elements 21a and 23a constituting the dipole antennas 21 and 23 (that is, the virtual straight line L 21 and the virtual straight line L 23 ) are orthogonal to the virtual straight line L 1 . In other words, the reflector 10 is arranged such that the virtual straight line L 21 is parallel to or on the plane H and the virtual straight line L 23 is parallel to the plane H or on the plane H. On the other hand, a cross dipole antenna 20 is arranged.

部分球面反射部11は、上記交点Cの近傍に、4個の貫通孔(図示せず)が形成されている。垂直偏波用ダイポールアンテナ21の各給電線21bは対応する貫通孔を挿通しており、例えば図示しない絶縁体を介して給電線21bと部分球面反射部11との電気的絶縁が保たれている。同様に、水平偏波用ダイポールアンテナ23の各給電線23bは対応する貫通孔を挿通しており、例えば図示しない絶縁体を介して給電線23bと部分球面反射部11との電気的絶縁が保たれている。各給電線21bは、必要に応じて、バラン(balun)などを介して垂直偏波用ダイポールアンテナ21用の給電回路(図示せず)に接続されている。また、各給電線23bは、必要に応じて、バランなどを介して水平偏波用ダイポールアンテナ23用の給電回路(図示せず)に接続されている。給電方法などは、従来のクロスダイポールアンテナと同じであるから説明を省略する。   The partial spherical reflecting portion 11 has four through holes (not shown) formed in the vicinity of the intersection C. Each feed line 21b of the vertically polarized dipole antenna 21 is inserted through a corresponding through hole. For example, electrical insulation between the feed line 21b and the partial spherical reflector 11 is maintained via an insulator (not shown). . Similarly, each feed line 23b of the horizontally polarized dipole antenna 23 is inserted through a corresponding through hole, and electrical insulation between the feed line 23b and the partial spherical reflector 11 is maintained through an insulator (not shown), for example. I'm leaning. Each feed line 21b is connected to a feed circuit (not shown) for the vertically polarized dipole antenna 21 through a balun or the like as necessary. Each feed line 23b is connected to a feed circuit (not shown) for the horizontally polarized dipole antenna 23 through a balun or the like as necessary. Since the feeding method and the like are the same as those of the conventional cross dipole antenna, the description thereof is omitted.

<水平面内ビーム幅>
偏波共用アンテナ100について、垂直偏波用ダイポールアンテナ21の水平面内ビーム幅と水平偏波用ダイポールアンテナ23の水平面内ビーム幅を図3〜図5に示す。各図では、縦軸は水平面内ビーム幅である電力半電幅(half power beamwidth)[°]を表し、横軸は開き角θ[°]を表している。また、各図において、hは筒状反射部13の高さ(仮想直線L1に平行な方向の長さ)を表しており、Rは上記球体の半径を表している。開き角θは、上記球体の中心Gから部分球面反射部11の反射面を見込んだ角度であり、換言すれば、仮想直線L1を含む任意の平面と上記円との二つの交点と上記球体の中心Gとが成す三角形において当該二つの交点を結ぶ線分を底辺としたときの頂角である。
<Horizontal beam width>
3 to 5 show the horizontal plane beam width of the vertically polarized dipole antenna 21 and the horizontal plane beam width of the horizontally polarized dipole antenna 23 for the dual polarization antenna 100. In each figure, the vertical axis represents the half power beamwidth [°], which is the beam width in the horizontal plane, and the horizontal axis represents the opening angle θ [°]. Moreover, in each figure, h represents the height of the cylindrical reflective portion 13 (the length of which is parallel to the imaginary straight line L 1 direction), R represents the radius of the sphere. The opening angle θ is an angle in which the reflection surface of the partial spherical reflector 11 is viewed from the center G of the sphere, in other words, two intersections between an arbitrary plane including the virtual straight line L 1 and the circle, and the sphere. This is the apex angle when the line segment connecting the two intersections in the triangle formed by the center G of the base is the base.

図3〜図5からわかるように、上記球体の半径Rが少なくとも上記波長λの0.35倍以上0.70倍以下の範囲内において、開き角θと筒状反射部13の高さhの組み合わせに応じて、垂直偏波用ダイポールアンテナ21の水平面内ビーム幅と水平偏波用ダイポールアンテナ23の水平面内ビーム幅とを一致させることができる。また、筒状反射部13は必須ではないが(つまり、高さh=0の場合)、高さhが少なくとも上記波長λの0.058倍以上0.175倍以下の範囲内であれば、筒状反射部13が無い場合に比べて、垂直偏波用ダイポールアンテナ21の水平面内ビーム幅と水平偏波用ダイポールアンテナ23の水平面内ビーム幅との差が著しく大きくなってしまうようなことはなく、むしろ、高さhが概ね上記波長λの0.110倍以上0.120倍以下の範囲内では、開き角θに依らず、垂直偏波用ダイポールアンテナ21の水平面内ビーム幅と水平偏波用ダイポールアンテナ23の水平面内ビーム幅との差が実用上十分に小さくなり(約10°以下)、筒状反射部13の有用性を確認できる。また、開き角θが小さくなると垂直偏波用ダイポールアンテナ21の水平面内ビーム幅と水平偏波用ダイポールアンテナ23の水平面内ビーム幅との差が大きくなる傾向があるので、実用上、開き角θは80°以上であることが好ましい。   As can be seen from FIG. 3 to FIG. 5, when the radius R of the sphere is at least 0.35 times to 0.70 times the wavelength λ, the opening angle θ and the height h of the cylindrical reflecting portion 13 are determined. Depending on the combination, the beam width in the horizontal plane of the vertically polarized dipole antenna 21 and the beam width in the horizontal plane of the horizontally polarized dipole antenna 23 can be matched. Further, the cylindrical reflector 13 is not essential (that is, when the height h = 0), but if the height h is at least 0.058 times to 0.175 times the wavelength λ, the cylindrical reflector is used. Compared to the case where there is no 13, the difference between the beam width in the horizontal plane of the vertically polarized dipole antenna 21 and the beam width in the horizontal plane of the horizontally polarized dipole antenna 23 is not significantly increased. When the height h is in the range of 0.110 to 0.120 times the wavelength λ, the beam width in the horizontal plane of the vertically polarized dipole antenna 21 and the horizontal plane of the horizontally polarized dipole antenna 23 are independent of the opening angle θ. The difference from the beam width is practically sufficiently small (about 10 ° or less), and the usefulness of the cylindrical reflecting portion 13 can be confirmed. Further, as the opening angle θ decreases, the difference between the beam width in the horizontal plane of the vertically polarized dipole antenna 21 and the beam width in the horizontal plane of the horizontally polarized dipole antenna 23 tends to increase. Is preferably 80 ° or more.

参考までに、上述の偏波共用アンテナ100とは異なる偏波共用アンテナ900における垂直偏波用ダイポールアンテナの水平面内ビーム幅と水平偏波用ダイポールアンテナの水平面内ビーム幅を図7に示す。なお、偏波共用アンテナ900は、反射器10に替えて反射器50を持っている点で、偏波共用アンテナ100と異なる(図6参照)。反射器50は、部分球面反射部ではなく、正方形平板状の平板反射部を持っている。また、比較のため、平板反射部の四辺それぞれに矩形平板状の側壁反射部がクロスダイポールアンテナに向かって延伸形成されている場合(ただし、図6に示すように隣接する側壁反射部は互いに接続している)の各水平面内ビーム幅も図7に示している。クロスダイポールアンテナは、平板反射部から長さd=λ/4だけ離れた位置に配置されている。図7からわかるように、図6に示す偏波共用アンテナ900によると、平板反射部の辺の長さWと側壁反射部の高さgとの組み合わせに応じて、垂直偏波用ダイポールアンテナの水平面内ビーム幅と水平偏波用ダイポールアンテナの水平面内ビーム幅との差をある程度小さくすることはできるものの、垂直偏波用ダイポールアンテナの水平面内ビーム幅と水平偏波用ダイポールアンテナの水平面内ビーム幅とを一致させることはできない。このことから、部分球面反射部の有用性を確認できる。   For reference, FIG. 7 shows the horizontal plane beam width of the vertical polarization dipole antenna and the horizontal polarization beam width of the horizontal polarization dipole antenna in the dual polarization antenna 900 different from the dual polarization antenna 100 described above. The dual-polarized antenna 900 is different from the dual-polarized antenna 100 in that it has a reflector 50 instead of the reflector 10 (see FIG. 6). The reflector 50 has not a partial spherical reflection part but a square flat plate reflection part. In addition, for comparison, in the case where rectangular plate-like side wall reflecting portions are extended toward the cross dipole antenna on each of the four sides of the flat plate reflecting portion (however, adjacent side wall reflecting portions are connected to each other as shown in FIG. 6). The beam width in each horizontal plane is also shown in FIG. The cross dipole antenna is disposed at a position separated from the flat plate reflection portion by a length d = λ / 4. As can be seen from FIG. 7, according to the dual-polarized antenna 900 shown in FIG. 6, the vertical polarization dipole antenna has a combination of the side length W of the flat plate reflection portion and the height g of the side wall reflection portion. Although the difference between the beam width in the horizontal plane and the beam width in the horizontal plane of the horizontally polarized dipole antenna can be reduced to some extent, the beam width in the horizontal plane of the vertically polarized dipole antenna and the beam in the horizontal plane of the horizontally polarized dipole antenna The width cannot be matched. From this, the usefulness of the partial spherical reflector can be confirmed.

このように、本発明によると、従来のクロスダイポールアンテナに少なくとも部分球面反射部を持つ反射器を組み合わせた簡易な構成でありながら、垂直偏波用ダイポールアンテナの水平面内ビーム幅と水平偏波用ダイポールアンテナの水平面内ビーム幅とを一致させることができる。   As described above, according to the present invention, the beam width in the horizontal plane of the vertically polarized dipole antenna and the horizontally polarized wave can be obtained while combining a conventional crossed dipole antenna with a reflector having at least a partial spherical reflector. The beam width in the horizontal plane of the dipole antenna can be matched.

この他、本発明は上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。   In addition, the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the spirit of the present invention.

Claims (5)

共振周波数が同じ二つのダイポールアンテナを直交配置して構成されたクロスダイポールアンテナと、
反射器と
を含む偏波共用アンテナであって、
上記反射器は、
一つの球面と一つの平面との交線である円で当該球面を分けて得られる曲面のうち面積が大きくない方の形状を反射面として持つ部分球面反射部を含み、
上記クロスダイポールアンテナは、
上記球面を表面に持つ球体の中心と上記円の中心とを結ぶ直線と上記反射面との交点から当該直線に沿って上記円に向かって上記共振周波数に対応する波長の1/4の長さ離れた位置に、当該直線が上記各ダイポールアンテナを構成するアンテナ素子それぞれの延伸方向と直交するように配置されている
ことを特徴とする偏波共用アンテナ。
A cross dipole antenna configured by orthogonally arranging two dipole antennas having the same resonance frequency;
A dual-polarized antenna including a reflector,
The reflector is
Including a partial spherical reflector having, as a reflecting surface, a shape whose area is not large among curved surfaces obtained by dividing the spherical surface by a circle that is an intersection line of one spherical surface and one plane;
The cross dipole antenna is
The length of ¼ of the wavelength corresponding to the resonance frequency from the intersection of the straight line connecting the center of the sphere having the spherical surface to the center of the circle and the reflecting surface toward the circle along the straight line A polarization-sharing antenna, characterized in that the straight line is arranged at a distance so as to be orthogonal to the extending direction of each antenna element constituting each of the dipole antennas.
請求項1に記載の偏波共用アンテナにおいて、
上記反射器は、さらに、上記円の直径と等しい直径の筒状の反射面を持つ筒状反射部を含み、
上記筒状反射部は、
上記筒状反射部の反射面が上記部分球面反射部の反射面に接続するように配置されている
ことを特徴とする偏波共用アンテナ。
The dual-polarized antenna according to claim 1,
The reflector further includes a cylindrical reflection portion having a cylindrical reflection surface having a diameter equal to the diameter of the circle,
The cylindrical reflector is
A dual-polarized antenna, wherein the reflection surface of the cylindrical reflection portion is disposed so as to be connected to the reflection surface of the partial spherical reflection portion.
請求項2に記載の偏波共用アンテナにおいて、
上記筒状反射部の反射面の上記直線に平行な方向の長さは上記波長の0.058倍以上0.175倍以下である
ことを特徴とする偏波共用アンテナ。
The dual-polarized antenna according to claim 2,
The dual-polarized antenna according to claim 1, wherein a length of the reflecting surface of the cylindrical reflecting portion in a direction parallel to the straight line is 0.058 to 0.175 times the wavelength.
請求項1から請求項3のいずれかに記載の偏波共用アンテナにおいて、
上記球体の半径は、上記波長の0.35倍以上0.70倍以下である
ことを特徴とする偏波共用アンテナ。
The dual-polarized antenna according to any one of claims 1 to 3,
The polarization antenna according to claim 1, wherein a radius of the sphere is 0.35 to 0.70 times the wavelength.
請求項1から請求項4のいずれかに記載の偏波共用アンテナにおいて、
上記球体の中心から上記部分球面反射部の反射面を見込んだ開き角は80°以上である
ことを特徴とする偏波共用アンテナ。
The dual-polarized antenna according to any one of claims 1 to 4,
The dual-polarized antenna according to claim 1, wherein an opening angle when the reflection surface of the partial spherical reflector is viewed from the center of the sphere is 80 ° or more.
JP2015004139A 2015-01-13 2015-01-13 Polarization sharing antenna Pending JP2016131278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015004139A JP2016131278A (en) 2015-01-13 2015-01-13 Polarization sharing antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015004139A JP2016131278A (en) 2015-01-13 2015-01-13 Polarization sharing antenna

Publications (1)

Publication Number Publication Date
JP2016131278A true JP2016131278A (en) 2016-07-21

Family

ID=56414800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015004139A Pending JP2016131278A (en) 2015-01-13 2015-01-13 Polarization sharing antenna

Country Status (1)

Country Link
JP (1) JP2016131278A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133704A (en) * 1981-02-12 1982-08-18 Mitsubishi Electric Corp Antenna with reflecting plate
JPH0249210U (en) * 1988-09-29 1990-04-05
JP2014039192A (en) * 2012-08-17 2014-02-27 Denki Kogyo Co Ltd Dual polarized antenna

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133704A (en) * 1981-02-12 1982-08-18 Mitsubishi Electric Corp Antenna with reflecting plate
JPH0249210U (en) * 1988-09-29 1990-04-05
JP2014039192A (en) * 2012-08-17 2014-02-27 Denki Kogyo Co Ltd Dual polarized antenna

Similar Documents

Publication Publication Date Title
US9711865B2 (en) Dual polarization array antenna and radiation units thereof
US8199063B2 (en) Dual-band dual-polarized base station antenna for mobile communication
US8988298B1 (en) Collocated omnidirectional dual-polarized antenna
JP5956582B2 (en) antenna
KR102172187B1 (en) Omni-directional antenna for mobile communication service
JP5386721B2 (en) Mobile communication base station antenna
US9331396B2 (en) Antenna structure having orthogonal polarizations
CN105990670B (en) Circularly polarized antenna and communication equipment
JP2014143591A (en) Array antenna
US20190379141A1 (en) Dual polarized omni-directional antenna and base station including same
WO2015168845A1 (en) Ultra-wideband dual-polarized radiation unit and base station antenna
JP5721073B2 (en) antenna
CN105144483B (en) Circular polarized antenna
JP6267005B2 (en) Array antenna and sector antenna
WO2019100376A1 (en) Omnidirectional array antenna and beamforming method therefor
WO2015159871A1 (en) Antenna and sector antenna
JP6827336B2 (en) Polarization shared antenna, antenna system
JP2005051506A (en) Polarized wave antenna system
JP2019009708A (en) antenna
JP2016131278A (en) Polarization sharing antenna
Decena et al. 2.4 GHz pattern reconfigurable corner reflector antennas using frequency selective conductor loops and strips
CN203326118U (en) Antenna
US11128055B2 (en) Dual dipole omnidirectional antenna
Zhang et al. Research on arrays of microstrip magnetic dipole Yagi antennas
KR102293354B1 (en) Omni-directional antenna for mobile communication service

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181002