JP2016127809A - Method for producing protein having tannase activity using thraustochytrids - Google Patents

Method for producing protein having tannase activity using thraustochytrids Download PDF

Info

Publication number
JP2016127809A
JP2016127809A JP2015003492A JP2015003492A JP2016127809A JP 2016127809 A JP2016127809 A JP 2016127809A JP 2015003492 A JP2015003492 A JP 2015003492A JP 2015003492 A JP2015003492 A JP 2015003492A JP 2016127809 A JP2016127809 A JP 2016127809A
Authority
JP
Japan
Prior art keywords
aurantiochytrium
protein
tannase
activity
tannase activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015003492A
Other languages
Japanese (ja)
Other versions
JP6504537B2 (en
JP2016127809A5 (en
Inventor
洋介 田岡
Yosuke Taoka
洋介 田岡
雅弘 林
Masahiro Hayashi
雅弘 林
大輔 本多
Daisuke Honda
大輔 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Miyazaki NUC
Konan University
Original Assignee
University of Miyazaki NUC
Konan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Miyazaki NUC, Konan University filed Critical University of Miyazaki NUC
Priority to JP2015003492A priority Critical patent/JP6504537B2/en
Publication of JP2016127809A publication Critical patent/JP2016127809A/en
Publication of JP2016127809A5 publication Critical patent/JP2016127809A5/ja
Application granted granted Critical
Publication of JP6504537B2 publication Critical patent/JP6504537B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a protein having a tannase activity.SOLUTION: A protein having a tannase activity is produced by culturing at least one type of microorganisms classified as thraustochytrids.SELECTED DRAWING: Figure 2

Description

本発明は、微生物に由来する、タンナーゼ活性を有するタンパク質を製造する方法に関する。   The present invention relates to a method for producing a protein having tannase activity derived from a microorganism.

タンナーゼとはタンニンをフェノールカルボン酸と糖に分解する反応を触媒する酵素であり、産業的にも汎用されている。具体的には茶飲料の白濁防止や、渋みの除去といった風味改善の目的で使用されることが多い。産業用タンナーゼの生産方法としてはカビ類であるAspergillus属微生物を用いて生産する方法が知られている(非特許文献1〜3)。 Tannase is an enzyme that catalyzes a reaction that decomposes tannin into phenol carboxylic acid and sugar, and is widely used industrially. Specifically, it is often used for the purpose of flavor improvement such as prevention of white turbidity of tea drinks and removal of astringency. As a method for producing industrial tannase, a method of producing using an Aspergillus genus microorganism that is a mold is known (Non-Patent Documents 1 to 3).

一方、海洋性真核微生物であるヤブレツボカビ類は、細胞内に著量の油脂を蓄積することが知られている。ヤブレツボカビ類が蓄積する油脂には、ドコサヘキサエン酸等の高度不飽和脂肪酸が高濃度で含まれる(特許文献1)。従来、ヤブレツボカビ類のタンナーゼ活性能については検討されていない。   On the other hand, it is known that the jellyfish fungi, which are marine eukaryotic microorganisms, accumulate a significant amount of fats and oils in the cells. The fats and oils accumulated by the fungus are highly concentrated fatty acids such as docosahexaenoic acid (Patent Document 1). Hitherto, the tannase activity ability of the brown mold has not been studied.

特開2005-287380号公報JP 2005-287380 A

Advances in Biological Research, 2009, Vol. 3 (1-2), pp. 34-39Advances in Biological Research, 2009, Vol. 3 (1-2), pp. 34-39 International Journal of Scientific Engineering and Technology, 2013, Vol. 2, Issue No. 8, pp. 752-755International Journal of Scientific Engineering and Technology, 2013, Vol. 2, Issue No. 8, pp. 752-755 Microbiology, 2003, Vol. 149, pp. 2941-2946Microbiology, 2003, Vol. 149, pp. 2941-2946

従来、産業用タンナーゼの生産方法としてはカビ類であるAspergillus属由来の酵素が汎用されている。しかしながら、これらは比活性(タンパク質単位重量当たりの酵素活性)が十分に高いとは言えず、新規なタンナーゼ活性を有するタンパク質が依然として求められている。 Conventionally, an enzyme derived from the genus Aspergillus , which is a mold, has been widely used as an industrial tannase production method. However, these cannot be said to have a sufficiently high specific activity (enzyme activity per unit weight of protein), and a protein having a novel tannase activity is still required.

本発明者らは、ヤブレツボカビ類に分類される微生物、すなわち、アルトルニア(Althornia)属、アプラノキトリウム(Aplanochytrium)属、アウランチオキトリウム(Aurantiochytrium)属、ボツリオキトリウム(Botryochytrium)属、ジャポノキトリウム(Japonochytrium)属、オブロンギキトリウム(Oblongichytrium)属、パリエチキトリウム(Parietichytrium)属、シゾキトリウム(Schizochytrium)属、シソイドキトリウム(Sicyoidochytrium)属、トラウストキトリウム(Thraustochytrium)属、及びウルケニア(Ulkenia)属に属する微生物から選択される少なくとも1種を培養することにより、タンナーゼ活性を有するタンパク質を製造できることを見出した。 The present inventors have found that microorganisms classified into Thraustochytrids such, i.e., Arutorunia (Althornia) genus, Apra eaves thorium (Aplanochytrium) genus, Au lunch Oki thorium (Aurantiochytrium) genus Botryococcus key thorium (Botryochytrium) genus, Japonoki thorium (Japonochytrium) genus of Longhi key thorium (Oblongichytrium) genus, Palier Chiki thorium (Parietichytrium) genus, Schizochytrium (Schizochytrium) genus, perilla Lee Doki thorium (Sicyoidochytrium) genus Thraustochytrium (Thraustochytrium) genus, and Ulkenia (Ulkenia It has been found that a protein having tannase activity can be produced by culturing at least one species selected from microorganisms belonging to the genus.

本発明の方法によれば、タンナーゼ活性を有するタンパク質を効率的に製造することが可能である。   According to the method of the present invention, it is possible to efficiently produce a protein having tannase activity.

図1は、タンニン酸含有培地におけるプレートアッセイの一例を示す。FIG. 1 shows an example of a plate assay in a tannic acid-containing medium. 図2は、液体培養における培養上清中のタンナーゼ比活性の経時変化を示す。FIG. 2 shows the time course of tannase specific activity in the culture supernatant in liquid culture. 図3は、塩析処理(及び透析処理)を行った培養上清、及び未処理の培養上清におけるタンナーゼの比活性を示す。FIG. 3 shows the specific activity of tannase in the culture supernatant subjected to salting-out treatment (and dialysis treatment) and in the untreated culture supernatant. 図4は、タンニン酸を0%、0.1%、0.5%、1.0% (w/v)含む液体培地においてA. limacinum mh0186株を培養した際の、培養液中の細胞数及びグルコース濃度の経時変化を示す。Fig. 4 shows changes over time in the number of cells and glucose concentration in the culture medium when A. limacinum mh0186 strain was cultured in a liquid medium containing 0%, 0.1%, 0.5%, 1.0% (w / v) tannic acid. Indicates. 図5は、タンニン酸を0%、0.1%、0.5%、1.0% (w/v)含む液体培地においてA. limacinum mh0186株を培養した際の、乾燥バイオマス重量を示す。FIG. 5 shows the dry biomass weight when the A. limacinum mh0186 strain was cultured in a liquid medium containing 0%, 0.1%, 0.5%, 1.0% (w / v) tannic acid. 図6は、タンニン酸を0%、0.1%、0.5%、1.0% (w/v)含む液体培地においてA. limacinum mh0186株を培養した際の、菌体中の総脂肪酸含量を示す。FIG. 6 shows the total fatty acid content in the cells when A. limacinum mh0186 strain is cultured in a liquid medium containing 0%, 0.1%, 0.5%, 1.0% (w / v) tannic acid. 図7は、タンニン酸を0%、0.1%、0.5%、1.0% (w/v)含む液体培地においてA. limacinum mh0186株を培養した際の、培地体積当たりに存在する菌体中の脂肪酸量を示す。FIG. 7 shows the amount of fatty acids in the cells present per medium volume when culturing A. limacinum mh0186 strain in a liquid medium containing 0%, 0.1%, 0.5%, 1.0% (w / v) tannic acid. Indicates. 図8は、タンニン酸を0%、0.1%、0.5%、1.0% (w/v)含む液体培地においてA. limacinum mh0186株を培養した際の、菌体の脂肪酸組成を示す。FIG. 8 shows the fatty acid composition of cells when A. limacinum mh0186 strain is cultured in a liquid medium containing 0%, 0.1%, 0.5%, 1.0% (w / v) tannic acid. 図9は、A. limacinum mh0186株の培養上清のタンナーゼ活性をプレートアッセイによって測定した結果を示す。FIG. 9 shows the results of measuring tannase activity of the culture supernatant of A. limacinum mh0186 strain by a plate assay. 図10は、A. limacinum mh0186株の培養上清のタンナーゼ活性を、薄層クロマトグラフィーによって測定した結果を示す。FIG. 10 shows the results of measuring the tannase activity of the culture supernatant of A. limacinum mh0186 strain by thin layer chromatography.

(タンナーゼ活性)
本発明においてタンナーゼ活性とは、タンニン酸等の加水分解性のタンニンに存在するエステル結合及びデプシド結合を加水分解する活性をいい、特にタンニン酸分解活性を意味する。本明細書では、タンナーゼ活性は、タンパク質1mgが30℃、1分間で1mgのタンニン酸を分解する酵素活性を1単位とする。
(Tannase activity)
In the present invention, tannase activity refers to the activity of hydrolyzing ester bonds and depside bonds present in hydrolyzable tannins such as tannic acid, and particularly means tannic acid decomposing activity. In the present specification, tannase activity is defined as 1 unit of enzyme activity in which 1 mg of protein degrades 1 mg of tannic acid in 1 minute at 30 ° C.

(本発明に使用する微生物)
本発明のタンナーゼ活性を有するタンパク質の製造方法は、ヤブレツボカビ類に分類される微生物の少なくとも1種を培養し、該微生物にタンナーゼ活性を有するタンパク質を生産させる培養工程を含むことを特徴とする。
(Microorganism used in the present invention)
The method for producing a protein having tannase activity according to the present invention includes culturing at least one kind of microorganism classified as a jellyfish, and causing the microorganism to produce a protein having tannase activity.

「ヤブレツボカビ類に分類される微生物」とは、背景技術において説明した通り高度不飽和脂肪酸を産生する海洋性真核微生物である。ヤブレツボカビ類に分類される微生物として、アルトルニア(Althornia)属、アプラノキトリウム(Aplanochytrium)属、アウランチオキトリウム(Aurantiochytrium)属、ボツリオキトリウム(Botryochytrium)属、ジャポノキトリウム(Japonochytrium)属、オブロンギキトリウム(Oblongichytrium)属、パリエチキトリウム(Parietichytrium)属、シゾキトリウム(Schizochytrium)属、シソイドキトリウム(Sicyoidochytrium)属、トラウストキトリウム(Thraustochytrium)属、又はウルケニア(Ulkenia)属に属する微生物が挙げられる。本発明ではヤブレツボカビ類に分類される微生物であり且つタンナーゼ活性を有するタンパク質を生産する能力を有する微生物を用いればよい。 The “microorganisms classified into the genus Amaranthus” are marine eukaryotic microorganisms that produce highly unsaturated fatty acids as explained in the background art. As microorganisms classified in Thraustochytrids class, Arutorunia (Althornia) genus, Apra eaves thorium (Aplanochytrium) species, Au lunch Oki thorium (Aurantiochytrium) genus, Botryococcus key thorium (Botryochytrium) genus, Japo eaves thorium (Japonochytrium) genus, of Longhi key thorium (Oblongichytrium) genus Palier Chiki thorium (Parietichytrium) genus Schizochytrium (Schizochytrium) genus perilla Lee Doki thorium (Sicyoidochytrium) genus Thraustochytrium (Thraustochytrium) genus, or include Ulkenia (Ulkenia) microorganism belonging to the genus It is done. In the present invention, a microorganism that is classified as a jellyfish and has the ability to produce a protein having tannase activity may be used.

ヤブレツボカビ類としては特に、Aurantiochytrium属に属する少なくとも1種の、タンナーゼ活性を有するタンパク質を生産する能力を有する微生物が好ましい。 As the Agrobacterium, particularly a microorganism having an ability to produce a protein having tannase activity belonging to the genus Aurantiochytrium is preferable.

Aplanochytrium属に属しタンナーゼ活性を有するタンパク質を生産する能力を有する微生物としては、アプラノキトリウム・ケルグエレンシス(Aplanochytrium kerguelensis)に属する少なくとも1種が挙げられる。Aplanochytrium属に属する微生物の具体的な株としては、アプラノキトリウム・ケルグエレンシス SEK535(Aplanochytrium kerguelensis SEK535)株が好ましく用いられる。 Examples of the microorganism belonging to the genus Aplanochytrium and having the ability to produce a protein having tannase activity include at least one species belonging to Aplanochytrium kerguelensis . As a specific strain of a microorganism belonging to the genus Aplanochytrium, an Aplanochytrium kerguelensis SEK535 ( Aplanochytrium kerguelensis SEK535) strain is preferably used.

Aurantiochytrium属に属しタンナーゼ活性を有するタンパク質を生産する能力を有する微生物としては、アウランチオキトリウム・リマシナム(Aurantiochytrium limacinum)又はアウランチオキトリウム・マングロベイ(Aurantiochytrium mangrovei)に属する少なくとも1種が挙げられる。Aurantiochytrium属に属する微生物の具体的な株としては、Aurantiochytrium limacinum SR21 ATCC MYA-1381、Aurantiochytrium limacinum mh0186(受託番号FERM P-19755)、Aurantiochytrium mangrovei SEK218(受託番号NBRC 103269)、Aurantiochytrium mangrovei SEK243、Aurantiochytrium sp. ATCC20888、又はAurantiochytrium sp. ATCC26185が好ましく用いられる。 Examples of microorganisms belonging to the genus Aurantiochytrium and capable of producing a protein having tannase activity include at least one species belonging to Aurantiochytrium limacinum or Aurantiochytrium mangrovei . As a specific strain of microorganism belonging to the Aurantiochytrium genus, Aurantiochytrium limacinum SR21 ATCC MYA-1381 , Aurantiochytrium limacinum mh0186 ( accession number FERM P-19755), Aurantiochytrium mangrovei SEK218 ( accession number NBRC 103269), Aurantiochytrium mangrovei SEK243, Aurantiochytrium sp. ATCC20888 or Aurantiochytrium sp. ATCC26185 is preferably used.

Botryochytrium属に属しタンナーゼ活性を有するタンパク質を生産する能力を有する微生物としては、ボツリオキトリウム・ラジアタム(Botryochytrium radiatum) に属する少なくとも1種が挙げられる。Botryochytrium属に属する微生物の具体的な株としてはBotryochytrium radiatum SEK353(受託番号NBRC 104107)が好ましく用いられる。 Examples of the microorganism belonging to the genus Botryochytrium and having the ability to produce a protein having tannase activity include at least one species belonging to Botryochytrium radiatum . As a specific strain of microorganisms belonging to the genus Botryochytrium, Botryochytrium radiatum SEK353 (accession number NBRC 104107) is preferably used.

Oblongichytrium属に属しタンナーゼ活性を有するタンパク質を生産する能力を有する微生物の具体的な株としてはOblongichytrium sp. SEK347(受託番号NBRC 102618)が好ましく用いられる。 Specific strains of microorganisms having the ability to produce a protein having a tannase activity belonging to Oblongichytrium genus Oblongichytrium sp. SEK347 (accession number NBRC one hundred and two thousand six hundred eighteen) is preferably used.

Parietichytrium属に属しタンナーゼ活性を有するタンパク質を生産する能力を有する微生物としては、パリエチキトリウム・サルカリアナム(Parietichytrium sarkarianum)に属する少なくとも1種が挙げられる。Parietichytrium属に属する微生物の具体的な株としては、Parietichytrium sarkarianum SEK351(受託番号NBRC 104108)、Parietichytrium sarkarianum SEK364(受託番号FERM BP-11298)、又はParietichytrium sp. SEK358(受託番号FERM BP-11405)が好ましく用いられる。 Examples of the microorganism belonging to the genus Parietichytrium and having the ability to produce a protein having tannase activity include at least one species belonging to Parietichytrium sarkarianum . Specific strains of microorganisms belonging to the Parietichytrium genus, Parietichytrium sarkarianum SEK351 (Accession No. NBRC 104108), Parietichytrium sarkarianum SEK364 (Accession No. FERM BP-11298), or Parietichytrium sp. SEK358 (accession number FERM BP-11405) are preferred Used.

Schizochytrium属に属しタンナーゼ活性を有するタンパク質を生産する能力を有する微生物としては、シゾキトリウム・アグレガタム(Schizochytrium aggregatum)に属する少なくとも1種が挙げられる。Schizochytrium属に属する微生物の具体的な株としては、Schizochytrium aggregatum ATCC28209、Schizochytrium sp. SEK210(受託番号NBRC 102615)、又はSchizochytrium sp. SEK345(受託番号NBRC 102616)が好ましく用いられる。 Examples of the microorganism belonging to the genus Schizochytrium and having the ability to produce a protein having tannase activity include at least one species belonging to Schizochytrium aggregatum . As specific strains of microorganisms belonging to the genus Schizochytrium , Schizochytrium aggregatum ATCC28209, Schizochytrium sp. SEK210 (accession number NBRC 102615), or Schizochytrium sp. SEK345 (accession number NBRC 102616) is preferably used.

Thraustochytrium属に属しタンナーゼ活性を有するタンパク質を生産する能力を有する微生物としては、トラウストキトリウム・アウレウム(Thraustochytrium aureum)、トラウストキトリウム・ロゼウム(Thraustochytrium roseum)、又はトラウストキトリウム・ストリアタム(Thraustochytrium striatum)に属する少なくとも1種が挙げられる。Thraustochytrium属に属する微生物の具体的な株としては、Thraustochytrium aureum ATCC34304、Thraustochytrium roseum ATCC28210、又はThraustochytrium striatum ATCC24473が好ましく用いられる。 The microorganism having the ability to produce a protein having a tannase activity belonging to Thraustochytrium genus Thraustochytrium, Aureumu (Thraustochytrium aureum), Thraustochytrium roseum (Thraustochytrium roseum), or Thraustochytrium-Sutoriatamu to (Thraustochytrium striatum) There is at least one species that belongs. As specific strains of microorganisms belonging to the genus Thraustochytrium , Thraustochytrium aureum ATCC34304, Thraustochytrium roseum ATCC28210, or Thraustochytrium striatum ATCC24473 is preferably used.

Ulkenia属に属しタンナーゼ活性を有するタンパク質を生産する能力を有する微生物としては、ウルケニア・アモエボイデア(Ulkenia amoeboidea)に属する少なくとも1種が挙げられる。Ulkenia属に属する微生物の具体的な株としては、Ulkenia amoeboidea SEK214(受託番号NBRC 104106)、Ulkenia sp. ATCC28207、又はUlkenia sp. 175-01m2(受託番号NBRC 110830)が好ましく用いられる。 Examples of microorganisms belonging to the genus Ulkenia and capable of producing a protein having tannase activity include at least one species belonging to Ulkenia amoeboidea . As specific strains of microorganisms belonging to the genus Ulkenia , Ulkenia amoeboidea SEK214 (Accession No. NBRC 104106), Ulkenia sp. ATCC28207, or Ulkenia sp. 175-01m2 (Accession No. NBRC 110830) is preferably used.

本発明に用いる微生物の範囲には、現在前記の属又は種に分類されることが明らかになっている微生物だけでなく、現在は他の属又は種に分類されている、或いは分類が明らかでないが、分子進化的には前記の属又は種のいずれかに分類されるべき微生物も含まれる。   The range of microorganisms used in the present invention is not limited to microorganisms that are currently classified into the above genera or species, but are currently classified into other genera or species, or the classification is not clear However, in terms of molecular evolution, microorganisms to be classified into any of the above genera or species are also included.

上記の具体的な株のうち、Aurantiochytrium limacinum mh0186株は、特開2005-287380号公報において開示され、独立行政法人 産業技術総合研究所 特許生物寄託センター(茨城県つくば市東1-1-1 つくばセンター 中央第6)に受託番号FERM P-19755として平成16年3月29日に国内寄託されているSchizochytrium sp. M-8株と同一である。FERM P-19755の寄託当時にSchizochytrium属とされていた属が、Schizochytrium属、Aurantiochytrium属およびOblongichytrium属へと再編成された(Rinka Yokoyama, Daiske Honda (2007) MycoscienceTaxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomic characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. nov. Mycoscience, 48, 199-21)。Aurantiochytrium limacinum mh0186株は、特開2005-287380号公報に開示のSchizochytrium sp. M-8株の取得方法(ヤブレツボカビ科M-8株は以下のようにして取得した。まず、石垣島のマングローブ林で採取した海水・落葉を300ml三角フラスコに入れ、松花粉(ここでは宮崎市周辺海岸にて採取したものを用いた)を約0.05g添加した。室温にて1週間放置し、水面の松花粉を含むように海水を採取し、シャーレ中に調製したポテトデキストロース寒天培地上に0.1mlを塗布した。28℃で5日間培養し、クリーム色でつやのないコロニーをピックアップして新しい寒天培地上に塗布した。3日後、増殖した微生物を顕微鏡下で観察し、ラビリンチュラ類であることを細胞のサイズ、形態から判断してスラント培地に保存した。)にて入手可能である。 Among the above-mentioned specific strains, Aurantiochytrium limacinum mh0186 strain is disclosed in Japanese Patent Application Laid-Open No. 2005-287380, and is an independent administrative agency, National Institute of Advanced Industrial Science and Technology. This is the same as the Schizophytrium sp. M-8 strain deposited in Japan on March 29, 2004 under the accession number FERM P-19755 in the center No. 6). Genus Schizochytrium at the time of deposit of FERM P-19755 has been reorganized into Schizochytrium , Aurantiochytrium and Oblongichytrium (Rinka Yokoyama, Daiske Honda (2007) Mycoscience Taxonomic rearrangement of the genus Schizochytrium sensu lato based on morphology, chemotaxonomic characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): emendation for Schizochytrium and erection of Aurantiochytrium and Oblongichytrium gen. nov. Mycoscience, 48, 199-21). Aurantiochytrium limacinum mh0186 strain, JP is 2005-287380 discloses the disclosure of Schizochytrium sp. How to obtain the M-8 strain (thraustochytrid M-8 strain was obtained as follows. First, Ishigaki mangrove forests Place the seawater and deciduous leaves collected in step 3 into a 300 ml Erlenmeyer flask, and add about 0.05 g of pine pollen (here, collected from the coast around Miyazaki city). Seawater was collected so as to contain, and 0.1 ml was applied on a potato dextrose agar medium prepared in a petri dish, cultured at 28 ° C. for 5 days, picked up a creamy, non-glossy colony and applied on a new agar medium Three days later, the grown microorganisms were observed under a microscope and stored in a slant medium, judging from the size and form of the cells as being Labyrinthula.

Aurantiochytrium limacinum SR21 ATCC MYA-1381、Aurantiochytrium sp. ATCC20888、Aurantiochytrium sp. ATCC26185、Schizochytrium aggregatum ATCC28209、Thraustochytrium aureum ATCC34304、Thraustochytrium roseum ATCC28210、Thraustochytrium striatum ATCC24473、及びUlkenia sp. ATCC28207、は、American Type Culture Collection(ATCC)から入手可能である。 Aurantiochytrium limacinum SR21 ATCC MYA-1381, Aurantiochytrium sp. ATCC20888, Aurantiochytrium sp. ATCC26185, Schizochytrium aggregatum ATCC28209, Thraustochytrium aureum ATCC34304, Thraustochytrium roseum ATCC28210, Thraustochytrium striatum ATCC24473, and Ulkenia sp. ATCC28207, from American Type Culture Collection (ATCC) It is available.

なお、Aurantiochytrium limacinum SR21 ATCC MYA-1381はSchizochytrium limacinum Honda et Yokochi (ATCC MYA-1381) と、Aurantiochytrium sp. ATCC26185 はThraustochytrium sp. (ATCC 26185)と、Aurantiochytrium sp. ATCC20888はSchizochytrium sp. (ATCC 20888)と、Schizochytrium aggregatum ATCC28209はSchizochytrium aggregatum Goldstein et Belsky (ATCC 28209)と、Thraustochytrium aureum ATCC34304はThraustochytrium aureum Goldstein (ATCC 34304)と、Thraustochytrium roseum ATCC28210はThraustochytrium roseum Goldstein (ATCC 28210_TT)と、Thraustochytrium striatumATCC24473はThraustochytrium striatum Schneider (ATCC 24473)と、Ulkenia sp. ATCC28207はJaponochytrium sp. (ATCC 28207)と、それぞれ同一であり、属又は種の分類を本発明者らが再構築したものである。 It should be noted, Aurantiochytrium limacinum SR21 ATCC MYA-1381 is a Schizochytrium limacinum Honda et Yokochi (ATCC MYA -1381), Aurantiochytrium sp. ATCC26185 is Thraustochytrium sp. And (ATCC 26185), Aurantiochytrium sp. ATCC20888 is Schizochytrium sp. And (ATCC 20888) , Schizochytrium aggregatum ATCC28209 the Schizochytrium aggregatum Goldstein et Belsky (ATCC 28209 ), Thraustochytrium aureum ATCC34304 and Thraustochytrium aureum Goldstein (ATCC 34304), Thraustochytrium roseum ATCC28210 and Thraustochytrium roseum Goldstein (ATCC 28210_TT), Thraustochytrium striatum ATCC24473 is Thraustochytrium striatum Schneider ( ATCC 24473) and Ulkenia sp. ATCC 28207 are the same as Japonochytrium sp. (ATCC 28207), respectively, and the genus or species classification has been reconstructed by the present inventors.

Aurantiochytrium mangrovei SEK218(受託番号NBRC 103269)、Botryochytrium radiatum SEK353(受託番号NBRC 104107)、Oblongichytrium sp. SEK347(受託番号NBRC 102618)、Parietichytrium sarkarianum SEK351(受託番号NBRC 104108)、Schizochytrium sp. SEK210(受託番号NBRC 102615)、Schizochytrium sp. SEK345(受託番号NBRC 102616)、Ulkenia amoeboidea SEK214(受託番号NBRC 104106)、及びUlkenia sp. 175-01m2(受託番号NBRC 110830)は、独立行政法人製品評価技術基盤機構に寄託されており、一般に入手可能である。 Aurantiochytrium mangrovei SEK218 (Accession number NBRC 103269), Botryochytrium radiatum SEK353 (Accession number NBRC 104107), Oblongichytrium sp. SEK347 (Accession number NBRC 102618), Parietichytrium sarkarianum SEK351 (Accession number NBRC 104108), Schizochytrium sp. ), Schizochytrium sp. SEK345 (Accession No. NBRC 102616), Ulkenia amoeboidea SEK214 (Accession No. NBRC 104106), and Ulkenia sp. 175-01m2 (Accession No. NBRC 110830) have been deposited with the National Institute for Product Evaluation and Technology. And is generally available.

Parietichytrium sp. SEK358(受託番号FERM BP-11405)、及びParietichytrium sarkarianum SEK364(受託番号FERM BP-11298)、は、独立行政法人産業技術総合研究所特許生物寄託センターに寄託されており、一般に入手可能である。 Parietichytrium sp. SEK358 (Accession No. FERM BP-11405) and Parietichytrium sarkarianum SEK364 (Accession No. FERM BP-11298) have been deposited with the National Institute of Advanced Industrial Science and Technology Patent Biological Depositary and are generally available. is there.

(微生物の培養)
本発明の方法は、前記微生物を培養し、微生物にタンナーゼ活性を有するタンパク質を生産させる培養工程を含むことを特徴とする。
(Microbial culture)
The method of the present invention includes a culturing step of culturing the microorganism and causing the microorganism to produce a protein having tannase activity.

培養工程では、ヤブレツボ類を培養するのに適した固定培地、液体培地等を培地として用いる。培地としては特に限定されないが、通常用いられる培地としては例えばGY培地(日本水産学会誌、68巻、5号、674-678(2002))、B1寒天平板培地(Appl. Microbiol. Biotechnol., 72, 1161-1169 (2006))等が知られており、これらを適宜使用することができる。   In the culturing step, a fixed medium, a liquid medium, or the like suitable for cultivating the jarlet is used as the medium. The medium is not particularly limited, and examples of the medium that is usually used include GY medium (Journal of Fisheries Science, Vol. 68, No. 5, 674-678 (2002)), B1 agar plate medium (Appl. Microbiol. Biotechnol., 72 , 1161-1169 (2006)), and the like can be used as appropriate.

培養工程における培養条件は特に限定されないが、典型的には、前記微生物を適当な培地を用いて1日〜2週間程度、好ましくは2〜12日間、より好ましくは3〜10日間、25〜35℃にて培養する。液体培地の場合には、必要に応じて振とう条件下で培養を行う。培養中の明暗条件は特に限定されないが、通常は暗条件で行う。   The culture conditions in the culture step are not particularly limited, but typically, the microorganism is used in an appropriate medium for about 1 day to 2 weeks, preferably 2 to 12 days, more preferably 3 to 10 days, 25 to 35. Incubate at ℃. In the case of a liquid medium, culture is performed under shaking conditions as necessary. The light / dark conditions during the culture are not particularly limited, but are usually performed under dark conditions.

本発明者らは、前記微生物をタンニン酸存在下において培養することで、前記微生物によるタンナーゼ活性を有するタンパク質の生産量が顕著に高まることを見出した。そこで培地としては、タンニン酸を含有する培地を用いることが特に好ましい。好ましくは、タンニン酸濃度が0.01〜10%(w/v)、好ましくは0.1%〜1.0%(w/v)となるように添加された培地を用いる。   The present inventors have found that by culturing the microorganism in the presence of tannic acid, the production amount of the protein having tannase activity by the microorganism is remarkably increased. Therefore, it is particularly preferable to use a medium containing tannic acid as the medium. Preferably, a medium added so that the tannic acid concentration is 0.01 to 10% (w / v), preferably 0.1 to 1.0% (w / v) is used.

背景技術において説明した通り、ヤブレツボカビ類に分類される微生物は、著量の高度不飽和脂肪酸を蓄積するため、該微生物を培養することで、培養液中に生産されたタンナーゼを回収する一方、バイオマス(菌体)中に生産された脂肪酸の回収も同時に行うことができる。後述する実施例において、低濃度のタンニン酸を含有する培地において、培地体積当たりの菌体中のDHA生産量が最も高くなることが認められたことから、培養液中に生産されたタンナーゼの回収とバイオマス(菌体)中に生産された脂肪酸の回収を同時に行う場合には、低濃度のタンニン酸を含有する培地、例えば、タンニン酸濃度が0.01〜0.3%(w/v)、好ましくは0.05%〜0.2%(w/v)となるように添加された培地を用いることが好ましい。   As explained in the background art, since microorganisms classified as a kind of mold are accumulating a significant amount of highly unsaturated fatty acid, by culturing the microorganisms, tannase produced in the culture solution is recovered. Recovery of fatty acids produced in biomass (bacteria) can also be performed simultaneously. In the examples described later, in a medium containing a low concentration of tannic acid, it was found that the DHA production amount in the cells per medium volume was the highest, so that the recovery of tannase produced in the culture solution was recovered. And a fatty acid produced in biomass (bacteria) simultaneously, a medium containing a low concentration of tannic acid, for example, a tannic acid concentration of 0.01 to 0.3% (w / v), preferably 0.05 It is preferable to use a medium added so as to be in a range of% to 0.2% (w / v).

(タンパク質の回収)
培養された微生物が生産するタンナーゼ活性を有するタンパク質は、前記微生物の体内にも蓄積し得るが、主に前記微生物の体外に分泌される。
(Protein recovery)
The protein having tannase activity produced by the cultured microorganism can be accumulated in the body of the microorganism, but is mainly secreted outside the body of the microorganism.

タンナーゼ活性を有するタンパク質が微生物の菌体内に蓄積する場合には、前記微生物の培養物、菌体含有画分、菌体破砕物、菌体抽出液(粗酵素抽出液)等に含まれた状態のタンナーゼ活性を有するタンパク質をそのまま利用することが可能である。また、タンナーゼ活性を有するタンパク質が前記微生物の体外に分泌される場合には、培養上清画分に含まれた状態のタンナーゼ活性を有するタンパク質をそのまま利用することが可能である。   When the protein having tannase activity accumulates in the microbial cell, it is contained in the microbial culture, microbial cell-containing fraction, microbial cell lysate, microbial cell extract (crude enzyme extract), etc. It is possible to directly use a protein having tannase activity. Further, when a protein having tannase activity is secreted outside the body of the microorganism, the protein having tannase activity in a state contained in the culture supernatant fraction can be used as it is.

前記微生物の培養物、菌体含有画分、菌体破砕物、菌体抽出液(粗酵素抽出液)、培養上清画分等から、より高濃度のカタラーゼ活性を有するタンパク質を回収する手段としては、ゲル濾過、イオン交換クロマトグラフィー、逆相クロマトグラフィー、アフィニティクロマトグラフィー等の各種クロマトグラフィー、硫安分画、硫酸ナトリウム分画、塩化ナトリウム分画等の塩析、透析、あるいは等電点電気泳動等の一般的な手段を1つ又は複数組み合わせて使用できる。   As a means for recovering a protein having a higher concentration of catalase activity from a culture of the microorganism, a microbial cell-containing fraction, a microbial cell lysate, a microbial cell extract (crude enzyme extract), a culture supernatant fraction, etc. Various gel chromatography, ion exchange chromatography, reverse phase chromatography, affinity chromatography, etc., salting out of ammonium sulfate fraction, sodium sulfate fraction, sodium chloride fraction, dialysis, or isoelectric focusing One or more general means such as these can be used in combination.

本発明者らは、特に、菌体培養上清に含まれるタンナーゼ活性を有するタンパク質を塩析し、さらに任意に透析を行うことによって、タンナーゼ活性を有するタンパク質の比活性が顕著に高まることを見出した。したがって、本発明の方法は、好ましくは、タンナーゼ活性を有するタンパク質を塩析する工程を含む。塩析は、例えば硫酸アンモニウム等の塩を過剰量培地に添加することによりなされる。また、本発明の方法は、好ましくは培養上清又は塩析されたタンナーゼ活性を有するタンパク質を含む溶液を、透析する工程を含む。透析は、例えば当業者に公知の緩衝液等を用いて行うことができ、緩衝液の例としてクエン酸緩衝液が挙げられる。塩析後に透析を行う場合には、塩析されたタンパク質を溶液、例えば緩衝液に対してあらかじめ溶解した後に、緩衝液に対して透析を行うことができる。   In particular, the present inventors have found that the specific activity of a protein having tannase activity is significantly increased by salting out the protein having tannase activity contained in the cell culture supernatant and optionally performing dialysis. It was. Therefore, the method of the present invention preferably includes a step of salting out a protein having tannase activity. Salting out is performed, for example, by adding a salt such as ammonium sulfate to an excess medium. In addition, the method of the present invention preferably includes a step of dialysis of a culture supernatant or a solution containing salted out protein having tannase activity. Dialysis can be performed using, for example, a buffer solution known to those skilled in the art, and an example of the buffer solution is a citrate buffer solution. When dialysis is performed after salting out, the salted-out protein can be dissolved in a solution, for example, a buffer solution, and then dialyzed against the buffer solution.

本発明の方法において、タンナーゼ活性を有するタンパク質の濃度をどの程度まで高めるかは特に限定されず、使用目的に応じて適宜決定することができる。タンパク質1mgあたりのタンナーゼ活性(比活性)として好ましくは0.1単位/mg以上 、より好ましくは1単位/mg以上であり、比活性の上限は特に限定されないが通常は10単位/mg以下であるタンパク質を、上記手段を適宜組み合わせて得ることができる。   In the method of the present invention, how much the concentration of the protein having tannase activity is increased is not particularly limited, and can be appropriately determined according to the purpose of use. The tannase activity (specific activity) per 1 mg of protein is preferably 0.1 unit / mg or more, more preferably 1 unit / mg or more, and the upper limit of the specific activity is not particularly limited. The above-mentioned means can be combined appropriately.

本発明により得られるタンナーゼ活性を有するタンパク質は、タンナーゼ処理を必要とする産業、例えば茶飲料の白濁防止や渋みの改善等の風味改善に利用することができる。   The protein having tannase activity obtained by the present invention can be used for industries that require tannase treatment, for example, flavor improvement such as prevention of white turbidity and improvement of astringency in tea beverages.

以下に本発明の実施例を記載するが、本発明はこれらに何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited thereto.

<実施例1:タンナーゼ生産株のスクリーニング>
タンナーゼ産生の有無はプレートアッセイ法を用いて判定した。すなわち、B1寒天培地(酵母エキス0.2g, ポリペプトン 0.2g, グルコース0.5g, ビタミン混合溶液0.1ml, 寒天 1.5g, 50%人工海水(ASW) 100ml [pH 6.8])上で生育(28℃、4−7日間)させたヤブレツボカビ類21株の各コロニーを白金線で採取し、タンニン酸0.5%を含む寒天平板培地(0.5gタンニン酸、酵母エキス0.2g、ポリペプトン0.2g,ビタミン混合混液0.1ml、寒天 1.5g, 50%ASW100ml [pH 6.8])上で28℃、5日間生育させ、生育したコロニー周辺上に透明帯(タンニン分解帯)又は黒色化(バーベンダム反応)が確認できたものをタンナーゼ陽性株と判定した。また、明瞭な透明帯が認められたものについては、その大きさを計測した。
<Example 1: Screening of tannase producing strain>
The presence or absence of tannase production was determined using a plate assay method. That is, it grows on B1 agar medium (yeast extract 0.2g, polypeptone 0.2g, glucose 0.5g, vitamin mixed solution 0.1ml, agar 1.5g, 50% artificial seawater (ASW) 100ml [pH 6.8]) -7 days) Collected colonies of 21 jellyfish molds with platinum wire, agar plate medium containing 0.5% tannic acid (0.5g tannic acid, yeast extract 0.2g, polypeptone 0.2g, vitamin mixture 0.1ml , Agar 1.5g, 50% ASW 100ml [pH 6.8]) grown at 28 ° C for 5 days, and a tannase with clear zone (tannin degradation zone) or blackening (Berbendam reaction) around the grown colony It was determined as a positive strain. In addition, the size of a clear zona pellucida was measured.

プレートアッセイの一例を図1に、全供試株21株におけるプレートアッセイの結果を表1に示す。表1においてNDは未検出を、Bは黒色化が認められたことを示す。プレートアッセイの結果、供試株21株中A. limacinum mh0186株及びA. limacinum SR21株について明瞭な透明帯が確認された。また他のAurantiochytrium属3株についてもバーベンダム反応が確認された。 An example of the plate assay is shown in FIG. 1, and the results of the plate assay in all 21 test strains are shown in Table 1. In Table 1, ND indicates not detected, and B indicates that blackening was observed. As a result of the plate assay, clear zona pellucida was confirmed for A. limacinum mh0186 strain and A. limacinum SR21 strain among the 21 strains tested . In addition, the Barbendam reaction was confirmed for the other three Aurantiochytrium strains.

Figure 2016127809
Figure 2016127809

<実施例2:培養上清におけるタンナーゼ活性の測定>
プレートアッセイにおいて顕著なタンナーゼ活性が認められたA. limacinum mh0186株を、タンニン酸を含有するTY液体培地(タンニン酸0.5g、酵母エキス0.2g、ポリペプトン 0.2g、50%濃度ASW 100 ml [pH 7.0])で振とう培養(28℃、110rpm、120 hrs)し、以下の方法に従って、培養液中のタンニン酸濃度及び培養上清中のタンナーゼ活性を測定した。
<Example 2: Measurement of tannase activity in culture supernatant>
A. limacinum mh0186 strain, which showed remarkable tannase activity in the plate assay, was added to a TY liquid medium containing tannic acid (0.5 g tannic acid, 0.2 g yeast extract, 0.2 g polypeptone, 50 ml concentration ASW 100 ml [pH 7.0 ]) And shaking culture (28 ° C., 110 rpm, 120 hrs), and the tannic acid concentration in the culture and the tannase activity in the culture supernatant were measured according to the following method.

培養上清中のタンナーゼ活性はIibuchi, S. et al., Agric. Biol. Chem., Vol. 31, pp. 513-518, 1967に記載の方法に従い、310nmにおける吸光度の変化で測定した。すなわち、培養上清液150μlに対して0.35%タンニン酸を含むクエン酸バッファー(50mM, pH5.5)を600μl加えてよく撹拌し、30℃で15分静置した後、90%エタノール溶液を3ml加えてよく撹拌し、その溶液の150μlを別のディスポーザブル試験管に移し90%エタノール溶液を3ml加えてよく撹拌し、分光光度計を用いて波長310nmの吸光度を測定し、事前に作成した検量線からタンナーゼ活性を算出した。なお、酵素活性は、タンパク質1mgが30℃、1分間で1mgのタンニン酸を分解する酵素活性を1単位とした。   The tannase activity in the culture supernatant was measured by the change in absorbance at 310 nm according to the method described in Iibuchi, S. et al., Agric. Biol. Chem., Vol. 31, pp. 513-518, 1967. That is, add 600 μl of citrate buffer (50 mM, pH 5.5) containing 0.35% tannic acid to 150 μl of culture supernatant and stir well, leave it at 30 ° C. for 15 minutes, and then add 3 ml of 90% ethanol solution. Stir well, transfer 150 μl of the solution to another disposable test tube, add 3 ml of 90% ethanol solution, stir well, measure absorbance at a wavelength of 310 nm using a spectrophotometer, and create a calibration curve prepared in advance. The tannase activity was calculated from The enzyme activity was defined as 1 unit of enzyme activity in which 1 mg of protein decomposes 1 mg of tannic acid in 1 minute at 30 ° C.

その結果、培養48時間後から培養上清のタンナーゼ活性が上昇した(図2)。タンナーゼ活性は培養96時間後で最大値を示し、培養120時間後で低下した。   As a result, the tannase activity of the culture supernatant increased after 48 hours of culture (FIG. 2). The tannase activity showed a maximum value after 96 hours of culture and decreased after 120 hours of culture.

<実施例3:タンナーゼ活性を有する酵素タンパクの濃縮>
A. limacinum mh0186株をTY液体培地で振とう培養後(28℃、110rpm、24hrs)、培養液を遠心分離(3000rpm, 30min, 4℃)し、培養上清を回収した。培養上清に対して硫酸アンモニウムを90%飽和濃度になるように添加し、塩析を行った。塩析により沈殿したタンパク質を5.0mLの50mMクエン酸緩衝液(pH5.5)に溶解し、セルロース透析膜を用いて50mMクエン酸緩衝液(pH5.5)に対して透析を行った。一晩氷冷下で透析した後、セルロース膜中に残存するタンナーゼ活性を示すタンパク質を5.0mLの同緩衝液に溶解した。未処理の培養上清、塩析処理(及び透析処理)した培養上清について、実施例2と同様の方法でタンナーゼ活性を測定した。
<Example 3: Concentration of enzyme protein having tannase activity>
After shaking culture of A. limacinum mh0186 strain in TY liquid medium (28 ° C., 110 rpm, 24 hrs), the culture solution was centrifuged (3000 rpm, 30 min, 4 ° C.), and the culture supernatant was collected. Ammonium sulfate was added to the culture supernatant to a saturation concentration of 90%, and salting out was performed. Protein precipitated by salting out was dissolved in 5.0 mL of 50 mM citrate buffer (pH 5.5), and dialyzed against 50 mM citrate buffer (pH 5.5) using a cellulose dialysis membrane. After dialyzing overnight under ice-cooling, the protein exhibiting tannase activity remaining in the cellulose membrane was dissolved in 5.0 mL of the same buffer. The tannase activity was measured in the same manner as in Example 2 for the untreated culture supernatant and the culture supernatant subjected to salting-out treatment (and dialysis treatment).

その結果、試料中のタンパク質当たりのタンナーゼ比活性は有意に上昇し、塩析によって未処理の培養上清と比較して約50倍に、さらに透析を行うことで未処理の培養上清と比較して約100倍に上昇した(図3)。   As a result, the tannase specific activity per protein in the sample was significantly increased, about 50 times higher than the untreated culture supernatant by salting out, and compared with the untreated culture supernatant by further dialysis. It increased about 100 times (Fig. 3).

<実施例4:培地中のタンニン酸含有量が微生物に与える影響の検討>
タンニン酸を0%、0.1%、0.5%、1.0% (w/v)含むGY液体培地(グルコース 0.5g, 酵母エキス 0.2g、ポリペプトン 0.2g、100ml 50%濃度ASW)にて、mh0186株を培養し、細胞の増殖性、培地中のグルコース含量、乾燥バイオマス量、菌体中脂肪酸含量・脂肪酸組成、及び培地上清中のタンナーゼ活性を分析した。
<Example 4: Examination of influence of tannic acid content in culture medium on microorganisms>
Culturing mh0186 strain in GY liquid medium (glucose 0.5g, yeast extract 0.2g, polypeptone 0.2g, 100ml 50% concentration ASW) containing tannic acid 0%, 0.1%, 0.5%, 1.0% (w / v) Then, cell growth, glucose content in the medium, dry biomass amount, fatty acid content / fatty acid composition in the cells, and tannase activity in the culture supernatant were analyzed.

(細胞の増殖性及び培地のグルコース含量)
細胞数は、光学顕微鏡下でトーマス血球版を用いて直接計数した。グルコース濃度は、グルコース分析キット(テストワコーC-II、和光純薬)を用いて測定した。
(Cell growth and glucose content of medium)
The cell number was directly counted using a Thomas blood cell plate under a light microscope. The glucose concentration was measured using a glucose analysis kit (Test Wako C-II, Wako Pure Chemical Industries).

全ての試験区において、培養24時間で細胞数は急激に増加し、培養24時間後以降において、108 cells/ml程度の細胞数を示した。細胞の増殖に伴い培地中のグルコース濃度は急激に低下し、培養72時間目でほぼ枯渇し、0.1 g/L以下となった(図4)。 In all the test groups, the number of cells rapidly increased after 24 hours of culture, and after about 24 hours of culture, the number of cells was about 10 8 cells / ml. As the cells grew, the glucose concentration in the medium decreased sharply, almost depleted at 72 hours of culture, and was below 0.1 g / L (Fig. 4).

(乾燥バイオマス量及び菌体中脂肪酸含量及び脂肪酸組成)
乾燥菌体重量の測定では、事前に乾燥機で105℃で一晩乾燥し恒量化済みの1.5mlマイクロチューブを使用した。上記のマイクロチューブに培養液を1.0ml回収し、150rpm、5分、室温で遠心分離後上清を取り除き、沈殿物を蒸留水にて2回遠心洗浄した。洗浄後、乾燥機で105℃で一晩乾燥し、精密電子天秤を用いて重量を測定した。沈殿物を含むマイクロチューブの重量から、事前に恒量化したマイクロチューブの重量を差し引いた値を乾燥菌体重量とした。
(Dry biomass amount and fatty acid content and fatty acid composition in cells)
In the measurement of the dry cell weight, a 1.5 ml microtube that had been dried in a dryer overnight at 105 ° C. overnight and constant in weight was used. 1.0 ml of the culture solution was collected in the above microtube, centrifuged at 150 rpm for 5 minutes at room temperature, the supernatant was removed, and the precipitate was washed twice with distilled water. After washing, it was dried overnight at 105 ° C. with a dryer, and the weight was measured using a precision electronic balance. The value obtained by subtracting the weight of the microtube that had been constant in advance from the weight of the microtube containing the precipitate was taken as the dry cell weight.

菌体中の脂肪酸は10%塩酸メタノールを用いてメチルエステル体とし、ガスクロマトグラフを用いてその組成と含量を分析した。すなわち、ガスクロマトグラフ(GC-2014, SHIMADZU)の注入口と検出器(FID)の温度を250℃に設定し、カラムの温度は150℃から220℃まで1分間に2℃上昇するように設定し、これにメチルエステル化した脂肪酸試料をインジェクションし、内部標準としてC19:0を用いて脂肪酸含量を算出した。各脂肪酸の同定は、標準脂肪酸のretention timeとの比較により行った。   Fatty acids in the microbial cells were converted to methyl esters using 10% methanolic hydrochloric acid, and the composition and content were analyzed using a gas chromatograph. That is, the temperature of the gas chromatograph (GC-2014, SHIMADZU) inlet and detector (FID) is set to 250 ° C, and the column temperature is set to increase from 150 ° C to 220 ° C by 2 ° C per minute. Then, the fatty acid sample methylated was injected, and the fatty acid content was calculated using C19: 0 as an internal standard. Each fatty acid was identified by comparison with the retention time of the standard fatty acid.

72時間後の乾燥バイオマス量は、0%試験区で低い値を示し、培地中タンニン酸濃度が高まるにつれ増加した(図5)。一方、培養菌体中の総脂肪酸含量は、タンニン酸濃度が高まるにつれて減少した(図6)。培地体積当たりの菌体中の総脂肪酸生産量は、0.1%区が他の試験区と比べて有意に高い値を示した(図7)。   The amount of dry biomass after 72 hours showed a low value in the 0% test group, and increased as the tannic acid concentration in the medium increased (FIG. 5). On the other hand, the total fatty acid content in the cultured cells decreased as the tannic acid concentration increased (Fig. 6). The total fatty acid production in the microbial cells per medium volume was significantly higher in the 0.1% group than in the other test groups (FIG. 7).

菌体中の脂肪酸は主に飽和脂肪酸は主としてパルミチン酸、高度不飽和脂肪酸としてドコサヘキサエン酸(DHA)が含まれ、その割合は試験区間で差は認められなかった。菌体中のDHA含量は0%試験区で最も高く、培地中のタンニン酸含量が増加するに従って減少した。培地体積当たりの菌体中のDHA生産量は0.1%区で最も高い値が得られた(図8)。   Fatty acids in the cells mainly contain saturated fatty acids, mainly palmitic acid, and highly unsaturated fatty acids, docosahexaenoic acid (DHA). The DHA content in the cells was highest in the 0% test group, and decreased as the tannic acid content in the medium increased. The highest DHA production in the cells per medium volume was obtained at 0.1% (FIG. 8).

(培養上清中のタンナーゼ活性)
培養上清のタンナーゼ活性は、タンニン酸含有プレートを用いて、プレートアッセイ法によって測定した。すなわち、0.5%タンニン酸含有寒天プレート(0.5gタンニン酸、100mlクエン酸バッファー(50mM, pH5.5)、寒天末 1.5g)を調製し、コルクボーラーで寒天培地にウェル(穴, 5mm径)を開け、ウェルに培養上清液40μlを加え、28℃で4時間インキュベートし、活性の有無をウェル周辺の透明帯により判断した。
(Tannase activity in culture supernatant)
The tannase activity of the culture supernatant was measured by a plate assay method using a tannic acid-containing plate. In other words, prepare an agar plate containing 0.5% tannic acid (0.5g tannic acid, 100ml citrate buffer (50mM, pH5.5), agar powder 1.5g) and place a well (hole, 5mm diameter) on the agar medium with a cork borer. The well was added with 40 μl of culture supernatant and incubated at 28 ° C. for 4 hours, and the presence or absence of activity was judged by the zona pellucida around the well.

その結果、培養上清中のタンナーゼ活性は、0.5%タンニン酸含有培地でのみ活性が確認された(図9)。   As a result, the activity of tannase in the culture supernatant was confirmed only in a medium containing 0.5% tannic acid (FIG. 9).

また、培養上清中のタンナーゼ活性を、薄層クロマトグラフィーによっても確認した。すなわち、展開溶媒としてブタノール:酢酸:水=4:1:1を用い、培養上清をペーパークロマトグラフィーに供し、展開後に0.15%第二塩化鉄を含む30%エタノールをスプレーで噴霧し、105℃で10分間加熱することで、タンニン酸のスポットを発色させた。   The tannase activity in the culture supernatant was also confirmed by thin layer chromatography. That is, using butanol: acetic acid: water = 4: 1: 1 as a developing solvent, the culture supernatant was subjected to paper chromatography, and after development, sprayed with 30% ethanol containing 0.15% ferric chloride by spraying at 105 ° C. The tannic acid spots were colored by heating for 10 minutes.

0.5%区の培養上清中のタンニン酸を薄層クロマトグラフィーに供したところ、培養開始時にはタンニン酸のスポットしか認められなかったが(図10左)、培養48時間後にはタンニン酸に加え、分解産物である没食子酸のスポットが確認された(図10右)。   When tannic acid in 0.5% culture supernatant was subjected to thin layer chromatography, only tannic acid spots were observed at the start of culture (Figure 10 left), but after 48 hours of culture, in addition to tannic acid, A spot of gallic acid, a degradation product, was confirmed (Fig. 10, right).

Claims (6)

ヤブレツボカビ類に分類される微生物の少なくとも1種を培養し、該微生物にタンナーゼ活性を有するタンパク質を生産させる培養工程を含む、タンナーゼ活性を有するタンパク質の製造方法。   A method for producing a protein having tannase activity, comprising a culture step of culturing at least one microorganism classified as a genus mold and causing the microorganism to produce a protein having tannase activity. 前記微生物が、アウランチオキトリウム・リマシナム(Aurantiochytrium limacinum)、及びアウランチオキトリウム・マングロベイ(Aurantiochytrium mangrovei)に属する微生物から選択される少なくとも1種である、請求項1の方法。 Wherein the microorganism is at least one selected from microorganisms belonging to Au lunch Oki thorium-Rimashinamu (Aurantiochytrium limacinum), and Au lunch Oki thorium-Mangurobei (Aurantiochytrium mangrovei), The method of claim 1. 前記微生物が、アウランチオキトリウム・リマシナム SR21 ATCC MYA-1381(Aurantiochytrium limacinum SR21 ATCC MYA-1381)株、アウランチオキトリウム・リマシナム mh0186(Aurantiochytrium limacinum mh0186)株(FERM P-19755)、アウランチオキトリウム・マングロベイ SEK218(Aurantiochytrium mangrovei SEK218)株、及びアウランチオキトリウム sp. ATCC26185(Aurantiochytrium sp. ATCC26185)株から選択される少なくとも1種である、請求項1の方法。 The microorganisms are Aurantiochytrium limacinum SR21 ATCC MYA-1381 ( Aurantiochytrium limacinum SR21 ATCC MYA-1381), Aurantiochytrium limacinum mh0186 ( Aurantiochytrium limacinum mh0186) strain (FERM P-19755), Aurantiochytrium The method according to claim 1, wherein the method is at least one selected from the strains of Mangrobay SEK218 ( Aurantiochytrium mangrovei SEK218) and Aurantiochytrium sp. ATCC26185 ( Aurantiochytrium sp. ATCC26185). 前記培養工程が、タンニン酸を含有する培地を用いて前記微生物を培養する工程である、請求項1〜3のいずれか一項に記載の方法。   The method according to any one of claims 1 to 3, wherein the culturing step is a step of culturing the microorganism using a medium containing tannic acid. さらに、タンナーゼ活性を有するタンパク質を塩析する工程を含む、請求項1〜4のいずれか一項に記載の方法。   The method according to any one of claims 1 to 4, further comprising a step of salting out a protein having tannase activity. さらに、塩析されたタンナーゼ活性を有するタンパク質を含む溶液を、緩衝液に対して透析する工程を含む、請求項5の方法。   6. The method of claim 5, further comprising dialyzing a solution containing the salted out tannase activity against a buffer.
JP2015003492A 2015-01-09 2015-01-09 Process for producing a protein having tannase activity using a moth mold fungus Active JP6504537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015003492A JP6504537B2 (en) 2015-01-09 2015-01-09 Process for producing a protein having tannase activity using a moth mold fungus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015003492A JP6504537B2 (en) 2015-01-09 2015-01-09 Process for producing a protein having tannase activity using a moth mold fungus

Publications (3)

Publication Number Publication Date
JP2016127809A true JP2016127809A (en) 2016-07-14
JP2016127809A5 JP2016127809A5 (en) 2018-01-18
JP6504537B2 JP6504537B2 (en) 2019-04-24

Family

ID=56383712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015003492A Active JP6504537B2 (en) 2015-01-09 2015-01-09 Process for producing a protein having tannase activity using a moth mold fungus

Country Status (1)

Country Link
JP (1) JP6504537B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151452A1 (en) * 2018-01-31 2019-08-08 日本水産株式会社 Dried powder of microorganisms and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63304981A (en) * 1987-06-08 1988-12-13 Kikkoman Corp Production of tannase
JPH04360684A (en) * 1991-06-07 1992-12-14 Kikkoman Corp Production of tannase
JP2005287380A (en) * 2004-03-31 2005-10-20 Masahiro Hayashi Feed for animal plankton and method for culturing animal plankton using the same
JP2009034037A (en) * 2007-08-01 2009-02-19 Univ Of Miyazaki Method for producing enzyme

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63304981A (en) * 1987-06-08 1988-12-13 Kikkoman Corp Production of tannase
JPH04360684A (en) * 1991-06-07 1992-12-14 Kikkoman Corp Production of tannase
JP2005287380A (en) * 2004-03-31 2005-10-20 Masahiro Hayashi Feed for animal plankton and method for culturing animal plankton using the same
JP2009034037A (en) * 2007-08-01 2009-02-19 Univ Of Miyazaki Method for producing enzyme

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ADVANCES IN BIOLOGICAL RESEARCH (2009) VOL.3, NO.1-2, PP.34-39, JPN7018003193 *
BIODEGRADATION (1998) VOL.9, P.343-357, JPN6018036178 *
INTERNATIONAL JOURNAL OF SCIENTIFIC ENGINEERING AND TECHNOLOGY (2013) VOL.2, NO.8, PP.752-755, JPN7018003192 *
JOURNAL OF MICROBIOLOGY AND BIOTECHNOLOGY (2010) VOL.20, NO.10, PP.1403-1414, JPN6018036175 *
MICROBIOLOGY (2003) VOL.149, PP.2941-2946, JPN6018036171 *
木材保存 (1995) VOL.21-4, PP.2(163)-9(170), JPN6018036168 *
深谷一斗他: "Remazol Brilliant Blue Rを指標とした海洋性真核微生物ヤブレツボカビ類によるリグニン処理能力の評価", マリンバイオテクノロジー学会大会講演要旨集, vol. Vol.15th p.108, JPN6016010500, 1 June 2013 (2013-06-01) *
第59回日本生物工学会大会講演要旨集, JPN6012046358, 2 August 2007 (2007-08-02), pages p.65,2B14-5 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151452A1 (en) * 2018-01-31 2019-08-08 日本水産株式会社 Dried powder of microorganisms and method for producing same
JPWO2019151452A1 (en) * 2018-01-31 2021-01-14 日本水産株式会社 Dry powder of microorganisms and its manufacturing method
US11479751B2 (en) 2018-01-31 2022-10-25 Nippon Suisan Kaisha, Ltd. Dried powder of microorganisms and method for producing same
JP7280200B2 (en) 2018-01-31 2023-05-23 株式会社ニッスイ Dry powder of microorganisms and method for producing the same

Also Published As

Publication number Publication date
JP6504537B2 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
JP6329940B2 (en) Euglena microalgae, polysaccharide manufacturing method, and organic compound manufacturing method
Arous et al. Newly isolated yeasts from Tunisian microhabitats: lipid accumulation and fatty acid composition
CN102952813B (en) Synthetic method and extraction process of blue natural dye
Díaz-Santos et al. Study of bioflocculation induced by Saccharomyces bayanus var. uvarum and flocculating protein factors in microalgae
EP2110438B1 (en) Method for increasing the content of docosahexaenoic acid in material containing oil-and-fat or oil-and-fat
KR20170032577A (en) Microalgae Schizochytrium sp. SH103 strain producing bio-oil containing high concentration of DHA and uses thereof
KR102020144B1 (en) Auxenochlorella protothecoides MM0011 and use thereof
CN112941049B (en) Lipase and application thereof in hydrolyzing astaxanthin ester
CN111778170B (en) Bacillus belgii and application thereof
JP6504537B2 (en) Process for producing a protein having tannase activity using a moth mold fungus
Zhou et al. Microbial production of docosahexaenoic acid by a low temperature‐adaptive strain Thraustochytriidae sp. Z105: screening and optimization
Hamed et al. Isolation, screening and statistical optimizing of L-methioninase production by Chaetomium globosum
Kumon et al. A new labyrinthulid isolate, which solely produces n-6 docosapentaenoic acid
CN102174422B (en) Organic solvent-resistant lipase production strain, gene of lipase and application of lipase
JP6392534B2 (en) Protein having leucine acid production activity and use thereof
JP5214925B2 (en) Enzyme production method
JP5638783B2 (en) Yeast for alcohol fermentation and method for producing ethanol using the same
JP2010119321A (en) Method for producing sugar alcohol
JP2015149912A (en) Method for producing protein having catalase activity by using thraustochytriaceae family
CN114891706B (en) High acid-resistant acetobacter and application thereof
JPH0763382B2 (en) Method for producing lipid containing eicosapentaenoic acid by microorganism
JP6181971B2 (en) Method for producing aromatic compound
KR101383829B1 (en) Mutant Strains for Producing 2,3-butanediol
JP5723108B2 (en) Method for producing glucosylglycerate by microorganism
KR101601637B1 (en) Method for improving ethanol production using thylakoid membrane from photosynthetic bacteria

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190318

R150 Certificate of patent or registration of utility model

Ref document number: 6504537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250