JP2016130197A - Spiral waveform cylinder, hydrogen generation apparatus comprising the same, and producing method thereof - Google Patents

Spiral waveform cylinder, hydrogen generation apparatus comprising the same, and producing method thereof Download PDF

Info

Publication number
JP2016130197A
JP2016130197A JP2015004690A JP2015004690A JP2016130197A JP 2016130197 A JP2016130197 A JP 2016130197A JP 2015004690 A JP2015004690 A JP 2015004690A JP 2015004690 A JP2015004690 A JP 2015004690A JP 2016130197 A JP2016130197 A JP 2016130197A
Authority
JP
Japan
Prior art keywords
cylinder
spiral
close contact
brought
spiral corrugated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015004690A
Other languages
Japanese (ja)
Inventor
友紀 三田
Tomonori Mita
友紀 三田
憲有 武田
Kenyu Takeda
憲有 武田
吉田 豊
Yutaka Yoshida
豊 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2015004690A priority Critical patent/JP2016130197A/en
Publication of JP2016130197A publication Critical patent/JP2016130197A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen generation apparatus in which cut-off and destruction hardly occur at an attachment part of a flow path of an evaporator.SOLUTION: There is provided a spiral waveform cylinder 1 for an evaporator of a hydrogen generation apparatus, in which sidewall is machined so that the sidewall forms spiral uneven part directing to axis direction, which comprises second projecting part 4 deformed so as to project in periphery direction at peak part of a projecting part 2, surface pressure of attachment part is increased by squashing at least a part of the second projecting part 4 when the spiral waveform cylinder is attached to an inner peripheral surface of an outer syringe, and stress on the spiral waveform cylinder 1 may be distributed.SELECTED DRAWING: Figure 1

Description

本発明は、都市ガスやLPG等の炭化水素系の原料ガスを改質し、水素リッチな改質ガスを製造し、燃料電池発電装置用等の燃料ガスの製造に用いられる水素生成装置と、その水素生成装置の蒸発部に用いられる螺旋波形筒、及びその製造方法に関する。   The present invention reforms a hydrocarbon-based raw material gas such as city gas or LPG, produces a hydrogen-rich reformed gas, and a hydrogen generator used for producing a fuel gas for a fuel cell power generator, etc. The present invention relates to a spiral corrugated cylinder used in an evaporation section of the hydrogen generator and a manufacturing method thereof.

従来、燃料電池システムにおいて、都市ガスやLPG等の原料ガスと水蒸気から水蒸気改質反応により水素を生成し、発電スタックに供給する改質ガスとする水素生成装置が知られている。水蒸気改質反応に用いる水蒸気は、蒸発器によって改質水を蒸発させることで生成される。   2. Description of the Related Art Conventionally, in a fuel cell system, there is known a hydrogen generator that generates hydrogen from a raw material gas such as city gas or LPG and steam by a steam reforming reaction and uses the reformed gas to be supplied to a power generation stack. The steam used for the steam reforming reaction is generated by evaporating the reformed water using an evaporator.

この蒸発器として、円筒状の筒を組み合わせて螺旋形状の流路を構成することで、効率的に改質水を蒸発させることができる蒸発器が知られている。図10は従来の蒸発器の要部構成を示す縦断面図である。   As this evaporator, an evaporator that can efficiently evaporate the reforming water by combining a cylindrical tube to form a spiral flow path is known. FIG. 10 is a longitudinal cross-sectional view showing a main configuration of a conventional evaporator.

図10に示すように、従来の蒸発器120は、内側螺旋波形管121とその外周を覆うように円筒体122が配設される。内側螺旋波形管121は、軸方向に向かって螺旋状をなす凹凸が形成されている。その結果、内側螺旋波形管121と円筒体122の間隙には流通路120aが形成される。また、内側螺旋波形管121の内周側に間隙を空けて案内筒113が配設される。   As shown in FIG. 10, in the conventional evaporator 120, a cylindrical body 122 is disposed so as to cover the inner spiral corrugated tube 121 and its outer periphery. The inner spiral corrugated tube 121 is formed with irregularities that spiral in the axial direction. As a result, a flow passage 120 a is formed in the gap between the inner spiral corrugated tube 121 and the cylindrical body 122. A guide tube 113 is disposed on the inner peripheral side of the inner spiral corrugated tube 121 with a gap.

流通路120aには原料ガス101と改質水102が供給される。また、内側螺旋波形管121と案内筒113との間隙には、バーナから燃焼排ガス106が供給される。   The raw material gas 101 and the reformed water 102 are supplied to the flow passage 120a. Further, the combustion exhaust gas 106 is supplied from the burner to the gap between the inner spiral corrugated tube 121 and the guide tube 113.

改質水102は、らせん状の流通路120aを周回しながら燃焼排ガス106と熱交換して加熱され、水蒸気102aとなる。また原料ガス101も同様に加熱され、水蒸気102aと混合される。その結果、高温に加熱された原料ガス101と水蒸気102aの混合ガスが蒸発器120から排出される。   The reformed water 102 is heated by exchanging heat with the combustion exhaust gas 106 while circling around the spiral flow passage 120a to become steam 102a. Similarly, the source gas 101 is heated and mixed with the water vapor 102a. As a result, the mixed gas of the source gas 101 and the water vapor 102a heated to a high temperature is discharged from the evaporator 120.

その後、混合ガスは改質部に送られ、改質触媒の働きにより、水蒸気改質反応により水素を生成する。このとき、混合ガスがより混合され、より加熱されていることで反応の効率が高くなる。   Thereafter, the mixed gas is sent to the reforming section, and hydrogen is generated by a steam reforming reaction by the action of the reforming catalyst. At this time, the efficiency of the reaction increases because the mixed gas is further mixed and heated.

このように、従来の蒸発器120は、内側螺旋波形管121を介して加熱ガスと液体とが面接触するようになるので、簡単な構造でありながらも、効率よく加熱することができる。   As described above, the conventional evaporator 120 comes into surface contact with the heated gas and the liquid via the inner spiral corrugated tube 121, so that it can be efficiently heated while having a simple structure.

特開2007−139404号公報JP 2007-139404 A

しかしながら、従来の技術では、内側螺旋波形管121と円筒体122の密着部に隙間が生じて、螺旋状の流通路120aを改質水102がショートカットしてしまう恐れがあった。   However, according to the conventional technique, there is a possibility that a gap is formed in the close contact portion between the inner spiral corrugated tube 121 and the cylindrical body 122, and the reforming water 102 may short-cut the spiral flow passage 120a.

内側螺旋波形管121と円筒体122を密着させる方法として、予め加熱して熱膨張させた円筒体122に内側螺旋波形管121を挿入し、円筒体122が熱収縮することで密着させる、焼き嵌めの手段等が用いられる。   As a method of bringing the inner spiral corrugated tube 121 and the cylindrical body 122 into close contact, the inner spiral corrugated tube 121 is inserted into the cylindrical body 122 that has been heated and thermally expanded in advance, and the cylindrical body 122 is brought into close contact by thermal shrinkage. These means are used.

この場合、内側螺旋波形管121の螺旋状をなす凹凸における、凸部123の頂点に対し、熱収縮した円筒体122の内周面が密着し、密着部に面圧を発生させている。   In this case, the inner peripheral surface of the thermally contracted cylindrical body 122 is in close contact with the apex of the convex portion 123 in the spiral unevenness of the inner spiral corrugated tube 121, and a surface pressure is generated in the close contact portion.

密着部の面圧が低い場合には、改質水102のショートカットが発生する恐れがある。例えば、起動時や運転停止時に内側螺旋波形管121と円筒体122に温度差が生じ、円筒体122の方が大きく熱膨張して面圧が低下することがある。   When the surface pressure of the close contact portion is low, there is a possibility that a shortcut of the reforming water 102 occurs. For example, a temperature difference may be generated between the inner spiral corrugated tube 121 and the cylindrical body 122 at the time of start-up or operation stop, and the cylindrical body 122 may be more thermally expanded to lower the surface pressure.

このような場合、初期の面圧が低い場合には隙間が生じる恐れがある。また、高圧で原料ガス101を流入させ、改質水102が急速に蒸発した場合、流通路120aにおける気体の内圧が高くなり、密着が崩れて隙間が生じる恐れがある。改質水102がショートカットすると、蒸発が完了しないまま改質部に送られ、改質触媒を濡らして劣化させ、性能を低下させる。   In such a case, a gap may occur when the initial surface pressure is low. In addition, when the raw material gas 101 is introduced at a high pressure and the reforming water 102 rapidly evaporates, the internal pressure of the gas in the flow passage 120a becomes high, and there is a possibility that a close contact is lost and a gap is generated. When the reforming water 102 is short-cut, it is sent to the reforming section without completing evaporation, and the reforming catalyst is wetted and deteriorated, thereby reducing the performance.

また、蒸発部に発熱触媒(例えば変成触媒、CO除去触媒)を隣接して配置して、熱交換により冷却をさせている場合、改質水102のショートカットにより冷却が不十分になり、発熱触媒の温度が上昇し続ける熱暴走が発生する恐れがある。このように、改質水102のショートカットは水素生成装置の性能を低下させる。   In addition, when an exothermic catalyst (for example, a shift catalyst, a CO removal catalyst) is disposed adjacent to the evaporation section and cooled by heat exchange, the cooling becomes insufficient due to the shortcut of the reforming water 102, and the exothermic catalyst. There is a risk that thermal runaway will occur when the temperature of the battery continues to rise. Thus, the shortcut of the reforming water 102 reduces the performance of the hydrogen generator.

特許文献1における、焼き嵌め以外の密着方法においても、同様の課題が生じる。一方で、密着部の面圧を高める場合には、別の課題が生じる。図11は従来の蒸発器の変形例における要部構成を示す縦断面図である。   The same problem occurs in the contact method other than shrink fitting in Patent Document 1. On the other hand, another problem arises when increasing the surface pressure of the close contact portion. FIG. 11 is a longitudinal cross-sectional view showing a main part configuration in a modification of the conventional evaporator.

蒸発器130は内側螺旋波形管131と円筒体122で構成されている。密着部の面圧を高める手段として、内側螺旋波形管131において、凸部133のR(曲率半径)を小さくし、凸部133の剛性を高めている。   The evaporator 130 includes an inner spiral corrugated tube 131 and a cylindrical body 122. As means for increasing the surface pressure of the close contact portion, in the inner spiral corrugated tube 131, the R (curvature radius) of the convex portion 133 is reduced, and the rigidity of the convex portion 133 is increased.

しかしながら、凸部133の剛性を高めた結果、荷重が分散されずに凸部の根元135に高い応力が発生する。凸部133の剛性が高いため、円筒体122を密着させたときに内側螺旋波形管131にかかる荷重によっても、凸部133はほとんど変形しない。   However, as a result of increasing the rigidity of the convex portion 133, a high stress is generated at the root 135 of the convex portion without the load being dispersed. Since the convex portion 133 has high rigidity, the convex portion 133 is hardly deformed even by a load applied to the inner spiral corrugated tube 131 when the cylindrical body 122 is brought into close contact therewith.

その結果、荷重は、ほぼそのまま凹部134に伝わり、凹部134がたわむことで荷重が分散される。特に凸部の根元135には分散されない荷重によって、高いせん断応力が発生する。せん断応力が繰り返し付加されると、その部分は破壊しやすくなる。   As a result, the load is transmitted almost as it is to the recess 134, and the load is dispersed by the deflection of the recess 134. In particular, a high shear stress is generated by a load that is not dispersed at the root 135 of the convex portion. When shear stress is repeatedly applied, the portion is easily broken.

この状態で起動と運転停止を繰り返すと、内側螺旋波形管131に破壊が生じる恐れがある。内側螺旋波形管131に破壊が生じると水素生成装置の運転が継続できなくなる。   If starting and stopping are repeated in this state, the inner spiral corrugated tube 131 may be broken. When the inner spiral corrugated tube 131 is broken, the operation of the hydrogen generator cannot be continued.

図10の凸部123においては、比較的R(曲率半径)が大きいため、凸部123全体がたわむことができ、荷重が分散される。その結果、凸部123の根元に応力が集中しにくい。一方で、図11の凸部133においては、比較的R(曲率半径)が小さいため、荷重が分散されず、凸部の根元135に応力が集中してしまう。   In the convex part 123 of FIG. 10, since R (radius of curvature) is comparatively large, the convex part 123 whole can bend, and a load is disperse | distributed. As a result, it is difficult for stress to concentrate on the base of the convex portion 123. On the other hand, in the convex part 133 of FIG. 11, since R (radius of curvature) is comparatively small, a load is not disperse | distributed but stress will concentrate on the root 135 of a convex part.

このように、従来の技術では、密着部の面圧を高くしてショートカットを防止する構成をとった場合、水素生成装置の蒸発器に破壊が生じる恐れがあるという問題があった。   As described above, the conventional technology has a problem that the evaporator of the hydrogen generator may be broken when the configuration is adopted in which the contact pressure is increased to prevent the shortcut.

そこで、本発明は、上記従来の課題を解決するもので、流路の密着部において面圧を高
く保ち、ショートカットを発生させず、かつ、破壊が生じにくい蒸発器を提供することの出来る螺旋波形筒と、それを備える水素生成装置、及びその製造方法を提供することを目的としている。
Accordingly, the present invention solves the above-described conventional problems, and maintains a high surface pressure at the close contact portion of the flow path, does not generate a shortcut, and can provide an evaporator that is unlikely to break down. It aims at providing a pipe | tube, the hydrogen production | generation apparatus provided with the same, and its manufacturing method.

上記従来の課題を解決するために、第1の発明の水素生成装置の蒸発器用の螺旋波形筒は、側壁が軸方向に向かって螺旋状の凹凸を持ち、凸部の頂点部分に、外周方向に突出するように変形させた第2凸部を備えることを特徴とする。   In order to solve the above-mentioned conventional problems, the spiral corrugated tube for the evaporator of the hydrogen generator of the first invention is such that the side wall has spiral irregularities in the axial direction, and the apex portion of the convex portion has an outer circumferential direction. It is characterized by comprising a second convex part which is deformed so as to protrude.

この螺旋波形筒を用いることで、螺旋状の流路にショートカットが生じにくく、かつ破壊が生じにくい蒸発器を提供することができる。   By using this spiral corrugated tube, it is possible to provide an evaporator in which shortcuts are unlikely to occur in the spiral flow path and are not easily broken.

また、上記従来の課題を解決するために、第2の発明の水素生成装置の蒸発器用の螺旋波形筒は、側壁が軸方向に向かって螺旋状の凹凸を持ち、凹部の頂点部分に、内周方向に突出するように変形させた第2凹部を備えることを特徴とする。   In order to solve the above-described conventional problem, the spiral corrugated cylinder for an evaporator of the hydrogen generator of the second invention has a spiral corrugated side wall in the axial direction, A second concave portion deformed so as to protrude in the circumferential direction is provided.

この螺旋波形筒を用いることで、螺旋状の流路にショートカットが生じにくく、かつ破壊が生じにくい蒸発器を提供することができる。   By using this spiral corrugated tube, it is possible to provide an evaporator in which shortcuts are unlikely to occur in the spiral flow path and are not easily broken.

また、上記従来の課題を解決するために、第3の発明の水素生成装置は、外筒と、側壁が軸方向に向かって螺旋状の凹凸を形成するように加工され、凹凸の凸部を外筒の内周面に密着させて、外筒との間に水を蒸発させる螺旋状の流路を形成する螺旋波形筒と、を備え、螺旋波形筒の内周側に加熱部が設けられ、原料ガスと水から改質反応により水素を生成する水素生成装置であって、凸部の頂点部分に、外周方向に突出するように変形させた第2凸部を備え、螺旋波形筒を外筒の内周面に密着させた時に、第2凸部の少なくとも一部が押し潰されることを特徴とする。   In order to solve the above-described conventional problem, the hydrogen generator of the third invention is processed so that the outer cylinder and the side wall form spiral irregularities in the axial direction. A spiral corrugated tube that is in close contact with the inner peripheral surface of the outer tube and forms a spiral flow path for evaporating water between the outer tube and a heating unit is provided on the inner peripheral side of the spiral corrugated tube A hydrogen generator for generating hydrogen from a raw material gas and water by a reforming reaction, comprising a second convex portion deformed so as to protrude in the outer peripheral direction at the apex portion of the convex portion, and an outer spiral corrugated tube At least a part of the second convex portion is crushed when brought into close contact with the inner peripheral surface of the cylinder.

これによって、蒸発器において密着部の面圧が高いことで螺旋状の流路にショートカットが生じにくく、かつ、応力が分散されることで破壊が生じにくい。また、螺旋状の流路とその内周に配置された加熱部との熱交換効率を高くすることができる水素生成装置を提供することができる。   Thereby, in the evaporator, the surface pressure of the close contact portion is high, so that a shortcut is not easily generated in the spiral flow path, and the stress is dispersed, and thus the breakdown is not easily generated. In addition, it is possible to provide a hydrogen generator that can increase the heat exchange efficiency between the spiral flow path and the heating unit disposed on the inner periphery thereof.

また、上記従来の課題を解決するために、第4の発明の水素生成装置は、内筒と、側壁が軸方向に向かって螺旋状の凹凸を形成するように加工され、凹凸の凹部を内筒の外周面に密着させて、内筒との間に水を蒸発させる螺旋状の流路を形成する螺旋波形筒と、を備え、内筒の内周側に加熱部が設けられ、原料ガスと水から改質反応により水素を生成する水素生成装置であって、凹部の頂点部分に、内周方向に突出するように変形させた第2凹部を備え、螺旋波形筒を内筒の外周面に密着させた時に、第2凹部の少なくとも一部が押し潰されることを特徴とする。   In order to solve the above-described conventional problems, the hydrogen generator of the fourth invention is processed so that the inner cylinder and the side wall form spiral irregularities in the axial direction. A spiral corrugated cylinder that is in close contact with the outer peripheral surface of the cylinder and forms a spiral flow path for evaporating water between the inner cylinder and a heating unit provided on the inner circumference side of the inner cylinder, Generation device for generating hydrogen by reforming reaction from water and water, comprising a second concave portion deformed so as to protrude in the inner circumferential direction at the apex portion of the concave portion, and forming the spiral corrugated cylinder on the outer peripheral surface of the inner cylinder It is characterized in that at least a part of the second recess is crushed when it is brought into close contact with.

これによって、蒸発器において密着部の面圧が高いことで螺旋状の流路にショートカットが生じにくく、かつ、応力が分散されることで破壊が生じにくい水素生成装置を提供することができる。   Accordingly, it is possible to provide a hydrogen generator that is unlikely to cause a shortcut in the spiral flow path due to the high surface pressure of the close contact portion in the evaporator, and is less likely to break due to the stress being dispersed.

また、上記従来の課題を解決するために、第5の発明の水素生成装置の製造方法は、外筒と、側壁が軸方向に向かって螺旋状の凹凸を形成するように加工され、凹凸の凸部を外筒の内周面に密着させて、外筒との間に水を蒸発させる螺旋状の流路を形成する螺旋波形筒と、を備え、螺旋波形筒の内周側に加熱部が設けられ、原料ガスと水から改質反応により水素を生成する水素生成装置の製造方法であって、筒体の側壁を変形させて、軸方向に向かって螺旋状の凹凸を形成すると共に凸部の頂点部分に、外周方向に突出するように変
形させた第2凸部を設ける筒作成工程と、筒作成工程で得られた螺旋波形筒を外筒の内周面に密着させて、第2凸部の少なくとも一部を押し潰す密着工程と、を有する。
In addition, in order to solve the above-described conventional problems, the method for manufacturing a hydrogen generator according to the fifth aspect of the present invention is processed so that the outer cylinder and the side wall form spiral irregularities in the axial direction. A spiral corrugated cylinder that forms a spiral flow path for causing water to evaporate between the outer cylinder and the convex portion in close contact with the inner circumferential surface of the outer cylinder, and a heating unit on the inner circumferential side of the spiral corrugated cylinder And a method of manufacturing a hydrogen generator that generates hydrogen from a raw material gas and water by a reforming reaction, and deforms the side wall of the cylindrical body to form a spiral unevenness in the axial direction and A tube forming step in which a second convex portion deformed so as to protrude in the outer peripheral direction is provided at the apex portion of the portion, and the spiral corrugated tube obtained in the tube forming step is brought into close contact with the inner peripheral surface of the outer tube, An adhesion step of crushing at least a part of the two convex portions.

これによって水素生成装置を簡便に製造することができ、その蒸発器において密着部の面圧が高いことで螺旋状の流路にショートカットが生じにくく、かつ、応力が分散されることで破壊が生じにくい。また、螺旋状の流路とその内周に配置された加熱部との熱交換効率を高くすることができる水素生成装置の製造方法を提供することができる。   As a result, the hydrogen generator can be easily manufactured. In the evaporator, the surface pressure of the close contact portion is high, so that a shortcut is not easily generated in the spiral flow path, and the stress is dispersed to cause a breakdown. Hateful. Moreover, the manufacturing method of the hydrogen generator which can make high the heat exchange efficiency of a helical flow path and the heating part arrange | positioned in the inner periphery can be provided.

また、上記従来の課題を解決するために、第6の発明の水素生成装置の製造方法は、内筒と、側壁が軸方向に向かって螺旋状の凹凸を形成するように加工され、凹凸の凹部を内筒の外周面に密着させて、内筒との間に水を蒸発させる螺旋状の流路を形成する螺旋波形筒と、を備え、内筒の内周側に加熱部が設けられ、原料ガスと水から改質反応により水素を生成する水素生成装置の製造方法であって、筒体の側壁を変形させて、軸方向に向かって螺旋状の凹凸を形成すると共に凹部の頂点部分に、内周方向に突出するように変形させた第2凹部を設ける筒作成工程と、筒作成工程で得られた螺旋波形筒を内筒の外周面に密着させて、第2凹部の少なくとも一部を押し潰す密着工程と、を有する。   In order to solve the above-described conventional problems, the method for manufacturing a hydrogen generator according to the sixth aspect of the invention is processed so that the inner cylinder and the side wall form spiral irregularities in the axial direction. A spiral corrugated cylinder that forms a spiral flow path that causes water to evaporate between the inner cylinder and a concave portion that is in close contact with the outer circumferential surface of the inner cylinder, and a heating unit is provided on the inner circumference side of the inner cylinder A method of manufacturing a hydrogen generator that generates hydrogen from a raw material gas and water by a reforming reaction, wherein the side wall of the cylinder is deformed to form spiral irregularities in the axial direction and the apex portion of the depressions A cylinder forming step for providing a second recess deformed so as to protrude in the inner peripheral direction, and a spiral corrugated tube obtained in the cylinder generating step is brought into close contact with the outer peripheral surface of the inner cylinder so that at least one of the second recesses is provided. And an adhesion process for crushing the part.

これによって水素生成装置を簡便に製造することができ、その蒸発器において密着部の面圧が高いことで螺旋状の流路にショートカットが生じにくく、かつ、応力が分散されることで破壊が生じにくい水素生成装置の製造方法を提供することができる。   As a result, the hydrogen generator can be easily manufactured. In the evaporator, the surface pressure of the close contact portion is high, so that a shortcut is not easily generated in the spiral flow path, and the stress is dispersed to cause a breakdown. It is possible to provide a method for manufacturing a difficult hydrogen generator.

本発明の螺旋波形筒とそれを備える水素生成装置、及びその製造方法によれば、蒸発器の流路の密着部において面圧を高く保ち、ショートカットが生じにくく、かつ、破壊が生じにくい蒸発器と、水素生成装置を提供することができる。   According to the spiral corrugated cylinder of the present invention, a hydrogen generator including the same, and a manufacturing method thereof, an evaporator that maintains a high surface pressure in a close contact portion of the flow path of the evaporator, is less likely to cause a shortcut, and is less likely to break And a hydrogen generator can be provided.

さらに、凹凸の凸部を外筒の内周面に密着させて、外筒との間に水を蒸発させる螺旋状の流路を形成する螺旋波形筒を用いた蒸発器において、螺旋状の流路の内周に加熱部が配置された場合に、螺旋状の流路と加熱部との熱交換効率を高くすることができる。   Further, in an evaporator using a spiral corrugated cylinder that forms a spiral flow path for evaporating water between the concave and convex portions closely contacting the inner peripheral surface of the outer cylinder, the spiral flow When the heating unit is disposed on the inner periphery of the path, the heat exchange efficiency between the spiral channel and the heating unit can be increased.

本発明の実施の形態1に係る螺旋波形筒の構成を示す縦断面図The longitudinal cross-sectional view which shows the structure of the spiral waveform cylinder which concerns on Embodiment 1 of this invention 本発明の実施の形態2に係る水素生成装置の概略構成図Schematic configuration diagram of a hydrogen generator according to Embodiment 2 of the present invention 本発明の実施の形態3に係る蒸発器の焼き嵌めによる組立を示す工程図Process drawing which shows the assembly by shrink fitting of the evaporator which concerns on Embodiment 3 of this invention 本発明の実施の形態4に係る蒸発器の冷やし嵌めによる組立を示す工程図Process drawing which shows the assembly by the cold fitting of the evaporator which concerns on Embodiment 4 of this invention 本発明の実施の形態5に係る蒸発器の拡径による組立を示す工程図Process drawing which shows the assembly by diameter expansion of the evaporator which concerns on Embodiment 5 of this invention 本発明の実施の形態6に係る蒸発器の縮径による組立を示す工程図Process drawing which shows the assembly by the diameter reduction of the evaporator which concerns on Embodiment 6 of this invention 本発明の実施の形態7に係る蒸発器の圧入による組立を示す工程図Process drawing which shows the assembly by press injection of the evaporator which concerns on Embodiment 7 of this invention 本発明の実施の形態8に係る螺旋波形筒の構成を示す縦断面図A longitudinal sectional view showing a configuration of a spiral corrugated cylinder according to an eighth embodiment of the present invention. 本発明の実施の形態9に係る水素生成装置の概略構成図Schematic configuration diagram of a hydrogen generator according to Embodiment 9 of the present invention 従来の蒸発器の要部構成を示す縦断面図Longitudinal sectional view showing the main configuration of a conventional evaporator 従来の蒸発器の変形例における要部構成を示す縦断面図Longitudinal sectional view showing the main configuration of a modification of the conventional evaporator

第1の発明は、側壁が軸方向に向かって螺旋状の凹凸を形成するように加工され、凹凸の凸部を外筒の内周面に密着させて、外筒との間に水を蒸発させる螺旋状の流路を形成する螺旋波形筒であって、凸部の頂点部分に、外周方向に突出するように変形させた第2凸部を備え、螺旋波形筒を外筒の内周面に密着させた時に、第2凸部の少なくとも一部が押し潰されることを特徴とする、水素生成装置の蒸発器用の螺旋波形筒である。   1st invention is processed so that a side wall may form a spiral unevenness | corrugation toward an axial direction, an uneven | corrugated convex part is closely_contact | adhered to the inner peripheral surface of an outer cylinder, and water is evaporated between outer cylinders A spiral corrugated tube that forms a spiral flow path, and includes a second convex portion that is deformed so as to protrude in an outer peripheral direction at the apex portion of the convex portion, and the spiral corrugated tube is an inner peripheral surface of the outer cylinder A spiral corrugated tube for an evaporator of a hydrogen generator, wherein at least a part of the second convex portion is crushed when brought into close contact with.

この螺旋波形筒を用いた蒸発器は、密着部の面圧が高いことで螺旋状の流路にショートカットが生じにくく、かつ、応力が分散されることで破壊が生じにくい。また、螺旋状の流路の内周に加熱部が配置された場合に、螺旋状の流路と加熱部との熱交換効率を高くすることができる。   In the evaporator using the spiral corrugated tube, the surface pressure of the close contact portion is high, so that the shortcut is not easily generated in the spiral flow path, and the stress is dispersed and the breakdown is not easily generated. Moreover, when a heating part is arrange | positioned at the inner periphery of a helical flow path, the heat exchange efficiency of a helical flow path and a heating part can be made high.

第2の発明は、側壁が軸方向に向かって螺旋状の凹凸を形成するように加工され、凹凸の凹部を内筒の外周面に密着させて、内筒との間に水を蒸発させる螺旋状の流路を形成する螺旋波形筒であって、凹部の頂点部分に、内周方向に突出するように変形させた第2凹部を備え、螺旋波形筒を内筒の外周面に密着させた時に、第2凹部の少なくとも一部が押し潰されることを特徴とする、水素生成装置の蒸発器用の螺旋波形筒である。   2nd invention is processed so that a side wall may form a spiral unevenness in the direction of an axis, and a spiral which makes a concave and convex part stick to the outer peripheral surface of an inner cylinder, and evaporates water between it and an inner cylinder A spiral corrugated tube that forms a channel and has a second recess deformed so as to protrude in the inner circumferential direction at the apex of the recess, and the spiral corrugated tube is brought into close contact with the outer peripheral surface of the inner tube A helical corrugated tube for an evaporator of a hydrogen generator, characterized in that at least part of the second recess is sometimes crushed.

この螺旋波形筒を用いた蒸発器は、密着部の面圧が高いことで螺旋状の流路にショートカットが生じにくく、かつ、応力が分散されることで破壊が生じにくい。   In the evaporator using the spiral corrugated tube, the surface pressure of the close contact portion is high, so that the shortcut is not easily generated in the spiral flow path, and the stress is dispersed and the breakdown is not easily generated.

第3の発明は、外筒と、側壁が軸方向に向かって螺旋状の凹凸を形成するように加工され、凹凸の凸部を外筒の内周面に密着させて、外筒との間に水を蒸発させる螺旋状の流路を形成する螺旋波形筒と、を備え、螺旋波形筒の内周側に加熱部が設けられ、原料ガスと水から改質反応により水素を生成する水素生成装置であって、凸部の頂点部分に、外周方向に突出するように変形させた第2凸部を備え、螺旋波形筒を外筒の内周面に密着させた時に、第2凸部の少なくとも一部が押し潰されることを特徴とする水素生成装置である。   According to a third aspect of the present invention, the outer cylinder and the side wall are processed so as to form spiral irregularities in the axial direction, and the irregularities are brought into close contact with the inner peripheral surface of the outer cylinder so as to be between the outer cylinder and the outer cylinder. A spiral corrugated tube that forms a spiral flow path for evaporating water, and a heating unit is provided on the inner peripheral side of the spiral corrugated tube to generate hydrogen from the source gas and water by a reforming reaction The device includes a second convex portion that is deformed so as to protrude in the outer peripheral direction at the apex portion of the convex portion, and when the spiral corrugated tube is brought into close contact with the inner peripheral surface of the outer cylinder, the second convex portion At least a part of the hydrogen generator is crushed.

これによって、蒸発器において密着部の面圧が高いことで螺旋状の流路にショートカットが生じにくく、かつ、応力が分散されることで破壊が生じにくい。また、螺旋状の流路とその内周に配置された加熱部との熱交換効率を高くすることができる。   Thereby, in the evaporator, the surface pressure of the close contact portion is high, so that a shortcut is not easily generated in the spiral flow path, and the stress is dispersed, and thus the breakdown is not easily generated. In addition, the heat exchange efficiency between the spiral flow path and the heating unit disposed on the inner periphery thereof can be increased.

第4の発明は、内筒と、側壁が軸方向に向かって螺旋状の凹凸を形成するように加工され、凹凸の凹部を内筒の外周面に密着させて、内筒との間に水を蒸発させる螺旋状の流路を形成する螺旋波形筒と、を備え、内筒の内周側に加熱部が設けられ、原料ガスと水から改質反応により水素を生成する水素生成装置であって、凹部の頂点部分に、内周方向に突出するように変形させた第2凹部を備え、螺旋波形筒を内筒の外周面に密着させた時に、第2凹部の少なくとも一部が押し潰されることを特徴とする水素生成装置である。   According to a fourth aspect of the present invention, the inner cylinder and the side wall are processed so as to form spiral irregularities in the axial direction, the concave and convex depressions are brought into close contact with the outer peripheral surface of the inner cylinder, and water is provided between the inner cylinder and the inner cylinder. And a helical corrugated cylinder that forms a spiral flow path for evaporating a gas, and a heating unit is provided on the inner peripheral side of the inner cylinder, and generates hydrogen from a raw material gas and water by a reforming reaction. The second concave portion deformed so as to protrude in the inner peripheral direction is provided at the apex portion of the concave portion, and at least a part of the second concave portion is crushed when the spiral corrugated tube is brought into close contact with the outer peripheral surface of the inner cylinder. This is a hydrogen generator.

これによって、蒸発器において密着部の面圧が高いことで螺旋状の流路にショートカットが生じにくく、かつ、応力が分散されることで破壊が生じにくい。   Thereby, in the evaporator, the surface pressure of the close contact portion is high, so that a shortcut is not easily generated in the spiral flow path, and the stress is dispersed, and thus the breakdown is not easily generated.

第5の発明は、外筒と、側壁が軸方向に向かって螺旋状の凹凸を形成するように加工され、凹凸の凸部を外筒の内周面に密着させて、外筒との間に水を蒸発させる螺旋状の流路を形成する螺旋波形筒と、を備え、螺旋波形筒の内周側に加熱部が設けられ、原料ガスと水から改質反応により水素を生成する水素生成装置の製造方法であって、筒体の側壁を変形させて、軸方向に向かって螺旋状の凹凸を形成すると共に凸部の頂点部分に、外周方向に突出するように変形させた第2凸部を設ける筒作成工程と、筒作成工程で得られた螺旋波形筒を外筒の内周面に密着させて、第2凸部の少なくとも一部を押し潰す密着工程と、を有する水素生成装置の製造方法である。   According to a fifth aspect of the present invention, the outer cylinder and the side wall are processed so as to form spiral irregularities in the axial direction. A spiral corrugated tube that forms a spiral flow path for evaporating water, and a heating unit is provided on the inner peripheral side of the spiral corrugated tube to generate hydrogen from the source gas and water by a reforming reaction A method of manufacturing an apparatus, wherein the side wall of the cylindrical body is deformed to form a spiral concavo-convex shape in the axial direction, and the second protrusion is deformed so as to protrude in the outer peripheral direction at the apex portion of the protrusion. A hydrogen generation apparatus comprising: a cylinder creating step for providing a portion; and an adhesion process in which the spiral corrugated cylinder obtained in the cylinder creating step is brought into close contact with the inner peripheral surface of the outer cylinder to crush at least a part of the second convex portion It is a manufacturing method.

これによって水素生成装置を簡便に製造することができ、その蒸発器において密着部の面圧が高いことで螺旋状の流路にショートカットが生じにくく、かつ、応力が分散されることで破壊が生じにくい。また、螺旋状の流路とその内周に配置された加熱部との熱交換効率を高くすることができる。   As a result, the hydrogen generator can be easily manufactured. In the evaporator, the surface pressure of the close contact portion is high, so that a shortcut is not easily generated in the spiral flow path, and the stress is dispersed to cause a breakdown. Hateful. In addition, the heat exchange efficiency between the spiral flow path and the heating unit disposed on the inner periphery thereof can be increased.

第6の発明は、内筒と、側壁が軸方向に向かって螺旋状の凹凸を形成するように加工さ
れ、凹凸の凹部を内筒の外周面に密着させて、内筒との間に水を蒸発させる螺旋状の流路を形成する螺旋波形筒と、を備え、内筒の内周側に加熱部が設けられ、原料ガスと水から改質反応により水素を生成する水素生成装置の製造方法であって、筒体の側壁を変形させて、軸方向に向かって螺旋状の凹凸を形成すると共に凹部の頂点部分に、内周方向に突出するように変形させた第2凹部を設ける筒作成工程と、筒作成工程で得られた螺旋波形筒を内筒の外周面に密着させて、第2凹部の少なくとも一部を押し潰す密着工程と、を有する水素生成装置の製造方法である。
According to a sixth aspect of the present invention, the inner cylinder and the side wall are processed so as to form spiral irregularities in the axial direction, the concave and convex depressions are brought into close contact with the outer peripheral surface of the inner cylinder, and water is provided between the inner cylinder and the inner cylinder. A helical corrugated cylinder that forms a spiral flow path that evaporates water, a heating unit is provided on the inner peripheral side of the inner cylinder, and a hydrogen generator that generates hydrogen from a raw material gas and water by a reforming reaction is manufactured. A cylinder in which a side wall of a cylindrical body is deformed to form a spiral concavo-convex shape in an axial direction and a second concave portion is formed at the apex portion of the concave portion so as to protrude in an inner circumferential direction. It is a manufacturing method of the hydrogen generator which has a creation process and a contact process which crushes at least a part of the 2nd crevice, making the spiral corrugated cylinder obtained at the cylinder creation process stick to the outer peripheral surface of an inner cylinder.

これによって水素生成装置を簡便に製造することができ、その蒸発器において密着部の面圧が高いことで螺旋状の流路にショートカットが生じにくく、かつ、応力が分散されることで破壊が生じにくい。   As a result, the hydrogen generator can be easily manufactured. In the evaporator, the surface pressure of the close contact portion is high, so that a shortcut is not easily generated in the spiral flow path, and the stress is dispersed to cause a breakdown. Hateful.

第7の発明は、特に、第5または第6の発明の水素生成装置の製造方法において、密着工程で2つの筒を密着させる時に、同軸状に配置された2つの筒のうち外側に位置する筒を焼き嵌めするのである。   The seventh aspect of the invention is particularly located outside the two cylinders arranged coaxially when the two cylinders are brought into close contact with each other in the contact step in the method for producing a hydrogen generator of the fifth or sixth aspect of the invention. The tube is shrink-fitted.

これによって、全体で熱収縮するため、密着部全体に渡って均一に密着している水素生成装置を簡便に製造することが出来る。   As a result, since the heat shrinks as a whole, it is possible to easily manufacture a hydrogen generator that is in close contact uniformly over the entire contact portion.

第8の発明は、特に、第5または第6の発明の水素生成装置の製造方法において、密着工程で2つの筒を密着させる時に、同軸状に配置された2つの筒のうち内側に位置する筒を冷やし嵌めするのである。   In the eighth aspect of the invention, in particular, in the method for manufacturing the hydrogen generator of the fifth or sixth aspect, when the two cylinders are brought into close contact with each other in the contact step, they are located on the inner side of the two cylinders arranged coaxially. The tube is cooled and fitted.

これによって、全体で熱膨張するため、密着部全体に渡って均一に密着し、かつ熱劣化を生じさせずに水素生成装置を簡便に製造することが出来る。   As a result, since the thermal expansion occurs as a whole, it is possible to easily manufacture the hydrogen generator without causing thermal deterioration due to uniform contact over the entire contact portion.

第9の発明は、特に、第5または第6の発明の水素生成装置の製造方法において、密着工程で2つの筒を密着させる時に、同軸状に配置された2つの筒のうち内側に位置する筒の内側に内圧を付与するのである。   In the ninth aspect of the invention, in particular, in the method of manufacturing the hydrogen generator of the fifth or sixth aspect, when the two cylinders are brought into close contact with each other in the contact step, they are located on the inner side of the two cylinders arranged coaxially. Internal pressure is applied to the inside of the tube.

これによって、短時間で効率的に密着加工を行うことができ、水素生成装置を簡便に製造することが出来る。   As a result, it is possible to efficiently perform contact processing in a short time, and to easily manufacture a hydrogen generator.

第10の発明は、特に、第5または第6の発明の水素生成装置の製造方法において、密着工程で2つの筒を密着させる時に、同軸状に配置された2つの筒のうち外側に位置する筒の外側から外圧を付与するのである。   In a tenth aspect of the invention, in particular, in the method for manufacturing a hydrogen generator according to the fifth or sixth aspect, when two cylinders are brought into close contact with each other in the contact step, they are located outside of the two cylinders arranged coaxially. External pressure is applied from the outside of the tube.

これによって、軸方向に長尺であっても短時間で効率的に密着加工を行うことができ、水素生成装置を簡便に製造することが出来る。   Thereby, even if it is long in the axial direction, it is possible to efficiently perform contact processing in a short time, and it is possible to easily manufacture a hydrogen generator.

第11の発明は、特に、第5または第6の発明の水素生成装置の製造方法において、密着工程で2つの筒を密着させる時に、外側になる筒に内側になる筒を圧入するのである。   In the eleventh aspect of the invention, in particular, in the method of manufacturing the hydrogen generator of the fifth or sixth aspect, when two cylinders are brought into close contact in the contact step, the inner cylinder is press-fitted into the outer cylinder.

これによって、特殊な装置を用いず、水素生成装置を簡便に製造することが出来る。   As a result, a hydrogen generator can be easily manufactured without using a special apparatus.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1に係る螺旋波形筒1の構成を示す縦断面図である。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view showing a configuration of a spiral corrugated tube 1 according to Embodiment 1 of the present invention.

螺旋波形筒1は円筒状の側壁に、軸方向に向かって螺旋状の凹凸が形成されている。外周に突出している部分が凸部2、両側を凸部2に挟まれ、内周側に突出している部分が凹部3である。凸部2は、外向きのR形状を持っている。このR形状の頂点部分に、段差を設けることで、第2凸部4が形成されている。   The spiral corrugated tube 1 has spiral irregularities formed in the axial direction on a cylindrical side wall. The part protruding to the outer periphery is the convex part 2, the both sides are sandwiched by the convex part 2, and the part protruding to the inner peripheral side is the concave part 3. The convex part 2 has an outward R shape. The 2nd convex part 4 is formed by providing a level | step difference in the vertex part of this R shape.

螺旋波形筒1は熱伝導性と高温耐久性が求められるため、例えば、ステンレスの薄板で製作される。まず、ステンレスの薄板をロール加工して、接合部を溶接し、筒状部品を製作する。その後、バルジ加工やスピニング加工により螺旋状の凹凸を形成する。   Since the helical corrugated tube 1 is required to have thermal conductivity and high temperature durability, it is made of, for example, a stainless steel thin plate. First, a thin stainless steel plate is rolled, the joint is welded, and a cylindrical part is manufactured. Thereafter, spiral irregularities are formed by bulging or spinning.

凸部2と第2凸部4は一回の加工で同時に形成できる。また、予め凸部2を形成したものに、第2凸部4を形成してもよい。二回の加工とすることで工数は増加するが、第2凸部4の寸法精度を高くすることが出来る。   The convex part 2 and the 2nd convex part 4 can be formed simultaneously by one process. Moreover, you may form the 2nd convex part 4 in what formed the convex part 2 previously. Although the number of steps increases by performing the processing twice, the dimensional accuracy of the second convex portion 4 can be increased.

(実施の形態2)
図2は、本発明の実施の形態2に係る水素生成装置20の概略構成図である。
(Embodiment 2)
FIG. 2 is a schematic configuration diagram of the hydrogen generator 20 according to Embodiment 2 of the present invention.

水素生成装置20は、円筒状の複数の隔壁が同心円状に配置されて、多重円筒により流路と空間を形成することで構成される。   The hydrogen generator 20 is configured by a plurality of cylindrical partition walls arranged concentrically and forming flow paths and spaces by multiple cylinders.

多重円筒の中心部には加熱部13が配置される。加熱部13はバーナ14と加熱流路15を有する。バーナ14には燃料ガス55と空気56が供給されて、高温の燃焼排ガス57が生成される。燃料ガス55としては都市ガスやLPガス等の原料ガスや、発電スタックから戻ってきた水素を含むオフガス等が適宜用いられる。   A heating unit 13 is disposed at the center of the multiple cylinder. The heating unit 13 includes a burner 14 and a heating channel 15. Fuel gas 55 and air 56 are supplied to the burner 14 to generate high-temperature combustion exhaust gas 57. As the fuel gas 55, a source gas such as city gas or LP gas, an off-gas containing hydrogen returned from the power generation stack, or the like is appropriately used.

生成した燃焼排ガス57は下端で折り返し、加熱流路15で熱交換を行った後に水素生成装置20の外へ排出される。なお、加熱部13としては、バーナ以外の発熱体、例えばヒータ等を用いても良い。   The generated flue gas 57 is folded back at the lower end, and after heat exchange is performed in the heating flow path 15, it is discharged out of the hydrogen generator 20. As the heating unit 13, a heating element other than the burner, for example, a heater or the like may be used.

加熱部13の外周を囲むように、蒸発器10と改質部21が配置される。蒸発器10は螺旋波形筒1と、その外周を覆う外筒11とで構成される。螺旋波形筒1の螺旋状の凹凸と外筒11との間にできる空間が、流路10aである。流路10aは螺旋状の凹凸に沿って一本の長い流路となっている。   The evaporator 10 and the reforming unit 21 are arranged so as to surround the outer periphery of the heating unit 13. The evaporator 10 includes a spiral corrugated tube 1 and an outer tube 11 covering the outer periphery thereof. A space formed between the spiral irregularities of the spiral corrugated tube 1 and the outer tube 11 is a flow path 10a. The channel 10a is a single long channel along the spiral irregularities.

流路10aには原料ガス51と改質水52が流れ、螺旋波形筒1の内周側に配置された加熱部13との熱交換により改質水52を蒸発させ、水蒸気52aを生成する。   The raw material gas 51 and the reformed water 52 flow through the flow path 10a, and the reformed water 52 is evaporated by heat exchange with the heating unit 13 disposed on the inner peripheral side of the spiral corrugated tube 1 to generate water vapor 52a.

流路が長いことで、時間をかけて熱交換をすることができ、また、螺旋波形筒1が内周面に面しているため、加熱部13との熱交換面積が広いことで、高い蒸発性能を得ることができる。特に、重力方向の上から下へと改質水52を流す場合、流路10aが螺旋状であることで、流路の勾配がなだらかになり、改質水52の流速が遅くなり、より確実に蒸発させることができる。   Since the flow path is long, heat can be exchanged over time, and since the spiral corrugated tube 1 faces the inner peripheral surface, the heat exchange area with the heating unit 13 is wide, which is high. Evaporation performance can be obtained. In particular, when the reforming water 52 is made to flow from the top to the bottom in the direction of gravity, the flow path 10a is spiral, so that the gradient of the flow path becomes gentle and the flow rate of the reforming water 52 becomes slow, which is more reliable. Can be evaporated.

螺旋波形筒1と外筒11は密着部12で密着している。密着部12は図1の第2凸部4が外筒11の内周面によって押し潰されていることで形成されている。こうすることで、螺旋波形筒1の変形が密着部12付近に集中し、密着部12の面圧を高くすることができる。また、螺旋波形筒1の密着部12以外にかかる応力は図1の凸部2が大きなR形状をしていることで、凸部2全体に分散される。   The spiral corrugated tube 1 and the outer tube 11 are in close contact with each other at the contact portion 12. The close contact portion 12 is formed by the second convex portion 4 of FIG. 1 being crushed by the inner peripheral surface of the outer cylinder 11. By doing so, the deformation of the spiral corrugated tube 1 is concentrated in the vicinity of the close contact portion 12, and the surface pressure of the close contact portion 12 can be increased. Further, the stress applied to the portions other than the close contact portion 12 of the spiral corrugated tube 1 is distributed over the entire convex portion 2 because the convex portion 2 of FIG.

密着部12の面圧が高いことで、流路10aの内部に高圧の気体が流れた場合、例えば
原料ガス51や改質水52を大量に流し、改質水52が水蒸気52aとなって体積がさらに増加した場合に、密着部12の密着が崩れにくくすることができる。
When the high pressure gas flows into the flow path 10a due to the high surface pressure of the close contact portion 12, for example, a large amount of the raw material gas 51 and the reforming water 52 are flown, and the reforming water 52 becomes the water vapor 52a. Can further be prevented from collapsing when the contact portion 12 is further increased.

また、蒸発器10を用いた水素生成装置20の起動時や運転停止時に、螺旋波形筒1よりも外筒11が高温になり、一時的に温度差が大きくなった場合、熱膨張差によって、密着部12の面圧が低下する恐れがある。   Further, when the hydrogen generator 20 using the evaporator 10 is started or stopped, when the outer cylinder 11 becomes hotter than the spiral corrugated cylinder 1 and the temperature difference temporarily increases, There is a possibility that the surface pressure of the close contact portion 12 may decrease.

この場合にも、予め高い面圧を付加することで、熱膨張による変形に追従し、密着部12の密着が崩れにくくすることができる。その結果、常に密着部12の密着が保たれ、改質水52のショートカットが生じにくい蒸発器10を提供することができる。   Also in this case, by applying a high surface pressure in advance, it is possible to follow the deformation due to thermal expansion and make it difficult for the close contact portion 12 to collapse. As a result, it is possible to provide the evaporator 10 in which the close contact of the close contact portion 12 is always maintained, and the shortcut of the reforming water 52 hardly occurs.

また、螺旋波形筒1の応力が凸部2全体に分散されることで、長期間の運転と、起動停止の繰り返しを行った後でも、螺旋波形筒1に破壊が生じにくい蒸発器10を提供することができる。   In addition, since the stress of the spiral corrugated tube 1 is distributed over the entire convex portion 2, an evaporator 10 is provided in which the spiral corrugated tube 1 is less likely to be destroyed even after a long period of operation and repeated start and stop. can do.

こうして蒸発器10で生成した水蒸気52aと原料ガス51が混合されたガスは、改質部21に流入する。改質部21においては、環状の空間に改質触媒が充填されている。改質触媒としては、白金、ロジウム、ルテニウム、ニッケル等をアルミナ担体に坦持した触媒粒子等が用いられる。   The gas in which the water vapor 52 a generated in the evaporator 10 and the source gas 51 are mixed flows into the reforming unit 21. In the reforming unit 21, a reforming catalyst is filled in an annular space. As the reforming catalyst, catalyst particles in which platinum, rhodium, ruthenium, nickel or the like is supported on an alumina carrier are used.

改質触媒の働きにより、原料ガス51と水蒸気52aから水蒸気改質反応によって水素リッチな水素含有ガス53が生成される。この水蒸気改質反応は吸熱反応であり、改質部21が燃焼排ガス57と熱交換することで反応が促進される。水素含有ガス53にはCO(一酸化炭素)が含まれている。   Due to the action of the reforming catalyst, a hydrogen-rich hydrogen-containing gas 53 is generated from the raw material gas 51 and the steam 52a by a steam reforming reaction. This steam reforming reaction is an endothermic reaction, and the reaction is promoted by the heat exchange between the reforming unit 21 and the combustion exhaust gas 57. The hydrogen-containing gas 53 contains CO (carbon monoxide).

改質部21を出た水素含有ガス53は変成部22に流入する。変成部22には例えば銅系の変成触媒が充填されている。変成部22では変成反応によりCOの濃度を低下(例えば0.5%以下に低下)させる。   The hydrogen-containing gas 53 exiting the reforming unit 21 flows into the shift unit 22. The shift section 22 is filled with, for example, a copper shift catalyst. In the shift part 22, the CO concentration is reduced (for example, reduced to 0.5% or less) by the shift reaction.

変成部22を出た水素含有ガス53はCO除去部23に流入する。このとき水素含有ガス53には空気56を混合させる。CO除去部23には例えばルテニウム系のCO除去触媒が充填されている。CO除去部23では選択酸化反応により、COと空気中の酸素が反応し、COを(例えばCOの濃度が10ppm以下になるように)ほぼ完全に除去する。   The hydrogen-containing gas 53 that has exited the shift unit 22 flows into the CO removal unit 23. At this time, air 56 is mixed with the hydrogen-containing gas 53. The CO removal unit 23 is filled with, for example, a ruthenium-based CO removal catalyst. In the CO removing unit 23, CO and oxygen in the air react by selective oxidation reaction, and CO is almost completely removed (for example, the concentration of CO is 10 ppm or less).

こうした反応により、水素含有ガス53は、COをほとんど含まない改質ガス54となり、水素生成装置20から排出される。その後改質ガス54は発電スタックに送られ、発電に用いられる。   By such a reaction, the hydrogen-containing gas 53 becomes a reformed gas 54 that hardly contains CO, and is discharged from the hydrogen generator 20. Thereafter, the reformed gas 54 is sent to the power generation stack and used for power generation.

なお、変成部22やCO除去部23を蒸発器10の外周を覆うように隣接して配置しても良い。変成部22とCO除去部23の反応はどちらも発熱反応であるため、蒸発器10との熱交換により、改質水52の蒸発を促進し、変成部22やCO除去部23の冷却を行うことができ、水素生成装置20としての効率を向上させることができる。   In addition, you may arrange | position the transformation part 22 and the CO removal part 23 adjacently so that the outer periphery of the evaporator 10 may be covered. Since the reaction of the shift unit 22 and the CO removal unit 23 is an exothermic reaction, the heat exchange with the evaporator 10 promotes the evaporation of the reforming water 52 and cools the shift unit 22 and the CO removal unit 23. It is possible to improve the efficiency of the hydrogen generator 20.

このように本発明の水素生成装置20は、蒸発器10が効率的に熱交換を行うことにより高い改質性能を発揮することができる。   Thus, the hydrogen generator 20 of the present invention can exhibit high reforming performance when the evaporator 10 efficiently exchanges heat.

蒸発器10の流路10aがショートカットしてしまうと、蒸発が完了しないままの改質水52が改質部21に流入して、改質触媒を濡らしてしまい、改質触媒が劣化して水素生成装置20の性能が低下する恐れがある。しかし、本発明の水素生成装置20は、蒸発器10において流路10aのショートカットが起こりにくい構造となっており、高い改質性
能を維持することができる。
If the flow path 10a of the evaporator 10 is short-circuited, the reformed water 52 that has not been completely evaporated flows into the reforming unit 21, wets the reforming catalyst, and the reforming catalyst deteriorates and becomes hydrogen. There is a possibility that the performance of the generation device 20 may be reduced. However, the hydrogen generator 20 of the present invention has a structure in which the flow path 10a is less likely to occur in the evaporator 10 and can maintain high reforming performance.

また、水素生成装置20は例えば一日に一回の起動と運転停止を繰り返す。このとき水素生成装置20はほぼ常温から、高温部は例えば600℃以上まで急速に昇温される。また、運転停止時は逆に急速に冷却される。   Further, the hydrogen generator 20 is repeatedly activated and stopped once a day, for example. At this time, the temperature of the hydrogen generator 20 is rapidly raised from substantially normal temperature to, for example, 600 ° C. or higher. On the other hand, when the operation is stopped, it is rapidly cooled.

このような熱収縮の繰り返しによっても、本発明の水素生成装置20は、蒸発器10において応力が分散されることで破壊が生じにくい。   Even by such repeated thermal contraction, the hydrogen generator 20 of the present invention is less likely to break due to stress being dispersed in the evaporator 10.

以下に、実施の形態3〜7として、蒸発器10の密着部12を形成する密着工程について、それぞれ異なった実施例を、工程図を用いて説明する。   Hereinafter, as the third to seventh embodiments, different examples of the adhesion process for forming the adhesion part 12 of the evaporator 10 will be described with reference to process diagrams.

(実施の形態3)
図3は本発明の実施の形態3に係る蒸発器10の焼き嵌めによる組立を示す工程図である。
(Embodiment 3)
FIG. 3 is a process diagram illustrating assembly by shrink fitting of the evaporator 10 according to Embodiment 3 of the present invention.

蒸発器10を構成する螺旋波形筒1と外筒11について、螺旋波形筒1の外径をD1、外筒11の内径をD2としたとき、筒作成工程において、
D1>D2
となるように製作しておく。
For the spiral corrugated cylinder 1 and the outer cylinder 11 constituting the evaporator 10, when the outer diameter of the spiral corrugated cylinder 1 is D1 and the inner diameter of the outer cylinder 11 is D2,
D1> D2
Make it as follows.

外筒11を、加熱装置61を用いて昇温させ、熱膨張により、
D1<D2
となるようにする。
The outer cylinder 11 is heated using the heating device 61, and by thermal expansion,
D1 <D2
To be.

次に、外筒11の内周側に螺旋波形筒1を挿入する。その後、外筒11の温度が常温に近づくと、熱収縮により外筒11が螺旋波形筒1に密着することで、蒸発器10が製作できる。   Next, the spiral corrugated tube 1 is inserted into the inner peripheral side of the outer tube 11. Thereafter, when the temperature of the outer cylinder 11 approaches normal temperature, the outer cylinder 11 is brought into close contact with the spiral corrugated cylinder 1 by thermal contraction, whereby the evaporator 10 can be manufactured.

このように、常温では螺旋波形筒1の外径D1より小さい外筒11の内径D2が、加熱装置61を用いて昇温させた場合には、螺旋波形筒1の外径D1より大きくなるように、螺旋波形筒1と外筒11を製作した上で、焼き嵌めを用いることで、外筒11が全体で熱収縮するため、密着部全体に渡って均一に密着させることができる。これにより、簡便に水素生成装置を製作することができる。   As described above, the inner diameter D2 of the outer cylinder 11 smaller than the outer diameter D1 of the spiral corrugated cylinder 1 is larger than the outer diameter D1 of the spiral corrugated cylinder 1 when the temperature is raised using the heating device 61 at room temperature. Moreover, since the outer cylinder 11 is thermally contracted as a whole by using the shrink-fitting after the spiral corrugated cylinder 1 and the outer cylinder 11 are manufactured, it is possible to uniformly adhere to the entire contact portion. Thereby, a hydrogen generator can be easily manufactured.

(実施の形態4)
図4は本発明の実施の形態4に係る蒸発器10の冷やし嵌めによる組立を示す工程図である。
(Embodiment 4)
FIG. 4 is a process diagram showing assembly by evaporator fitting of the evaporator 10 according to Embodiment 4 of the present invention.

先に説明した実施の形態3と同様に、螺旋波形筒1の外径をD1、外筒11の内径をD2としたとき、筒作成工程において、
D1>D2
となるように製作しておく。
As in the third embodiment described above, when the outer diameter of the spiral corrugated tube 1 is D1 and the inner diameter of the outer tube 11 is D2,
D1> D2
Make it as follows.

螺旋波形筒1を、冷却装置62を用いて冷却させ、熱収縮により、
D1<D2
となるようにする。
The spiral corrugated tube 1 is cooled using the cooling device 62, and by heat shrinkage,
D1 <D2
To be.

次に、外筒11の内周側に螺旋波形筒1を挿入する。その後、螺旋波形筒1の温度が常温に近づくと、熱膨張により螺旋波形筒1が外筒11に密着することで、蒸発器10が製
作できる。
Next, the spiral corrugated tube 1 is inserted into the inner peripheral side of the outer tube 11. Thereafter, when the temperature of the spiral corrugated tube 1 approaches normal temperature, the spiral corrugated tube 1 is brought into close contact with the outer tube 11 by thermal expansion, whereby the evaporator 10 can be manufactured.

このように、常温では外筒11の内径D2より大きい螺旋波形筒1の外径D1が、冷却装置62を用いて冷却させた場合には、外筒11の内径D2より小さくなるように、螺旋波形筒1と外筒11を製作した上で、冷やし嵌めを用いることで、螺旋波形筒1が全体で熱膨張するため、均一に密着させることができる。   Thus, when the outer diameter D1 of the spiral corrugated cylinder 1 larger than the inner diameter D2 of the outer cylinder 11 is cooled using the cooling device 62 at room temperature, the spiral is set to be smaller than the inner diameter D2 of the outer cylinder 11. Since the corrugated tube 1 and the outer tube 11 are manufactured, and the cold corrugated tube 1 is used, the spiral corrugated tube 1 is thermally expanded as a whole, so that it can be uniformly adhered.

これにより、簡便に水素生成装置を製作することができる。また、冷やし嵌めは焼き嵌めに比べ、温度変化量が少なくなるため、筒作成工程においてより精度の高い部品を製作する必要がある。一方で高温による熱劣化を生じさせないので、耐熱性の低い材料でも実施することができる。   Thereby, a hydrogen generator can be easily manufactured. In addition, since the cold fitting has a smaller amount of temperature change than the shrink fitting, it is necessary to manufacture a more accurate part in the cylinder forming process. On the other hand, since it does not cause thermal degradation due to high temperature, it can be carried out even with a material having low heat resistance.

(実施の形態5)
図5は本発明の実施の形態5に係る蒸発器10の拡径による組立を示す工程図である。
(Embodiment 5)
FIG. 5 is a process diagram showing the assembly of the evaporator 10 according to the fifth embodiment of the present invention by expanding the diameter.

螺旋波形筒1の外径をD1、外筒11の内径をD2としたとき、筒作成工程において、
D1<D2
となるように螺旋波形筒1と外筒11を製作しておく。
When the outer diameter of the spiral corrugated tube 1 is D1 and the inner diameter of the outer tube 11 is D2,
D1 <D2
The spiral corrugated tube 1 and the outer tube 11 are manufactured in advance.

まず、外筒11の内側に螺旋波形筒1を挿入する。螺旋波形筒1のさらに内側に拡径冶具63を設置する。拡径冶具63が径拡大方向に広がり、螺旋波形筒1に内圧を与え、拡径させることで、外筒11と密着し、蒸発器10が製作できる。   First, the spiral corrugated tube 1 is inserted inside the outer tube 11. A diameter expansion jig 63 is installed further inside the spiral corrugated tube 1. The diameter expansion jig 63 spreads in the diameter expansion direction, applies internal pressure to the spiral corrugated cylinder 1 and expands the diameter, thereby closely contacting the outer cylinder 11 and manufacturing the evaporator 10.

拡径冶具63としては周方向に複数分割された金型を、テーパピンを押し込むことによって全周方向に均一に張り出すもの等が用いられる。また、ウレタンゴム等の弾性体を軸方向に圧縮することで張り出しても良い。   As the diameter expansion jig 63, a tool that is uniformly extended in the entire circumferential direction by pushing a taper pin into a plurality of molds divided in the circumferential direction is used. Moreover, you may overhang by compressing an elastic body, such as urethane rubber, to an axial direction.

このように、外筒11の内径D2よりも外径D1を小さく製作した螺旋波形筒1に対して外筒11と密着するように拡径を行うことで、短時間で効率的に密着加工を行うことができる。これにより、簡便に水素生成装置を製作することができる。   As described above, the spiral corrugated cylinder 1 manufactured with the outer diameter D1 smaller than the inner diameter D2 of the outer cylinder 11 is enlarged so as to be in close contact with the outer cylinder 11, so that the close-contact processing can be efficiently performed in a short time. It can be carried out. Thereby, a hydrogen generator can be easily manufactured.

(実施の形態6)
図6は本発明の実施の形態6に係る蒸発器の縮径による組立を示す工程図である。
(Embodiment 6)
FIG. 6 is a process diagram showing the assembly of the evaporator according to the sixth embodiment of the present invention with a reduced diameter.

先に説明した実施の形態5と同様に、螺旋波形筒1の外径をD1、外筒11の内径をD2としたとき、筒作成工程において、
D1<D2
となるように螺旋波形筒1と外筒11を製作しておく。
As in the fifth embodiment described above, when the outer diameter of the spiral corrugated tube 1 is D1 and the inner diameter of the outer tube 11 is D2,
D1 <D2
The spiral corrugated tube 1 and the outer tube 11 are manufactured in advance.

まず、外筒11の内側に螺旋波形筒1を挿入する。外筒11のさらに外側に縮径冶具64を設置する。縮径冶具64が径縮小方向に移動し、外筒11に外圧を与え、縮径させることで、螺旋波形筒1と密着し、蒸発器10が製作できる。   First, the spiral corrugated tube 1 is inserted inside the outer tube 11. A diameter-reducing jig 64 is installed on the outer side of the outer cylinder 11. The diameter-reducing jig 64 moves in the diameter-reducing direction, applies an external pressure to the outer cylinder 11 and reduces the diameter, thereby closely contacting the spiral corrugated cylinder 1, and the evaporator 10 can be manufactured.

縮径冶具64としては周方向に複数分割された金型を、テーパブロックを用いて全周方向に均一に押し込むもの等が用いられる。金型を用いず、スピニング加工等で順次縮径する方法を用いてもよい。   As the diameter-reducing jig 64, there is used a tool in which a plurality of molds divided in the circumferential direction are uniformly pushed in a circumferential direction using a taper block. A method of sequentially reducing the diameter by spinning or the like without using a mold may be used.

このように、螺旋波形筒1の外径D1よりも内径D2を大きく製作した外筒11に対して螺旋波形筒1と密着するように縮径を行うことで、短時間で効率的に密着加工を行うことができる。これにより、簡便に水素生成装置を製作することができる。   As described above, the outer cylinder 11 manufactured with the inner diameter D2 larger than the outer diameter D1 of the spiral corrugated cylinder 1 is reduced in diameter so as to be in close contact with the spiral corrugated cylinder 1, thereby efficiently and in close contact processing. It can be performed. Thereby, a hydrogen generator can be easily manufactured.

拡径に比べ、縮径を行う場合は縮径冶具64が比較的大型になるため、設備費が高くなる。一方、内部に冶具を挿入する必要がないため、軸方向に長尺の場合でも、短時間で密着加工を行うことができる。   Compared with the diameter expansion, when the diameter is reduced, the diameter-reducing jig 64 is relatively large, so that the equipment cost is increased. On the other hand, since it is not necessary to insert a jig inside, even if it is long in the axial direction, it is possible to perform contact processing in a short time.

内周側に螺旋波形筒1を用いているため、縮径冶具64が単純な形状になる分、実施の形態5の拡径よりも、実施の形態6の縮径を用いる方が望ましい。   Since the spiral corrugated tube 1 is used on the inner peripheral side, it is preferable to use the reduced diameter of the sixth embodiment rather than the expanded diameter of the fifth embodiment because the diameter reducing jig 64 has a simple shape.

(実施の形態7)
図7は本発明の実施の形態7に係る蒸発器の圧入による組立を示す工程図である。
(Embodiment 7)
FIG. 7 is a process diagram showing assembly by press-fitting an evaporator according to Embodiment 7 of the present invention.

螺旋波形筒1の外径をD1、外筒11の内径をD2としたとき、筒作成工程において、
D1>D2
となるように螺旋波形筒1と外筒11を製作しておく。
When the outer diameter of the spiral corrugated tube 1 is D1 and the inner diameter of the outer tube 11 is D2,
D1> D2
The spiral corrugated tube 1 and the outer tube 11 are manufactured in advance.

外筒11と螺旋波形筒1を同軸上に並べ、プレス機等で外筒11の内側に螺旋波形筒1を押し込み、圧入することで、蒸発器10が製作できる。   The evaporator 10 can be manufactured by arranging the outer cylinder 11 and the spiral corrugated cylinder 1 on the same axis, pressing the spiral corrugated cylinder 1 into the outer cylinder 11 with a press machine or the like, and press-fitting it.

このとき、圧入の抵抗が強いと螺旋波形筒1や外筒11に座屈が起こり、組立が困難になる。本発明の実施の形態7の螺旋波形筒1は密着時の押しつぶされる箇所を限定することで面圧を高めているため、圧入の抵抗を比較的低く抑えることができる。   At this time, if the press-fitting resistance is strong, the spiral corrugated tube 1 and the outer tube 11 are buckled, and assembly becomes difficult. Since the spiral corrugated cylinder 1 according to the seventh embodiment of the present invention increases the surface pressure by limiting the portion to be crushed at the time of close contact, the press-fitting resistance can be kept relatively low.

圧入を用いることで、特殊な設備や専用の冶具を用いることなく、密着加工を行うことができる。これにより、水素生成装置を簡便に製作することができる。   By using press-fitting, close contact processing can be performed without using special equipment or a dedicated jig. Thereby, a hydrogen generator can be manufactured simply.

(実施の形態8)
図8は本発明の実施の形態8に係る螺旋波形筒31の構成を示す縦断面図である。
(Embodiment 8)
FIG. 8 is a longitudinal sectional view showing the configuration of the spiral corrugated cylinder 31 according to the eighth embodiment of the present invention.

螺旋波形筒31は円筒状の側壁に、軸方向に向かって螺旋状の凹凸が形成されている。外周に突出している部分が凸部32、両側を凸部32に挟まれ、内周側に突出している部分が凹部33である。凹部33は、内向きのR形状を持っている。このR形状の頂点部分に、段差を設けることで、第2凹部34が形成されている。   The spiral corrugated tube 31 is formed with spiral irregularities on the cylindrical side wall in the axial direction. A portion protruding to the outer periphery is a convex portion 32, both sides are sandwiched by the convex portion 32, and a portion protruding to the inner peripheral side is a concave portion 33. The recess 33 has an inward R shape. A second recess 34 is formed by providing a step at the apex portion of the R shape.

螺旋波形筒31の製作方法は実施の形態1の場合と同様である。   The manufacturing method of the spiral corrugated cylinder 31 is the same as that in the first embodiment.

(実施の形態9)
図9は本発明の実施の形態9に係る水素生成装置50の概略構成図である。前述した実施の形態2の説明で用いた符号と同様な符号を本実施の形態で用いることで、重複する説明を省略する。
(Embodiment 9)
FIG. 9 is a schematic configuration diagram of a hydrogen generator 50 according to Embodiment 9 of the present invention. By using the same reference numerals as those used in the description of the second embodiment described above in this embodiment, redundant description is omitted.

水素生成装置50は、円筒状の複数の隔壁が同心円状に配置されて、多重円筒により流路と空間を形成することで構成される。   The hydrogen generator 50 is configured by a plurality of cylindrical partition walls arranged concentrically and forming a flow path and a space by multiple cylinders.

多重円筒の中心部には加熱部13が配置される。加熱部13はバーナ14と加熱流路15を有する。バーナ14で生成した燃焼排ガス57は加熱流路15を通って水素生成装置50から排出される。なお、加熱部13としては、バーナ以外の発熱体、例えばヒータ等を用いても良い。   A heating unit 13 is disposed at the center of the multiple cylinder. The heating unit 13 includes a burner 14 and a heating channel 15. The combustion exhaust gas 57 generated by the burner 14 is discharged from the hydrogen generator 50 through the heating flow path 15. As the heating unit 13, a heating element other than the burner, for example, a heater or the like may be used.

加熱部13の外周を囲むように、蒸発器40と改質部21が配置される。蒸発器40は螺旋波形筒31と、その内周に覆われる内筒41とで構成される。   The evaporator 40 and the reforming unit 21 are arranged so as to surround the outer periphery of the heating unit 13. The evaporator 40 includes a spiral corrugated cylinder 31 and an inner cylinder 41 covered by the inner periphery thereof.

螺旋波形筒31の螺旋状の凹凸と内筒41の間にできる空間が、流路40aである。流路10aは螺旋状の凹凸に沿って一本の長い流路となっている。流路40aの働きと効果は実施の形態2の流路10aと同様である。   A space formed between the spiral irregularities of the spiral corrugated cylinder 31 and the inner cylinder 41 is a flow path 40a. The channel 10a is a single long channel along the spiral irregularities. The function and effect of the channel 40a are the same as those of the channel 10a of the second embodiment.

螺旋波形筒31と内筒41は密着部42で密着している。密着部42は図8の第2凹部34が内筒41の外周面によって押し潰されて形成されている。こうすることで、螺旋波形筒31の変形が密着部42付近に集中し、密着部42の面圧を高く付加することができる。また、螺旋波形筒31の密着部42以外にかかる応力は図8の凹部33が大きなR形状をしていることで、凹部33全体に分散される。   The spiral corrugated cylinder 31 and the inner cylinder 41 are in close contact with each other at the close contact portion 42. The close contact portion 42 is formed by crushing the second concave portion 34 of FIG. 8 by the outer peripheral surface of the inner cylinder 41. By doing so, the deformation of the spiral corrugated tube 31 is concentrated in the vicinity of the close contact portion 42, and the surface pressure of the close contact portion 42 can be applied high. Further, the stress applied to the portions other than the close contact portion 42 of the spiral corrugated tube 31 is distributed over the entire recess portion 33 because the recess portion 33 of FIG.

このように、実施の形態2の場合と同様に、密着部の面圧が高いことで流路40aにショートカットが生じにくく、かつ、螺旋波形筒31の応力が凹部33全体に分散されることで破壊が生じにくい蒸発器40を提供することができる。   As described above, as in the case of the second embodiment, the surface pressure of the tight contact portion is high, so that a shortcut is not easily generated in the flow path 40a, and the stress of the spiral corrugated cylinder 31 is dispersed throughout the recess 33. It is possible to provide the evaporator 40 that is not easily broken.

実施の形態2では、変成部22やCO除去部23を蒸発器10の外周を覆うように配置することで、水素生成装置20としての効率を向上させることができたが、本実施の形態でも同様に、蒸発器40の外周を覆うように変成部22やCO除去部23を配置することで、水素生成装置50としての効率を向上させることができる。   In the second embodiment, the efficiency as the hydrogen generator 20 can be improved by arranging the transformation unit 22 and the CO removal unit 23 so as to cover the outer periphery of the evaporator 10, but also in this embodiment. Similarly, the efficiency as the hydrogen generator 50 can be improved by disposing the transformation unit 22 and the CO removal unit 23 so as to cover the outer periphery of the evaporator 40.

特に、螺旋波形筒31が外周面に面していることで、熱交換面積が大きくなり、変成部22やCO除去部23を効率的に冷却することができる。   In particular, since the spiral corrugated tube 31 faces the outer peripheral surface, the heat exchange area is increased, and the metamorphic portion 22 and the CO removal portion 23 can be efficiently cooled.

また、製造方法について、実施の形態3〜7のそれぞれの製造方法が同様に適用可能である。これらの製造方法を用いることで、水素生成装置を簡便に製作することができる。   Moreover, about the manufacturing method, each manufacturing method of Embodiment 3-7 is applicable similarly. By using these manufacturing methods, a hydrogen generator can be easily manufactured.

ただし、本実施の形態の蒸発器40においては、拡径冶具63が単純な形状になる分、実施の形態6の縮径よりも、実施の形態5の拡径を用いる方が望ましい。   However, in the evaporator 40 of the present embodiment, it is preferable to use the diameter expansion of the fifth embodiment rather than the diameter reduction of the sixth embodiment because the diameter expansion jig 63 has a simple shape.

本発明の水素生成装置は、流路の密着部において面圧が高いことでショートカットが生じにくく、かつ、応力が分散されることで破壊が生じにくい蒸発器を有し、燃料電池発電装置用等の燃料ガスの製造に用いられる。   The hydrogen generator of the present invention has an evaporator that is less likely to cause shortcuts due to high surface pressure at the close contact portion of the flow path, and that is less likely to break due to stress dispersion. It is used for the production of fuel gas.

1 螺旋波形筒
2 凸部
3 凹部
4 第2凸部
10 蒸発器
10a 流路
11 外筒
12 密着部
13 加熱部
20 水素生成装置
21 改質部
22 変成部
23 CO除去部
31 螺旋波形筒
32 凸部
33 凹部
34 第2凹部
40 蒸発器
40a 流路
41 内筒
42 密着部
50 水素生成装置
61 加熱装置
62 冷却装置
63 拡径冶具
64 縮径冶具
DESCRIPTION OF SYMBOLS 1 Spiral corrugated cylinder 2 Convex part 3 Concave part 4 2nd convex part 10 Evaporator 10a Flow path 11 Outer cylinder 12 Contact | adherence part 13 Heating part 20 Hydrogen generator 21 Reforming part 22 Metamorphic part 23 CO removal part 31 Spiral corrugated cylinder 32 Convex Part 33 Concave part 34 Second concave part 40 Evaporator 40a Flow path 41 Inner cylinder 42 Adhering part 50 Hydrogen generator 61 Heating apparatus 62 Cooling apparatus 63 Diameter expansion jig 64 Diameter reduction jig

Claims (11)

側壁が軸方向に向かって螺旋状の凹凸を形成するように加工され、前記凹凸の凸部を外筒の内周面に密着させて、前記外筒との間に水を蒸発させる螺旋状の流路を形成する螺旋波形筒であって、
前記凸部の頂点部分に、外周方向に突出するように変形させた第2凸部を備え、
前記螺旋波形筒を前記外筒の内周面に密着させた時に、前記第2凸部の少なくとも一部が押し潰されることを特徴とする、水素生成装置の蒸発器用の螺旋波形筒。
A side wall is processed so as to form a spiral concavo-convex shape in the axial direction, the convex portion of the concavo-convex portion is brought into close contact with the inner peripheral surface of the outer cylinder, and a spiral shape that evaporates water between the outer cylinder A spiral corrugated tube forming a flow path,
The apex portion of the convex portion includes a second convex portion that is deformed so as to protrude in the outer peripheral direction,
A spiral corrugated tube for an evaporator of a hydrogen generator, wherein at least a part of the second convex portion is crushed when the spiral corrugated tube is brought into close contact with an inner peripheral surface of the outer tube.
側壁が軸方向に向かって螺旋状の凹凸を形成するように加工され、前記凹凸の凹部を内筒の外周面に密着させて、前記内筒との間に水を蒸発させる螺旋状の流路を形成する螺旋波形筒であって、
前記凹部の頂点部分に、内周方向に突出するように変形させた第2凹部を備え、
前記螺旋波形筒を前記内筒の外周面に密着させた時に、前記第2凹部の少なくとも一部が押し潰されることを特徴とする、水素生成装置の蒸発器用の螺旋波形筒。
A spiral flow path that is processed so as to form spiral irregularities in the axial direction, and that the concave and convex portions are in close contact with the outer peripheral surface of the inner cylinder to evaporate water between the inner cylinder and the inner cylinder. A spiral corrugated tube forming
The top part of the concave part is provided with a second concave part that is deformed so as to protrude in the inner circumferential direction,
The spiral corrugated cylinder for an evaporator of a hydrogen generator, wherein at least a part of the second recess is crushed when the spiral corrugated cylinder is brought into close contact with the outer peripheral surface of the inner cylinder.
外筒と、側壁が軸方向に向かって螺旋状の凹凸を形成するように加工され、前記凹凸の凸部を前記外筒の内周面に密着させて、前記外筒との間に水を蒸発させる螺旋状の流路を形成する螺旋波形筒と、を備え、
前記螺旋波形筒の内周側に加熱部が設けられ、原料ガスと前記水から改質反応により水素を生成する水素生成装置であって、
前記凸部の頂点部分に、外周方向に突出するように変形させた第2凸部を備え、
前記螺旋波形筒を前記外筒の内周面に密着させた時に、前記第2凸部の少なくとも一部が押し潰されることを特徴とする水素生成装置。
The outer cylinder and the side wall are processed so as to form spiral irregularities in the axial direction, and the convex portions of the irregularities are brought into close contact with the inner peripheral surface of the outer cylinder, so that water is provided between the outer cylinder and the outer cylinder. A spiral corrugated tube forming a spiral flow path to evaporate,
A heating unit is provided on the inner peripheral side of the spiral corrugated cylinder, and generates hydrogen by a reforming reaction from a raw material gas and the water,
The apex portion of the convex portion includes a second convex portion that is deformed so as to protrude in the outer peripheral direction,
When the spiral corrugated cylinder is brought into close contact with the inner peripheral surface of the outer cylinder, at least a part of the second convex portion is crushed.
内筒と、側壁が軸方向に向かって螺旋状の凹凸を形成するように加工され、前記凹凸の凹部を前記内筒の外周面に密着させて、前記内筒との間に水を蒸発させる螺旋状の流路を形成する螺旋波形筒と、を備え、
前記内筒の内周側に加熱部が設けられ、原料ガスと前記水から改質反応により水素を生成する水素生成装置であって、
前記凹部の頂点部分に、内周方向に突出するように変形させた第2凹部を備え、
前記螺旋波形筒を前記内筒の外周面に密着させた時に、前記第2凹部の少なくとも一部が押し潰されることを特徴とする水素生成装置。
The inner cylinder and the side wall are processed so as to form spiral irregularities in the axial direction, and the concave and convex portions are brought into close contact with the outer peripheral surface of the inner cylinder to evaporate water between the inner cylinder and the inner cylinder. A spiral corrugated tube forming a spiral channel,
A heating unit is provided on the inner peripheral side of the inner cylinder, and generates hydrogen from a raw material gas and the water by a reforming reaction,
The top part of the concave part is provided with a second concave part that is deformed so as to protrude in the inner circumferential direction,
The hydrogen generator according to claim 1, wherein when the spiral corrugated tube is brought into close contact with the outer peripheral surface of the inner tube, at least a part of the second recess is crushed.
外筒と、側壁が軸方向に向かって螺旋状の凹凸を形成するように加工され、前記凹凸の凸部を前記外筒の内周面に密着させて、前記外筒との間に水を蒸発させる螺旋状の流路を形成する螺旋波形筒と、を備え、
前記螺旋波形筒の内周側に加熱部が設けられ、原料ガスと前記水から改質反応により水素を生成する水素生成装置の製造方法であって、
筒体の側壁を変形させて、軸方向に向かって螺旋状の凹凸を形成すると共に前記凸部の頂点部分に、外周方向に突出するように変形させた第2凸部を設ける筒作成工程と、
前記筒作成工程で得られた前記螺旋波形筒を前記外筒の内周面に密着させて、前記第2凸部の少なくとも一部を押し潰す密着工程と、
を有する水素生成装置の製造方法。
The outer cylinder and the side wall are processed so as to form spiral irregularities in the axial direction, and the convex portions of the irregularities are brought into close contact with the inner peripheral surface of the outer cylinder, so that water is provided between the outer cylinder and the outer cylinder. A spiral corrugated tube forming a spiral flow path to evaporate,
A heating unit is provided on the inner peripheral side of the spiral corrugated cylinder, and a method for producing a hydrogen generating apparatus that generates hydrogen from a raw material gas and the water by a reforming reaction,
A cylinder creating step of deforming a side wall of the cylinder to form a spiral irregularity in the axial direction and providing a second convex part deformed so as to protrude in the outer peripheral direction at the apex part of the convex part; ,
An adhesion step in which the spiral corrugated tube obtained in the tube creation step is brought into close contact with an inner peripheral surface of the outer tube, and at least a part of the second convex portion is crushed;
A method for manufacturing a hydrogen generator having
内筒と、側壁が軸方向に向かって螺旋状の凹凸を形成するように加工され、前記凹凸の凹部を前記内筒の外周面に密着させて、前記内筒との間に水を蒸発させる螺旋状の流路を形成する螺旋波形筒と、を備え、
前記内筒の内周側に加熱部が設けられ、原料ガスと前記水から改質反応により水素を生成する水素生成装置の製造方法であって、
筒体の側壁を変形させて、軸方向に向かって螺旋状の凹凸を形成すると共に前記凹部の頂点部分に、内周方向に突出するように変形させた第2凹部を設ける筒作成工程と、
前記筒作成工程で得られた前記螺旋波形筒を前記内筒の外周面に密着させて、前記第2凹部の少なくとも一部を押し潰す密着工程と、
を有する水素生成装置の製造方法。
The inner cylinder and the side wall are processed so as to form spiral irregularities in the axial direction, and the concave and convex portions are brought into close contact with the outer peripheral surface of the inner cylinder to evaporate water between the inner cylinder and the inner cylinder. A spiral corrugated tube forming a spiral channel,
A heating unit is provided on the inner peripheral side of the inner cylinder, and a method for producing a hydrogen generator that generates hydrogen from a raw material gas and the water by a reforming reaction,
A cylinder creating step of deforming the side wall of the cylindrical body to form a spiral concavo-convex shape in the axial direction and providing a second concave portion that is deformed so as to protrude in the inner circumferential direction at the apex portion of the concave portion,
An adhesion process in which the spiral corrugated cylinder obtained in the cylinder creation process is brought into close contact with an outer peripheral surface of the inner cylinder, and at least a part of the second recess is crushed;
A method for manufacturing a hydrogen generator having
前記密着工程で2つの筒を密着させる時に、同軸状に配置された2つの筒のうち外側に位置する筒を焼き嵌めする、
請求項5または6に記載の水素生成装置の製造方法。
When two cylinders are brought into close contact with each other in the contact step, a cylinder located outside of the two cylinders arranged coaxially is shrink-fitted,
The manufacturing method of the hydrogen generator of Claim 5 or 6.
前記密着工程で2つの筒を密着させる時に、同軸状に配置された2つの筒のうち内側に位置する筒を冷やし嵌めする、
請求項5または6に記載の水素生成装置の製造方法。
When two cylinders are brought into close contact with each other in the contact step, a cylinder located on the inner side of the two cylinders arranged coaxially is fitted by cooling.
The manufacturing method of the hydrogen generator of Claim 5 or 6.
前記密着工程で2つの筒を密着させる時に、同軸状に配置された2つの筒のうち内側に位置する筒の内側に内圧を付与する、
請求項5または6に記載の水素生成装置の製造方法。
When two cylinders are brought into close contact with each other in the contact step, an internal pressure is applied to the inside of the cylinder located inside among the two cylinders arranged coaxially.
The manufacturing method of the hydrogen generator of Claim 5 or 6.
前記密着工程で2つの筒を密着させる時に、同軸状に配置された2つの筒のうち外側に位置する筒の外側から外圧を付与する、
請求項5または6に記載の水素生成装置の製造方法。
When the two cylinders are brought into close contact with each other in the contact step, external pressure is applied from the outside of the cylinder located outside of the two cylinders arranged coaxially.
The manufacturing method of the hydrogen generator of Claim 5 or 6.
前記密着工程で2つの筒を密着させる時に、外側になる筒に内側になる筒を圧入する、請求項5または6に記載の水素生成装置の製造方法。   The method for manufacturing a hydrogen generator according to claim 5 or 6, wherein when the two cylinders are brought into close contact with each other in the contact step, the inner cylinder is press-fitted into the outer cylinder.
JP2015004690A 2015-01-14 2015-01-14 Spiral waveform cylinder, hydrogen generation apparatus comprising the same, and producing method thereof Pending JP2016130197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015004690A JP2016130197A (en) 2015-01-14 2015-01-14 Spiral waveform cylinder, hydrogen generation apparatus comprising the same, and producing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015004690A JP2016130197A (en) 2015-01-14 2015-01-14 Spiral waveform cylinder, hydrogen generation apparatus comprising the same, and producing method thereof

Publications (1)

Publication Number Publication Date
JP2016130197A true JP2016130197A (en) 2016-07-21

Family

ID=56415243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015004690A Pending JP2016130197A (en) 2015-01-14 2015-01-14 Spiral waveform cylinder, hydrogen generation apparatus comprising the same, and producing method thereof

Country Status (1)

Country Link
JP (1) JP2016130197A (en)

Similar Documents

Publication Publication Date Title
JP4880086B2 (en) HYDROGEN GENERATOR, ITS MANUFACTURING METHOD, AND FUEL CELL SYSTEM USING THE SAME
JP5044048B2 (en) Hydrogen generator
JP2008063193A (en) Hydrogen generator and fuel cell system
JP5269271B1 (en) Fuel processor
JP5927572B2 (en) Hydrodesulfurization device, hydrogen generator, and fuel cell system
JP2016130197A (en) Spiral waveform cylinder, hydrogen generation apparatus comprising the same, and producing method thereof
EP2707326B1 (en) Fuel processor
JP5689341B2 (en) Double tube heat exchanger and method for manufacturing the same
JP4060349B2 (en) Method for manufacturing hydrogen generator
JP4918629B2 (en) Fuel processor
JP5336696B2 (en) Fluid processing apparatus and manufacturing method thereof
EP2812107B1 (en) Fuel processor
JP5332130B2 (en) Fuel cell stack structure
JPH05186201A (en) Fuel reformer
JPH1111901A (en) Reforming device for fuel cell power generation unit
JP6277898B2 (en) Fuel cell device
JP2000247602A (en) Fuel reformer
JP2012218965A (en) Hydrogen generator and fuel cell system equipped with the same
JP2016152075A (en) Fuel battery device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160523