JP2016128591A - Ferritic stainless steel for hot water storing and water storing vessel excellent in weld zone toughness and water leak resistance and manufacturing method therefor - Google Patents

Ferritic stainless steel for hot water storing and water storing vessel excellent in weld zone toughness and water leak resistance and manufacturing method therefor Download PDF

Info

Publication number
JP2016128591A
JP2016128591A JP2013064532A JP2013064532A JP2016128591A JP 2016128591 A JP2016128591 A JP 2016128591A JP 2013064532 A JP2013064532 A JP 2013064532A JP 2013064532 A JP2013064532 A JP 2013064532A JP 2016128591 A JP2016128591 A JP 2016128591A
Authority
JP
Japan
Prior art keywords
less
stainless steel
ferritic stainless
hot water
sur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013064532A
Other languages
Japanese (ja)
Inventor
透 松橋
Toru Matsuhashi
透 松橋
雅之 桜井
Masayuki Sakurai
雅之 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2013064532A priority Critical patent/JP2016128591A/en
Priority to PCT/JP2014/058541 priority patent/WO2014157341A1/en
Priority to JP2016509887A priority patent/JP6298881B2/en
Publication of JP2016128591A publication Critical patent/JP2016128591A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • C25F1/02Pickling; Descaling
    • C25F1/04Pickling; Descaling in solution
    • C25F1/06Iron or steel

Abstract

PROBLEM TO BE SOLVED: To improve resistance for water leak due to crevice corrosion of a water storing and hot water storing tank of ferritic stainless steel and breakage inhibition of a weld zone due to water pressure variation during water supply and stop by inhibiting reduction of toughness of the weld zone while minimizing addition of Cr and Mo.SOLUTION: There is provided ferritic stainless steel containing, by mass%, C:0.020% or less, N:0.025% or less, Si:0.08 to 0.3%, Mn:0.01 to 1.0%, P:0.035% or less, S:0.01% or less, Cr:16 t 24%, Mo:0.5 to 2.5%, Al:0.005 to 0.2%, and Nb:0.10 to 0.60%, satisfying following formulae (1) and (2) and having surface coating percentage of Si oxide of a surface layer of 10 to 50%. (1) Cs≥-5.0(Cr+3Mo)+155, Cs=3Si+Cr, (2) Cr+3Mo:18 to 27, where Siand Crmean surface layer cation concentration ratio (atom%).SELECTED DRAWING: Figure 1

Description

本発明は、溶接部靭性と耐水漏れ性に優れる貯水および貯湯容器(タンク)用のフェライト系ステンレス鋼とその製造方法に関するものである。   The present invention relates to a ferritic stainless steel for water storage and hot water storage containers (tanks) having excellent weld toughness and water leakage resistance, and a method for producing the same.

水やお湯を溜めるタンク用材料として,優れた耐食性や強度および耐震性等の特性から,ステンレス鋼がもちいられてきている。とくにフェライト系ステンレス鋼は、オーステナイト系ステンレス鋼に比較して熱膨張係数が小さいことや、耐応力腐食割れ性に優れる等の特徴を有し,さらに近年、Ni原料の価格乱高下からの回避として,その適用が広まってきており,SUS444(19Cr−2Mo)はその代表鋼種である。   Stainless steel has been used as a tank material for storing water and hot water because of its excellent corrosion resistance, strength, and earthquake resistance. In particular, ferritic stainless steel has features such as a smaller coefficient of thermal expansion than austenitic stainless steel and excellent stress corrosion cracking resistance. In recent years, as an avoidance from the high price of Ni raw materials, Its application is widespread, and SUS444 (19Cr-2Mo) is the representative steel type.

このようなステンレス鋼製のタンクのうち,電気温水器やエコキュート(登録商標)等の家庭用給湯設備に設置されるタンクは,一般に水道配管の元圧に耐えられるように,筒状の胴部の上下にお椀状の鏡板部をかぶせたカプセル型となっている。工業的な量産工程では,一般にこの胴部と鏡板部は重ねて溶接されるため,構造上すきまが形成される。この溶接すきま部は,ステンレス鋼の局部腐食の原因であるすきま腐食を誘発しやすく,先のSUS444でも,水質の悪い地域や溶接条件やすきま構造や不適な場合には,すきま腐食による水漏れが生じることがある。なお,貯水タンクでは、溶接によるすきまが存在しない構造もあるが,この場合パネル状のステンレス鋼板同士を樹脂パッキンを挟んでボルト止め接合した構造を有する。この場合ステンレス鋼とパッキンのすきま部が存在し,この部位でも水質が悪い場合には腐食の懸念部位となる。   Among these stainless steel tanks, tanks installed in household water heaters such as electric water heaters and Ecocute (registered trademark) generally have a cylindrical body so that they can withstand the source pressure of water pipes. It is a capsule type with a bowl-shaped end plate part on top and bottom. In an industrial mass production process, the body and the end plate are generally welded one on top of the other, so a clearance is formed on the structure. This weld crevice easily induces crevice corrosion, which is the cause of local corrosion of stainless steel. Even in the case of SUS444, water leakage due to crevice corrosion may occur if the water quality is poor, the welding conditions or the gap structure is inappropriate. May occur. Some water storage tanks do not have a gap due to welding. In this case, however, they have a structure in which panel-shaped stainless steel plates are joined together with resin packing and bolted together. In this case, there is a gap between the stainless steel and the packing, and if this is the case, the water may be corroded if the water quality is poor.

前述のカプセル状の溶接すきま部は構造上応力が集中しやすく,給湯・給水時の水道圧変化により,破壊する懸念がある。このためタンク製造時の試験として,タンク内の水圧を変化させる耐久試験が実施され,溶接構造や溶接条件が不適な場合には,この部分で割れが生じるため,溶接すきま部の靭性低下抑制が重要となる。   The above-mentioned capsule-shaped weld gap tends to concentrate stress due to its structure, and there is a concern that it will break due to changes in water pressure during hot and cold water supply. For this reason, a durability test that changes the water pressure in the tank was conducted as a test at the time of manufacturing the tank. If the welded structure and welding conditions are inappropriate, cracks will occur in this part, so that the toughness reduction of the weld gap is suppressed. It becomes important.

溶接すきま部の耐食性については,高CrMo鋼で,TiとAlを添加することで向上させるという方法が,特許文献1に開示されている。また,耐すきま腐食性を向上させるには,前述のようにステンレス鋼の主要元素であるCrやMoを添加することが知られる。ただしこれらCr,Moはレアメタルであり,その使用量削減が世界的にも望まれており,また特にMoは投機的な価格の乱高下が生じるため,その削減が望まれている。   Patent Document 1 discloses a method of improving the corrosion resistance of the weld gap by using high CrMo steel and adding Ti and Al. In order to improve crevice corrosion resistance, it is known to add Cr and Mo, which are main elements of stainless steel as described above. However, these Cr and Mo are rare metals, and the reduction of the amount of use thereof is desired worldwide. In particular, since the speculative price fluctuation occurs in Mo, the reduction is desired.

このような観点から,ステンレス鋼の主要元素であるCr,Moを低減しても優れた耐すきま腐食性を発揮させる技術として,表層にSi濃縮層を形成する技術が知られている。例えば、特許文献5には、BA(光輝焼鈍)という水素を用いた還元炉での製造方法を用いて表面にSi濃縮層が形成でき、そのSi濃縮層が耐食性を向上させることを開示している。   From this point of view, a technique for forming a Si-enriched layer on the surface layer is known as a technique for exerting excellent crevice corrosion resistance even when Cr and Mo, which are main elements of stainless steel, are reduced. For example, Patent Document 5 discloses that a Si enriched layer can be formed on the surface using a production method in a reduction furnace using hydrogen called BA (bright annealing), and the Si enriched layer improves corrosion resistance. Yes.

また、上述したように一般に貯湯・貯水タンクでは水道圧変化による繰り返し疲労強度が必要とされる。ただし、給止水時に水道圧による強い衝撃が溶接部に加わるため,溶接部における衝撃への強さを示す靭性も高い方が望ましい。フェライト系ステンレス鋼の溶接部強度を向上させる方法については、材料自身にSiを添加し,かつNbCを析出させる方法が特許文献2に,さらにNiを添加する方法が特許文献3に開示されている。   In addition, as described above, hot water storage / storage tanks generally require repeated fatigue strength due to changes in water pressure. However, since a strong impact due to water pressure is applied to the welded part at the time of water stoppage, it is desirable that the toughness indicating the strength against the impact at the welded part is also high. Regarding the method for improving the weld strength of ferritic stainless steel, Patent Document 2 discloses a method of adding Si to the material itself and depositing NbC, and Patent Document 3 discloses a method of adding Ni. .

しかし、これらの先行技術について、本発明者らが検討を行ったところ、更なる改善が必要であることが分かった。つまり、上述した先行技術においては、何れも多量のSiを鋼に添加するものであるが、本発明者らの検討の結果、靭性は,材料の引っ張り強度を向上させるSiやTiを添加させると低下することが分かった。そのため、先行技術において靭性も向上させるためには、これら先行技術が多量に添加する必要があるとしているSi等の成分を抑制する必要があった。   However, when the present inventors examined these prior arts, it was found that further improvements were necessary. In other words, in the above-described prior art, a large amount of Si is added to steel, but as a result of the study by the present inventors, toughness is obtained by adding Si or Ti that improves the tensile strength of the material. It turns out that it falls. Therefore, in order to improve toughness in the prior art, it is necessary to suppress components such as Si, which these prior arts need to add in a large amount.

また,表面のSiを除去する電解法については,硫酸と硝酸を組み合わせてデスケール性を向上させる方法が特許文献6に,また,硝酸に硫酸イオンやナトリウムイオンを混合させた溶液中でデスケールする方法が特許文献7に開示されている。これらは何れも,基本的にSiを含む酸化スケールを表面から除去することを目的としており,本発明のように,Siのみを積極的に残存させることを目的としていない。   As for the electrolytic method for removing Si on the surface, a method of improving descalability by combining sulfuric acid and nitric acid is disclosed in Patent Document 6, and a method of descaling in a solution in which sulfuric acid ions or sodium ions are mixed with nitric acid. Is disclosed in Patent Document 7. All of these are basically intended to remove oxide scale containing Si from the surface, and are not intended to actively leave only Si as in the present invention.

特開平5−70899号公報JP-A-5-70899 特開2008−291303号公報JP 2008-291303 A 特開2011−184732号公報JP 2011-184732 A 特開2009−41041号公報JP 2009-41041 A 特開平6−279950号公報JP-A-6-279950 特開平11−61500号公報JP 11-61500 A 特開2005−232546号公報JP 2005-232546 A

本発明は,レアメタルとして削減が求められているCrとMoの添加を必要最小限にしつつ、また、溶接部の靭性を低下させるSiやTiを必要以上に添加しないことにより、フェライト系ステンレス鋼の貯水および貯湯タンクで課題となる,すきま腐食による水漏れ抑制と,給止水時の水圧変動による溶接部の破壊抑制を,同時に改善することを目的とする。   The present invention minimizes the addition of Cr and Mo, which are required to be reduced as rare metals, and does not add more than necessary Si or Ti, which lowers the toughness of the welded portion. The purpose is to simultaneously improve the suppression of water leakage due to crevice corrosion and the prevention of fracture of welds due to fluctuations in water pressure at the time of water stoppage, which are problems in water storage and hot water storage tanks.

本発明者らが、上記課題を解決する方法を鋭意検討した結果、Siを表面にのみ積極的に残存させ,素材への添加は必要最小限にとどめれば良いことを突き止めた。また、この表面にのみSiを残存させる方法として,鋼板製造時の焼鈍酸洗工程において,電解デスケール条件を適正化させることが重要であることを明らかにした。つまり、実製造の電解工程においては,鋼板への電流の供給はプラス極とマイナス極の電極を鋼板に間接的に挟み,電解液を通して行われるため,マイナス極(鋼板側はアノードとなる)とプラス極(鋼板はカソード)から供給される総電気量(=電流値×時間)は一定となる。ここで,表面を酸化溶解させるアノード時間を長くする,すなわちアノードの電流値(鋼板単位面積当たりでは電流密度)を適正に低減することで,表面のCr,Fe主体の酸化物は溶解除去し,鋼へのSi添加量が必要最小限の場合であっても適度なSi酸化物を残存させることが可能となることを知見した。合わせて,カソード側でも高電流密度で短時間とした方がFe酸化物主体の酸化物スケールの還元溶解効率が向上し,かつ還元による金属析出も抑制できることも明らかにした。そのために電解時のアノード/カソード電解時間比率は1.0超とすることが望ましい。これによりSi酸化物が適度に鋼表層を被覆し,母材のCr,Mo含有量以上の耐食性を担保させることが可能となった。この理由は,表層のSi酸化物自体が保護被膜として耐食性向上に作用することはもちろんのこと,さらに本形態のSi酸化物被覆率では、温水タンクや貯水タンクとして使用中に,水道水成分として含まれるカルキ成分と呼ばれるAlやCa,Siを表層に析出させやすいために,表層により安定な酸化物被膜を形成させることで,耐食性をより一層向上させることを知見したものである。   As a result of intensive studies on the method for solving the above-mentioned problems, the present inventors have found that Si should be actively left only on the surface and the addition to the material should be kept to a minimum. In addition, as a method of leaving Si only on this surface, it was clarified that it is important to optimize the electrolytic descale conditions in the annealing pickling process at the time of steel plate production. In other words, in the actual production electrolysis process, the supply of current to the steel sheet is performed by sandwiching the positive and negative electrodes indirectly through the steel sheet and through the electrolyte, so the negative electrode (the steel sheet side becomes the anode) The total amount of electricity (= current value × time) supplied from the positive electrode (the steel plate is the cathode) is constant. Here, by lengthening the anode time for oxidizing and dissolving the surface, that is, by appropriately reducing the anode current value (current density per unit area of the steel plate), the surface Cr and Fe-based oxides are dissolved and removed. It has been found that even if the amount of Si added to the steel is the minimum necessary, it is possible to leave an appropriate Si oxide. At the same time, it was also clarified that the reduction and dissolution efficiency of the oxide scale mainly composed of Fe oxide can be improved and the metal precipitation due to the reduction can be suppressed if the cathode side has a high current density and a short time. Therefore, it is desirable that the anode / cathode electrolysis time ratio during electrolysis is more than 1.0. As a result, the Si oxide appropriately coated the steel surface layer, and it became possible to ensure the corrosion resistance higher than the Cr and Mo contents of the base material. The reason for this is that the surface Si oxide itself acts as a protective coating to improve corrosion resistance, and the Si oxide coverage of this embodiment is also used as a tap water component during use as a hot water tank or water storage tank. The present inventors have found that the corrosion resistance is further improved by forming a stable oxide film on the surface layer because Al, Ca, and Si, which are contained in the calcium oxide, are easily deposited on the surface layer.

本発明は上記知見に基づきなされたものであり、以下の構成を要旨とする。
即ち本発明は、
(1)質量%で,C:0.020%以下,N:0.025%以下,Si:0.08〜0.3%,Mn:0.01〜1.0%,P:0.035%以下,S:0.01%以下,Cr:16〜24%,Mo:0.5〜2.5%,Al:0.005〜0.2%,Nb:0.10〜0.60%を含有し,残部はFeおよび不可避的不純物からなり,下式(1)および(2)を満たし,かつ表層のSi酸化物の表面被覆率が10〜50%であることを特徴とする,溶接部靭性と耐水漏れ性に優れる貯湯・貯水容器用フェライト系ステンレス鋼。
(1) Cs ≧−5.0(Cr+3Mo)+155
Cs=3Sisur+Crsur
(2) Cr+3Mo:18〜27
ここで、Cr,Moはそれぞれの元素の母材濃度(質量%),Sisur、CrsurはそれぞれSiとCrの表層カチオン濃度比(at%)を意味する。
(2)さらに、質量%で、Ti:0.03〜0.25%を含み,下式(3)を満たすことを特徴とする,前記(1)に記載の,溶接部靭性と耐水漏れ性に優れる貯湯・貯水容器用フェライト系ステンレス鋼。
(3) Nb/Ti>1
ここで、Nb、Tiはそれぞれの元素の母材濃度(質量%)を意味する。
(3)さらに、質量%で、Cu:2.0%以下、Ni:2.0%以下、Sn:0.5%の一種又は二種以上を含むことを特徴とする、前記(1)又は(2)に記載の,溶接部靭性と耐水漏れ性に優れる貯湯・貯水容器用フェライト系ステンレス鋼。
(4)さらに、質量%で、V:0.5%以下、Zr:0.5%以下、B:0.005%以下の一種又は二種以上を含むことを特徴とする、前記(1)〜(3)のいずれかに記載の溶接部靭性と耐水漏れ性に優れる貯湯・貯水容器用フェライト系ステンレス鋼。
(5)ステンレス鋼の最終仕上げ焼鈍酸洗工程において,硝酸を50g/L以上含有する水溶液で電解処理を実施し、電解処理時の間接通電におけるアノード/カソード電解時間比率が1.0超、6.0以下となることを特徴とする,前記(1)〜(4)の何れかに記載の溶接部靭性と耐水漏れ性に優れる貯湯・貯水容器用フェライト系ステンレス鋼の製造方法。
This invention is made | formed based on the said knowledge, and makes the following structures a summary.
That is, the present invention
(1) By mass%, C: 0.020% or less, N: 0.025% or less, Si: 0.08-0.3%, Mn: 0.01-1.0%, P: 0.035 % Or less, S: 0.01% or less, Cr: 16 to 24%, Mo: 0.5 to 2.5%, Al: 0.005 to 0.2%, Nb: 0.10 to 0.60% The balance consists of Fe and inevitable impurities, satisfies the following formulas (1) and (2), and the surface coverage of the surface Si oxide is 10 to 50%. Ferritic stainless steel for hot water storage and storage containers with excellent toughness and water leakage resistance.
(1) Cs ≧ −5.0 (Cr + 3Mo) +155
Cs = 3Si sur + Cr sur
(2) Cr + 3Mo: 18-27
Here, Cr and Mo mean the base material concentration (mass%) of each element, and Si sur and Cr sur mean the surface cation concentration ratio (at%) of Si and Cr, respectively.
(2) Further, in terms of% by mass, Ti: 0.03 to 0.25% is satisfied and the following formula (3) is satisfied. Excellent ferritic stainless steel for hot water storage and storage containers.
(3) Nb / Ti> 1
Here, Nb and Ti mean the base material concentration (mass%) of each element.
(3) In addition, (1) or (2), characterized by containing one or more of Cu: 2.0% or less, Ni: 2.0% or less, and Sn: 0.5% by mass% Ferritic stainless steel for hot water storage / water storage containers as described in (2), which has excellent weld toughness and water leakage resistance.
(4) Further, in mass%, V: 0.5% or less, Zr: 0.5% or less, B: 0.005% or less, including one or more, (1) The ferritic stainless steel for hot water storage / storage containers excellent in welded portion toughness and water leakage resistance according to any one of (3).
(5) In the final finish annealing pickling step of stainless steel, electrolytic treatment is performed with an aqueous solution containing 50 g / L or more of nitric acid, and the anode / cathode electrolysis time ratio in indirect energization at the time of electrolytic treatment exceeds 1.0, 6 The method for producing a ferritic stainless steel for hot water storage / storage containers having excellent weld toughness and water leakage resistance according to any one of the above (1) to (4), wherein the ferritic stainless steel is excellent in weld toughness and water leakage resistance.

本発明のフェライト系ステンレス鋼とその製造方法は、CrやMo等の高価な元素含有量を抑制しながら、溶接部の耐すきま腐食性と靭性とを両立させることができる。そのため、従来存在しなかった貯水および貯湯タンク用として必要な特性を満足するフェライト系ステンレス鋼を、安価に提供することができる。   The ferritic stainless steel of the present invention and the manufacturing method thereof can achieve both the crevice corrosion resistance and the toughness of the welded portion while suppressing the content of expensive elements such as Cr and Mo. Therefore, ferritic stainless steel that satisfies the characteristics required for water storage and hot water storage tanks that did not exist conventionally can be provided at low cost.

Cr+3Moと3Sisur+Crsurが腐食深さに及ぼす影響を示す図である。It is a figure which shows the influence which Cr + 3Mo and 3Si sur + Cr sur exert on corrosion depth.

本発明は以下のように知見した。
供試材は以下のように製造した。開発鋼組成と比較鋼組成は,真空溶解炉により溶解された表1のNo1〜3および13に示すフェライト系ステンレス鋼で、これを圧延・熱処理により厚さ0.8mmの冷延板を製造した。これをLNG燃焼排ガスを模擬したガス組成:3%O2−12%CO2−N2bal.露点40℃,中で均熱処理980℃×1分の仕上げ焼鈍を実施し,この熱処理材を以下のデスケール処理に供した。
The present invention has been found as follows.
The test material was manufactured as follows. The developed steel composition and the comparative steel composition are ferritic stainless steels shown in Nos. 1 to 3 and 13 of Table 1 melted by a vacuum melting furnace, and a cold rolled sheet having a thickness of 0.8 mm was manufactured by rolling and heat treatment. . This is a gas composition simulating LNG combustion exhaust gas: 3% O 2 -12% CO 2 —N 2 bal. Finish annealing was performed at a dew point of 40 ° C. and a soaking heat treatment of 980 ° C. for 1 minute, and this heat treated material was subjected to the following descaling treatment.

デスケール処理は,一部前処理としてソルト法,ルスナー電解法を実施した。ソルト法はNaOHを主成分とした市販のデスケール用アルカリソルトを450℃に保持した中に鋼板を10秒間浸漬処理して実施した。ルスナー電解法の電解液は,市販の硫酸ナトリウム試薬を用いて150g/Lの水溶液とした。電解条件は試験片を試料極に,その両側にSUS304ステンレス鋼板二枚を10mmずつ離して平行に設置し対極とした。電流密度および電解時間は,実機の間接通電による交番電解を模擬した。本試験でのルスナー電解法では電流密度±100mA/cm2で各1秒間を10ずつ,計20秒実施した。このときのアノード/カソード時間比は1秒ずつであるため1.0となり,この電気量は10kQ/m2となる。上記電解条件は関数発生器とポテンシオスタットを用いて制御した。 In the descaling process, the salt method and the Rusner electrolysis method were implemented as part of the pretreatment. The salt method was carried out by immersing the steel sheet for 10 seconds in a commercial descaling alkali salt mainly composed of NaOH held at 450 ° C. The electrolytic solution of the Rusner electrolysis method was a 150 g / L aqueous solution using a commercially available sodium sulfate reagent. The electrolysis conditions were as follows: a test piece was used as a sample electrode, and two SUS304 stainless steel plates were placed in parallel on both sides of the test piece by 10 mm. The current density and electrolysis time were simulated by alternating electrolysis using indirect energization of the actual machine. In the Rusner electrolysis method in this test, the current density was ± 100 mA / cm 2 , and 10 seconds each was carried out for 20 seconds in total. The anode / cathode time ratio at this time is 1.0 because it is 1 second, and the amount of electricity is 10 kQ / m 2 . The electrolysis conditions were controlled using a function generator and a potentiostat.

開発電解法の電解液は,市販の硝酸試薬を用いて表2に示す濃度の水溶液とした。電解方法は上述のルスナー法と同様とし,電解時間はアノード時間とカソード時間の比を1.0〜8.0まで変化させた。その際の総電気量は,先のルスナー電解法と同じく10kQ/m2で一定とした。なお実際の単位面積当たりの電気量は,通板速度や電解液中における電解効率(溶液伝導度の影響)等の影響により変化し得るが,およそ1〜30kQ/m2の範囲であれば本発明の目的は達成される。 The electrolytic solution of the developed electrolytic method was an aqueous solution having a concentration shown in Table 2 using a commercially available nitric acid reagent. The electrolysis method was the same as the Lusner method described above, and the electrolysis time was changed from 1.0 to 8.0 in the ratio of anode time to cathode time. The total amount of electricity at that time was fixed at 10 kQ / m 2 as in the previous Lusner electrolysis method. The actual amount of electricity per unit area may vary depending on the speed of plate passing, the efficiency of electrolysis in the electrolyte (the effect of solution conductivity), etc., but this range is approximately 1 to 30 kQ / m 2. The object of the invention is achieved.

条件によっては,電解後に硝ふっ酸水溶液への浸漬を実施した。その濃度は各々の試薬を用いて,硝酸60g/L,ふっ酸15g/Lに調整した。温度は40℃,浸漬時間は10〜20秒とした。   Depending on the conditions, immersion in a nitric hydrofluoric acid solution was performed after electrolysis. The concentration was adjusted to 60 g / L nitric acid and 15 g / L hydrofluoric acid using each reagent. The temperature was 40 ° C. and the immersion time was 10 to 20 seconds.

電解後(一部の例では、電解後に硝ふっ酸処理を施した後)の評価は以下の通り行った。   The evaluation after electrolysis (in some cases, after the treatment with nitric hydrofluoric acid after electrolysis) was performed as follows.

デスケール性は,目視および10倍のルーペ観察でスケールが観察されない,またはあっても一視野に1つの場合はデスケールが完了したと判断し,それ以上のスケールが残存している場合は,デスケール不可と判断した。   The scale is not observed visually or with a magnifier of 10 times, or even if there is one in one field of view, it is judged that the descaling has been completed. It was judged.

表層のSi酸化物の表面被覆率は,走査型FEオージェ電子分光装置を用い、加速電圧10keV、ビーム電流値10nAの条件で,最表層のSi量をマッピングし,その画像を二値化した面積率を被覆率とした。   The surface coverage of the Si oxide on the surface layer is obtained by mapping the amount of Si on the outermost layer and binarizing the image using a scanning FE Auger electron spectrometer under the conditions of an acceleration voltage of 10 keV and a beam current value of 10 nA. The rate was taken as the coverage.

表面のCr:Crsur,およびSi濃度:Sisurは,同じく走査型FEオージェ電子分光装置を用い、Arスパッタ速度15nm/minで深さ方向の濃度プロファイルを測定した際の,C,O等を除いたカチオン元素だけの濃度プロファイルにおけるCrとSiの最大濃度とした。 Surface Cr: Cr sur and Si concentration: Si sur are C, O, and the like when the concentration profile in the depth direction is measured at an Ar sputtering rate of 15 nm / min using the same scanning FE Auger electron spectrometer. The maximum concentration of Cr and Si in the concentration profile of only the removed cation element was used.

腐食試験に供するサンプルは以下のように作製した。0.8mm厚×50mm幅×300長さの試験板と,同じ大きさで幅50mmのうち端部10mmの位置で10°に折り曲げた同様の試験板を用意し,折り曲げた部分がもう一枚の試験片と10°の角度で接触するように重ねた。10°で接触させるために,二枚の試験片の距離を約0.28mmで保つ必要があるため,二枚の間にその間隔よりやや薄目の板厚0.27mmの別のステンレス鋼を挟んだ。この二枚の接触部を重ねたままTIG溶接し溶接すきま試験片とした。TIG溶接は裏ビードが形成されるように電流値100〜150Aで調整し,50cm/分の速度で実施した。溶接の際にはArガスによるシールドを裏表とも実施し,溶接熱による酸化物生成を極力抑制した。この溶接材を長手方向に25mmに切断し,幅方向には溶接線中央に沿って切断し,30mm幅×25mm長さの溶接すきま試験片とした。なお切断端面は全て鏡面研磨仕上げとし,端面形態の影響は除去した。   Samples for the corrosion test were prepared as follows. Prepare a test plate of 0.8 mm thickness × 50 mm width × 300 length and a similar test plate that is the same size and bent at 10 ° at the end 10 mm out of the width 50 mm. The test pieces were stacked so as to be in contact with each other at an angle of 10 °. In order to make contact at 10 °, it is necessary to keep the distance between the two test pieces at about 0.28 mm, so another stainless steel with a thickness of 0.27 mm that is slightly thinner than the gap is sandwiched between the two pieces. It is. The two contact portions were overlapped and TIG welded to obtain a weld gap test piece. TIG welding was carried out at a speed of 50 cm / min, adjusted at a current value of 100 to 150 A so that a back bead was formed. Shielding with Ar gas was performed on both sides during welding to suppress oxide generation due to welding heat as much as possible. This welded material was cut to 25 mm in the longitudinal direction and cut along the center of the weld line in the width direction to obtain a weld gap test piece having a width of 30 mm × 25 mm. The cut end faces were all mirror-polished and the influence of the end face form was removed.

腐食試験は以下のように実施した。試験溶液は,山口県光市の水道水に,NaCl試薬をCl-分で2000ppm相当添加して調整した。水道水は浄水装置等のフィルターを介さず採取した。これを大型の蓋付きフラスコに満たし85℃に保持した状態でサンプルを浸漬し,空気を0.1L/minで吹き込んだ状態で6ヶ月間保持した。試験液は1週間毎に全量置換した。試験後にサンプルを取り出し,すきまを開放して腐食の有無と腐食の深さを評価した。腐食深さは光学顕微鏡を用いた焦点深度法により1μm単位で測定し,その値が50μm以下の場合を合格とした。 The corrosion test was performed as follows. The test solution was prepared by adding a NaCl reagent equivalent to 2000 ppm in terms of Cl to tap water in Hikari, Yamaguchi Prefecture. Tap water was collected without using a filter such as a water purifier. The sample was immersed in a state where it was filled in a large flask with a lid and kept at 85 ° C., and kept for 6 months in a state where air was blown at 0.1 L / min. The whole amount of the test solution was replaced every week. After the test, the sample was taken out and the clearance was opened to evaluate the presence of corrosion and the depth of corrosion. The corrosion depth was measured in units of 1 μm by the depth of focus method using an optical microscope, and the case where the value was 50 μm or less was regarded as acceptable.

母材のCr,Mo量と表面のCr,Si量の関係を調査した。表面のCr:Crsur,およびSi濃度:Sisurは,前述のとおり、走査型FEオージェ電子分光装置を用い、Arスパッタ速度10nm/minで深さ方向の濃度プロファイルを測定した際の,C,O等を除いたカチオン元素だけの濃度プロファイルにおけるCrとSiの最大濃度(at%)である。 The relationship between the Cr and Mo contents of the base metal and the Cr and Si contents on the surface was investigated. Surface Cr: Cr sur and Si concentration: Si sur are C, when the concentration profile in the depth direction was measured at an Ar sputtering rate of 10 nm / min using a scanning FE Auger electron spectrometer as described above. This is the maximum concentration (at%) of Cr and Si in the concentration profile of only the cation element excluding O and the like.

まず、表1に示す鋼No1材と鋼No13材を用いて、表2に示す製造条件で鋼板を製造した。さらに、表1の鋼No2,3を用いて,最終仕上げ焼鈍酸洗工程において,硝酸を50g/L以上含有する水溶液で電解処理を実施し、電解処理時の間接通電におけるアノード/カソード電解時間比率を3.0とした。総電気量は表2条件と同一の10kQ/m2で一定とした。腐食試験サンプル形状およびその条件も前述の表2試験と同一とした。腐食試験の腐食深さより,腐食深さが50μmを超えるものを×,50μm以下20μm以上を○,20μm未満を◎として評価した。その結果を図1に示す。図1は、横軸をCr+3Mo、縦軸をCs=3Sisur+Crsurとして、腐食試験の結果をプロットしたものである。 First, steel plates were produced under the production conditions shown in Table 2 using the steel No1 material and steel No13 material shown in Table 1. Furthermore, using steel Nos. 2 and 3 in Table 1, in the final finish annealing pickling step, electrolytic treatment was performed with an aqueous solution containing nitric acid of 50 g / L or more, and the anode / cathode electrolysis time ratio in indirect energization during the electrolytic treatment Was set to 3.0. The total amount of electricity was fixed at 10 kQ / m 2 which was the same as in Table 2. The shape of the corrosion test sample and its conditions were also the same as those in Table 2 above. Based on the corrosion depth of the corrosion test, the case where the corrosion depth exceeded 50 μm was evaluated as “x”, the case where 50 μm or less was 20 μm or more was evaluated as “◯”, and the case where less than 20 μm was evaluated as “◎”. The result is shown in FIG. FIG. 1 is a plot of corrosion test results with the horizontal axis representing Cr + 3Mo and the vertical axis representing Cs = 3Si sur + Cr sur .

ここで本発明において、Cr+3Mo、Cs=3Sisur+Crsurを指標として用いる理由について説明する。一般的に,耐食性を向上させる元素としてCrとMoは知られるが,すき間部の耐食性,特に溶接すきまの耐食性としては,表層にSi酸化物を残存させることが同様の効果を有することを知見したことによる。すなわち母材のCr+3Moと表面のCr,Si濃度の関係;Cs=3Sisur+Crsurとの間に相関が認められ,Cs=3Sisur+Crsurの値が高いほど,母材Cr+3Moの値が低くても耐食性が向上することが確認された。この係数は,その他図示していない結果から回帰することで求めたものである。 Here, the reason why Cr + 3Mo and Cs = 3Si sur + Cr sur are used as indices in the present invention will be described. In general, Cr and Mo are known as elements for improving corrosion resistance, but it has been found that leaving Si oxide on the surface layer has the same effect as the corrosion resistance of the gap, especially the corrosion resistance of the weld gap. It depends. That is, the correlation between the Cr + 3Mo of the base material and the Cr and Si concentrations on the surface; Cs = 3Si sur + Cr sur is recognized, and the higher the value of Cs = 3Si sur + Cr sur , the lower the value of the base material Cr + 3Mo. It was also confirmed that the corrosion resistance was improved. This coefficient is obtained by regression from other results not shown.

そして、図1に記載した直線よりも上方の領域において、腐食が少ないことが認められた。この直線よりも上方の領域を関数の形で表すと、下記式(1)となる。
(1) Cs≧−5.0(Cr+3Mo)+155
Cs=3Sisur+Crsur
And it was recognized that there is little corrosion in the area | region above the straight line described in FIG. When the region above this straight line is expressed in the form of a function, the following equation (1) is obtained.
(1) Cs ≧ −5.0 (Cr + 3Mo) +155
Cs = 3Si sur + Cr sur

なお、図には載せていないが、母材Cr+3Moが18未満の場合は、Cs=3Sisur+Crsurの値が高くても、耐食性は悪い結果となった。これは表面皮膜で耐食性を担保するにも,最低限素材のCrおよびMoを添加する必要があるためと考えられ、この結果よりCr+3Moの下限を18と定めた。一方、Cr+3Moが27を超えると、加工性が低下し,かつコストも高騰するため、これを上限とした。好ましくは、20〜26である。以上の結果に基づいて上記(2)式を定めた。 Although not shown in the figure, when the base material Cr + 3Mo is less than 18, even if the value of Cs = 3Si sur + Cr sur is high, the corrosion resistance is poor. This is considered to be because it is necessary to add the minimum materials Cr and Mo in order to ensure the corrosion resistance with the surface coating. From this result, the lower limit of Cr + 3Mo was determined to be 18. On the other hand, if Cr + 3Mo exceeds 27, the workability deteriorates and the cost increases, so this was made the upper limit. Preferably, it is 20-26. Based on the above results, the above equation (2) was determined.

次に、表層のSi酸化物の表面被覆率が及ぼす影響について説明する。表層のSi酸化物の表面被覆率と腐食試験での腐食深さ評価結果を対比したところ、表層のSi酸化物の表面被覆率が面積率で10%未満でも50%超でも、腐食深さが50μmを超えることが明らかとなった。これに対し、水道水を用いた長期腐食試験における耐食性は,鋼表面にSi酸化物が10〜50%存在していた場合に向上することを明らかにした。この理由は,表面のSi酸化物自身が、本試験のような中性塩化物水溶液中において優れた耐食性を示すことに加えて、水道水中に含まれる一般にカルキ分と呼ばれるAlやSi,Caが表面に析出しやすくなり,これが表面の保護皮膜として機能するためと推定される。そこで、本発明においては、表層のSi酸化物の表面被覆率の10〜50%の範囲とすることとした。一方、鋼表面のSi酸化物が50%を超える場合は、熱処理で生じた酸化スケールが表面に厚く残存することを意味しており、この場合その直下に耐食性の劣る部分が残存するので腐食深さが大きくなる。そのためSi酸化物の上限を50%とした。   Next, the effect of the surface coverage of the surface Si oxide will be described. When the surface coverage of the surface Si oxide was compared with the corrosion depth evaluation result in the corrosion test, the surface depth of the surface Si oxide was less than 10% or more than 50%, and the corrosion depth was It became clear that it exceeded 50 micrometers. In contrast, it was clarified that the corrosion resistance in the long-term corrosion test using tap water is improved when 10 to 50% of Si oxide is present on the steel surface. The reason for this is that, in addition to the surface Si oxide itself exhibiting excellent corrosion resistance in the neutral chloride aqueous solution as in this test, Al, Si, and Ca, which are generally referred to as chlorinated components, are contained in tap water. It is presumed that it tends to deposit on the surface, which functions as a protective film on the surface. Therefore, in the present invention, the surface coverage of the surface Si oxide is set in the range of 10 to 50%. On the other hand, when the Si oxide on the steel surface exceeds 50%, it means that the oxide scale generated by the heat treatment remains thick on the surface, and in this case, a portion with inferior corrosion resistance remains immediately below it, so Becomes bigger. Therefore, the upper limit of Si oxide is set to 50%.

なお,溶接部の靭性は,ビードオンプレート溶接を実施したTIG溶接試験片を作製し,密着曲げ試験を実施した。溶接条件は70A,50cm/minとし,Arガスシールドを実施した。本結果は実施例の記載において詳述するが,SiやTi,Crが本発明範囲よりも多い場合に密着曲げ試験で割れが発生した。これは溶接部の結晶粒粗大化に加え,SiやTi,Cr等の靭性を低下させる元素を多量に含んだため,溶接部においてその傾向が顕著になったためと判断される。   As for the toughness of the welded part, a TIG welded test piece subjected to bead-on-plate welding was produced and an adhesion bending test was performed. The welding conditions were 70 A, 50 cm / min, and Ar gas shielding was performed. Although this result will be described in detail in the description of the examples, cracks occurred in the adhesion bending test when Si, Ti, and Cr were larger than the range of the present invention. This is considered to be due to the fact that the tendency became noticeable in the welded part because it contained a large amount of elements such as Si, Ti, Cr, etc. that lower the toughness in addition to the coarsening of the welded part.

本発明の元素含有量の範囲について以下に説明する。特に限定しない限り、%は質量%を意味する。   The range of the element content of the present invention will be described below. Unless otherwise specified,% means mass%.

Crは,ステンレス鋼の耐食性を確保する上で最も重要な元素であり,フェライト組織を安定化するので少なくとも16%は必要である。Crを増加させると耐食性も向上するが,レアメタルとしてその使用抑制が望まれているだけでなく,過剰な添加は加工性,製造性にくわえ先述の溶接部靭性も低下させるため,上限を24%とした。望ましくは16.5〜23%であり,より望ましくは16.5〜22.0%である。   Cr is the most important element for securing the corrosion resistance of stainless steel, and at least 16% is necessary to stabilize the ferrite structure. Increasing Cr improves corrosion resistance, but not only is the suppression of its use as a rare metal, but excessive addition reduces workability and manufacturability as well as the above-mentioned weld toughness, so the upper limit is 24%. It was. It is preferably 16.5 to 23%, more preferably 16.5 to 22.0%.

Siは,脱酸元素として重要な元素であり,耐食性,耐酸化性にも有効であり,本発明においては表面への濃化により耐食性を高める主要元素である。ただし,過度な添加は母材・溶接部共に靭性を低下させるだけでなく、強度を向上させすぎるため,加工性,製造性を低下させる。そのため母材の含有量を0.08%〜0.3%とし,表層へのSi濃縮を促進することで各種特性を向上させた。望ましくは0.10〜0.29%であり,より望ましくは0.15〜0.28%である。   Si is an important element as a deoxidizing element and is also effective in corrosion resistance and oxidation resistance. In the present invention, Si is a main element that enhances corrosion resistance by concentration on the surface. However, excessive addition not only reduces the toughness of both the base metal and the welded part, but also increases the strength excessively, thereby reducing workability and manufacturability. Therefore, the content of the base material was set to 0.08% to 0.3%, and various characteristics were improved by promoting Si concentration on the surface layer. Desirably, it is 0.10 to 0.29%, and more desirably 0.15 to 0.28%.

Moは,不働態皮膜の補修に効果があり,耐食性を向上させるのに非常に有効な元素である。さらにCrとの組み合わせで耐孔食性を向上させる効果がある。Moを増加させると耐食性は向上するが,加工性,靭性を低下させ,またコストが高くなるため上限を2.5%とする。これら特性を発揮させる場合には、Moは少なくとも0.50%含有させることが必要である。望ましくは,0.70〜2.0%であり,より望ましくは0.9〜2.0である。   Mo is an element that is effective in repairing a passive film and is very effective in improving corrosion resistance. Furthermore, there exists an effect which improves pitting corrosion resistance in combination with Cr. Increasing Mo improves corrosion resistance, but lowers workability and toughness and increases costs, so the upper limit is set to 2.5%. In order to exhibit these characteristics, it is necessary to contain Mo at least 0.50%. Desirably, it is 0.70 to 2.0%, and more desirably 0.9 to 2.0.

Cは,耐粒界腐食性,加工性を低下させるため,その含有量を低減させる必要があるため,上限を0.02%以下とした。過度に低減させることは精錬コストを悪化させるため,より望ましくは,0.002〜0.015%である。   C lowers the intergranular corrosion resistance and workability, so it is necessary to reduce the content thereof, so the upper limit was made 0.02% or less. Since excessive reduction deteriorates the refining cost, it is more preferably 0.002 to 0.015%.

Nは,Cと同様に耐粒界腐食性,加工性を低下させるため,その含有量を低減させる必要があるため,その上限を0.025%以下とした。ただし過度に低減させることは精錬コストを悪化させるため,より望ましくは,0.002〜0.015%である。   N, like C, reduces intergranular corrosion resistance and workability, so its content must be reduced, so its upper limit was made 0.025% or less. However, excessive reduction deteriorates the refining cost, so 0.002 to 0.015% is more desirable.

Mnは,脱酸元素として重要な元素であるが,過剰に添加すると腐食の起点となるMnSを生成しやすくなり,またフェライト組織を不安定化させるため,その含有量を0.01〜1.0%以下とした。より望ましくは,0.05〜0.5%である。   Mn is an important element as a deoxidizing element. However, if added excessively, MnS, which becomes a starting point of corrosion, is easily generated, and the ferrite structure is destabilized. 0% or less. More desirably, it is 0.05 to 0.5%.

Pは,溶接性,加工性を低下させるだけでなく,粒界腐食を生じやすくもするため,低く抑える必要がある。そのため含有量を0.035%以下とした。より望ましくは0.001〜0.02%である。   P not only deteriorates weldability and workability, but also easily causes intergranular corrosion. Therefore, P needs to be kept low. Therefore, the content is set to 0.035% or less. More desirably, it is 0.001 to 0.02%.

Sは,CaSやMnS等の腐食の起点となる水溶性介在物を生成させるため,低減させる必要がある。そのため含有率は0.01%以下とする。ただし過度の低減はコストの悪化を招くため,より望ましくは0.0002〜0.005%である。   S needs to be reduced because it generates water-soluble inclusions that cause corrosion such as CaS and MnS. Therefore, the content is made 0.01% or less. However, excessive reduction causes cost deterioration, so 0.0002 to 0.005% is more desirable.

Alは脱酸元素として重要であり,また非金属介在物の組成を制御し組織を微細化する効果もある。しかし過剰な添加は非金属介在物の粗大化を招き,製品の疵発生の起点になる恐れもある。そのため,下限値を0.005%,上限値を0.2%とした。より望ましくは0.007%〜0.10%である。   Al is important as a deoxidizing element, and also has the effect of controlling the composition of non-metallic inclusions and refining the structure. However, excessive addition leads to coarsening of non-metallic inclusions, which may be the starting point for product wrinkling. Therefore, the lower limit is set to 0.005% and the upper limit is set to 0.2%. More desirably, it is 0.007% to 0.10%.

Nbは,C,Nを固定し,フェライト系ステンレス鋼において母材や溶接部の粒界腐食を抑制させる上で非常に重要な元素である。ただし過剰な添加は,加工性を低下させるため,その範囲を0.6%以下とした。望ましくは0.1〜0.5%であり、更に望ましくは0.15〜0.4%である。   Nb is an extremely important element for fixing C and N and suppressing intergranular corrosion of the base metal and welds in ferritic stainless steel. However, excessive addition reduces workability, so the range was made 0.6% or less. Desirably, it is 0.1 to 0.5%, and more desirably 0.15 to 0.4%.

さらに必要に応じて下記元素を含有してもよい。   Furthermore, you may contain the following element as needed.

Tiは,Nbと同様にC,Nを固定し,溶接部の粒界腐食を抑制し加工性を向上させる上で非常に重要な元素であり必要により添加される。しかしながら過剰な添加は、素材の靭性を低下させることに加え,硬質なTi系非金属介在物が大きく生成されることによる製造時の表面疵の原因となるため,その範囲は0.03〜0.25%とした。より望ましくは0.07〜0.20%とする。   Ti is a very important element for fixing C and N like Nb, suppressing intergranular corrosion of the welded portion and improving workability, and is added as necessary. However, excessive addition causes a reduction in the toughness of the raw material and causes surface flaws during production due to the large formation of hard Ti-based nonmetallic inclusions, so the range is 0.03 to 0. .25%. More desirably, the content is 0.07 to 0.20%.

なおTiを添加させる際は,C,Nを安定化させるためや靭性低下を抑制させるために,Nbとのバランスが重要となる。このためにはNb/Tiが1.0を超えるようにNbを添加することが必要となり、より望ましくはNb/Tiが1.1を超えるように添加することが必要なる。そのため、前記式(3)を定めることとした。   In addition, when adding Ti, in order to stabilize C and N and to suppress toughness fall, balance with Nb becomes important. For this purpose, it is necessary to add Nb so that Nb / Ti exceeds 1.0, and more desirably, Nb / Ti should be added so as to exceed 1.1. Therefore, the formula (3) is determined.

Cuは,腐食が発生した際の活性溶解速度を低下させる効果を有する。しかし過剰な添加は,加工性を低下させ,場合によっては,溶出したCuイオンが腐食を加速させる場合があるために,添加する場合はその範囲を2%以下とした。より望ましくは,0.2〜1.5%であり、更に望ましくは0.25〜1.1%である。   Cu has the effect of reducing the active dissolution rate when corrosion occurs. However, excessive addition deteriorates workability, and in some cases, the eluted Cu ions may accelerate corrosion. Therefore, when added, the range was made 2% or less. More preferably, it is 0.2 to 1.5%, and still more preferably 0.25 to 1.1%.

Niは,活性溶解速度を抑制させ,また水素過電圧が小さいために再不働態化特性に優れる。ただし過剰な添加は,加工性を低下させ,フェライト組織を不安定にするため,上限を2%とした。望ましくは0.1〜1.2%であり,より望ましくは0.2〜1.1%である。   Ni suppresses the active dissolution rate and has excellent repassivation characteristics due to a small hydrogen overvoltage. However, excessive addition reduces workability and makes the ferrite structure unstable, so the upper limit was made 2%. Desirably, it is 0.1 to 1.2%, and more desirably 0.2 to 1.1%.

Snも,その添加により活性溶解速度を低下させることで耐食性を向上させ,特に微量添加でその効果が得られる。しかし過剰な添加は,加工性を低下させるために,添加する場合はその範囲を0.5%以下とした。より望ましくは,0.01〜0.4%であり、更に望ましくは0.04〜0.3%である。   Sn also improves the corrosion resistance by reducing the active dissolution rate due to its addition, and its effect can be obtained especially by adding a small amount. However, excessive addition reduces the workability, so when added, the range was made 0.5% or less. More preferably, it is 0.01 to 0.4%, and still more preferably 0.04 to 0.3%.

VおよびZrは耐銹性や耐すきま腐食性を改善し,Cr,Moの使用を抑えてVを添加すれば優れた加工性も担保することができる。ただしV、Zrの過度の添加は加工性を低下させる上,耐食性向上効果も飽和するため,V、Zrの下限を0.03%,上限0.50%とする。より望ましくは0.05〜0.30%である。   V and Zr improve the weather resistance and crevice corrosion resistance, and if V is added while suppressing the use of Cr and Mo, excellent workability can be secured. However, excessive addition of V and Zr lowers workability and also saturates the effect of improving corrosion resistance, so the lower limit of V and Zr is 0.03% and the upper limit is 0.50%. More desirably, it is 0.05 to 0.30%.

Bは二次加工脆性改善に有効な粒界強化元素であるが,過度の添加はフェライトを固溶強化して延性低下の原因になる。このため上限を0.005%とする。より望ましくは0.0002〜0.0020%である。   B is an effective grain boundary strengthening element for improving secondary work embrittlement, but excessive addition causes solid solution strengthening of ferrite and causes a drop in ductility. For this reason, the upper limit is made 0.005%. More desirably, it is 0.0002 to 0.0020%.

本発明の貯湯・貯水容器用フェライト系ステンレス鋼の製造方法について説明する。   The manufacturing method of the ferritic stainless steel for hot water storage / storage containers of this invention is demonstrated.

上記本発明の成分を有する材料を用い、通常の高純度フェライト系ステンレス鋼の製造方法で製造し、最終仕上げ焼鈍酸洗工程において,硝酸を50g/L以上含有する水溶液で電解処理を実施し、電解処理時の間接通電におけるアノード/カソード電解時間比率が1.0超、6.0以下とすることにより、本発明の貯湯・貯水容器用フェライト系ステンレス鋼を製造することができる。   Using the material having the above-mentioned components of the present invention, it is manufactured by a normal high-purity ferritic stainless steel manufacturing method, and in the final finish annealing pickling step, electrolytic treatment is carried out with an aqueous solution containing nitric acid of 50 g / L or more, By setting the anode / cathode electrolysis time ratio in indirect energization at the time of electrolytic treatment to be more than 1.0 and 6.0 or less, the ferritic stainless steel for hot water storage / storage container of the present invention can be manufactured.

最終仕上げ焼鈍酸洗工程において,硝酸が50g/L未満であると、デスケールが不十分となり、式(1)を満たさない結果となるが、硝酸を50g/L以上含有する水溶液で電解処理することにより、このような問題なく本発明の鋼とすることができる。   In the final finish annealing pickling process, if nitric acid is less than 50 g / L, descaling becomes insufficient and results in not satisfying the formula (1), but electrolytic treatment is performed with an aqueous solution containing nitric acid of 50 g / L or more. Thus, the steel of the present invention can be obtained without such a problem.

また、電解処理時の間接通電におけるアノード/カソード電解時間比率(アノード電解時間/カソード電解時間)が1.0であると式(1)を満たさないとともに表層のSi酸化物の表面被覆率が10%未満となり、6.0を超えるとスケールが十分除去されずにデスケール不可の判断となり,Si酸化物の表面被覆率が50%を超えることとなるが、電解処理時の間接通電におけるアノード/カソード電解時間比率が1.0超、6.0以下であれば、このような問題を生じることなく、本発明の貯湯・貯水容器用フェライト系ステンレス鋼を製造することができる。   In addition, when the anode / cathode electrolysis time ratio (anode electrolysis time / cathode electrolysis time) in indirect energization at the time of electrolytic treatment is 1.0, the formula (1) is not satisfied and the surface coverage of the surface Si oxide is 10 If it exceeds 6.0 and the scale is not removed sufficiently, it will be judged that the scale cannot be scaled, and the surface coverage of the Si oxide will exceed 50%. If the electrolysis time ratio exceeds 1.0 and is 6.0 or less, the ferritic stainless steel for hot water storage / storage container of the present invention can be produced without causing such problems.

なお、Si含有量が本発明範囲内で上限に近い場合であって、表層のSi酸化物の表面被覆率が目標よりも高くなり過ぎるような場合には、アノード/カソード電解時間比を1.0超6.0以下の範囲内で大きくする、または/および硝酸濃度を範囲内で高くすることにより、表層のSi酸化物の表面被覆率を目標どおりに製造することが可能となる。   In the case where the Si content is close to the upper limit within the range of the present invention and the surface coverage of the surface Si oxide is too high than the target, the anode / cathode electrolysis time ratio is 1. By increasing the value within the range of more than 0 and not more than 6.0 or / and increasing the concentration of nitric acid within the range, the surface coverage of the surface Si oxide can be produced as intended.

表1に示す化学組成を有する鋼を以下のように製造した。すなわちこれを圧延・熱処理により厚さ0.8mmの冷延板を製造した。これを大気中で均熱1分間の仕上げ焼鈍を実施した。仕上げ焼鈍の温度は,角材量の再結晶温度に基づき,900〜980℃の間で設定した。この熱処理材を以下のデスケール処理に供した。   Steels having the chemical composition shown in Table 1 were produced as follows. That is, a cold-rolled sheet having a thickness of 0.8 mm was produced by rolling and heat treatment. This was annealed in the atmosphere for 1 minute soaking. The temperature of finish annealing was set between 900 and 980 ° C. based on the recrystallization temperature of the amount of square bars. This heat-treated material was subjected to the following descaling treatment.

Figure 2016128591
Figure 2016128591

デスケール処理も前述の通りで実施した。電解液は,市販の硝酸試薬を用いて150g/Lとした。電解条件は試験片を試料極に,その両側にSUS304ステンレス板二枚を10mmずつ離して設置し対極とした。電流密度および電解時間は,実機の間接通電による交番電解を模擬するため,ポテンシオスタットを用いて制御した。電解時間は一つのアノード時間とカソード時間のサイクルを5秒間とし,その時間比を4.0とした。このサイクルを4回繰り返すことで総電解時間を20秒一定とした。その際の総電気量は,10kQ/m2で一定となるように電解時間にあわせて各々電流密度を変化させた。以上のとおり、表1に示す場合は本発明の電解条件を適用して製造している。 Descaling was also performed as described above. The electrolyte was 150 g / L using a commercially available nitric acid reagent. Electrolysis conditions were as follows: the test piece was placed on the sample electrode, and two SUS304 stainless steel plates were placed 10 mm apart on both sides. The current density and electrolysis time were controlled using a potentiostat to simulate alternating electrolysis by indirect energization of the actual machine. As for the electrolysis time, a cycle of one anode time and cathode time was set to 5 seconds, and the time ratio was set to 4.0. By repeating this cycle four times, the total electrolysis time was kept constant for 20 seconds. In this case, the current density was changed according to the electrolysis time so that the total amount of electricity was constant at 10 kQ / m 2 . As described above, the cases shown in Table 1 are manufactured by applying the electrolytic conditions of the present invention.

電解後のデスケール性は,目視および10倍のルーペ観察でスケールが観察されない,またはあっても一視野に1つの場合はデスケールが完了したと判断し,それ以上のスケールが残存している場合は,デスケール不可と判断した。表層のSi酸化物の表面被覆率も前述の通り,走査型FEオージェ電子分光装置を用いたSiのマッピング画像から導出した。表面のCr:Crsur,およびSi濃度:Sisurも同様に走査型FEオージェ電子分光装置を用いた深さ方向のカチオン濃度プロファイルにおけるCrとSiの最大濃度とした。 As for the descaleability after electrolysis, the scale is not observed visually or with a magnifier of 10 times, or even if there is one in one field of view, it is judged that the descaling has been completed, and if more scale remains Therefore, it was judged that descaling was impossible. As described above, the surface coverage of the surface Si oxide was also derived from the Si mapping image using a scanning FE Auger electron spectrometer. Similarly, Cr: Cr sur on the surface and Si sur : Si sur were set to the maximum concentrations of Cr and Si in the cation concentration profile in the depth direction using a scanning FE Auger electron spectrometer.

腐食試験に供するサンプルも前述と同一条件で製造した,すきま角10°を有する30mm幅×25mm長さの溶接すきま試験片とした。腐食試験も前述と同様水道水を用いた6ヶ月の浸漬試験とし,そのすきま内腐食深さを,その値が50μmを超える場合を×,20μm以上50μm以下を○,20μm未満を◎とした。   Samples to be subjected to the corrosion test were also produced as 30 mm wide × 25 mm long weld gap test pieces having a gap angle of 10 °, manufactured under the same conditions as described above. The corrosion test was a 6-month immersion test using tap water as described above, and the corrosion depth in the crevice was evaluated as x when the value exceeded 50 μm, ◯ when 20 μm or more and 50 μm or less, and ◎ when less than 20 μm.

溶接部の靭性は,ビードオンプレート溶接を実施したTIG溶接試験片を作製し,密着曲げ試験を実施した。溶接条件は70A,50cpmとし,アルゴンシールドを実施した。   As for the toughness of the welded part, a TIG welded test piece subjected to bead-on-plate welding was produced, and an adhesion bending test was performed. The welding conditions were 70 A, 50 cpm, and an argon shield was implemented.

本結果は,表1右に示すように,本発明成分範囲である:鋼No1〜11は,式(1)、式(2)を満足し、表層のSi被覆率が10〜50%となり,腐食試験の腐食深さも基準値以下と優れた耐食性を示した。一方,本発明範囲を外れる成分の鋼No12〜15は,表層のSi被覆率が10%未満と低いか,またはSiが多くデスケールが不十分のために,腐食試験で基準値以上の腐食深さとなった。またSiが本発明以上と高い鋼No14では,溶接部の靭性試験で割れが生じた。   This result is the present invention component range as shown in Table 1 right: Steel Nos. 1 to 11 satisfy the formulas (1) and (2), and the Si coverage of the surface layer is 10 to 50%. The corrosion depth of the corrosion test was below the standard value, indicating excellent corrosion resistance. On the other hand, the steel Nos. 12 to 15 which are components outside the scope of the present invention have a surface depth of Si coverage of less than 10%, or a large amount of Si and insufficient descaling. became. Moreover, in steel No14 where Si is higher than the present invention, cracks occurred in the toughness test of the weld.

Figure 2016128591
Figure 2016128591

次に、本発明例の鋼No1材と比較例の鋼No13材を用い、表2に示す製造条件で製造した結果を表2に示す。表2に示す製造条件以外の条件は、上記表1に示す場合と同様とした。No.A材でおよびアノード/カソード電解時間比率が1.0であるNo.B、Jの場合には,式(1)を満たさないとともに表層のSi酸化物の表面被覆率が10%未満となり,腐食試験で50μmを超える腐食深さを示した。また、電解液として硝酸濃度が30g/LであるNo.Iの場合は、デスケールが不十分となり、式(1)を満たさないとともに更に腐食深さも悪い結果となった。これは従来一般的なソルト法やルスナー電解法,および硝ふっ酸浸漬を組み合わせた場合でも同じ傾向を示した。なお,アノード/カソード電解時間比率が6.0を超えたNo.Gの場合,スケールが十分除去されずにデスケール不可の判断となり,Si酸化物の表面被覆率が50%を超え、また腐食試験でもその腐食深さが50μmを超えた。   Next, Table 2 shows the results of manufacturing under the manufacturing conditions shown in Table 2 using the steel No1 material of the present invention and the steel No13 material of the comparative example. Conditions other than the manufacturing conditions shown in Table 2 were the same as those shown in Table 1 above. No. No. A material and an anode / cathode electrolysis time ratio of 1.0. In the case of B and J, equation (1) was not satisfied, the surface coverage of the surface Si oxide was less than 10%, and the corrosion test showed a corrosion depth exceeding 50 μm. Further, as an electrolyte, No. having a nitric acid concentration of 30 g / L. In the case of I, the descaling was insufficient, the formula (1) was not satisfied, and the corrosion depth was worse. This showed the same tendency even when the conventional salt method, Rusner electrolysis method, and nitric acid hydrofluoric acid immersion were combined. The anode / cathode electrolysis time ratio exceeded 6.0. In the case of G, it was judged that the scale could not be removed sufficiently and de-scaling was impossible, the surface coverage of the Si oxide exceeded 50%, and the corrosion depth exceeded 50 μm in the corrosion test.

本材料を光輝焼鈍:BA処理したNo.Kの場合は,表面にSiは残存するものの被覆率が90%と大きく,腐食試験での腐食深さも50μmを超える結果となった。腐食試験後に取り出した外観観察では,腐食のない平面部ではBA処理材は試験前と同様の金属光沢を保っていたのに対し,本発明電解材はやや薄く曇ったような表面に変質していた。この平面部表面をGDSで調査すると,BA処理材は表面に酸素とCrが僅かに濃化しているのに対し,本発明条件材は酸素の他にAlやSi,Caが表面に濃化していた。また試験前表面をFE−AESによりSiマッピング画像を撮影し,これを画像処理して評価した結果,表面SiがBA材では一様に存在しているのに対し,本発明電解材は鋼表面に面積率で10〜50%の割合で存在していることが判った。これより,水道水を用いた長期腐食試験における耐食性は,鋼表面にSi酸化物が10〜50%存在していた場合に向上することを明らかにした。この理由は,前述の通り水道水中に含まれる一般にカルキ分と呼ばれるAlやSi,Caが表面に析出しやすくなり,これが表面の保護皮膜として機能するためと推定される。BA処理材の場合は,Si酸化物が表面に平滑に一様に存在していたため,カルキ分の析出がしにくかったものと思われる。   Bright annealing of this material: No. In the case of K, although Si remained on the surface, the coverage was as high as 90%, and the corrosion depth in the corrosion test exceeded 50 μm. In the appearance observation taken out after the corrosion test, the BA-treated material maintained the same metallic luster as before the test in the flat part without corrosion, whereas the electrolytic material of the present invention was transformed into a slightly cloudy surface. It was. When this flat surface is examined by GDS, oxygen and Cr are slightly concentrated on the surface of the BA-treated material, whereas in the condition material of the present invention, Al, Si, and Ca are concentrated on the surface in addition to oxygen. It was. Moreover, as a result of taking a Si mapping image of the surface before the test by FE-AES, and evaluating this by image processing, the surface Si is uniformly present in the BA material. It was found that the area ratio was 10 to 50%. From this, it was clarified that the corrosion resistance in the long-term corrosion test using tap water is improved when 10 to 50% of Si oxide is present on the steel surface. The reason for this is presumably because Al, Si, and Ca, which are generally called “calky”, contained in tap water tend to precipitate on the surface as described above, and this functions as a protective film on the surface. In the case of the BA-treated material, the Si oxide was present smoothly and uniformly on the surface, so it seems that it was difficult to precipitate the chalk content.

また表2で比較例の鋼No13を用いたNo.L、Mでは,本発明条件で電解処理しても、式(1)を満たさないとともに表面へのSi残存が少なく被覆率は低かったため,腐食試験においても腐食深さが50μmを超える結果となった。これは母材のCr,Mo量だけではなく,表面のSi量が耐食性に影響することを示している。ちなみに今回は溶接時にArガスシールドを十分とした母材部のすきまで評価したが,溶接時にガスシールドを省略した場合,熱による酸化スケールが生成していても,同様の効果を発揮する。   Further, in Table 2, No. 1 using steel No. 13 as a comparative example. In L and M, even when the electrolytic treatment was performed under the conditions of the present invention, the equation (1) was not satisfied and Si remained on the surface and the coverage was low. Therefore, even in the corrosion test, the corrosion depth exceeded 50 μm. It was. This indicates that not only the amount of Cr and Mo in the base material but also the amount of Si on the surface affects the corrosion resistance. By the way, this time, we evaluated the base metal part with sufficient Ar gas shield during welding. However, if the gas shield is omitted during welding, the same effect is exhibited even if oxide scale is generated by heat.

一方,本発明の電解液組成および電解条件で実施した場合,式(1)を満足するとともに表面にSiが10%〜50%の割合で残存し、腐食深さは50μm以下となった。   On the other hand, when implemented with the electrolytic solution composition and electrolysis conditions of the present invention, the formula (1) was satisfied, Si remained on the surface at a rate of 10% to 50%, and the corrosion depth was 50 μm or less.

本発明のフェライト系ステンレス鋼は、水やお湯をためる各種容器・タンクであればその構造によらずその優れた効果を発揮する。水を溜めなくても,水道水を使用する設備,例えば浴槽、厨房機器においても同様の効果を有する。また、潜熱回収型ガス給湯器のドレン水回収器とその熱交換器、各種溶接パイプ等の耐食性が必要となる部位においても広く適用可能である。また先述の通り,母材のみでなくTIG溶接ままで使用される構造体においても、耐食性を有する用途において好適である。   The ferritic stainless steel of the present invention exhibits its excellent effect regardless of its structure as long as it is various containers and tanks for storing water and hot water. Even if water is not stored, the same effect can be obtained in facilities that use tap water, such as bathtubs and kitchen equipment. Further, the present invention can be widely applied to a portion requiring corrosion resistance, such as a drain water recovery device of a latent heat recovery type gas water heater, its heat exchanger, and various welding pipes. Further, as described above, not only the base material but also the structure used as it is with TIG welding is suitable for applications having corrosion resistance.

Claims (5)

質量%で,C:0.020%以下,N:0.025%以下,Si:0.08〜0.3%,Mn:0.01〜1.0%,P:0.035%以下,S:0.01%以下,Cr:16〜24%,Mo:0.5〜2.5%,Al:0.005〜0.2%,Nb:0.10〜0.60%を含有し,残部はFeおよび不可避的不純物からなり,下式(1)および(2)を満たし,かつ表層のSi酸化物の表面被覆率が10〜50%であることを特徴とする,溶接部靭性と耐水漏れ性に優れる貯湯・貯水容器用フェライト系ステンレス鋼。
(1) Cs ≧−5.0(Cr+3Mo)+155
Cs=3Sisur+Crsur
(2) Cr+3Mo:18〜27
ここで、Cr,Moはそれぞれの元素の母材濃度(質量%),Sisur、CrsurはそれぞれSiとCrの表層カチオン濃度比(at%)を意味する。
% By mass, C: 0.020% or less, N: 0.025% or less, Si: 0.08 to 0.3%, Mn: 0.01 to 1.0%, P: 0.035% or less, S: 0.01% or less, Cr: 16-24%, Mo: 0.5-2.5%, Al: 0.005-0.2%, Nb: 0.10-0.60% The balance is composed of Fe and inevitable impurities, satisfies the following formulas (1) and (2), and has a surface coverage of the surface Si oxide of 10 to 50%. Ferritic stainless steel for hot water storage containers with excellent water leakage resistance.
(1) Cs ≧ −5.0 (Cr + 3Mo) +155
Cs = 3Si sur + Cr sur
(2) Cr + 3Mo: 18-27
Here, Cr and Mo mean the base material concentration (mass%) of each element, and Si sur and Cr sur mean the surface cation concentration ratio (at%) of Si and Cr, respectively.
さらに、質量%で、Ti:0.03〜0.25%を含み,下式(3)を満たすことを特徴とする,請求項1に記載の,溶接部靭性と耐水漏れ性に優れる貯湯・貯水容器用フェライト系ステンレス鋼。
(3) Nb/Ti>1
ここで、Nb、Tiはそれぞれの元素の母材濃度(質量%)を意味する。
Furthermore, the hot water storage / excellence in weld part toughness and water leakage resistance according to claim 1, characterized in that, in mass%, Ti: 0.03 to 0.25% is satisfied and the following formula (3) is satisfied. Ferritic stainless steel for water storage containers.
(3) Nb / Ti> 1
Here, Nb and Ti mean the base material concentration (mass%) of each element.
さらに、質量%で、Cu:2.0%以下、Ni:2.0%以下、Sn:0.5%の一種又は二種以上を含むことを特徴とする、請求項1または2に記載の,溶接部靭性と耐水漏れ性に優れる貯湯・貯水容器用フェライト系ステンレス鋼。   Furthermore, by mass%, Cu: 2.0% or less, Ni: 2.0% or less, Sn: 0.5% 1 type or 2 types or more are included, The feature of Claim 1 or 2 characterized by the above-mentioned. , Ferritic stainless steel for hot water storage containers with excellent weld toughness and water leakage resistance. さらに、質量%で、V:0.5%以下、Zr:0.5%以下、B:0.005%以下の一種又は二種以上を含むことを特徴とする、請求項1〜3の何れかに記載の溶接部靭性と耐水漏れ性に優れる貯湯・貯水容器用フェライト系ステンレス鋼。   Furthermore, by mass%, V: 0.5% or less, Zr: 0.5% or less, B: 0.005% or less, one or two or more types are included. Ferritic stainless steel for hot water storage and storage containers with excellent weld toughness and water leakage resistance. ステンレス鋼の最終仕上げ焼鈍酸洗工程において,硝酸を50g/L以上含有する水溶液で電解処理を実施し、電解処理時の間接通電におけるアノード/カソード電解時間比率が1.0超、6.0以下となることを特徴とする,請求項1〜4の何れかに記載の溶接部靭性と耐水漏れ性に優れる貯湯・貯水容器用フェライト系ステンレス鋼の製造方法。   In the final finish annealing pickling process for stainless steel, electrolytic treatment is performed with an aqueous solution containing nitric acid at 50 g / L or more, and the anode / cathode electrolysis time ratio in indirect energization during electrolytic treatment is more than 1.0, 6.0 or less The manufacturing method of the ferritic stainless steel for hot water storage / storage containers excellent in weld part toughness and water leakage resistance according to any one of claims 1 to 4.
JP2013064532A 2013-03-26 2013-03-26 Ferritic stainless steel for hot water storing and water storing vessel excellent in weld zone toughness and water leak resistance and manufacturing method therefor Pending JP2016128591A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013064532A JP2016128591A (en) 2013-03-26 2013-03-26 Ferritic stainless steel for hot water storing and water storing vessel excellent in weld zone toughness and water leak resistance and manufacturing method therefor
PCT/JP2014/058541 WO2014157341A1 (en) 2013-03-26 2014-03-26 Ferritic stainless steel and method for manufacturing same
JP2016509887A JP6298881B2 (en) 2013-03-26 2014-09-25 Ferritic stainless steel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013064532A JP2016128591A (en) 2013-03-26 2013-03-26 Ferritic stainless steel for hot water storing and water storing vessel excellent in weld zone toughness and water leak resistance and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2016128591A true JP2016128591A (en) 2016-07-14

Family

ID=51624304

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013064532A Pending JP2016128591A (en) 2013-03-26 2013-03-26 Ferritic stainless steel for hot water storing and water storing vessel excellent in weld zone toughness and water leak resistance and manufacturing method therefor
JP2016509887A Active JP6298881B2 (en) 2013-03-26 2014-09-25 Ferritic stainless steel and manufacturing method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016509887A Active JP6298881B2 (en) 2013-03-26 2014-09-25 Ferritic stainless steel and manufacturing method thereof

Country Status (2)

Country Link
JP (2) JP2016128591A (en)
WO (1) WO2014157341A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018122947A1 (en) * 2016-12-27 2018-07-05 本田技研工業株式会社 Stainless steel
TWI764512B (en) * 2020-01-15 2022-05-11 日商日鐵不銹鋼股份有限公司 Fertilizer iron series stainless steel

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6295155B2 (en) * 2014-07-22 2018-03-14 新日鐵住金ステンレス株式会社 Ferritic stainless steel, manufacturing method thereof, and heat exchanger using ferritic stainless steel as a member
CN105861954A (en) * 2015-01-23 2016-08-17 新疆丰泰化工科技有限公司 Alloy steel liner for Mannheim furnace
CN105239008A (en) * 2015-10-27 2016-01-13 东北大学 Tin, copper and ferritic stainless steel and preparing method thereof
KR102146317B1 (en) * 2018-11-29 2020-08-20 주식회사 포스코 Ferritic stainless steel improved in corrosion resistance and manufacturing method thereof
CA3168212A1 (en) * 2020-03-12 2021-09-16 Yoshitomo Fujimura Ferritic stainless steel and method for manufacturing same
WO2022085788A1 (en) * 2020-10-23 2022-04-28 日鉄ステンレス株式会社 Ferrite-based stainless steel and component for exhaust gas

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002348700A (en) * 2001-03-23 2002-12-04 Sumitomo Metal Ind Ltd DESCALING METHOD FOR COLD-ROLLED AND ANNEALED Cr-BASED STAINLESS STEEL SHEET
JP2005232546A (en) * 2004-02-20 2005-09-02 Nippon Steel & Sumikin Stainless Steel Corp Descaling method for stainless cold rolled annealed steel sheet
JP4319158B2 (en) * 2004-06-23 2009-08-26 新日鐵住金ステンレス株式会社 High chromium steel with excellent coating adhesion and corrosion resistance under coating
JP5274047B2 (en) * 2008-02-23 2013-08-28 日新製鋼株式会社 Ferritic stainless steel material, manufacturing method thereof, and automobile muffler

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018122947A1 (en) * 2016-12-27 2018-07-05 本田技研工業株式会社 Stainless steel
GB2564631A (en) * 2016-12-27 2019-01-16 Honda Motor Co Ltd Stainless steel
JPWO2018122947A1 (en) * 2016-12-27 2019-04-04 本田技研工業株式会社 Stainless steel
US11255004B2 (en) 2016-12-27 2022-02-22 Honda Motor Co., Ltd. Stainless steel
TWI764512B (en) * 2020-01-15 2022-05-11 日商日鐵不銹鋼股份有限公司 Fertilizer iron series stainless steel

Also Published As

Publication number Publication date
WO2014157341A1 (en) 2014-10-02
JPWO2015145825A1 (en) 2017-04-13
JP6298881B2 (en) 2018-03-20

Similar Documents

Publication Publication Date Title
JP2016128591A (en) Ferritic stainless steel for hot water storing and water storing vessel excellent in weld zone toughness and water leak resistance and manufacturing method therefor
WO2015145825A1 (en) Ferritic stainless steel and method for producing same
JP6332576B1 (en) Sulfuric acid dew-point corrosion steel
JP5709594B2 (en) High purity ferritic stainless steel plate with excellent weather resistance and antiglare properties
JP6206624B1 (en) Ferritic stainless steel sheet
JP5931053B2 (en) Ferritic stainless steel and TIG welded structure with excellent corrosion resistance and strength of welds
TWI526549B (en) Ferritic stainless steel
JP5010323B2 (en) Ferritic stainless steel for hot water container with welded structure, hot water container and manufacturing method thereof
JP6792951B2 (en) Duplex stainless steel for ozone-containing water
JP2008274379A (en) Steel sheet having excellent pit resistance, and method for producing the same
KR20120112851A (en) Ferritic stainless steel having excellent corrosion resistance in condensed water environment produced by exhaust gas from hydrocarbon combustion
JP2010202916A (en) Ferritic stainless steel excellent in corrosion resistance of welded part with austenite stainless steel
JP5375246B2 (en) Corrosion-resistant steel for crude oil tank and its manufacturing method
JP4657862B2 (en) Duplex stainless steel for equipment using hypochlorite
JP2009185382A (en) Ferritic stainless steel sheet having excellent corrosion resistance in welding gap oxide film
JP6782660B2 (en) Duplex Stainless Steel Welded Structure for Oxidizing Fluid Environment
JP2021075758A (en) Fe-Ni-Cr-Mo-Cu ALLOY HAVING EXCELLENT CORROSION RESISTANCE
JP2013204128A (en) Ferritic stainless steel excellent in corrosion resistance in welded portion
JP6958707B2 (en) Duplex stainless steel sheet with austenite / ferrite type
JP2014162988A (en) Ferritic stainless steel
JP4732208B2 (en) Steel pipe for sheathed heater and sheathed heater
JP6745373B1 (en) Stainless steel excellent in corrosion resistance and method of manufacturing the same
JP2009167439A (en) Ferritic stainless steel for welding gap structural warm-water vessel
JP2011068967A (en) Water storage tank constructed by welding panel made from stainless steel
JP6247196B2 (en) Duplex stainless steel and duplex stainless steel pipe