JP2016128789A - プローブ変位計測装置、およびそれを有するイオン化装置、質量分析装置、情報取得システム - Google Patents

プローブ変位計測装置、およびそれを有するイオン化装置、質量分析装置、情報取得システム Download PDF

Info

Publication number
JP2016128789A
JP2016128789A JP2015003581A JP2015003581A JP2016128789A JP 2016128789 A JP2016128789 A JP 2016128789A JP 2015003581 A JP2015003581 A JP 2015003581A JP 2015003581 A JP2015003581 A JP 2015003581A JP 2016128789 A JP2016128789 A JP 2016128789A
Authority
JP
Japan
Prior art keywords
probe
light
spot
displacement
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015003581A
Other languages
English (en)
Inventor
大塚 洋一
Yoichi Otsuka
洋一 大塚
正文 教學
Masabumi Kyogaku
正文 教學
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015003581A priority Critical patent/JP2016128789A/ja
Publication of JP2016128789A publication Critical patent/JP2016128789A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

【課題】 プローブの従来よりも大きな変位を計測可能なプローブ変位計測装置を提供する。【解決手段】 プローブ変位計測装置1は、片持ち梁状のプローブ11と、プローブ11に光を照射する光照射手段12と、光照射手段12によって照射され、プローブ11の表面にて反射された反射光105をスポットとして受光する受光素子14を有する。プローブ変位計測装置1はさらに、受光素子14が受光する反射光105のスポットの光量を、反射光105のスポットの受光素子14上における変位方向に沿って変化させる光量変化手段を有する。【選択図】 図1

Description

本発明は、プローブの変位を計測するプローブ変位計測装置に関し、特に、プローブに光を照射することによってプローブの変位を計測するプローブ変位計測装置に関する。
走査型プローブ顕微鏡(SPM)は、試料の表面形状を観察する装置である。SPMは、片持ち梁状のプローブで試料表面を走査した際のプローブの上下動(変位)を計測することによって、試料の表面形状を計測する。
プローブの変位を計測する方法の一つに、光てこ方式がある。光てこ方式では、レーザ光などの光ビームをプローブ(カンチレバー)の上面に照射し、その反射光を遠方に設置した位置検出可能型の光検出器で検出する。この方式によれば、反射光のわずかな角度変化に反映されたプローブの微小な変位を、鋭敏に検出して計測することができる(特許文献1)。
また、走査型プローブエレクトロスプレーイオン化法(Scanning Probe Electrospray Ionization; SPESI)は、プローブを用いて試料表面上の微小領域内に存在する試料を選択的にイオン化する手法である。SPESIを用いることで、例えば生体試料などの試料に含まれる成分を微小領域ごとにイオン化することができる。そして、イオン化したイオンを質量分析等の分析手法で分析することで、試料中の成分の分布を可視化することができる(特許文献2)。
特開平11−271341号公報 特開2013−181840号公報
光てこ方式では、光検出器として2分割または4分割フォトダイオード(PD)や光位置センサ(PSD)、CCDなどのイメージセンサを用いることができる。ただしこれらの光検出器の中でも、光検出器そのもののコストや検出信号の処理の容易性の観点から、2分割または4分割PDを用いることが多い。
特許文献1に記載されているような2分割PDを用いる従来の光てこ方式では、反射光のスポットがPDの有する2つの受光面の境界線(分割線)上に存在する場合にのみ、反射光のスポットの位置を特定することができる。
光てこ方式では、プローブの変位が大きくなると、それに伴って反射光の変位量も大きくなる。そのため、プローブの変位が大きくなると、光検出器上に投影される反射光のスポットが境界線上を越え、スポットの全体が1つの受光面上に投影される場合が生じる。したがって従来の光てこ方式では、プローブの変位が大きくなると、たとえ反射光のスポットが光検出器上に投影されていたとしても、プローブの変位を計測できなくなってしまう場合があるという課題があった。
そこで本発明は上述の課題に鑑み、プローブの従来よりも大きな変位を計測可能なプローブ変位計測装置を提供することを目的とする。
本発明に係るプローブ変位計測装置は、片持ち梁状のプローブと、前記プローブに光を照射する光照射手段と、前記光照射手段によって照射され、前記プローブの表面にて反射された反射光をスポットとして受光する受光素子と、を有するプローブ変位計測装置であって、前記受光素子が受光するスポットの光量を、前記スポットの前記受光素子上における変位方向に沿って変化させる光量変化手段を有することを特徴とする。
本発明によれば、プローブの従来よりも大きな変位を計測可能なプローブ変位計測装置を提供することができる。
第1の実施形態に係るプローブ変位計測装置の構成を示す図である。 第1の実施形態に係る受光素子および遮光板を示す図である。 従来の光てこ方式によるプローブ変位計測装置の構成を示す図である。 第2の実施形態に係る受光素子および遮光板を示す図である。 第3の実施形態に係る受光素子および遮光板を示す図である。 第4の実施形態に係る情報取得システムの構成を示す図である。
以下、本発明を適用した実施形態について適宜図面を参照しながら詳細に説明する。ただし、本発明は以下に説明する実施形態に限定されるものではない。また、本発明においては、その趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下に説明する実施形態に対して適宜変更、改良等が加えられたものについても本発明の範囲に含む。
(第1の実施形態)
第1の実施形態に係るプローブ変位計測装置1(以下、「装置1」と称する)の構成について、図1を用いて説明する。図1は、本実施形態に係る装置1の構成を模式的に示す図である。
本実施形態に係る装置1は、プローブ11と、光源12と、遮光板13と、受光素子14(以下、「素子14」と称する)と、演算手段15と、を有する。
プローブ11は、棒状や板状などの形状の片持ち梁状のプローブである。すなわち、プローブ11の一端(固定端11a)は装置1の本体に対して固定されている。また、プローブ11の他端(自由端11b)は矢示110の方向に変位することができる。つまり、プローブ11の自由端11bは、図1(a)中のyz平面内で変位する。なお本明細書においては、プローブ11の自由端11bの変位を、単に「プローブ11の変位」と称することもある。装置1は、yz平面内におけるプローブ11の変位を計測する装置である。
プローブ11の形状は特に限定はされず、例えば棒状や板状とすることができる。プローブ11の形状を棒状とする場合、角柱状や円柱状とすることができる。なお、このときプローブ11は中実でも中空でもよい。すなわち、プローブ11は円筒(中空丸棒)状でもよい。プローブ11を円筒状とすることで、プローブ11の内部を介して液体や気体等の流体を、プローブ11の自由端11bへと供給することができる。
また、プローブ11の材質は特に限定はされず、例えば樹脂、ガラス、金属、セラミックスやシリコンなどの無機物などを用いることができる。ただし少なくとも、後述する光源12からの照射光103がプローブ11の表面の一部である照射部104は、照射光103を反射しやすい材質を用いることが好ましい。これにより、照射部104から発生する反射光105の光量を大きくすることができる。なお、照射部104の部分にミラーなどを付着させてもよい。あるいは、プローブ11の表面を反射率の高い材質でコーティングしてもよい。
プローブ11の変位を発生させる手段は、特に限定はされない。例えば図1に示すように、プローブ11に振動子102を接触させることでプローブ11の変位を発生させてもよい。これによりプローブ11に振動子102が発する外力が伝達し、プローブ11の自由端11bを振動させることができる。また、プローブ11を装置1の本体に固定する支持部101が、プローブ11を励振するための振動子102を内蔵していてもよい。
あるいは、プローブ11の自由端11bを不図示の試料に近接させることでも、プローブ11の変位を発生させることができる。プローブ11の自由端11bを不図示の試料に対向して近接させると、自由端11bと試料表面との間に働く相互作用(原子間力、斥力、引力、粘性、電磁気力など)によって、プローブ11の変位が発生する。上述のように振動子102によって振動させたプローブ11の自由端11bを試料に近接させることで、さらに変位を発生させてもよい。
なお、本実施形態ではプローブ11の変位を矢示110の方向としたが、これに限定はされない。例えばプローブ11の自由端11bは、図1(a)中のyz平面内での変位に加え、x方向にも変位してもよい。すなわちプローブ11は、装置1が計測するyz平面内での変位を少なくとも含むように変位すればよい。また、振動子102を用いてプローブ11の自由端11bを振動させる場合には、連続的に振動させてもよいし、断続的に振動させてもよい。さらに、一定の振幅で振動させてもよいし、振幅を変化させながら振動させてもよい。
光源12は、照射光103をプローブ11の表面(照射部104)に照射する。すなわち、光源12はプローブ11に光を照射する光照射手段である。プローブ11の表面に照射された照射光103は、プローブ11の表面で反射される。これにより、反射光105が発生する。
光源12の種類については特に限定はされず、ランプ光源やレーザ光源等の光源を用いることができる。これらの光源の中でも、反射光105の光強度を大きくするという観点から、コヒーレントな光を発することのできるレーザ光源が好ましい。
また、装置1は光照射手段として光源12の他に、不図示の集光用レンズを照射光103の光路上に有していてもよい。集光用レンズを用いることで、光源12から発せられた照射光103を集光させて光強度を向上させた上で、プローブ11の表面に照射することができる。
照射部104の位置は、プローブ11の固定端11aと自由端11bとの間であれば特に限定はされない。ただし、照射部104の位置が固定端11aに近すぎるとプローブ11の変位が反射光105の出射方向に反映されにくくなるため、照射部104の位置は固定端11aからある程度離れていることが好ましい。また、照射部104の位置が自由端11bに近すぎるとプローブ11の変位に伴って反射光105の出射角度が大きく変化してしまうため、照射部104の位置は自由端11bからもある程度離れていることが好ましい。
なお、光源12から見た際のプローブ11の幅(固定端11a、自由端11bを結ぶ直線と垂直な幅)よりも広い領域に照射光103を照射してもよいが、プローブ11の表面上に微小なスポットとして照射光103を照射することが好ましい。これにより、プローブ11の表面以外からの反射光の影響を抑制することができる。
反射光105のスポット形状は、照射光103のスポット形状とプローブ11の表面形状に依存して決まる。例えば、プローブ11の表面のうち照射部104が平坦な平面である場合は、反射光105のスポット形状は照射光103のスポット形状と略相似な形状となる。すなわち、例えば照射光103のスポット形状が円形であれば、反射光105のスポット形状も略円形となる。あるいは、プローブ11の形状が円柱状や円筒状である場合など、プローブ11の表面のうち照射部104が曲面である場合は、反射光105のスポット形状は照射光103よりもプローブ11の幅方向に広がった形状となる。
素子14は、プローブ11の表面から発せられた反射光105を受光する。素子14が反射光105を受光すると、受光した反射光105の光量に比例した電流値を有する電気信号を出力する。すなわち、素子14は光を検出する光検出手段である。
素子14の種類は特に限定はされない。例えば素子14としては、フォトダイオード(PD)や、光位置センサ(PSD)、CCDなどの画素に区分された位置敏感型の光電変換素子(イメージセンサ)を用いることができる。素子14は、これらの受光素子の中でも、コストや信号処理の容易性の観点からフォトダイオードであることが好ましい。
演算手段15は、素子14から入力される電流値に基づいて、素子14上に照射された反射光105のスポットの位置を取得する手段である。本実施形態に係る装置1は、後述するように遮光板13を設けることによって素子14上における反射光105のスポットの位置とスポットの面積とが1対1に対応するように構成してある。すなわち、反射光105のスポットの単位面積あたりの光量が一定であれば、素子14から出力される電気信号と素子14上における反射光105のスポットの位置とが1対1に対応する。したがって、素子14から出力される電気信号に基づいて、素子14上における反射光105のスポットの位置を取得することができる。また、素子14上における反射光105のスポットの位置は、プローブ11の変位に伴って変位するため、素子14上における反射光105のスポットの位置を取得することで、プローブ11の変位を計測することができる。すなわち、演算手段15は変位取得手段である。
演算手段15は、素子14からの電流信号を電圧信号に変換する。演算手段15は、電圧信号と素子14上における反射光105のスポットの位置との対応関係を表すテーブルを参照することで、素子14上における反射光105のスポットの位置を取得する。そしてさらに、素子14上における反射光105のスポットの位置とプローブ11の変位との対応関係を表すテーブルを参照することで、プローブ11の変位量を計測する。
本実施形態に係る装置1はさらに、遮光板13を反射光105の光路上に有する。以下、図1および図2を用いて遮光板13について詳細に説明する。図2は、本実施形態に係る遮光板13、素子14、および反射光105のスポットを模式的に示す図である。照射部104の形状が曲面であり、照射光103のスポットの形状が図1の紙面奥行き方向(x方向)に長軸を有する楕円形である場合について説明する。なお、照射光103のスポットの形状や照射部104の形状はこれに限定されるものではない。
図2(a)は、遮光板13を反射光105の光路上に配置しなかった場合を示している。
照射部104が曲面である場合には、反射光105のスポットの形状は図5(a)に示すように、放物線状の帯状となる。プローブ11がyz平面内で変位すると、反射光105のスポット151はそれに伴ってy軸方向に変位する。
図2(b)は、本実施形態に係る遮光板13を模式的に示す図である。図1(c)に示すように、本実施形態に係る遮光板13は、三角形の形状を有する透過部131と遮光部132とを有する。透過部131は光を透過させる部分であり、遮光部132は光を遮光する部分である。遮光板13を反射光105の光路上の照射部104と素子14との間に配置すると、反射光105は遮光板13上にスポット152として投影される(図2(c))。遮光板13は、遮光板13上に投影されたスポット152のうち、遮光部132に投影された光を遮光し、透過部131に投影された光を選択的に透過させる。
遮光板13の遮光部132の材質は、反射光105を遮光することができる材質であれば特に限定はされない。また、透過部131を有する遮光板13は、板状の遮光部132から透過部131に相当する部分をくり抜くことで容易に作製することができる。なお、本実施形態では遮光板13を、図2(b)に示すような三角形の透過部131を有する遮光板としたが、透過部131の形状はこれに限定はされない。すなわち、透過部131の反射光105の変位方向(y方向)に垂直な方向の幅Xが、y方向に沿って単調に増加するか、または単調に減少するようにすればよい。これにより、スポット152のうち、透過部131に投影される部分の面積を、反射光105の変位に伴って単調に増加または減少させることができる。その結果、素子14上におけるスポットの位置と素子14が受光する光量とを1対1に対応させることができる。すなわち、本実施形態に係る遮光板13は、光量変化手段である。
プローブ11が図1の矢示A1方向(yz平面内)に変位すると、それに伴って遮光板13上におけるスポット152の位置もy軸方向に変位する。したがって、プローブ11の自由端11bが振動している場合には、スポット152はスポット152aからスポット152dの間で振動する。なお、スポット152aおよびスポット152dはそれぞれ、プローブ11の自由端11bの位置が最も高い位置にある場合と最も低い位置にある場合に対応する。また、スポット152bおよびスポット152cはそれらの中間位置にある場合を表す。
図2(d)は、遮光板13を反射光105の光路上に配置した場合の、素子14上に投影される光を示している。上述の通り、遮光板13上に投影されたスポット152のうち、透過部131に投影された部分の光は遮光板13を透過する。そして、遮光板13を透過した光は素子14上にスポット153として投影される。なお、スポット153a〜dはそれぞれ、図2(c)の遮光板13上に投影されたスポット153a〜dにそれぞれ対応する。このように、三角形の透過部131を有する遮光板13を反射光105の光路上であって、素子14と照射部104の間に配置することで、素子14上におけるy方向の変位ごとに異なる面積のスポット153を投影することができる。
ここで、従来例に係るプローブ変位計測装置3(以下、「装置3」と称する)について、図3を用いて説明する。装置3は、図1に示した第1の実施形態に係る装置1において、素子14と遮光板13の代わりに、受光素子34(以下、「素子34」と称する)を用いたプローブ変位計測装置である。
素子34は、2分割の受光素子である。すなわち、素子34は直線状の分割線341によって分割された、2つの受光面(第1の受光面34aおよび第2の受光面34b)を有している。2つの受光面は、それぞれの受光面が受光した光量に比例した電流値を有する電気信号を出力する。装置3においては、図3(a)および図3(b)に示すように、素子34は分割線341とyz平面とが直交するように配置されている。
図3(b)および図3(c)は、反射光105が素子34上にスポット351として投影されている様子を模式的に示している。スポット351は素子34上において、プローブ11の変位に伴って第1の実施形態と同様、y方向に変位する。
装置3の演算手段15は、各受光面(34aおよび34b)からの電気信号の電圧値の差分ΔV(式(1))を演算し、取得する。
ΔV=V−V 式(1)
ここで、VおよびVはそれぞれ、受光面34aおよび受光面34b上に照射された反射光105の光量に比例する電気信号の電圧値を示す。このとき、式(1)の代わりに式(2)で示される値ΔV´を取得してもよい。
ΔV´=ΔV/(V+V)=(V−V)/(V+V) 式(2)
なお、演算手段15は式(1)または式(2)で表される演算を行うため、各受光面(14aおよび14b)からの電流信号を、電流電圧変換回路を用いて電圧信号に変換した上で演算処理を行ってもよい。演算処理を行う際には、加算回路や差動増幅回路を用いて信号の演算を行うことが好ましい。
式(1)または式(2)で表される値は、素子34上におけるスポット351の、分割線341と垂直な方向(y方向)の変位に1対1で対応する。そのため、演算手段15は式(1)または式(2)を取得することで、素子34上におけるスポット351のy方向の変位を取得することができる。
スポット351が受光面34aおよび受光面34bに等しい面積で照射されている場合、式(1)または式(2)の演算結果はゼロとなる。一方、スポット351が各受光面(34aおよび34b)に異なる面積で照射されている場合は、式(1)または式(2)の演算結果は各受光面上でのスポット351の面積に対応して、正または負の値となる。
装置3においては、装置3を使用する前に、プローブ11の変位がゼロの状態においてスポット351が受光面34aおよび受光面34bに等しい面積で照射されるように、素子34の位置を調整する。すなわち、プローブ11の変位がゼロの状態において式(1)または式(2)で表される演算結果がゼロになるようにしておく。これにより、プローブ11が変位するとプローブ11の変位に伴ってスポット351の素子34上におけるy方向の変位が発生し、各受光面におけるスポット351の面積が変化するようになる。その結果、演算手段15によって式(1)または式(2)の演算を行うことで、スポット351の素子34上におけるy方向の位置を取得することができる。さらに、取得したスポット351の素子34上におけるy方向の位置に対応した、プローブ11のyz平面内における変位も取得することができる。
なお、プローブ11の自由端11bがyz平面内で振動している場合は、素子34上におけるスポット351もy方向に振動する。するとこれに伴って、式(1)または式(2)の演算結果の電圧信号も、プローブ11およびスポット351の振動の周波数で振動する。また、電圧信号の信号強度はスポット351の光強度と、スポット351の各受光面における面積に比例する。さらに、電圧信号の信号強度はプローブ11の振動の振幅に比例する。このため、スポット351の素子34上におけるy方向の変位を計測することで、プローブ11のyz平面内における振動の振幅を計測することができる。
ここで、式(1)または式(2)を用いてスポット351の素子34上における変位(位置)を一意に決定するためには、スポット351が常に分割線341上に存在していることが必要である。したがって、図3に示すような従来の光てこ方式を利用した装置3によって計測が可能な条件は、以下の式で表される。
Δy≦h/2 式(3)
ここで、スポット351のy方向の長さをh、スポット351の分割線341からの変位量をΔyとする。
一方、プローブ11のyz平面内における変位が大きくなった場合、図3(c)のように素子34上におけるスポット351の変位量も大きくなる。このとき、図3(c)に示すように、スポット351が分割線341上に存在しなくなる場合が生じる。すなわち、式(3)を満たさなくなる。このような場合には、装置3ではスポット351の素子34上における位置を正確に計測することができないため、プローブ11のyz平面内における変位を正確に計測することができない。このように、従来の光てこ方式を利用した装置3では、プローブ11の大きな変位を計測することが困難であった。
一方、本実施形態に係る装置1では遮光板13を用いることで、素子14上におけるy方向の変位ごとに異なる面積のスポット153を素子14に投影するように構成した。これにより、従来の光てこ方式のように反射光105のスポットが常に分割線上にくるような範囲を超えて、プローブ11の変位を計測できる。すなわち、従来の光てこ方式のプローブ変位計測装置では計測することが困難であった、プローブ11のyz平面内における大きな変位を計測することができる。
なお、装置3においても素子34を照射部104に十分近づけて配置することによって、スポット351の素子34上における変位量を小さくすることはできる。これにより、理論上はプローブ11の変位が大きい場合についても、プローブ11の変位を計測することができる。しかし現実的には、素子34を照射部104に近づけると、プローブ11の周囲に配置された他の部品や計測装置と物理的に干渉してしまったり、プローブ11の変位を妨げたりしてしまうという不具合を生じる。そのため、素子34とプローブ11とはある程度離して配置することが好ましい。
一方、第1の実施形態に係る装置1によれば、プローブ11の変位が大きい場合であってもプローブ11の周囲に配置された他の部品等に干渉しない位置に素子14を配置することができる。したがって、設計の自由度を保ちつつ、プローブ11の大きな変位を計測することのできるプローブ変位計測装置を提供できる。
第1の実施形態では三角形の透過部131を有する遮光板13を用いる形態について述べたが、遮光板13を使用しない方法もある。その場合は、図2(e)に示すような、三角形の外形を有する受光素子140を用いてもよい。装置1において遮光板13および素子14の代わりに、受光素子140を用いることで、第1の実施形態と同様の効果を得ることができる。
(第2の実施形態)
次に、本発明を適用した第2の実施形態に係るプローブ変位計測装置4(以下、「装置4」と称する)について説明する。以下、第1の実施形態と共通する部分の説明は割愛し、第2の実施形態に特有の構成について説明を行う。
本実施形態に係る装置4は、第1の実施形態に係る装置1の素子14および遮光板13の代わりに、受光素子44(以下、「素子44」と称する)および遮光板13を有する。それ以外の構成については図1に示した装置1と同様である。
素子44は図4(a)に示すように、直線状の分割線441によって分割された2つの受光面(第1の受光面44aと第2の受光面44b)を有する受光素子である。本実施形態では素子44を、従来の光てこ方式の変位計測装置と同様に、分割線441がyz平面と直交するように配置する。
遮光板43は図4(b)に示すように、三角形の形状を有する二つの透過部431(第1の透過部431aおよび第2の透過部431b)と、遮光部432とを有する。また、第1の透過部431aと第2の透過部431bとは、頂点434を共有するように配置されていることが好ましい。装置1と同様、遮光板43は反射光105の光路上に配置する。その際、透過部431を素子44上に投影した投影面が、第1の透過部431aについては第1の受光面44a上に、第2の透過部431bについては第2の受光面44b上に存在するように配置する。すなわち、頂点434と分割線441とが、照射部104から見たときに重なるように配置する。
遮光板43を反射光105の光路上の照射部104と素子44との間に配置すると、反射光105は遮光板43上にスポット155として投影される(図4(c))。遮光板43は、遮光板43上に投影されたスポット155のうち、遮光部432に投影された光を遮光し、透過部431に投影された光を選択的に透過させる。このとき、第1の透過部431aを透過した光は第1の受光面44a上に、第2の透過部431bを透過した光は第2の受光面44bに投影される。
なお、第1の透過部431aおよび第2の透過部431bの形状は特に限定はされない。すなわち、各透過部431の反射光105の変位方向(y方向)に垂直な方向の幅Xがそれぞれ、y方向に沿って単調に増加するか、または単調に減少するようにすればよい。これにより、スポット155のうち、各透過部431に投影される部分の面積を、反射光105の変位に伴って単調に増加または減少させることができる。その結果、各透過部431を透過し、各受光面(44aおよび44b)に投影されるスポット156の面積も単調に増加または減少させることができる。これにより、素子44上におけるスポットの位置と素子44が受光する光量とを1対1に対応させることができる。すなわち、本実施形態に係る遮光板43は、光量変化手段である。
次に、本実施形態に係る素子44上における反射光105の挙動について、図4を用いて説明する。ここでは、照射部104の形状が曲面であり、照射光103のスポットの形状が図1の紙面奥行き方向(x方向)に長軸を有する楕円形である場合について説明する。なお、照射光103のスポットの形状や照射部104の形状はこれに限定されるものではない。
図4(a)は、遮光板43を反射光105の光路上に配置しなかった場合を示している。照射部104が曲面である場合には、反射光105のスポットの形状は図4(a)に示すように、放物線状の帯状となる。プローブ11がyz平面内で変位すると、素子44上に投影された反射光105のスポット451はy軸方向に変位する。
図4(c)に示すように、遮光板43を反射光105の光路上の照射部104と素子44との間に配置すると、反射光105は遮光板43上にスポット155として投影される。遮光板43は、遮光板43上に投影されたスポット155のうち、遮光部432に投影された光を遮光し、透過部431に投影された光を選択的に透過させる。
プローブ11が図4(a)の矢示A1方向に変位すると、それに伴って遮光板43上におけるスポット155の位置もy軸方向に変位する。したがって、プローブ11の自由端11bが振動している場合には、スポット155はスポット155aからスポット155dの間で振動する。なお、スポット155aおよびスポット155dはそれぞれ、プローブ11の自由端11bの位置が最も高い位置にある場合と最も低い位置にある場合に対応する。また、スポット155bおよびスポット155cはそれらの中間位置にある場合を表す。
図4(d)は、遮光板43を反射光105の光路上に配置した場合の、素子44上に投影される光を示している。上述の通り、遮光板43上に投影されたスポット155のうち、透過部431に投影された部分の光は遮光板43を透過する。そして、遮光板43を透過した光は素子44上にスポット156として投影される。なお、スポット156a〜dはそれぞれ、図4(c)の遮光板43上に投影されたスポット155a〜dにそれぞれ対応する。このように本実施形態によれば、素子44上におけるy方向の変位に応じて異なる面積のスポット156を、各受光面(44aおよび44b)投影することができる。
本実施形態に係る演算手段15は、装置3と同様に、式(1)または式(2)の演算結果をもとに素子44上におけるスポット156の位置を取得することができる。ただし本実施形態の場合は従来とは異なり、スポット156が分割線441上に存在していない場合でも、スポット156の変位に伴って、各受光面からの電気信号の電流値または電圧値が変化する。そのため、スポット156が分割線441上に存在しない範囲においても、式(1)または式(2)を用いて素子44上におけるスポット156の位置を取得することができる。
また本実施形態においても、装置3の場合と同様、プローブ11の変位がゼロの状態においてスポット156が第1の受光面44aおよび第2の受光面44bに等しい面積で照射されるように、素子44の位置を調整する。これにより、プローブ11の変位の方向を式(1)または式(2)の演算結果の正負を判断することによって容易に知ることができる。また透過部431の形状は、反射光105の形状や光量、素子44の感度に応じて、決定することが好ましいが、本実施形態の場合は第1の実施形態の場合よりも透過部431の設計の自由度が増すため好ましい。
(第3の実施形態)
次に、本発明を適用した第3の実施形態に係るプローブ変位計測装置5(以下、「装置5」と称する)について説明する。以下、第1の実施形態と共通する部分の説明は割愛し、第3の実施形態に特有の構成について説明を行う。
本実施形態に係る装置5は、第1の実施形態に係る装置1の遮光板13の代わりに、遮光板53を有する。それ以外の構成については図1に示した装置1と同様である。なお、素子14の代わりに第2の実施形態と同様に2分割の素子44を使用してもよい。ここでは、照射部104の形状が平面であり、照射光103のスポットの形状が図1の紙面奥行き方向(x方向)に長軸を有する楕円形である場合について説明する。なお、照射光103のスポットの形状や照射部104の形状はこれに限定されるものではない。
図5(a)は、遮光板53を反射光105の光路上に配置しなかった場合を示している。照射部104が平面である場合には、反射光105のスポットの形状は図5(a)に示すように、楕円形となる。プローブ11がyz平面内で変位すると、素子14上に投影された反射光105のスポット157はy軸方向に変位する。
図4(b)及び図4(c)に示すように、本実施形態に係る遮光板53は、遮光板53に投影される反射光のスポット158の変位方向(y方向)に沿って、光透過率が線形的に変化する遮光板である。ここで、図4(b)および図4(c)では、色の濃淡で遮光板53の光透過率を表現している。すなわち、色が濃い(黒に近い)ほど光透過率が低く、色が薄い(白に近い)ほど光透過率が高いことを示している。なお、このような遮光板53としてはNDフィルタなどを用いることができる。また、本実施形態では反射光のスポット158の変位方向(y方向)に沿って光透過率が連続的に変化するものとしたが、光透過率がステップ的に変化するものを用いることもできる。
遮光板158に投影された光は、その投影位置に応じた光透過率で、一部が遮光され、一部が透過される。つまり、遮光板158によって反射光105の光強度を変化させる。このように、スポット158の変位方向に沿って光透過率が線形的に変化する遮光板53を用いることで、素子44が受光する反射光105の光量と、素子44上における反射光105のスポットの位置とが1対1に対応する。すなわち、本実施形態に係る遮光板53は、光量変化手段である。これにより、他の実施形態と同様に、プローブ11の変位を取得することができる。
(第4の実施の形態)
次に、本発明を適用したプローブ変位計測装置を備えたイオン化装置を含む情報取得システムの構成について、図6を用いて説明する。図6は、本実施形態に係る情報取得システム600の構成を模式的に示す図である。
本実施形態に係るイオン化装置60(以下、「装置60」と称する)は、プローブ変位計測装置6(以下、「装置6」と称する)と、試料661を保持するステージ61と、液体供給手段62と、イオン取込部63と、電界発生手段64と、制御部68と、を有する。装置6の構成は、装置1や装置4、装置5の構成と同様である。
イオン取込部63は、電界発生手段64を構成する電圧印加装置64aに接続されたイオン引出電極631を有する。また、イオン取込部63は質量分析部65に接続され、イオン取込部63から取り込んだイオンを質量分析部65へと移送可能に構成してある。
本実施形態に係る装置60において、試料661は、基板662上に載置された状態で、ステージ61上に載置される。ステージ61はステージ制御手段611に接続されている。ステージ61は、試料661をステージ61に対して水平な方向(XY方向)に移動させるためのXYステージ61aと、試料661をステージ61に対して垂直な方向(Z方向)に移動させるためのZステージ61bを有する。また、ステージ制御手段611は、XYステージ61aを移動制御するためのXY制御部611aと、Zステージ61bを移動制御するためのZ制御部611bを有する。なお、Z制御部611bはZステージ61bをZ方向に振動させることもできる。
すなわち、XY制御部611aとXYステージ61aは、プローブ11と試料661の表面とをXY方向に相対的に走査するXY走査手段である。また、Z制御部611bとZステージ61bは、プローブ11と試料661との間の距離をZ方向に変化させるZ走査手段(距離変化手段)である。なお、本実施形態ではXY走査手段およびZ走査手段として、試料661を移動させることによって試料661とプローブ11とを相対的に走査する手段を採用したが、これに限定はされない。すなわち、プローブ11をXY方向またはZ方向に移動させる手段によって、XY走査手段およびZ走査手段を実現してもよい。
プローブ11は、その内部もしくは外部に流路(不図示)を有する。液体供給手段62から供給された液体はプローブ11の流路(不図示)を通り、プローブ11の自由端11b近傍に移動する。その後、プローブ11の自由端11bが試料661に近づくと、試料661の表面の一部の領域に液体が配置される。試料661の表面の一部の領域に配置された液体は、試料661とプローブ11の自由端11bとの間で液架橋663を形成する。
なお、本明細書において「液架橋」とは、プローブ11から供給された液体が、少なくとも、プローブ11および試料661の両方に物理的に接触している状態の液体のことを指す。液架橋663は、液体の表面張力等によって形成される。液架橋663には試料661に含まれる物質が溶解する。本実施形態において、液架橋663は大気圧環境下で形成される。本実施形態に係る液架橋663の体積は微量であり、1×10−12mL程度である。液架橋663は、試料661の表面上の微小領域上に配置され、この液架橋663の、試料661の表面上における面積は、1×10−8程度の面積である。
液体供給手段62から供給する液体としては、試料661に含まれる被分析物質を溶解することのできる溶媒を用いることが好ましい。なおこのとき、溶媒に予め被分析物質を溶解させた溶液を、液体供給手段62から供給する液体として用いてもよい。液架橋663を形成すると、液架橋663を形成する液体中に試料663の表面に含まれる物質が溶解する。なお、液架橋663は、プローブ11から供給される液体の量が不足している場合や、液体が自由端11bの基板662の反対側に付着している場合には形成されない。
また、液体供給手段62から供給する液体は導電性の流路(不図示)を経由してプローブ11の内部または外部の流路(不図示)へと導かれる。その際、電圧印加手段64bは導電性の流路(不図示)を介して液体に電圧を印加する。液体に印加する電圧の種類は特に限定はされず、直流電圧、交流電圧、パルス電圧、あるいはゼロボルトのいずれであっても良い。
本実施形態ではこのように、後述するイオン引出電極631に印加する電圧とは異なる電圧をプローブ11の流路を通る液体に印加することで、該液体が接するプローブ11の自由端11bと後述するイオン引出電極631との間に電界を形成する。なお、この電界を形成することができる限りにおいて、電圧印加手段64bが印加する電圧はゼロボルトであってもよい。なお、電圧が印加された液体の電位と、電圧が印加されたイオン引出電極631の電位との間の電位差は、0.1kV以上10kV以下となるようにすることが好ましく、より好ましくは3kV以上5kV以下である。電位差をこの範囲内の値とすることで、後述するエレクトロスプレーの発生によるイオン化を効率的に行うことができる。
プローブ11としては、微小体積の液体を供給することのできる細管を用いることが好ましい。この細管の材質は特に限定はされず、絶縁体、導電体、半導体のいずれであってもよい。プローブ11として、例えばシリカキャピラリやメタルキャピラリを好適に用いることができる。なお、導電性の流路(不図示)は、液体供給手段62から供給された液体がプローブ11の内部または外部の流路を通り、プローブ11の自由端11bまで導かれる流路全体のうちの一部分を構成すればよく、その位置は特に限定はされない。例えば、プローブ11の内部または外部の流路や、プローブ11と液体供給手段62とを接続するための配管に、導電性の流路の全部又は一部分が包摂されていてもよい。
さらに、図6では液体供給手段62がプローブ11と物理的に接続されている構成を示しているが、これらは空間的に離間していてもよい。例えばプローブ11から空間的に離れた液体供給手段62から、プローブ11に向かってインクジェット法によって液体を吐出して飛翔させ、プローブ11に付着させることもできる。
振動子102は、プローブ11に振動を提供する手段である。振動子102によって振動を提供されたプローブ11の自由端11bが振動する。なお、本明細書においてプローブ11が振動するとは、プローブ11の自由端11bの位置が空間的に変位するようにプローブ11が運動することをいう。特に、図6に示すようにプローブ11の長軸方向と交差する方向に、プローブ11を屈曲振動させることが好ましい。この振動によって、プローブ1の自由端11bと試料661との間の距離が周期的に変化する。
振動子102の種類は、電圧印加装置1021から電圧が印加されたときに、再現性のある一定の振幅を有する振動を示すものであれば、特に限定はされない。例えば振動子102として、圧電素子や振動モータなどを用いることができる。圧電素子や振動モータなどは、高振動数の振動の提供が可能であり、かつ耐久性が高いため、本実施形態に係る振動子102として適している。
振動子102を配置する位置は、プローブ11に振動を伝達できる位置である限り、特に限定はされない。なお、振動子102はプローブ11が静止している状態で、必ずしもプローブ11に接触している必要はない。しかしその場合は、プローブ11の振動の1サイクルのうちのいずれかの時点で、振動伝達のためにプローブ11に接触する必要がある。なお、複数の振動子102を対向させ、プローブ11を挟むように配置しても良い。これにより、プローブ11に安定して振動を与えることができる。
なお、本実施形態では振動子102がプローブ11を振動させる方法として、振動子102そのものが振動し、その振動を伝達することによってプローブ11を振動させる形態とした。しかし、例えばプローブ11の材質を圧電素子等で構成し、プローブ11に電圧を印加することによってプローブ11を振動させても良い。あるいは、振動子102によってプローブ11に磁場を印加することによってプローブ11を振動させる形態としても良い。
試料661との間に液架橋663が形成されたプローブ11に対して振動子102によって振動を伝達すると、液架橋663を形成していた液体がプローブ11の自由端11bに付着したまま、プローブ11が振動する。すなわち、プローブ11が振動することにより、プローブ11と試料661とが液体を介してつながった状態と、プローブ11と試料661とが離れた状態と、を分離して発生させることができる。
振動によりプローブ11が試料661から離れた状態では、液架橋663を形成していた液体は、イオン引出電極631を有するイオン取込部63に近づく。このとき、イオン引出電極631には、電圧印加装置64aによってプローブ11に印加されている電圧とは異なる電圧が印加されている。つまり、自由端11bに付着した液体とイオン引出電極631との間には電界が形成されている。
この電界により、液体はプローブ11のイオン取込部63側の側面に移動し、テイラーコーン664を形成する。なお、図6ではプローブ11の長軸方向を形成する連続面上にテイラーコーン664が形成されている。しかし、テイラーコーン664が形成される位置はイオン引出電極631と液体の間の電界や、プローブ11の液体との濡れ性等によって影響を受けるため、これ以外の面を含む位置にテイラーコーン664が形成されても良い。
テイラーコーン664の先端部分では電界が大きくなり、液体からエレクトロスプレーが発生し、微小な帯電液滴666が発生する。帯電液滴666はイオン引出電極631と液体との間に発生された電界により、イオン引出電極631へ向かって飛翔する。電界の大きさを適当に設定することで、帯電液滴666がレイリー分裂を生じ、特定の成分のイオンを発生させることができる。帯電液滴666やイオンは気流の流れと電界に従ってイオン取込部63へと導かれる。このとき、テイラーコーン664を形成する溶液の周囲の電界がプローブ11の振動に伴って変化するように、プローブ11の振動はイオン取込部63に近接する方向への運動を含むことが好ましい。また、イオン取込部63は室温から数百℃の間の特定の温度に加熱しておくことが好ましい。これにより、微小な帯電液滴666からの溶媒の蒸発を促進させ、イオンを発生効率を上昇させることができる。
ここで、レイリー分裂とは、帯電液滴666がレイリー極限に達し、帯電液滴666中の過剰な電荷が二次液滴として放出される現象のことをいう。テイラーコーン664の先端部分から帯電液滴666を含むエレクトロスプレーが発生してレイリー分裂が生じると、帯電液滴666に含まれる成分が気相イオンとして発生することが知られている。また、エレクトロスプレーが発生するしきい値電圧VcはVc=0.863(γd/ε0.5(ここで、γ:液体の表面張力、d:液体とイオン引出電極間の距離、ε:真空の誘電率)であることが知られている(J.Mass Spectrom.Soc.Jpn.,Vol.58,139−154,2010)。
本実施形態においては、プローブ11が、試料661の表面上の微小領域への液架橋663の形成手段であり、イオン化のためのテイラーコーン664の形成手段となっている。本実施形態に係る装置60は、試料661の表面上の微小領域に存在する物質の選択的なイオン化を高速に行なうことができることが特徴である。試料661の表面上の物質を高速にイオン化するために、プローブ11を高速で振動させることが好ましい。
また、本発明に係る装置60の他の特徴は、エレクトロスプレーの発生および停止のタイミングを制御することができることにある。そのため、プローブ11の自由端11bと試料661との間に液架橋663が形成されるタイミングと、エレクトロスプレーが発生するタイミングとが明確に分離されていることが好ましい。これにより、液架橋663が形成されている間はエレクトロスプレーが発生せず、この間は液架橋663を形成する液体に電荷が供給されるだけとなる。その後プローブ1の端部がイオン引出電極631へと接近してエレクトロスプレーが発生する際には、液体に十分な電荷が蓄積されているために効率的にエレクトロスプレーを発生させることができる。そのためには、プローブ11の振幅を大きくすることが好ましい。
なお、本明細書では大気圧下におけるイオン化について記載したが、減圧下におけるイオン化にも応用することができる。また、本実施形態に係る装置60によるイオン化の対象となる試料661中の物質も特に限定はされない。微小領域中の物質を大気圧下でソフトにイオン化できることから、本実施形態に係る装置60は、脂質、糖、蛋白質などの生体分子を含む生体試料のイオン化に特に好適に用いることができる。
装置6は、第1の実施形態または第2の実施形態に記載の方法によって、プローブ11の変位を計測する。また、プローブ11が振動している場合には、その振幅や周波数、位相を取得する。これらのプローブ11の変位に関する情報は、制御部68へと送信される。
制御部68はプローブ11の変位に関する情報を取得し、その情報に基づいてXY制御部611aまたはZ制御部611bまたは電圧印加装置1021へと制御信号を出力する。具体的には、振動子102によって振動子11を振動させていない場合には、プローブ11の変位が一定となるように、Z制御部611bに制御信号を出力する。また、振動子102によって振動子11を振動させている場合には、プローブ11の振幅が一定となるように、Z制御部611bまたは電圧印加装置1021に制御信号を出力する。
このように、制御部68にはフィードバック回路を設けることが好ましい。上述のフィードバック制御を行うことで、プローブ11の安定な振動状態を自動的に維持できるように調整することができる。また、装置60内部の電気配線、部品等が有する電気容量等により、プローブ11やZステージ61bの振動のタイミングに微小時間のずれが生じることがある。この場合には、フィードバック回路にタイミングを制御するために遅延回路を設けることで、制御信号と実際のプローブ11およびZステージ61bの振動のタイミングのずれを補償することができる。
このようなフィードバック制御は、表面に凹凸のある試料661について、プローブ11で試料661の表面をXY方向に走査しながらイオン化を行う際に特に有用である。例えばプローブ11を振動させながらイオン化を行う場合においては、上述のフィードバック制御を行うことで、プローブ11の振動の周期の中における、液架橋663の形成時間とテイラーコーン664の形成時間とを常に一定に保持することができる。これにより、試料661の表面上における各XY座標における、イオン化の条件をそろえることが可能となる。装置6によるイオン化では、液架橋663に対する試料661の溶解と、エレクトロスプレーの発生の条件によって、イオン化される物質が変わってしまう可能性がある。そのため、上述のようにフィードバック制御によってイオン化の条件をそろえることで、装置6の安定的な動作が可能となる。
また、プローブ11の自由端11bと試料661との間の距離を適切な距離に保つことで、プローブ11の自由端11bが試料661に衝突して試料661を損傷してしまうことを抑制することができる。
また、上述のフィードバック制御を行うことで、試料661の表面上の凹凸構造に沿って、プローブ11を走査することができる。つまり、本実施形態に係る装置60によれば、プローブ11のXY走査に伴うZ座標を記録することで、試料661の表面形状の情報も取得することができる。
本実施形態に係る情報取得システム600(以下、「システム600」と称する)は、装置60と、質量分析部65と、イオン数計測部67と、画像データ生成部69と、表示部70と、を有する。なお、本発明は装置60と質量分析部65とを有する質量分析装置にも適用することができる。
ここで、イオン数計測部67は質量分析部65に内蔵されていてもよい。あるいは、質量分析部65にイオン数計測部67に外部から接続してもよい。いずれの場合であっても、イオン取込部63から移送され、質量分析部65に導入されたイオンの数を計測することができる。また、イオン数計測部67はゲート信号の入力端子を内蔵している。この入力端子に適切な信号を入力することにより、イオン数計測部67の駆動を制御することができる。
イオン数計測部67としては、マイクロチャンネルプレートなどのイオン検出器と電気信号の計測器(例えばADC(Analog−to−Digital Converter)やTDC(Time−to−Digital Converter))を用いることができる。また、イオン検出器と電気信号の計測器の間には電気信号の波形を調節するための装置(例えばディスクリミネータや増幅回路)を設けることもできる。なお、イオン数計測部67の有するゲート信号の入力端子は、電気信号の計測器に内蔵されている。
制御部68は、試料661の表面におけるイオン化すべき部分を特定する機能を有する。言い換えれば、制御部68は、試料661の表面において質量分析部65が分析すべき部分を特定する機能を有する。そして制御部68は、特定した部分に存在する試料661中の物質が液架橋663を介してテイラーコーン664に含まれるように、XYステージ61aおよびZステージ61bによって試料661の位置を移動させる。
装置60において発生したイオンは、差動排気系を通じて質量分析部65へ導入される。そして、質量分析部65においてイオンの質量電荷比が計測される。質量分析部65としては、四重極型質量分析計、飛行時間型質量分析計、磁場偏向型質量分析計、イオントラップ型質量分析計、イオンサイクロトロン型質量分析計など任意のものを利用することができる。また、イオンの質量電荷比(質量数/電荷数)とイオンの発生量の相関を計測することで、質量スペクトルを得ることもできる。
一般にイオン数計測部67は、質量分析部65が出力するトリガ信号を断続的に受信し、トリガ信号受信後にイオン数を計測する。トリガ信号としては、質量分析部65中のイオン分離部の構成によって異なる信号を用いる。
例えば、質量分析部65として四重極型質量分析計を用いた場合、四重極電極への高周波電圧の印加を開始する時のタイミングを示す信号をトリガ信号として用いる。また、質量分析部65として飛行時間型質量分析計を用いた場合、イオンの飛行時間を計測するためにイオンを加速する際に印加するパルス電圧の、印加の開始するタイミングを示す信号をトリガ信号として用いる。また、質量分析部65として磁場偏向型質量分析計を用いた場合、セクタ型電極への磁場の印加を開始するタイミングを示す信号をトリガ信号として用いる。また、質量分析部65としてイオントラップ型質量分析計を用いた場合、イオントラップへイオンを導入するタイミングを示す信号をトリガ信号として用いる。
本実施形態に係る演算手段15は、式(2)または式(3)で示される電圧値の差分が閾値よりも大きくなっている時間を取得する。このようにして取得した時間は、プローブ11の自由端11bがイオン引出電極631に接近している時間であり、テイラーコーン664が形成され、イオンが発生している時間であると考えられる。なお閾値は、プローブ11のばね定数や長さ、振動子102が付与する振動の振幅などに基づいて任意の値に設定することができる。演算手段15は、取得した時間に対応するイオン発生タイミングを示す信号を、制御部68に出力する。
制御部68にイオン発生タイミングを示す信号が入力されると、制御部68はイオン数計測部67のゲート信号の入力端子へと電圧パルスを出力する。イオン数計測部67は、ゲート信号の入力端子へ信号が入力されている間のみ、イオンの数を計測する。これにより、装置60においてイオンが発生している時間にのみ、イオン数計測部67を動作することができる。すなわち、制御部68は、プローブ11の変位に基づいて、イオン数計測部67の動作タイミングを制御する。その結果、イオンが発生していないタイミングにおける無駄な計測を行わずに済む。ここでイオンが発生していないタイミングとは、具体的には、液架橋663が形成されている間や、液架橋663が形成されてからテイラーコーン664が形成されるまでの間などを指す。これにより、得られる計測データの信号に含まれるノイズ信号を低減させることや、計測データのデータサイズを小さくすることができる。
また、XY制御部611aによってXYステージ61aの位置を制御してイオン化を行うことにより、試料661のうち特定のXY座標における微小領域に含まれる試料661をイオン化することができる。そして、画像データ生成部69は、イオン化を行ったときの自由端11bの試料661に対するXY平面上の位置の情報(各座標(X,Y))と、その位置において質量分析部65によって分析した質量の情報(質量スペクトル)と、を統合する。すなわち画像データ生成部69は、質量スペクトルの二次元分布データである、質量画像データを生成する。なおこの方法で得られるデータは、微小領域の座標(X,Y)および質量スペクトル(m/z,イオン数)により構成される4次元データとなる。
このようにして取得した質量画像データをもとに、任意の質量電荷比におけるイオン量をXY平面上にマッピングすることで、その質量電荷比の成分の分布を示す画像データを生成することもできる。これにより、試料661の表面上の特定の成分の分布を捉えることができる。あるいは、質量スペクトルデータに主成分分析や独立成分分析などの多変量解析を施すことで、試料661に含まれる物質や組成、組織の分布を示す画像データを生成することもできる。なお、これらの画像データの生成は、画像データ生成部69において行う。
画像データ作成部69はさらに、演算手段15から入力されるプローブ11の振動情報に基づいたフィードバック制御信号、すなわちZ制御部611bの制御量から試料661の表面のZ座標を取得する。また、制御部68から試料表面661の表面のXY座標を取得する。画像データ生成部69はこれらの情報を統合し、試料661の表面形状を示す画像データ(構造情報)を生成する。さらにこの3次元画像データをもとに、画像表示するための2次元画像データを生成する。例えば、Z座標の値ごとに異なる色で塗り分けた画像データや、3次元画像データ任意のZ座標のXY平面で切り出したスライス画像データを生成する。
画像データ生成部69が生成した画像データは、フラットパネルディスプレイなどの画像表示部70に入力され、画像表示される。なお画像データは、二次元画像でも三次元画像でも良い。なお、画像表示部70の代わりにプリンターなどの画像形成部に画像データを出力してもよい。
なお、試料661に含まれる物質等の分布を示す画像データにおいては、物質が存在する位置だけでなくその量も併せて表示することができる。その際、量の違いは色や明るさの違いによって表示することができる。また、試料661中に異なる種類の物質等が複数存在する場合は、それぞれの物質を異なる色で表示し、各物質の量の違いを明るさで表示した画像とすることもできる。また、試料661の光学顕微鏡画像を予め取得しておき、本実施形態に係るシステム600で生成した画像と重ね合わせて表示してもよい。さらに、試料661の表面形状を示す画像(凹凸画像)を同時に表示してもよい。
以上のように本実施形態によれば、試料661の成分分布情報を取得するとともに、試料の表面形状情報を取得することができる。
11 プローブ
12 光源(光照射手段)
103 照射光
105 反射光
13 遮光板
14 受光素子
14a 第1の受光面
14b 第2の受光面
141 分割線
15 変位取得手段

Claims (15)

  1. 片持ち梁状のプローブと、
    前記プローブに光を照射する光照射手段と、
    前記光照射手段によって照射され、前記プローブの表面にて反射された反射光をスポットとして受光する受光素子と、を有するプローブ変位計測装置であって、
    前記受光素子が受光するスポットの光量を、前記スポットの前記受光素子上における変位方向に沿って変化させる光量変化手段を有することを特徴とするプローブ変位計測装置。
  2. 前記光量変化手段が、前記受光素子上の前記スポットの面積を、前記スポットの変位方向に沿って変化させる手段であることを特徴とする請求項1に記載のプローブ変位計測装置。
  3. 前記光量変化手段が、前記受光素子上の前記スポットの光強度を、前記スポットの変位方向に沿って変化させる手段であることを特徴とする請求項1または請求項2に記載のプローブ変位計測装置。
  4. 前記光量変化手段が、前記反射光の光路上に配置され、前記反射光の一部を遮光する遮光手段であることを特徴とする請求項1乃至請求項3のいずれか一項に記載のプローブ変位計測装置。
  5. 前記遮光手段を透過した前記反射光の前記スポットの前記受光素子上における面積が、前記スポットの変位方向に沿って変化することを特徴とする請求項1乃至請求項4のいずれか一項に記載のプローブ変位計測装置。
  6. 前記遮光手段を透過した前記反射光の光強度が、前記スポットの変位方向に沿って変化することを特徴とする請求項1乃至請求項5のいずれか一項に記載のプローブ変位計測装置。
  7. 請求項1乃至請求項6のいずれか一項に記載のプローブ変位計測装置と、
    前記プローブの自由端を試料の表面上の微小領域に接近または接触させて、前記微小領域に含まれる物質をイオン化するイオン化手段と、を有するイオン化装置。
  8. 前記変位取得手段によって取得した前記プローブの変位に基づいて、前記プローブと前記試料との間の距離を変化させる距離変化手段をさらに有することを特徴とする請求項7に記載のイオン化装置。
  9. 前記距離変化手段が、前記変位取得手段によって取得した前記プローブの変位または振幅が一定になるように、前記プローブと前記試料との間の距離を変化させることを特徴とする請求項8に記載のイオン化装置。
  10. 前記イオン化手段が、
    前記自由端に液体を供給する液体供給手段と、
    前記物質がイオン化することによって発生するイオンを引き出す引出電極と、
    前記自由端と前記引出電極との間に電界を発生させる電界発生手段と、を有することを特徴とする請求項7乃至請求項9のいずれか一項に記載のイオン化装置。
  11. 請求項7乃至請求項10のいずれか一項に記載のイオン化装置と、
    イオン化した前記物質の質量を分析する分析手段と、を有することを特徴とする質量分析装置。
  12. 前記プローブ変位計測装置によって取得した前記プローブの変位に基づいて、前記分析手段のイオン数計測部の動作タイミングを制御することを特徴とする請求項11に記載の質量分析装置。
  13. 前記プローブと前記試料の表面とをXY方向に相対的に走査するXY走査手段をさらに有する請求項11または請求項12に記載の質量分析装置。
  14. 請求項11乃至請求項13のいずれか一項に記載の質量分析装置と、
    前記質量分析装置によって分析した質量の情報と、
    前記質量の情報を取得した際の前記プローブの自由端の前記試料に対するXY平面上の位置の情報とから、
    前記試料に含まれる成分の分布を示す第1の画像データを生成する画像データ生成部と、を有する情報取得システム。
  15. 前記画像データ生成部が、前記プローブの自由端の前記試料に対するXY平面上の位置の情報と、前記距離変化手段の制御量とから、前記試料の表面形状を示す第2の画像データを生成することを特徴とする請求項14に記載の情報取得システム。
JP2015003581A 2015-01-09 2015-01-09 プローブ変位計測装置、およびそれを有するイオン化装置、質量分析装置、情報取得システム Pending JP2016128789A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015003581A JP2016128789A (ja) 2015-01-09 2015-01-09 プローブ変位計測装置、およびそれを有するイオン化装置、質量分析装置、情報取得システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015003581A JP2016128789A (ja) 2015-01-09 2015-01-09 プローブ変位計測装置、およびそれを有するイオン化装置、質量分析装置、情報取得システム

Publications (1)

Publication Number Publication Date
JP2016128789A true JP2016128789A (ja) 2016-07-14

Family

ID=56384259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015003581A Pending JP2016128789A (ja) 2015-01-09 2015-01-09 プローブ変位計測装置、およびそれを有するイオン化装置、質量分析装置、情報取得システム

Country Status (1)

Country Link
JP (1) JP2016128789A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018136587A (ja) * 2017-02-20 2018-08-30 金陵電機株式会社 姿勢検出機構及びそれを用いた制御方法、並びにレバー装置
WO2023127269A1 (ja) * 2021-12-27 2023-07-06 浜松ホトニクス株式会社 分光装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018136587A (ja) * 2017-02-20 2018-08-30 金陵電機株式会社 姿勢検出機構及びそれを用いた制御方法、並びにレバー装置
WO2023127269A1 (ja) * 2021-12-27 2023-07-06 浜松ホトニクス株式会社 分光装置

Similar Documents

Publication Publication Date Title
JP2016128788A (ja) プローブ変位計測装置、およびそれを有するイオン化装置、質量分析装置、情報取得システム
US9252004B2 (en) Ionization device, mass spectrometry apparatus, mass spectrometry method, and imaging system
JP6339883B2 (ja) イオン化装置、それを有する質量分析装置及び画像作成システム
US8710436B2 (en) Ionization device, mass spectrometer including the ionization device, and image generation system including the ionization device
US9269557B2 (en) Ionization device, mass spectrometer including the ionization device, and image generation system including the ionization device
US9058966B2 (en) Ionization device, mass spectrometer including ionization device, image display system including mass spectrometer, and analysis method
JP5955032B2 (ja) イオン化方法、質量分析方法、抽出方法及び精製方法
KR101764122B1 (ko) 질량분석기 전극 오염물 제거를 위한 레이저 클리닝 장치 및 방법
US20140072476A1 (en) Ionization device, mass spectrometer including the ionization device, and image generation system
CN107438891B (zh) 用于使用二次离子质谱的半导体计量和表面分析的系统和方法
JP2007127653A (ja) Maldiのためのレーザ集束及びスポット撮像を一体に組み込むための装置
US9190257B2 (en) Ionization method, mass spectrometry method, extraction method, and purification method
CN103875057A (zh) 质谱仪
US20140070089A1 (en) Ionization device, mass spectrometer including the ionization device, and image generation system including the ionization device
JP2005098909A (ja) イオン化装置およびこれを用いた質量分析装置
JP6117625B2 (ja) 電子線検査装置及び電子線検査方法
JP2016128789A (ja) プローブ変位計測装置、およびそれを有するイオン化装置、質量分析装置、情報取得システム
JP5885474B2 (ja) 質量分布分析方法及び質量分布分析装置
JP2012003898A (ja) 二次元イメージング装置および方法
TW202131383A (zh) 緊湊型飛行時間質譜分析器
JP2016143482A (ja) イオン化装置、それを有する質量分析装置及び画像作成システム
RU2007140231A (ru) Способ формирования масс-спектрометрического изображения в условиях окружающей среды с помощью масс-спектрометрии с применением ионизации лазерной десорбцией при содействии электрораспыления
JP2016028228A (ja) イオン化装置、およびこれを有する質量分析装置、画像生成システム、画像表示システム、イオン化方法
US20200411301A1 (en) Apparatus and method for contactless sampling of solutions and interface to mass spectrometry
JP2017033659A (ja) イオン化装置、それを有する質量分析装置及び画像作成システム