JP2016130523A - Support structure of rotating shaft of belt-type continuously variable transmission - Google Patents

Support structure of rotating shaft of belt-type continuously variable transmission Download PDF

Info

Publication number
JP2016130523A
JP2016130523A JP2015003753A JP2015003753A JP2016130523A JP 2016130523 A JP2016130523 A JP 2016130523A JP 2015003753 A JP2015003753 A JP 2015003753A JP 2015003753 A JP2015003753 A JP 2015003753A JP 2016130523 A JP2016130523 A JP 2016130523A
Authority
JP
Japan
Prior art keywords
support
rib
support portion
peripheral wall
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015003753A
Other languages
Japanese (ja)
Other versions
JP6399934B2 (en
Inventor
上野 成央
Yoshiteru Ueno
成央 上野
将和 田村
Masakazu Tamura
将和 田村
謙二 松原
Kenji Matsubara
謙二 松原
マイケル トレンティーノ
Tolentino Michael
マイケル トレンティーノ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
JATCO Ltd
Original Assignee
Nissan Motor Co Ltd
JATCO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, JATCO Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2015003753A priority Critical patent/JP6399934B2/en
Priority to KR1020150180658A priority patent/KR101851438B1/en
Priority to CN201610011792.1A priority patent/CN105782406B/en
Publication of JP2016130523A publication Critical patent/JP2016130523A/en
Application granted granted Critical
Publication of JP6399934B2 publication Critical patent/JP6399934B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H57/021Shaft support structures, e.g. partition walls, bearing eyes, casing walls or covers with bearings

Abstract

PROBLEM TO BE SOLVED: To enhance the rigidity of a support part which supports a pulley shaft while avoiding an increase of a mass of a case.SOLUTION: In a support structure of a pulley shaft 310 of a side cover 6 in which the pulley shaft 310 which rotates at power transmission is rotatably supported at an internal periphery of a cylindrical support part 62 which is protrusively formed from a wall part 60 of the side cover 6 via a bearing 73, a thickness of a prescribed angular range θ with a region in which a load acting from the pulley shaft 310 via the bearing 73 becomes maximum at the power transmission as a reference, which is a thickness of the support part 62 in a radial direction when viewed from a rotating shaft X2 direction of the pulley shaft 310, is set thicker than a thickness of a region 621 out of the prescribed angular range, and a heavy thickness part 622 is arranged at a part of the support part 62.SELECTED DRAWING: Figure 2

Description

本発明は、ベルト式無段変速機における回転軸の支持構造に関する。   The present invention relates to a support structure for a rotating shaft in a belt type continuously variable transmission.

車両用のベルト式無段変速機は、プライマリプーリとセカンダリプーリとにベルトを巻き掛けた基本構成を有しており、これらプライマリプーリとセカンダリプーリのプーリ軸は、ケース(変速機ケース)に設けたリング状の支持部で、ベアリングを介して回転可能に支持されている。   A belt type continuously variable transmission for a vehicle has a basic configuration in which a belt is wound around a primary pulley and a secondary pulley, and the pulley shafts of the primary pulley and the secondary pulley are provided in a case (transmission case). The ring-shaped support portion is rotatably supported via a bearing.

ケースの支持部には、プライマリプーリとセカンダリプーリとの間で回転駆動力を伝達している時に、プーリ軸の径方向に向かう大きな荷重が作用するので、従来のケースでは、例えば、支持部の径方向の厚みを全周に亘って厚くすることなどにより、支持部の剛性強度を高めていた。   When a rotational driving force is transmitted between the primary pulley and the secondary pulley, a large load acting in the radial direction of the pulley shaft acts on the support portion of the case. The rigidity strength of the support portion has been increased by increasing the thickness in the radial direction over the entire circumference.

また、特許文献1には、プライマリプーリのプーリ軸を支持する支持部と、セカンダリプーリのプーリ軸を支持する支持部とに、補強用の支柱部を掛け渡して設けることで、これら支持部の剛性強度を高めることが開示されている。   Further, in Patent Document 1, a support column for supporting the pulley shaft of the primary pulley and a support unit for supporting the pulley shaft of the secondary pulley are provided so as to span the reinforcing support column. Increasing the rigidity strength is disclosed.

特開2009−68693号公報JP 2009-68693 A

しかし、支持部の径方向の厚みを単純に厚くすると、支持部の剛性強度を高めることができるものの、ケースの質量が増加するため、ベルト式無段変速機を搭載した車両の燃費が悪化してしまう。
そこで、ケースの質量増加を避けつつ、プーリ軸を支持する支持部の剛性強度を高めることが求められている。
However, simply increasing the thickness of the support portion in the radial direction can increase the rigidity of the support portion, but the mass of the case increases, so the fuel efficiency of a vehicle equipped with a belt-type continuously variable transmission deteriorates. End up.
Therefore, it is required to increase the rigidity strength of the support portion that supports the pulley shaft while avoiding an increase in the mass of the case.

本発明は、
動力伝達時に回転する回転軸を、ケースの壁部から突出形成された円筒状の支持部の内周で支持させたベルト式無段変速機における回転軸の支持構造において、
回転軸の軸方向から見た支持部の径方向の厚みであって、動力伝達時に回転軸から作用する荷重が最大となる部位を基準とした所定の角度範囲の厚みを、所定の角度範囲外の厚みよりも厚くしたことを特徴とするベルト式無段変速機における回転軸の支持構造。
The present invention
In the support structure of the rotating shaft in the belt-type continuously variable transmission in which the rotating shaft that rotates at the time of power transmission is supported by the inner periphery of a cylindrical support portion that is formed to protrude from the wall portion of the case.
The thickness of the support portion in the radial direction as viewed from the axial direction of the rotary shaft, and the thickness within a predetermined angular range based on the portion where the load applied from the rotary shaft during power transmission is maximum is outside the predetermined angular range. A structure for supporting a rotating shaft in a belt-type continuously variable transmission, characterized in that it is thicker than the thickness of the belt.

支持部では、動力伝達時に回転軸から作用する荷重の方向は変わらないので、上記のように構成して、支持部における荷重が最大となる部位を基準とした所定範囲の径方向の厚みを厚くして所定範囲の剛性強度を高めるだけで、支持部の径方向の厚みを厚くする部分を必要最小限に抑えてケースの質量増加を避けつつ、動力伝達時に回転軸から作用する荷重に耐えうる剛性強度を支持部に持たせることができる。   In the support portion, the direction of the load acting from the rotating shaft at the time of power transmission does not change. Therefore, the support portion is configured as described above, and the radial thickness in a predetermined range with respect to the portion where the load in the support portion is maximum is increased. By simply increasing the rigidity strength within a specified range, it is possible to withstand the load acting on the rotating shaft during power transmission while minimizing the portion where the support portion is thickened in the radial direction and avoiding an increase in the mass of the case. The support portion can have rigidity strength.

実施の形態にかかる支持構造を採用したベルト式無段変速機の模式図である。It is a schematic diagram of a belt-type continuously variable transmission that employs a support structure according to an embodiment. サイドカバーにおける支持構造を説明する図である。It is a figure explaining the support structure in a side cover. サイドカバーにおける支持構造を説明する図である。It is a figure explaining the support structure in a side cover. サイドカバーにおける支持構造を説明する図である。It is a figure explaining the support structure in a side cover. 支持部に作用する荷重の方向を説明する図である。It is a figure explaining the direction of the load which acts on a support part.

図1は、実施の形態にかかる支持構造を採用したベルト式無段変速機1の要部構成を模式的に示した図である。   FIG. 1 is a diagram schematically illustrating a main configuration of a belt-type continuously variable transmission 1 that employs a support structure according to an embodiment.

ベルト式無段変速機1は、プライマリプーリ2とセカンダリプーリ3とにベルト4を巻き掛けた基本構成を有しており、プライマリプーリ2とセカンダリプーリ3におけるベルト4の巻き掛け半径を調整することで、所望の変速比を実現するように構成されている。   The belt type continuously variable transmission 1 has a basic configuration in which a belt 4 is wound around a primary pulley 2 and a secondary pulley 3, and the winding radius of the belt 4 in the primary pulley 2 and the secondary pulley 3 is adjusted. Thus, it is configured to realize a desired gear ratio.

プライマリプーリ2とセカンダリプーリ3は、固定円錐板21、31と、可動円錐板22、32と、を有しており、可動円錐板22、32は、固定円錐板21、31のプーリ軸210、310で、回転軸X1、X2方向に移動可能に設けられている。   The primary pulley 2 and the secondary pulley 3 have fixed conical plates 21 and 31, and movable conical plates 22 and 32. The movable conical plates 22 and 32 are pulley shafts 210 and 32 of the fixed conical plates 21 and 31, respectively. 310 is provided to be movable in the directions of the rotation axes X1 and X2.

固定円錐板21は、プーリ軸210の長手方向の一端210a側の外周が、変速機ケース5に設けた支持部51で、ベアリング71を介して回転可能に支持されており、他端210bの外周が、変速機ケース5の開口を塞ぐサイドカバー6の支持部61で、ベアリング72を介して回転可能に支持されている。
プーリ軸210内には、当該プーリ軸210の他端210bに開口する油路211が設けられており、プーリ軸210の他端210bは、円筒状の支持部51の内側で、サイドカバー6の壁部60から突出する円筒状の軸部63に外挿されて、回転可能に支持されている。
In the fixed conical plate 21, the outer periphery of the pulley shaft 210 on the one end 210a side in the longitudinal direction is rotatably supported by a support portion 51 provided in the transmission case 5 via a bearing 71, and the outer periphery of the other end 210b. However, the support portion 61 of the side cover 6 that closes the opening of the transmission case 5 is rotatably supported via a bearing 72.
An oil passage 211 that opens to the other end 210 b of the pulley shaft 210 is provided in the pulley shaft 210, and the other end 210 b of the pulley shaft 210 is located on the inner side of the cylindrical support portion 51 and on the side cover 6. It is extrapolated to a cylindrical shaft portion 63 protruding from the wall portion 60 and is rotatably supported.

プーリ軸210の一端210aには、歯車81が外挿して取り付けられており、図示しない駆動源側からの回転駆動力が、この歯車81を介してプライマリプーリ2に伝達されるようになっている。   A gear 81 is externally attached to one end 210 a of the pulley shaft 210, and a rotational driving force from a driving source (not shown) is transmitted to the primary pulley 2 via the gear 81. .

固定円錐板31は、プーリ軸310の長手方向の一端310aが、サイドカバー6の支持部62で、ベアリング73を介して回転可能に支持されており、他端310bの外周が、変速機ケース5に設けた支持部52で、ベアリング74を介して回転可能に支持されている。
プーリ軸310内には、当該プーリ軸310の一端310aに開口する油路311が設けられており、プーリ軸310の一端310aは、円筒状の支持部52の内側で、サイドカバー6の壁部60から突出する円筒状の軸部64に外挿されて、回転可能に支持されている。
In the fixed conical plate 31, one end 310a of the pulley shaft 310 in the longitudinal direction is rotatably supported by the support portion 62 of the side cover 6 via a bearing 73, and the outer periphery of the other end 310b is connected to the transmission case 5. Is supported by a support part 52 via a bearing 74.
An oil passage 311 that opens to one end 310 a of the pulley shaft 310 is provided in the pulley shaft 310, and the one end 310 a of the pulley shaft 310 is inside the cylindrical support portion 52 and is a wall portion of the side cover 6. It is extrapolated to a cylindrical shaft portion 64 protruding from 60 and is rotatably supported.

プーリ軸310の他端310bには、図示しない差動装置側に回転を伝達する回転伝達軸82がスプライン嵌合しており、ベルト4を介してプライマリプーリ2側から伝達された回転駆動力が、セカンダリプーリ3を介して、差動装置側に伝達されるようになっている。   The other end 310b of the pulley shaft 310 is spline-fitted with a rotation transmission shaft 82 that transmits rotation to the differential device side (not shown), and the rotational driving force transmitted from the primary pulley 2 side via the belt 4 is received. Then, it is transmitted to the differential device side via the secondary pulley 3.

図2は、サイドカバー6を説明する図であり、(a)は、サイドカバー6の斜視図であり、(b)は、サイドカバー6を変速機ケース5側から見た平面図であって、要部を拡大して示す図である。
図3は、サイドカバー6を説明する図であり、(a)は、サイドカバー6を変速機ケース5側から見た平面図であり、(b)は、(a)におけるA−A断面図であり、(c)は、(a)におけるB−B断面図である。
図4は、サイドカバー6を説明する図であって、図3の(c)におけるC−C断面図である。
なお、図2および図3の(a)では、図面での各部位の形状の理解を容易にするために、サイドカバー6の外周を囲む周壁部601の変速機ケース5との接合面6aと、支持部61、62や軸部63、64の変速機ケース5側の端面などに、ハッチングを付して示している。
さらに、図2の(b)では、サイドカバー6の壁部60の紙面手前側の面の形状のうち、実施の形態にかかる支持構造に関係する部分のみを示していると共に、支持部62内に挿入されたベアリング73を仮想線で示している。
2A and 2B are diagrams illustrating the side cover 6, in which FIG. 2A is a perspective view of the side cover 6, and FIG. 2B is a plan view of the side cover 6 viewed from the transmission case 5 side. It is a figure which expands and shows the principal part.
3A and 3B are diagrams illustrating the side cover 6, in which FIG. 3A is a plan view of the side cover 6 viewed from the transmission case 5 side, and FIG. 3B is a cross-sectional view taken along line AA in FIG. (C) is a BB sectional view in (a).
FIG. 4 is a view for explaining the side cover 6 and is a cross-sectional view taken along the line CC in FIG.
2 and 3A, in order to facilitate understanding of the shape of each part in the drawings, the joint surface 6a of the peripheral wall portion 601 surrounding the outer periphery of the side cover 6 with the transmission case 5 In addition, the end surfaces of the support portions 61 and 62 and the shaft portions 63 and 64 on the transmission case 5 side are hatched.
Further, FIG. 2B shows only the portion related to the support structure according to the embodiment of the shape of the front surface of the wall portion 60 of the side cover 6, and the inside of the support portion 62. The bearing 73 inserted in is indicated by an imaginary line.

図2および図3に示すように、サイドカバー6の壁部60では、壁部60の外周を全周に亘って囲む周壁部601の内側で、プーリ軸210の支持部61と、プーリ軸310の支持部62とが、サイドカバー6の長手方向に間隔を開けて設けられている。
これら支持部61、62は、壁部60における変速機ケース5側の面60a(図3の(c)参照)から、周壁部601と同方向に突出して設けられており、回転軸X1、X2の軸方向から見てリング状を成す支持部61、62は、周壁部601との間にも間隙を持って配置されている(図3の(a)参照)。
As shown in FIGS. 2 and 3, in the wall portion 60 of the side cover 6, the support portion 61 of the pulley shaft 210 and the pulley shaft 310 are arranged inside the peripheral wall portion 601 that surrounds the entire outer periphery of the wall portion 60. Are provided at intervals in the longitudinal direction of the side cover 6.
These support portions 61 and 62 are provided so as to protrude from the surface 60a of the wall portion 60 on the transmission case 5 side (see FIG. 3C) in the same direction as the peripheral wall portion 601, and the rotation axes X1 and X2 The support portions 61 and 62 having a ring shape when viewed from the axial direction are also disposed with a gap between the support portions 61 and 62 (see FIG. 3A).

ここで、ベルト式無段変速機1では、プライマリプーリ2とセカンダリプーリ3との間での回転駆動力の伝達時(トルクの伝達時)に、プーリ軸210、310を回転軸X1、X2に対して傾ける方向に作用する応力が、プーリ軸210、310を支持する支持部61、62に作用する。   Here, in the belt-type continuously variable transmission 1, the pulley shafts 210 and 310 are turned to the rotation shafts X 1 and X 2 when the rotational driving force is transmitted between the primary pulley 2 and the secondary pulley 3 (at the time of torque transmission). The stress acting in the direction of tilting acts on the support portions 61 and 62 that support the pulley shafts 210 and 310.

そのため、サイドカバー6の支持部61、62には、プーリ軸210、310が回転軸X1、X2に対して傾くことを防止できる剛性強度が必要とされており、実施の形態では、支持部62の一部に、回転軸X2の軸方向から見た径方向の厚みW2が支持部62における基準となる部位621の径方向の厚みW1よりも厚い厚肉部622を設けて、プーリ軸310の一端を支持する支持部62の剛性強度を高めている。   Therefore, the support portions 61 and 62 of the side cover 6 are required to have a rigid strength that can prevent the pulley shafts 210 and 310 from being inclined with respect to the rotation axes X1 and X2. In the embodiment, the support portions 62 are required. Is provided with a thick portion 622 in which the radial thickness W2 viewed from the axial direction of the rotation axis X2 is thicker than the radial thickness W1 of the portion 621 serving as a reference in the support portion 62. The rigidity of the support portion 62 that supports one end is increased.

ここで、支持部62において厚肉部622は、回転軸X2周りの周方向の所定の角度範囲θに設けられており、プーリ軸310が回転軸X2に対して傾くことを防止できる最小限の剛性強度が、支持部62において少なくとも確保されるようにされている。   Here, in the support portion 62, the thick portion 622 is provided in a predetermined angular range θ in the circumferential direction around the rotation axis X2, and is the minimum that can prevent the pulley shaft 310 from being inclined with respect to the rotation axis X2. The rigidity strength is ensured at least in the support portion 62.

ここで、支持部62における厚肉部622が設けられる角度範囲θの設定を、プーリ軸310に外挿されたベアリング73(ボールBa)に作用する荷重に基づいて説明する。
図5は、ベアリング73のボールBaが9個である場合を例に挙げて、各ボールBa(Ba1〜Ba9)に作用する荷重(Ball Load)の大きさと、支持部62における厚肉部622が設けられた角度範囲θとの関係を説明する図である。
図5の(a)では、回転軸X2周りに40°間隔で配置された各ボールBa(Ba1〜Ba9)に作用する荷重の大きさを、矢印の長さで示しており、(b)では、各ボールBa(Ba1〜Ba9)に作用する荷重の大きさを、Ball Road(N)を縦軸とした棒グラフで示している。
Here, the setting of the angle range θ in which the thick portion 622 in the support portion 62 is provided will be described based on the load acting on the bearing 73 (ball Ba) extrapolated to the pulley shaft 310.
FIG. 5 shows an example in which the number of balls Ba of the bearing 73 is nine. The load (Ball Load) acting on each ball Ba (Ba1 to Ba9) and the thick portion 622 of the support portion 62 are shown in FIG. It is a figure explaining the relationship with the provided angle range (theta).
In (a) of FIG. 5, the magnitude | size of the load which acts on each ball | bowl Ba (Ba1-Ba9) arrange | positioned at 40 degree intervals around the rotating shaft X2 is shown by the length of the arrow, (b). The magnitude of the load acting on each ball Ba (Ba1 to Ba9) is shown by a bar graph with the Ball Load (N) as the vertical axis.

プライマリプーリ2とセカンダリプーリ3との間でトルクの伝達が行われているときには、プーリ軸310を回転軸X2に対して傾ける方向に作用する応力が、ベアリング73を介して支持部62に作用する。
本願発明者は、ベアリング73の各ボールBaに作用する荷重であって、プライマリプーリ2とセカンダリプーリ3との間でのトルクの伝達時に作用する荷重の大きさをシミュレーションなどにより算出したところ、荷重が最大となるボールBaは、プライマリプーリ2の回転軸X1とセカンダリプーリ3の回転軸X2とを結ぶ線分Ln上のボールBaでないことを見いだした。
これは、プライマリプーリ2のプーリ軸210と、セカンダリプーリ3のプーリ軸310には、自動変速機の他のギヤが噛合しているので、プーリ軸210とプーリ軸310とには、プーリ軸210とプーリ軸310に巻き掛けたベルト4からの応力(プーリ軸210とプーリ軸310の軸間距離を狭める方向の応力)だけではく、ギヤのかみ合い部分に作用する応力も作用するためである。
When torque is transmitted between the primary pulley 2 and the secondary pulley 3, a stress acting in a direction in which the pulley shaft 310 is inclined with respect to the rotation axis X <b> 2 acts on the support portion 62 via the bearing 73. .
The inventor of the present application calculated the magnitude of the load acting on each ball Ba of the bearing 73 and acting upon transmission of torque between the primary pulley 2 and the secondary pulley 3 by simulation or the like. It has been found that the ball Ba having the maximum is not the ball Ba on the line segment Ln connecting the rotation axis X1 of the primary pulley 2 and the rotation axis X2 of the secondary pulley 3.
This is because the pulley shaft 210 of the primary pulley 2 and the pulley shaft 310 of the secondary pulley 3 are engaged with other gears of the automatic transmission, so that the pulley shaft 210 and the pulley shaft 310 are connected to the pulley shaft 210. This is because not only the stress from the belt 4 wound around the pulley shaft 310 (stress in the direction of narrowing the distance between the pulley shaft 210 and the pulley shaft 310) but also the stress acting on the meshing portion of the gear.

そして、(1)荷重が最大となるボールBaの回転軸X2周りの角度位置は、常に同じとなること、(2)作用する荷重が最も大きいボールBaを基準(中心)として、所定の角度範囲θの部位の支持部62の径方向の厚みW2を、他の部位621の基準となる厚みW1よりも厚肉で形成して厚肉部622とすることで、プーリ軸310の回転軸X2に対する傾きを抑えられる剛性強度を、支持部62に持たせることができること、を本願発明者は見いだした。   (1) The angular position around the rotation axis X2 of the ball Ba where the load is maximum is always the same, and (2) a predetermined angular range with the ball Ba having the largest acting load as a reference (center). The thickness W2 in the radial direction of the support portion 62 at the portion θ is formed to be thicker than the reference thickness W1 of the other portion 621 to be the thick portion 622, so that the pulley shaft 310 can rotate relative to the rotation axis X2. The inventor of the present application has found that the support portion 62 can be provided with a rigidity strength capable of suppressing the inclination.

ここで、図5に示すように、回転軸X2周りの周方向に40°間隔でボールBaが設けられた場合について、トルクの伝達時に各ボールBaに作用する荷重(Ball Road)を算出したところ、荷重が最大となるボールBa1と、このボールBa1に隣接するボールBa2、Ba9に作用する荷重が、他のボールBa3〜Ba8に比べて顕著に大きくなること見いだした。
そのため、実施の形態では、支持部62において、荷重が最大となるボールBa1と、このボールBa1に隣接するボールBa2、Ba9が少なくとも含まれる角度範囲の部分が厚肉部622となるように、荷重が最大となるボールBa1の回転軸X2周りの角度位置を基準(中心)とした120°の範囲(θ=120°)を厚肉部622としている。
Here, as shown in FIG. 5, when the balls Ba are provided at intervals of 40 ° in the circumferential direction around the rotation axis X2, the load (Ball Load) acting on each ball Ba when torque is transmitted is calculated. It was found that the load acting on the ball Ba1 having the maximum load and the balls Ba2 and Ba9 adjacent to the ball Ba1 is significantly larger than those of the other balls Ba3 to Ba8.
Therefore, in the embodiment, in the support portion 62, the load is such that the portion of the angular range including at least the ball Ba1 having the maximum load and the balls Ba2 and Ba9 adjacent to the ball Ba1 is the thick portion 622. The thick portion 622 has a range of 120 ° (θ = 120 °) with the angular position around the rotation axis X2 of the ball Ba1 having the maximum as the reference (center).

さらに、図2の(b)に示すように、実施の形態では、支持部62の剛性強度をより高めるために、サイドカバー6の壁部60に、支持部62と同方向に突出するリブ65を設けている。
このリブ65は、支持部62における作用する荷重が最大となる部位(ボールBa1を支持する部位)の外周から、回転軸X2の径方向に直線状に延出して設けられている。
Further, as shown in FIG. 2B, in the embodiment, in order to further increase the rigidity strength of the support portion 62, ribs 65 protruding in the same direction as the support portion 62 are formed on the wall portion 60 of the side cover 6. Is provided.
The rib 65 is provided so as to extend linearly in the radial direction of the rotation axis X2 from the outer periphery of the portion (the portion supporting the ball Ba1) where the load acting on the support portion 62 is maximum.

ここで、サイドカバー6の壁部60では、リブ65の延長線Lm上の所定範囲の領域(図中、符号Aで囲んだ領域)を、支持部62の突出方向と同じ方向に窪ませて形成した膨出部66が設けられている。
この膨出部66は、壁部60の変速機ケース5側の面60a(図3の(c)参照)から、支持部62の突出方向と同方向に膨出しており、リブ65は、支持部62の外周から膨出部66に及ぶ長さL1で形成されて、支持部62と膨出部66とを接続している。
Here, in the wall portion 60 of the side cover 6, a region in a predetermined range on the extension line Lm of the rib 65 (region surrounded by the symbol A in the figure) is recessed in the same direction as the protruding direction of the support portion 62. The formed bulging part 66 is provided.
The bulging portion 66 bulges from the surface 60a of the wall portion 60 on the transmission case 5 side (see FIG. 3C) in the same direction as the protruding direction of the support portion 62, and the rib 65 is supported by The support portion 62 and the bulging portion 66 are connected to each other with a length L1 extending from the outer periphery of the portion 62 to the bulging portion 66.

膨出部66は、支持部62の突出方向で壁部60から最も離れた位置に配置される頂部661と、頂部661の周縁を囲む周壁部662、663、664と、から構成されており、サイドカバー6の壁部60では、膨出部66の裏側に、支持部62の突出方向と同じ方向に窪んだ空間Sが形成されている。   The bulging portion 66 includes a top portion 661 disposed at a position farthest from the wall portion 60 in the protruding direction of the support portion 62, and peripheral wall portions 662, 663, 664 surrounding the periphery of the top portion 661. In the wall portion 60 of the side cover 6, a space S that is recessed in the same direction as the protruding direction of the support portion 62 is formed on the back side of the bulging portion 66.

頂部661は、支持部62の外周から延びるリブ65の延長線Lm上に位置しており、この頂部661の支持部62側に位置する周壁部662は、支持部62に向かうにつれて壁部60からの突出高さhが低くなる向きで傾斜している(図3の(c)参照)。
周壁部662の外周662aには、支持部62から延びるリブ65が接続されており、このリブ65の上端辺65aは、壁部60側に窪んだ弧状を成している。
リブ65の先端と周壁部662との接続点Pの壁部60からの高さhaは、頂部661の壁部60(面60a)からの高さhよりも若干低くなっており、プライマリプーリ2とセカンダリプーリ3との間でのトルクの伝達時に、支持部62からリブ65に作用した応力が、周壁部662側から膨出部66に入力されるようになっている。
The top portion 661 is located on the extension line Lm of the rib 65 extending from the outer periphery of the support portion 62, and the peripheral wall portion 662 located on the support portion 62 side of the top portion 661 extends from the wall portion 60 toward the support portion 62. It is inclined in the direction in which the protrusion height h of the lower (see FIG. 3C).
A rib 65 extending from the support portion 62 is connected to the outer periphery 662a of the peripheral wall portion 662, and the upper end side 65a of the rib 65 has an arc shape recessed toward the wall portion 60 side.
The height ha from the wall 60 of the connection point P between the tip of the rib 65 and the peripheral wall 662 is slightly lower than the height h from the wall 60 (surface 60a) of the top 661, and the primary pulley 2 When torque is transmitted between the secondary pulley 3 and the secondary pulley 3, stress acting on the rib 65 from the support portion 62 is input to the bulging portion 66 from the peripheral wall portion 662 side.

周壁部663、664は、リブ65の延長線Lmを挟んだ一方側(支持部61側)と他方側(支持部61とは反対側)に位置している(図2の(b)参照)。
周壁部663は、支持部61に近づくにつれて壁部60の面60aに近づく方向に緩やかに傾斜しており、周壁部664は、壁部60の面60aに略直交する角度で設けられている(図3の(b)参照)。
The peripheral wall portions 663 and 664 are located on one side (the support portion 61 side) and the other side (the opposite side to the support portion 61) across the extension line Lm of the rib 65 (see FIG. 2B). .
The peripheral wall portion 663 is gently inclined in a direction approaching the surface 60a of the wall portion 60 as it approaches the support portion 61, and the peripheral wall portion 664 is provided at an angle substantially orthogonal to the surface 60a of the wall portion 60 ( (See (b) of FIG. 3).

図4に示すように、周壁部663と周壁部664は、空間Sを挟んでほぼ並行に位置しており、これら周壁部663、664のリブ65側が、周壁部663を介してリブ65に接続されている。   As shown in FIG. 4, the peripheral wall portion 663 and the peripheral wall portion 664 are positioned substantially in parallel with the space S therebetween, and the rib 65 side of these peripheral wall portions 663 and 664 is connected to the rib 65 via the peripheral wall portion 663. Has been.

そのため、プライマリプーリ2とセカンダリプーリ3との間でのトルクの伝達時に、支持部62を介してリブ65に作用する応力は、膨出部66の周壁部663、664に分散して伝達されるようになっている(図4、黒矢印参照)。
さらに、これら周壁部662、663、664は、前記した頂部661の外周に沿って設けられているので、支持部62を介してリブ65に作用する応力は、頂部661にも分散して伝達されるようになっている。
そのため、プライマリプーリ2とセカンダリプーリ3との間でのトルクの伝達時に、リブ65に支持部62側から作用する応力が膨出部66の部分で吸収されるので、リブ65による支持部62の支持強度が確保されて、支持部62の変形を好適に抑制できるようになっている。
For this reason, when torque is transmitted between the primary pulley 2 and the secondary pulley 3, stress acting on the rib 65 via the support portion 62 is distributed and transmitted to the peripheral wall portions 663 and 664 of the bulging portion 66. (See black arrow in FIG. 4).
Further, since these peripheral wall portions 662, 663, 664 are provided along the outer periphery of the top portion 661, the stress acting on the rib 65 via the support portion 62 is also distributed and transmitted to the top portion 661. It has become so.
Therefore, when torque is transmitted between the primary pulley 2 and the secondary pulley 3, stress acting on the rib 65 from the support portion 62 side is absorbed by the bulging portion 66. The support strength is ensured, and the deformation of the support portion 62 can be suitably suppressed.

さらに、周壁部663と周壁部664のリブ65とは反対側は、油路67aを囲む円筒状のボス部67と油路68aを囲む円筒状のボス部68にそれぞれ接続されており、膨出部66全体の剛性強度が高められている。
そのため、支持部61の剛性強度が、膨出部66と、この膨出部66と支持部61とを接続するリブ65により高められる結果、プーリ軸310を回転軸X2に対して傾けることなく支持するのに必要な剛性強度を、支持部61において確保できる。
Furthermore, the opposite side of the peripheral wall portion 663 and the rib 65 of the peripheral wall portion 664 is connected to a cylindrical boss portion 67 surrounding the oil passage 67a and a cylindrical boss portion 68 surrounding the oil passage 68a, respectively, The rigidity strength of the entire portion 66 is increased.
Therefore, the rigidity strength of the support portion 61 is enhanced by the bulging portion 66 and the rib 65 connecting the bulging portion 66 and the supporting portion 61. As a result, the pulley shaft 310 is supported without being inclined with respect to the rotation axis X2. The supporting portion 61 can ensure the rigidity and strength necessary for this.

以上の通り、実施の形態では、
(1)動力伝達時に回転するプーリ軸310(回転軸)を、サイドカバー6(ケース)の壁部60から突出形成された円筒状の支持部62の内周62aで、ベアリング73を介して回転可能に支持させたサイドカバー6におけるプーリ軸310の支持構造において、
プーリ軸310の回転軸X2方向から見た支持部62の径方向の厚みであって、動力伝達時にプーリ軸310からベアリング73を介して作用する荷重が最大となる部位を基準(中心)とした所定の角度範囲θの厚みを、所定の角度範囲外の部位621の厚みよりも厚くして、支持部62の一部に厚肉部622を設けた構成とした。
As described above, in the embodiment,
(1) A pulley shaft 310 (rotating shaft) that rotates during power transmission is rotated via a bearing 73 on an inner periphery 62a of a cylindrical support portion 62 that is formed to protrude from a wall portion 60 of the side cover 6 (case). In the support structure of the pulley shaft 310 in the side cover 6 that is supported in a possible manner,
The thickness of the support portion 62 in the radial direction as viewed from the direction of the rotation axis X2 of the pulley shaft 310, and the portion where the load acting from the pulley shaft 310 via the bearing 73 during power transmission is maximum is used as a reference (center). The thickness of the predetermined angle range θ is made thicker than the thickness of the portion 621 outside the predetermined angle range, and the thick portion 622 is provided in a part of the support portion 62.

支持部62では、動力伝達時にプーリ軸310から作用する荷重の方向は変わらないので、上記のように構成して、支持部62における荷重が最大となる部位を基準とした所定の角度範囲θの部分を厚肉部622として剛性強度を高めるだけで、支持部62の径方向の厚みを厚くする部分を必要最小限に抑えてケースの質量増加を避けつつ、動力伝達時にプーリ軸310から作用する荷重に耐えうる剛性強度を支持部62に持たせることができる。   In the support portion 62, the direction of the load acting from the pulley shaft 310 during power transmission does not change. Therefore, the support portion 62 is configured as described above and has a predetermined angle range θ with respect to a portion where the load in the support portion 62 is maximum. By simply increasing the rigidity and strength of the portion as the thick portion 622, the portion that increases the radial thickness of the support portion 62 is suppressed to the minimum necessary to avoid an increase in the mass of the case, and acts from the pulley shaft 310 during power transmission. The support portion 62 can be provided with a rigidity strength capable of withstanding the load.

(2)支持部62における動力伝達時にプーリ軸310から作用する荷重が最大となる部位である厚肉部622の外周から、支持部62の突出方向と同方向に壁部60から突出するリブ65を、回転軸X2の径方向に延出して形成し、
壁部60におけるリブ65の延長線Lm上の所定範囲を、支持部62の突出方向と同方向に窪ませて、リブ65の延長線Lm上に、支持部62の突出方向と同方向に膨出する膨出部66を形成し、
リブ65を支持部62の厚肉部622の外周から膨出部66まで及ぶ長さL1で設けて、リブ65の先端を膨出部66に接続した構成とした。
(2) A rib 65 protruding from the wall 60 in the same direction as the protruding direction of the supporting portion 62 from the outer periphery of the thick portion 622, which is a portion where the load acting from the pulley shaft 310 is maximized when the power is transmitted in the supporting portion 62. And extending in the radial direction of the rotation axis X2,
A predetermined range on the extension line Lm of the rib 65 in the wall part 60 is recessed in the same direction as the protruding direction of the support part 62, and is expanded on the extension line Lm of the rib 65 in the same direction as the protruding direction of the support part 62. Forming a bulging portion 66 to protrude;
The rib 65 is provided with a length L1 extending from the outer periphery of the thick portion 622 of the support portion 62 to the bulging portion 66, and the tip of the rib 65 is connected to the bulging portion 66.

このように構成すると、壁部60に設けたリブ65により、動力伝達時にプーリ軸310から作用する荷重が最大となる部位である厚肉部622の外周が支持されるので、支持部62の剛性強度がより向上すると共に、リブ65の外径側が膨出部66に支持されるので、リブ65による支持部62の支持強度も向上する。
さらに、膨出部66が、壁部60におけるリブ65の延長線Lm上の所定範囲を、支持部62の突出方向と同方向に窪ませて形成されており、膨出部66の裏側に空間Sが形成されて、膨出部66が中実に形成されていないので、支持部62の支持強度を向上させつつ、サイドカバー6の重量増加を防ぐことができる。これにより、ベルト式無段変速機1を搭載した車両の燃費の向上が期待される。
According to this configuration, the rib 65 provided on the wall portion 60 supports the outer periphery of the thick portion 622 that is the portion where the load acting from the pulley shaft 310 is maximized during power transmission. The strength is further improved, and the outer diameter side of the rib 65 is supported by the bulging portion 66, so that the support strength of the support portion 62 by the rib 65 is also improved.
Further, the bulging portion 66 is formed by recessing a predetermined range on the extension line Lm of the rib 65 in the wall portion 60 in the same direction as the protruding direction of the support portion 62, and a space is provided behind the bulging portion 66. Since S is formed and the bulging portion 66 is not formed solid, the weight of the side cover 6 can be prevented from increasing while improving the support strength of the support portion 62. Thereby, the improvement of the fuel consumption of the vehicle carrying the belt type continuously variable transmission 1 is expected.

(3)膨出部66は、リブ65の延長線Lm上に位置すると共に、壁部60の面60aから支持部62の突出方向に所定高さh離れた位置に配置される頂部661と、頂部661の周縁を囲む周壁部662、663、664と、を有して中空の箱状に形成されており、リブ65の先端を、これら周壁部662、663、664のうち、支持部62側に位置する周壁部662に接続した構成とした。 (3) The bulging portion 66 is located on the extension line Lm of the rib 65, and a top portion 661 that is disposed at a predetermined height h away from the surface 60a of the wall portion 60 in the protruding direction of the support portion 62; The peripheral wall portions 662, 663, and 664 surrounding the periphery of the top portion 661 are formed in a hollow box shape, and the tip of the rib 65 is connected to the support portion 62 side of the peripheral wall portions 662, 663, and 664. It was set as the structure connected to the surrounding wall part 662 located in this.

このように構成すると、プライマリプーリ2とセカンダリプーリ3との間でのトルクの伝達時に、リブ65の外径側が周壁部662に支持されるので、リブ65による支持部62の支持強度も向上する。
また、リブ65に作用する応力が、中空の箱状を成す膨出部66の部分で吸収されるので、膨出部66でのリブ65の支持強度が向上するので、このリブ65により支持されている支持部62のリブによる支持強度が向上する結果、支持部62の剛性強度を高めることができる。
If comprised in this way, since the outer-diameter side of the rib 65 is supported by the surrounding wall part 662 at the time of transmission of the torque between the primary pulley 2 and the secondary pulley 3, the support strength of the support part 62 by the rib 65 will also improve. .
Further, since the stress acting on the rib 65 is absorbed by the bulging portion 66 having a hollow box shape, the support strength of the rib 65 at the bulging portion 66 is improved, so that the rib 65 is supported. As a result of improving the supporting strength by the ribs of the supporting portion 62, the rigidity strength of the supporting portion 62 can be increased.

(4)頂部661の周縁を囲む周壁部は、リブ65の延長線Lmを挟んで一方側と他方側に位置する周壁部663(第1周壁部)および周壁部664(第2周壁部)と、周壁部663と周壁部664の支持部62側を接続すると共にリブ65が接続された周壁部662(第3周壁部)と、を有している構成とした。 (4) The peripheral wall portion surrounding the periphery of the top portion 661 includes a peripheral wall portion 663 (first peripheral wall portion) and a peripheral wall portion 664 (second peripheral wall portion) located on one side and the other side across the extension line Lm of the rib 65. The peripheral wall portion 663 is connected to the support portion 62 side of the peripheral wall portion 664 and has a peripheral wall portion 662 (third peripheral wall portion) to which the rib 65 is connected.

このように構成すると、プライマリプーリ2とセカンダリプーリ3との間でのトルクの伝達時に、支持部62を介してリブ65に作用する応力は、膨出部66の頂部661と、周壁部662と、周壁部663と、周壁部664とに分散して伝達されるので、リブ65に作用する応力が、膨出部66の部分で吸収されて、リブ65を介して入力される応力で膨出部66が変形することがない。これにより、膨出部66でのリブ65の支持強度が一層向上する結果、リブ65による支持部62の支持強度が一層向上して、支持部62の剛性強度を一層高めることができる。   With this configuration, when torque is transmitted between the primary pulley 2 and the secondary pulley 3, stress acting on the rib 65 via the support portion 62 causes the top portion 661 of the bulging portion 66, the peripheral wall portion 662, and the like. , The stress acting on the rib 65 is absorbed by the portion of the bulging portion 66 and bulges by the stress input through the rib 65. The portion 66 is not deformed. As a result, the support strength of the rib 65 at the bulging portion 66 is further improved. As a result, the support strength of the support portion 62 by the rib 65 is further improved, and the rigidity strength of the support portion 62 can be further increased.

(5)周壁部663と周壁部664の支持部62とは反対側は、油路67a、68aを囲む円筒状のボス部67、68(壁部)に接続されている構成とした。 (5) The opposite side of the peripheral wall portion 663 and the support portion 62 of the peripheral wall portion 664 is connected to cylindrical boss portions 67 and 68 (wall portions) surrounding the oil passages 67a and 68a.

このように構成すると、油路67a、68aを囲むボス部67、68の剛性強度が高いので、この剛性強度の高いボス部67、68で、膨出部66の周壁部663、664が支持される結果、膨出部66全体の剛性強度をより高めることができる。
これにより、リブ65による支持部62の支持強度をより向上する結果、支持部62の剛性強度を一層高めることができる。
With this configuration, since the boss portions 67 and 68 surrounding the oil passages 67a and 68a have high rigidity, the peripheral wall portions 663 and 664 of the bulging portion 66 are supported by the boss portions 67 and 68 having high rigidity and strength. As a result, the rigidity strength of the entire bulging portion 66 can be further increased.
Thereby, as a result of further improving the support strength of the support portion 62 by the rib 65, the rigidity strength of the support portion 62 can be further increased.

(6)サイドカバー6は、プライマリプーリ2のプーリ軸210を支持する支持部61(第1の支持部)と、セカンダリプーリ3のプーリ軸310を支持する支持部62(第2の支持部)と、を有しており、
リブ65は、支持部62の外周から当該支持部62で支持されたプーリ軸310の径方向に延出して設けられていると共に、リブ65の延出方向は、支持部61で支持されたプーリ軸210の回転軸X1(回転中心)と支持部62で支持されたプーリ軸310の回転軸(回転中心)とを結ぶ線分Lnに対して、所定角度傾斜した方向である構成とした。
(6) The side cover 6 includes a support portion 61 (first support portion) that supports the pulley shaft 210 of the primary pulley 2 and a support portion 62 (second support portion) that supports the pulley shaft 310 of the secondary pulley 3. And
The rib 65 extends from the outer periphery of the support portion 62 in the radial direction of the pulley shaft 310 supported by the support portion 62, and the extension direction of the rib 65 is the pulley supported by the support portion 61. The direction is inclined by a predetermined angle with respect to a line segment Ln connecting the rotation axis X1 (rotation center) of the shaft 210 and the rotation axis (rotation center) of the pulley shaft 310 supported by the support portion 62.

プライマリプーリ2とセカンダリプーリ3との間でのトルクの伝達時に、プーリ軸310から作用する荷重が最大となる部位の回転軸X2から見た方向は、プライマリプーリ2の回転軸X1とセカンダリプーリ3の回転軸X2とを結ぶ線分Ln上から外れるので、上記のように構成することで、荷重が最大となる部位の剛性強度を確保して、トルクの伝達時にプーリ軸310が傾くことを好適に防止できる。
特に、支持部62の径方向の厚みを全周に亘って厚くする必要がないので、ケースの質量増加を避けつつ、プーリ軸を支持する支持部の剛性強度を高めることができる。
When torque is transmitted between the primary pulley 2 and the secondary pulley 3, the direction viewed from the rotation axis X2 of the portion where the load acting from the pulley shaft 310 is maximum is the rotation axis X1 of the primary pulley 2 and the secondary pulley 3 Since it deviates from the line segment Ln connecting to the rotation axis X2, it is preferable that the configuration as described above ensures the rigidity and strength of the portion where the load is maximized, and the pulley shaft 310 is inclined during torque transmission. Can be prevented.
In particular, since it is not necessary to increase the radial thickness of the support portion 62 over the entire circumference, the rigidity strength of the support portion that supports the pulley shaft can be increased while avoiding an increase in the mass of the case.

前記した実施の形態では、セカンダリプーリ3のプーリ軸310を支持する支持部62にリブ65を設けた場合を例示したが、プライマリプーリ2のプーリ軸210を支持する支持部61にもリブを設けても良い。   In the above-described embodiment, the case where the rib 65 is provided on the support portion 62 that supports the pulley shaft 310 of the secondary pulley 3 is illustrated, but the support portion 61 that supports the pulley shaft 210 of the primary pulley 2 is also provided with a rib. May be.

1 ベルト式無段変速機
2 プライマリプーリ
3 セカンダリプーリ
4 ベルト
5 変速機ケース
6 サイドカバー
21、31 固定円錐板
22、32 可動円錐板
60 壁部
60a 面
61 支持部
62 支持部
62a 内周
63 軸部
64 軸部
65 リブ
66 膨出部
67 ボス部
67a 油路
68 ボス部
68a 油路
71〜74 ベアリング
210 プーリ軸
310 プーリ軸
601 周壁部
622 厚肉部
661 頂部
662、663、664 周壁部
Ba(Ba1〜Ba9) ボール
Ln 線分
Lm 延長線
P 接続点
S 空間
X1、X2 回転軸
DESCRIPTION OF SYMBOLS 1 Belt type continuously variable transmission 2 Primary pulley 3 Secondary pulley 4 Belt 5 Transmission case 6 Side cover 21, 31 Fixed conical plate 22, 32 Movable conical plate 60 Wall part 60a Surface 61 Support part 62 Support part 62a Inner circumference 63 Axis Part 64 shaft part 65 rib 66 bulging part 67 boss part 67a oil path 68 boss part 68a oil path 71 to 74 bearing 210 pulley shaft 310 pulley shaft 601 peripheral wall part 622 thick part 661 top part 662, 663, 664 peripheral wall part Ba ( Ba1-Ba9) Ball Ln Line segment Lm Extension line P Connection point S Space X1, X2 Rotating shaft

Claims (6)

動力伝達時に回転する回転軸を、ケースの壁部から突出形成された円筒状の支持部の内周で支持させたベルト式無段変速機における回転軸の支持構造において、
前記回転軸の軸方向から見た前記支持部の径方向の厚みであって、動力伝達時に前記回転軸から作用する荷重が最大となる部位を基準とした所定の角度範囲の厚みを、前記所定の角度範囲外の厚みよりも厚くしたことを特徴とするベルト式無段変速機における回転軸の支持構造。
In the support structure of the rotating shaft in the belt-type continuously variable transmission in which the rotating shaft that rotates at the time of power transmission is supported by the inner periphery of a cylindrical support portion that is formed to protrude from the wall portion of the case.
The thickness of the support portion in the radial direction as viewed from the axial direction of the rotating shaft, and the thickness within a predetermined angle range based on a portion where the load acting from the rotating shaft is maximum during power transmission. A support structure for a rotating shaft in a belt-type continuously variable transmission, characterized in that the thickness is greater than the thickness outside the angular range.
前記支持部における前記動力伝達時に前記回転軸から作用する荷重が最大となる部位の外周から、前記支持部の突出方向と同方向に前記壁部から突出するリブを、前記径方向に延出して形成し、
前記壁部における前記リブの延長線上の所定範囲を、前記支持部の突出方向と同方向に窪ませて、前記リブの延長線上に前記支持部の突出方向と同方向に膨出する膨出部を形成し、
前記リブの先端を、前記膨出部に接続したことを特徴とする請求項1に記載のベルト式無段変速機における回転軸の支持構造。
A rib projecting from the wall portion in the same direction as the projecting direction of the support portion is extended in the radial direction from the outer periphery of the portion where the load acting on the rotating shaft at the time of power transmission in the support portion is maximum. Forming,
A bulging portion that dents a predetermined range on the extension line of the rib in the wall portion in the same direction as the protrusion direction of the support portion and bulges on the extension line of the rib in the same direction as the protrusion direction of the support portion. Form the
The support structure of the rotating shaft in the belt-type continuously variable transmission according to claim 1, wherein a tip end of the rib is connected to the bulging portion.
前記膨出部は、
前記リブの延長線上に位置する頂部と、
当該頂部の周縁を囲む周壁部と、を有しており、
前記リブの先端を、前記周壁部における前記支持部側の面に接続したことを特徴とする請求項2に記載のベルト式無段変速機における回転軸の支持構造。
The bulging portion is
A top located on an extension of the rib;
A peripheral wall surrounding the periphery of the top,
The support structure of the rotating shaft in the belt-type continuously variable transmission according to claim 2, wherein a tip end of the rib is connected to a surface of the peripheral wall portion on the support portion side.
前記周壁部は、前記リブの延長線を挟んで一方側と他方側に位置する第1周壁部および第2周壁部と、前記第1周壁部と前記第2周壁部の前記支持部側を接続すると共に前記リブが接続された第3周壁部と、を有していることを特徴とする請求項3に記載のベルト式無段変速機における回転軸の支持構造。   The peripheral wall portion connects the first peripheral wall portion and the second peripheral wall portion located on one side and the other side across the extension line of the rib, and the support portion side of the first peripheral wall portion and the second peripheral wall portion. And a third peripheral wall portion to which the rib is connected. The support structure for the rotating shaft in the belt-type continuously variable transmission according to claim 3. 前記第1周壁部と前記第2周壁部の前記支持部とは反対側は、油孔を囲む壁部に接続されていることを特徴とする請求項4に記載のベルト式無段変速機における回転軸の支持構造。   The belt-type continuously variable transmission according to claim 4, wherein opposite sides of the first peripheral wall portion and the second peripheral wall portion to the support portion are connected to a wall portion surrounding an oil hole. Support structure for rotating shaft. 前記ケースは、
プライマリプーリのプーリ軸を支持する第1の支持部と、
セカンダリプーリのプーリ軸を支持する第2の支持部と、を有しており、
前記リブは、前記第2の支持部の外周から当該第2の支持部で支持されたプーリ軸の径方向に延出して設けられていると共に、
前記リブの延出方向は、
前記第1の支持部で支持されたプーリ軸の回転中心と前記第2の支持部で支持されたプーリ軸の回転中心とを結ぶ線分に対して、所定角度傾斜した方向であることを特徴とする請求項2から請求項5の何れか一項に記載のベルト式無段変速機における回転軸の支持構造。
The case is
A first support that supports the pulley shaft of the primary pulley;
A second support portion that supports the pulley shaft of the secondary pulley,
The rib is provided to extend from the outer periphery of the second support portion in the radial direction of the pulley shaft supported by the second support portion, and
The extending direction of the rib is
A direction inclined by a predetermined angle with respect to a line segment connecting the rotation center of the pulley shaft supported by the first support portion and the rotation center of the pulley shaft supported by the second support portion. The support structure of the rotating shaft in the belt-type continuously variable transmission according to any one of claims 2 to 5.
JP2015003753A 2015-01-12 2015-01-12 Support structure of rotating shaft in belt type continuously variable transmission Active JP6399934B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015003753A JP6399934B2 (en) 2015-01-12 2015-01-12 Support structure of rotating shaft in belt type continuously variable transmission
KR1020150180658A KR101851438B1 (en) 2015-01-12 2015-12-17 Supporting structure of rotational axis for belt type continuously variable transmission
CN201610011792.1A CN105782406B (en) 2015-01-12 2016-01-08 The supporting construction of the rotary shaft of variable v-belt drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015003753A JP6399934B2 (en) 2015-01-12 2015-01-12 Support structure of rotating shaft in belt type continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2016130523A true JP2016130523A (en) 2016-07-21
JP6399934B2 JP6399934B2 (en) 2018-10-03

Family

ID=56402217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015003753A Active JP6399934B2 (en) 2015-01-12 2015-01-12 Support structure of rotating shaft in belt type continuously variable transmission

Country Status (3)

Country Link
JP (1) JP6399934B2 (en)
KR (1) KR101851438B1 (en)
CN (1) CN105782406B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111566385A (en) * 2018-01-20 2020-08-21 加特可株式会社 Continuously variable transmission

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2912978T3 (en) 2019-03-04 2022-05-30 Ims Gear Se & Co Kgaa spur gear

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004360881A (en) * 2003-06-09 2004-12-24 Daihatsu Motor Co Ltd Cooling structure for continuously variable transmission
JP2008154381A (en) * 2006-12-19 2008-07-03 Denso Corp Alternator for vehicles

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005249162A (en) * 2004-03-08 2005-09-15 Toyota Motor Corp Belt type continuously variable transmission
JP4663312B2 (en) 2004-12-27 2011-04-06 ダイハツ工業株式会社 Assembly method for continuously variable transmission
JP2007303655A (en) * 2006-05-15 2007-11-22 Toyota Motor Corp Belt type continuously variable transmission
JP2009068693A (en) 2007-08-20 2009-04-02 Yamaha Motor Co Ltd Engine unit and straddle-type vehicle
JP5274198B2 (en) * 2008-10-20 2013-08-28 アイシン・エィ・ダブリュ株式会社 Belt type continuously variable transmission
JP5738827B2 (en) * 2011-12-01 2015-06-24 ジヤトコ株式会社 Transmission case
JP2013217473A (en) 2012-04-11 2013-10-24 Yamaha Motor Co Ltd Gear box, and saddle-type vehicle including the same
CN203532697U (en) * 2013-10-30 2014-04-09 丰田自动车株式会社 Vehicle power driving device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004360881A (en) * 2003-06-09 2004-12-24 Daihatsu Motor Co Ltd Cooling structure for continuously variable transmission
JP2008154381A (en) * 2006-12-19 2008-07-03 Denso Corp Alternator for vehicles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111566385A (en) * 2018-01-20 2020-08-21 加特可株式会社 Continuously variable transmission
CN111566385B (en) * 2018-01-20 2022-12-27 加特可株式会社 Continuously variable transmission

Also Published As

Publication number Publication date
KR101851438B1 (en) 2018-04-23
CN105782406A (en) 2016-07-20
JP6399934B2 (en) 2018-10-03
KR20160086743A (en) 2016-07-20
CN105782406B (en) 2018-06-08

Similar Documents

Publication Publication Date Title
JP5590098B2 (en) Continuously variable transmission
JP5950649B2 (en) Wave gear device
JPWO2013175533A1 (en) Wave generator of wave gear device
JP6333999B2 (en) Speed change mechanism
EP3284969A1 (en) Vibration-damping device
JP6399934B2 (en) Support structure of rotating shaft in belt type continuously variable transmission
JP6471737B2 (en) Torsional vibration reduction device
JP6262375B2 (en) Speed change mechanism
JP6758795B2 (en) Strain wave gearing
JP7087075B2 (en) Hollow wave gearing device
JP5949790B2 (en) Torsional vibration reduction device
JP6186840B2 (en) Tripod type constant velocity joint
EP3133318B1 (en) Toroidal continuously variable transmission
JP6575847B2 (en) Planetary roller type power transmission device
JP2019086069A (en) Torsional vibration reduction device
CN104662326A (en) Torsional vibration damper
JP6798467B2 (en) Pendulum type torsional vibration reduction device
WO2020084990A1 (en) Housing member for power transmission device
JP2022015467A (en) Gear device
KR102320751B1 (en) Constant joint assembly
JP6602628B2 (en) Torque fluctuation reduction device
JP2020159397A (en) Dynamic damper
JP2019044847A (en) Drive plate
JP2017048895A (en) Torsional vibration reduction device
JP2012127457A (en) Continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180904

R150 Certificate of patent or registration of utility model

Ref document number: 6399934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150