JP2016126992A - Conductor wire for coil, and electric wire for coil - Google Patents

Conductor wire for coil, and electric wire for coil Download PDF

Info

Publication number
JP2016126992A
JP2016126992A JP2015002691A JP2015002691A JP2016126992A JP 2016126992 A JP2016126992 A JP 2016126992A JP 2015002691 A JP2015002691 A JP 2015002691A JP 2015002691 A JP2015002691 A JP 2015002691A JP 2016126992 A JP2016126992 A JP 2016126992A
Authority
JP
Japan
Prior art keywords
wire
conductor
coil
conductor wire
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015002691A
Other languages
Japanese (ja)
Other versions
JP6382726B2 (en
Inventor
亮 丹治
Akira Tanji
亮 丹治
中井 由弘
Yoshihiro Nakai
由弘 中井
西川 太一郎
Taichiro Nishikawa
太一郎 西川
鉄也 桑原
Tetsuya Kuwabara
鉄也 桑原
康三 木村
Kozo Kimura
康三 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Sumitomo Electric Wintec Inc
Original Assignee
Sumitomo Electric Industries Ltd
Sumitomo Electric Wintec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Sumitomo Electric Wintec Inc filed Critical Sumitomo Electric Industries Ltd
Priority to JP2015002691A priority Critical patent/JP6382726B2/en
Publication of JP2016126992A publication Critical patent/JP2016126992A/en
Application granted granted Critical
Publication of JP6382726B2 publication Critical patent/JP6382726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Conductors (AREA)
  • Windings For Motors And Generators (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductor wire for coil capable of reducing an eddy current loss and obtaining a high space factor, and excellent in productivity, and to provide an electric wire for coil.SOLUTION: A conductor wire for coil comprises a plurality of conductor strands and a high resistance layer which sections each conductor strand in a state where the plurality of the conductor strands are integrally held. Among the plurality of the conductor strands, at least some of the conductor strands are subjected to X-ray diffraction in cross section. When the total sum of diffraction intensities of a (111) plane, a (200) plane, a (220) plane, a (311) plane, a (222) plane, and a (400) plane is S, and the ratio of the diffraction intensity I(200) of the (200) plane to the total sum S is I(200)/S, the I(200)/S satisfies 0.2 or more, and the high resistance layer includes a high conductive material of which the electric resistance is higher than that of a metal constituting the conductor strands.SELECTED DRAWING: Figure 1

Description

本発明は、コイルに用いられる導体線、及び電線に関する。特に、渦電流損を低減できる上に、占積率の高いコイルが得られ、製造性にも優れるコイル用導体線及びコイル用電線に関する。   The present invention relates to a conductor wire and an electric wire used for a coil. In particular, the present invention relates to a coil conductor wire and a coil electric wire that can reduce eddy current loss and provide a coil with a high space factor, which is excellent in manufacturability.

従来、モータやトランス、リアクトルなどといったコイル部品が種々の分野で利用されている。コイル部品に備えるコイルには、エナメル線と呼ばれる電線が汎用されている。エナメル線は、一般に、銅線などの線状の導体と、この導体の外周に設けられたエナメル(樹脂)からなる絶縁層とを備える電線である。コイルは、このような電線を螺旋状や渦巻き状に巻回して形成される。コイルを形成する電線の端部は絶縁層が剥され、露出した導体部分に端子金具などの接続部材が接続される。   Conventionally, coil parts such as a motor, a transformer, and a reactor are used in various fields. An electric wire called an enameled wire is widely used for the coil provided in the coil component. An enameled wire is generally an electric wire including a linear conductor such as a copper wire and an insulating layer made of enamel (resin) provided on the outer periphery of the conductor. The coil is formed by winding such an electric wire in a spiral shape or a spiral shape. The insulating layer is peeled off at the end of the electric wire forming the coil, and a connecting member such as a terminal fitting is connected to the exposed conductor portion.

コイルに用いられる電線として、複数の極細のエナメル線といった極細の電線を絶縁材によって一体に束ねたリッツ線がある(例えば、特許文献1)。リッツ線は、隣り合う電線の導体が絶縁層によって電気的に分断される。いわば1本の導体が細分化されて複数の分割導体を備えるリッツ線は、細分化されていない1本の導体を有する電線であって同じ導体断面積を有する電線と比較して、コイルにした場合にコイルに生じる渦電流損を低減できる。   As an electric wire used for a coil, there is a litz wire in which ultra-fine wires such as a plurality of ultra-fine enamel wires are bundled together with an insulating material (for example, Patent Document 1). In the litz wire, the conductors of adjacent electric wires are electrically separated by an insulating layer. In other words, a litz wire having a plurality of divided conductors with a single conductor subdivided is a coil having a single conductor that is not subdivided and having the same conductor cross-sectional area. In this case, eddy current loss generated in the coil can be reduced.

特開2010−153069号公報JP 2010-153069 A

渦電流損を低減できる上に、占積率の高いコイルが得られる線材の開発が望まれている。   In addition to reducing eddy current loss, it is desired to develop a wire that can provide a coil with a high space factor.

上述のリッツ線では、渦電流損を低減できるもの、電流が流れない部分(絶縁層)を有するために、電流が流れる部分(導体)の断面割合が低くなる。従って、リッツ線では、所定の導体断面積を確保するために外寸(例えば丸線では外径)が大きくなる。特に、大電流用途のコイルに利用されるリッツ線では、外寸がより大きくなる。外寸が大きいリッツ線でコイルを形成した場合、所定の空間内に占めるコイルの割合、即ち占積率が小さくなる。そのため、従来のリッツ線では、コイルの占積率を高めることが難しい。   The above-mentioned litz wire can reduce the eddy current loss and has a portion (insulating layer) through which no current flows, so the cross-sectional ratio of the portion (conductor) through which the current flows is low. Accordingly, in the litz wire, the outer dimension (for example, the outer diameter in the case of a round wire) is increased in order to ensure a predetermined conductor cross-sectional area. In particular, the outer dimension of a litz wire used for a coil for high current applications is larger. When the coil is formed of a litz wire having a large outer dimension, the ratio of the coil occupying the predetermined space, that is, the space factor becomes small. Therefore, it is difficult to increase the space factor of the coil with the conventional litz wire.

更に、上述のリッツ線では、線径が1mm未満といった極細の電線を束ねる際に極細の電線を取り扱い難く、作業性に劣る。また、極細の銅線にエナメルなどの絶縁層を形成するにあたり、絶縁層が所定の厚さとなるように樹脂の塗布及び焼付(加熱処理)という作業を複数回繰り返す必要がある。これらの点から、製造性の改善が望まれている。   Furthermore, in the above-mentioned litz wire, it is difficult to handle an extremely fine wire when bundling an extremely thin wire having a wire diameter of less than 1 mm, and the workability is poor. Further, when an insulating layer such as enamel is formed on an extremely fine copper wire, it is necessary to repeat a plurality of operations such as resin application and baking (heat treatment) so that the insulating layer has a predetermined thickness. From these points, improvement in manufacturability is desired.

従って、コイルに利用される線材として、渦電流損を低減可能で、かつ電流が流れ得る領域の割合が高く、更には製造性にも優れるものが望まれている。   Therefore, a wire rod used for the coil is desired to be able to reduce eddy current loss, to have a high ratio of a region where current can flow, and to be excellent in manufacturability.

本発明は上述の事情を鑑みてなされたものであり、その目的の一つは、渦電流損を低減できる上に、占積率の高いコイルが得られ、製造性にも優れるコイル用導体線及びコイル用電線を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to reduce eddy current loss, to obtain a coil with a high space factor, and to be excellent in manufacturability. And it is providing the electric wire for coils.

本発明の一態様に係るコイル用導体線は、複数の導体素線と、前記複数の導体素線を一体に保持した状態で各導体素線を区画する高抵抗層とを備える。前記複数の導体素線のうち、少なくとも一部の導体素線は、横断面についてX線回折を行って、(111)面、(200)面、(220)面、(311)面、(222)面、(400)面の回折強度の総和をSとし、前記総和Sに対する(200)面の回折強度I(200)の比をI(200)/Sとするとき、前記I(200)/Sが0.2以上を満たす。前記高抵抗層は、前記導体素線を構成する金属よりも電気抵抗が高い導電性材料を含む。   A coil conductor wire according to an aspect of the present invention includes a plurality of conductor strands and a high resistance layer that partitions the conductor strands while holding the plurality of conductor strands integrally. Among the plurality of conductor strands, at least some of the conductor strands are subjected to X-ray diffraction with respect to a cross-section, and (111) plane, (200) plane, (220) plane, (311) plane, (222) ) Plane, (400) plane, the sum of diffraction intensities is S, and the ratio of the (200) plane diffraction intensity I (200) to the total sum S is I (200) / S. S satisfies 0.2 or more. The high resistance layer includes a conductive material having an electric resistance higher than that of a metal constituting the conductor wire.

本発明の一態様に係るコイル用電線は、上記のコイル用導体線と、前記コイル用導体線の外周に設けられる絶縁層とを備える。   The coil electric wire which concerns on 1 aspect of this invention is equipped with said conductor wire for coils, and the insulating layer provided in the outer periphery of the said conductor wire for coils.

上記のコイル用導体線及び上記のコイル用電線は、渦電流損を低減できる上に、占積率の高いコイルが得られ、製造性にも優れる。   The above-described coil conductor wire and the above-described coil wire can reduce eddy current loss, obtain a coil with a high space factor, and are excellent in manufacturability.

実施形態のコイル用導体線及びコイル用電線の一例を示す模式図、及びこれらを製造可能な製造方法の一例を説明する工程説明図である。It is a schematic diagram which shows an example of the conductor wire for coils and the electric wire for coils of embodiment, and process explanatory drawing explaining an example of the manufacturing method which can manufacture these. 実施形態のコイル用導体線を製造可能な製造方法において、一体化工程に利用するコンフォーム押出装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the conform extrusion apparatus utilized for an integration process in the manufacturing method which can manufacture the conductor wire for coils of embodiment. 丸線について、渦電流損の測定方法を説明する説明図である。It is explanatory drawing explaining the measuring method of an eddy current loss about a round wire. 平角線について、渦電流損の測定方法を説明する説明図である。It is explanatory drawing explaining the measuring method of an eddy current loss about a flat wire.

[本発明の実施形態の説明]
本発明者らは、渦電流損を低減できるようにリッツ線のような複数の線材を束ねた集合線材であって、コイルの占積率が高められる構成を検討した。その結果、以下の知見を得た。
[Description of Embodiment of the Present Invention]
The inventors of the present invention have studied a configuration in which a plurality of wires such as litz wires are bundled so that eddy current loss can be reduced and the space factor of the coil is increased. As a result, the following knowledge was obtained.

導体となる複数の素線を、エナメルのような電気絶縁体ではなく、素線の構成金属よりも電気抵抗が高い材料であって、かつ導電性を有する材料(以下、高抵抗導電材と呼ぶことが有る)で区画すれば、渦電流の発生を低減できながら、電流が流れ得る領域を十分に確保できる。上述の高抵抗導電材の組成によっては、素線と、素線を区画する領域との双方の全てを電流が十分に流れ得る領域とすることができる。例えば、各素線を銅線とし、区画する領域を構成する高抵抗導電材をアルミニウムやアルミニウム合金などの金属とすることが挙げられる。このような高抵抗導電材を備える集合線材であれば、その全体を導体にできる。   A plurality of strands serving as conductors are not electrical insulators such as enamel, but are materials that have higher electrical resistance than the constituent metals of the strands and have conductivity (hereinafter referred to as high-resistance conductive materials). In this case, it is possible to sufficiently secure a region where current can flow while reducing generation of eddy current. Depending on the composition of the above-described high-resistance conductive material, both the strands and the regions that divide the strands can be regions where current can sufficiently flow. For example, each element wire may be a copper wire, and the high resistance conductive material constituting the partitioning region may be a metal such as aluminum or aluminum alloy. If it is a collective wire provided with such a high resistance conductive material, the whole can be made into a conductor.

更に、上記高抵抗導電材が上述のように金属といった塑性加工が可能な材料(塑性加工を行ったときに塑性変形量が少ないものの割れたり脱落したりすることなく付着していることが可能な材料を含む)であれば、以下の理由により集合線材の製造性に優れる。例えば、太い径の金属素線に高抵抗導電材からなる被覆層を形成し、得られた被覆線材を複数用意して束ねて、後述のように特定の押出などを利用して一体化することで、金属素線に由来する導体素線が被覆層に由来する高抵抗導電材によって区画された集合線材を容易に製造できる。即ち、被覆層の形成や一体化などの作業を、取り扱い易い太い線材に対して行える。   Furthermore, the high-resistance conductive material can be adhered without cracking or falling off, although the material can be plastically processed as described above (the plastic deformation amount is small when plastic processing is performed). (Including materials), it is excellent in the productivity of the assembly wire for the following reason. For example, a coating layer made of a high-resistance conductive material is formed on a metal wire having a large diameter, a plurality of the obtained coated wire materials are prepared and bundled, and integrated using a specific extrusion as described later. Thus, it is possible to easily manufacture an aggregate wire in which conductor wires derived from metal strands are partitioned by a high-resistance conductive material derived from a coating layer. That is, operations such as formation and integration of the coating layer can be performed on a thick wire that is easy to handle.

特に、上述の複数の被覆線材の一体化にあたり後述するコンフォーム押出を利用すれば、高抵抗導電材を接合可能な温度に加熱する設備や工程が不要である。コンフォーム押出は、冷間加工でありながら、加工熱によって押出対象の塑性加工性を高められるため、強固にかつ良好に一体化できる上に、原料の供給を連続的に行えて、長尺な集合線材を製造できる。これらの点から、上記高抵抗導電材を利用することで、集合線材を生産性よく量産できる。   In particular, if conform extrusion described later is used for the integration of the above-described plurality of coated wires, there is no need for equipment and processes for heating the high-resistance conductive material to a temperature at which it can be joined. Conform extrusion is a cold work, but the plastic workability of the object to be extruded can be enhanced by the processing heat, so that it can be firmly and well integrated, and the raw material can be supplied continuously, making it long. Assembly wire can be manufactured. From these points, the aggregate wire can be mass-produced with high productivity by using the high resistance conductive material.

更に、コンフォーム押出によって得られた集合線材は、機械的特性(特に伸び)に優れていて、螺旋状や渦巻き状に巻回したり、屈曲したりするときの加工性や作業性などに優れており、コイル用線材に好適に利用できるといえる。そして、コンフォーム押出を経て得られた集合線材を調べたところ、導体素線が特定の配向組織を有していた。   Furthermore, the aggregate wire obtained by conform extrusion is excellent in mechanical properties (particularly elongation), and excellent in workability and workability when wound or bent in a spiral or spiral shape. Therefore, it can be said that it can be suitably used for a coil wire. And when the assembly wire obtained through conform extrusion was investigated, the conductor strand had a specific orientation structure | tissue.

以上の知見に基づき、渦電流損を低減できる上に、占積率の高いコイルが得られ、更にはコイル成形性に優れる上に、線材自体の製造性にも優れるコイル用線材として、複数の導体素線がこの導体素線よりも高抵抗の導電性材料によって区画されていること、かつ導体素線が特定の配向性を有することを提案する。以下、本発明の実施態様を列記して説明する。   Based on the above knowledge, eddy current loss can be reduced, and a coil with a high space factor can be obtained. Furthermore, in addition to excellent coil formability, the wire itself for the coil is also excellent in manufacturability of the wire. It is proposed that the conductor strand is partitioned by a conductive material having a higher resistance than the conductor strand, and that the conductor strand has a specific orientation. Hereinafter, embodiments of the present invention will be listed and described.

(1) 本発明の一態様に係るコイル用導体線は、複数の導体素線と、上記複数の導体素線を一体に保持した状態で各導体素線を区画する高抵抗層とを備える。上記複数の導体素線のうち、少なくとも一部の導体素線は、横断面についてX線回折を行って、(111)面、(200)面、(220)面、(311)面、(222)面、(400)面の回折強度の総和をSとし、上記総和Sに対する(200)面の回折強度I(200)の比をI(200)/Sとするとき、上記I(200)/Sが0.2以上を満たす。上記高抵抗層は、上記導体素線を構成する金属よりも電気抵抗が高い導電性材料を含む。   (1) A coil conductor wire according to an aspect of the present invention includes a plurality of conductor wires and a high-resistance layer that partitions each conductor wire in a state where the plurality of conductor wires are integrally held. Among the plurality of conductor strands, at least some of the conductor strands are subjected to X-ray diffraction with respect to the cross section, so that (111) plane, (200) plane, (220) plane, (311) plane, (222) ) Surface and (400) plane, the sum of the diffraction intensities is S, and the ratio of the diffraction intensity I (200) of the (200) plane to the sum S is I (200) / S. S satisfies 0.2 or more. The high resistance layer includes a conductive material having an electric resistance higher than that of the metal constituting the conductor strand.

・上記導電性材料とは、半導体の電気伝導率、具体的には1×10−10S/cm以上を有する材料とする。
・上記電気抵抗とは、体積抵抗率(μΩ・cm)とする。
・電気伝導率及び体積抵抗率は、材料固有の値であり、成分分析を行って構成材料の組成を調べて、公知のデータなどを参照することで特定できる。
The conductive material is a material having a semiconductor electrical conductivity, specifically, 1 × 10 −10 S / cm or more.
-The electrical resistance is a volume resistivity (μΩ · cm).
The electric conductivity and volume resistivity are values specific to the material, and can be specified by examining the composition of the constituent material through component analysis and referring to known data.

上記のコイル用導体線は、導体素線間に高抵抗層が介在して、各導体素線が高抵抗層によって電気的にある程度分離されている。そのため、上記のコイル用導体線は、細分化されていない1本の導体を有する電線であって上記のコイル用導体線に備える導体素線の合計断面積と同じ導体断面積を有する電線と比較して、渦電流の発生を低減できる。従って、上記のコイル用導体線は、渦電流損を低減でき、このコイル用導体線を利用することで、交流損失の増大を抑制して低損失なコイルが得られる。   In the coil conductor wire, a high resistance layer is interposed between the conductor wires, and each conductor wire is electrically separated to some extent by the high resistance layer. Therefore, the above-mentioned coil conductor wire is an electric wire having one conductor that is not subdivided, and is compared with an electric wire having the same conductor cross-sectional area as the total cross-sectional area of the conductor wires provided in the coil conductor wire. Thus, the generation of eddy current can be reduced. Therefore, the coil conductor wire can reduce eddy current loss, and by using the coil conductor wire, an increase in AC loss can be suppressed and a low loss coil can be obtained.

また、高抵抗層は導体素線よりも電気抵抗が高いものの導電性を有するため、高抵抗層を含めて上記のコイル用導体線は、リッツ線よりも導電性に優れ、電気抵抗値が低い線材といえる。特に、各導体素線と高抵抗層とが金属学的な接合によって一体化された場合には、導体素線と高抵抗層との界面抵抗が小さく、この点からも、上記のコイル用導体線は、導電性に優れるといえる。そのため、上記のコイル用導体線は、代表的にはその全体を、電流を流す領域として利用でき、上記のコイル用導体線の断面積と同じ導体断面積を有するリッツ線と比較して、外寸や横断面積などのサイズを小さくできる。従って、上記のコイル用線材を利用すれば、上記リッツ線を用いた場合よりも巻き数を増大できるため、占積率が高いコイルが得られる。   In addition, since the high resistance layer has electrical conductivity higher than that of the conductor wire, the above-described coil conductor wire including the high resistance layer has higher conductivity and lower electrical resistance than the litz wire. It can be said that it is a wire. In particular, when each conductor wire and the high resistance layer are integrated by metallurgical bonding, the interface resistance between the conductor wire and the high resistance layer is small. It can be said that the wire is excellent in conductivity. Therefore, typically, the coil conductor wire can be used entirely as a region through which current flows, and compared with a litz wire having the same conductor cross-sectional area as that of the coil conductor wire. Sizes such as dimensions and cross-sectional areas can be reduced. Therefore, if the coil wire is used, the number of turns can be increased as compared with the case where the litz wire is used, so that a coil having a high space factor can be obtained.

又は、上記のコイル用導体線は、同じ外寸のリッツ線と比較して、電流が流れ得る領域の割合が多い。従って、上記のコイル用線材を利用すれば、上記リッツ線を用いた場合よりも巻き数を低減できるため、小型なコイルが得られる。即ち、上記のコイル用線材は、コイルの小型化に寄与する。   Or compared with the litz wire of the same outer dimension, the ratio of the area | region where an electric current can flow is large in said coil conductor wire. Therefore, if the coil wire is used, the number of turns can be reduced as compared with the case where the litz wire is used, so that a small coil can be obtained. That is, the coil wire described above contributes to the miniaturization of the coil.

更に、上記のコイル用導体線は、以下の理由により、コイル成形性や加工性などにも優れ、コイル用線材として好適に利用できる。上述のように各導体素線と高抵抗層とが金属学的に接合されるなどする結果、導体素線同士が高抵抗層によって強固に一体化される。そのため、上記のコイル用導体線を螺旋状や渦巻き状に巻回してターンを成形したり、折り曲げたり、端部に端子金具などを接続したりする際などで、複数の導体素線が分離すること無く一体となっており、コイル成形や、その前後の処理などの作業を良好に行える。上記のコイル用導体線は、(200)面が配向した特定の組織を有する導体素線を含むことからも、コイル成形性や加工性などに優れる。例えば、銅線や銅合金線では、(200)面が配向している場合、伸びや耐力などの機械的特性に優れるからである。   Furthermore, the above-described coil conductor wire is excellent in coil formability and workability for the following reasons, and can be suitably used as a coil wire. As described above, as a result of metallurgical bonding of each conductor wire and the high resistance layer, the conductor wires are firmly integrated by the high resistance layer. Therefore, a plurality of conductor wires are separated when the coil conductor wire is wound into a spiral shape or a spiral shape to form a turn, bend, or connect a terminal fitting or the like to the end. It is united without any problems, and it can perform operations such as coil forming and processing before and after that. The coil conductor wire described above is excellent in coil moldability, workability, and the like because it includes a conductor wire having a specific structure in which the (200) plane is oriented. For example, in the case of a copper wire or a copper alloy wire, when the (200) plane is oriented, mechanical properties such as elongation and yield strength are excellent.

その上、上記のコイル用導体線は、上述のようにコンフォーム押出を利用することで、以下の点から製造性にも優れる。
1.複数の導体素線を一体化するための加熱設備が不要である
2.複数の導体素線を強固に一体化できる
3.機械的特性、特にコイル成形性を良好にする高い伸びなどを有する線材が得られる
4.機械的特性に優れるため、押出材をそのまま導体として利用できる
5.ビレットを押し出す一般的な押出装置を用いた場合とは異なり、長尺材を製造可能である
In addition, the coil conductor wire is excellent in manufacturability from the following points by utilizing conform extrusion as described above.
1. 1. No heating equipment is required to integrate multiple conductor wires. 2. A plurality of conductor strands can be firmly integrated. 3. A wire having a high elongation that improves mechanical properties, particularly coil formability is obtained. 4. Because of its excellent mechanical properties, the extruded material can be used as a conductor as it is. Unlike the case of using a general extrusion device that extrudes billets, long materials can be manufactured.

(2) 上記のコイル用導体線の一例として、上記総和Sに対する(220)面の回折強度I(220)の比をI(220)/Sとするとき、上記I(220)/Sが0.01超を満たす形態が挙げられる。   (2) As an example of the coil conductor wire, when the ratio of the diffraction intensity I (220) of the (220) plane to the sum S is I (220) / S, the I (220) / S is 0. A form satisfying more than 0.01 is mentioned.

上記形態は、(200)面及び(220)面の双方が配向した組織を有することで、伸びや耐力などの機械的特性により優れる。   The said form is excellent by mechanical characteristics, such as elongation and yield strength, by having the structure | tissue which both (200) plane and (220) plane orientated.

(3) 上記のコイル用導体線の一例として、上記複数の導体素線のうち、少なくとも一部の導体素線が銅線である形態が挙げられる。   (3) As an example of said coil conductor wire, the form whose at least one part conductor wire is a copper wire among said several conductor strands is mentioned.

上記形態は、電気伝導率や導電率が高い銅線を導体素線に含むため、好ましくは導体素線の全てが銅線であるため、導体断面積を小さくし易く、コイル用導体線の外寸を小さくできる。従って、上記形態は、占積率のより高いコイルを得易い。   In the above embodiment, since the conductor strand includes a copper wire having high electrical conductivity and conductivity, preferably all the conductor strands are copper wires, so that the conductor cross-sectional area can be easily reduced, and the outside of the coil conductor wire can be reduced. The size can be reduced. Therefore, the said form is easy to obtain a coil with a higher space factor.

(4) 上記のコイル用導体線の一例として、上記導電性材料は、アルミニウム合金、ニッケル(Ni)、銅の酸化物、アルミニウム(Al)、錫(Sn)、鉄(Fe)、ニッケル合金、錫合金、鉄合金、鉄の酸化物、及び銅とアルミニウムとを含む金属間化合物から選択される少なくとも1種である形態が挙げられる。   (4) As an example of the coil conductor wire, the conductive material includes an aluminum alloy, nickel (Ni), copper oxide, aluminum (Al), tin (Sn), iron (Fe), nickel alloy, The form which is at least 1 sort (s) selected from a tin alloy, an iron alloy, an iron oxide, and the intermetallic compound containing copper and aluminum is mentioned.

列挙した材料のうち、純金属(Al,Ni,Sn,Fe)や合金、金属間化合物といった金属は、例えば、銅に比較して電気抵抗が十分に高いものの、導電性に優れるため、高抵抗層の構成材料が上記金属を含む形態は、渦電流の発生を低減しつつ、占積率が高いコイルが得られる。また、上記金属は、塑性加工性に優れるため、この形態は、コイル成形性に優れる、コンフォーム押出などを行い易く製造性に優れるといった利点も有する。   Among the listed materials, metals such as pure metals (Al, Ni, Sn, Fe), alloys, and intermetallic compounds, for example, have a sufficiently high electrical resistance compared to copper, but have a high resistance because they are excellent in conductivity. In the form in which the constituent material of the layer includes the metal, a coil having a high space factor can be obtained while reducing generation of eddy current. Further, since the metal is excellent in plastic workability, this form also has advantages such as excellent coil formability, easy conform extrusion, and excellent manufacturability.

列挙した材料のうち、金属酸化物といった非金属は、上記金属に比較して電気抵抗がより高い傾向にある。また、金属酸化物は容易に形成できる上に薄く形成し易く、上記のコイル用導体線における導体素線の割合を十分に確保できる。従って、高抵抗層の構成材料が上記金属酸化物を含む形態は、渦電流損をより低減できる上に、占積率がより高いコイルを得易く、製造性にも優れる。   Among the listed materials, non-metals such as metal oxides tend to have higher electrical resistance than the above metals. In addition, the metal oxide can be easily formed and can be easily formed thin, and a sufficient proportion of the conductor wire in the coil conductor wire can be secured. Therefore, the form in which the constituent material of the high resistance layer contains the metal oxide can further reduce eddy current loss, and can easily obtain a coil having a higher space factor, and is excellent in manufacturability.

(5) 上記のコイル用導体線の一例として、上記複数の導体素線のうち、少なくとも一部の導体素線の平均結晶粒径が30μm以下である形態が挙げられる。   (5) As an example of said coil conductor wire, the form whose average crystal grain diameter of at least one part conductor wire is 30 micrometers or less among said several conductor strands is mentioned.

上記形態は、平均結晶粒径が30μm以下といった微細な結晶組織を有する導体素線を含むため、好ましくは導体素線の全てがこのような微細結晶組織を有するため、特に伸びに優れる。従って、上記形態は、コイル成形性や加工性などに優れ、コイル用線材により好適に利用できる。   Since the said form contains the conductor strand which has a fine crystal structure whose average crystal grain diameter is 30 micrometers or less, Since all the conductor strands preferably have such a fine crystal structure, it is especially excellent in elongation. Therefore, the said form is excellent in coil moldability, workability, etc., and can be suitably utilized for the wire for coils.

(6) 上記のコイル用導体線の一例として、上記高抵抗層が上記各導体素線の周囲を囲む形態が挙げられる。   (6) As an example of said coil conductor wire, the form in which the said high resistance layer surrounds the circumference | surroundings of each said conductor strand is mentioned.

上記形態は、各導体素線の周囲に高抵抗層が存在するため、各導体素線をより確実に区画できて、渦電流の発生をより低減し易い。また、上記形態は、例えば、金属素線の外周に高抵抗導電材からなる被覆層を備える複数の被覆線材をコンフォーム押出によって一体化することで容易に製造できる上に、被覆線材自体も容易に製造できるため、製造性により優れる。   Since the high resistance layer exists around each conductor strand, the said form can partition more reliably each conductor strand, and it is easier to reduce generation | occurrence | production of an eddy current. Moreover, the said form can be easily manufactured by integrating the several covering wire material provided with the coating layer which consists of a high resistance conductive material in the outer periphery of a metal strand by conform extrusion, for example, and also a covering wire itself is easy Therefore, it is excellent in manufacturability.

(7) 上記のコイル用導体線の一例として、上記複数の導体素線が捻じられた捻じり部を備える形態が挙げられる。   (7) As an example of the above-described coil conductor wire, a form including a twisted portion in which the plurality of conductor strands are twisted may be mentioned.

上記形態は、製造過程で捻じりが加えられて製造されたものといえる(製造過程で捻じられた箇所が最終的に捻じり部となる)。ここで、複数の線材をコンフォーム押出によって一体化する場合、これらの線材を予め捻じっておくとばらけ難く取扱い易い上に、コンフォーム押出装置に供給し易い。その結果、コイル用導体線の製造性を高められる。従って、捻じり部を有する上記形態は、製造性に優れる。但し、捻じり部は、局所的なコイルといえることから、出来るだけ少ないことが好ましい。換言すれば、捻じり部のピッチが長いことが好ましい。   It can be said that the said form was manufactured by twisting in the manufacturing process (the part twisted in the manufacturing process finally becomes a twisted part). Here, when integrating a plurality of wire rods by conform extrusion, it is easy to handle these wire rods in advance and to supply them to the conform extrusion device. As a result, the manufacturability of the coil conductor wire can be improved. Therefore, the said form which has a twist part is excellent in manufacturability. However, since it can be said that a twist part is a local coil, it is preferable that there are as few as possible. In other words, it is preferable that the pitch of the twisted portion is long.

(8) 本発明の一態様に係るコイル用電線は、上記の(1)〜(7)のいずれか一つに記載のコイル用導体線と、上記コイル用導体線の外周に設けられる絶縁層とを備える。   (8) A coil wire according to an aspect of the present invention is the coil conductor wire according to any one of (1) to (7) above, and an insulating layer provided on the outer periphery of the coil conductor wire. With.

上記のコイル用電線は、上述した特定の配向性を有する導体素線と特定の高抵抗層とを備えるコイル用導体線を導体とするため、コイルに利用することで、渦電流損の低減及び占積率の向上を実現し、製造性にも優れる。また、上記のコイル用電線は、絶縁層を備えるため、コイルに利用した場合にターン間の絶縁や、コイルとその周囲部品との絶縁を確保できる。   The coil electric wire uses a coil conductor wire having the above-mentioned specific orientation and a specific high-resistance layer as a conductor, so that it can be used for a coil to reduce eddy current loss and Improves the space factor and excels in manufacturability. Moreover, since the said coil electric wire is equipped with an insulating layer, when it uses for a coil, the insulation between turns and the insulation of a coil and its surrounding components are securable.

[本発明の実施形態の詳細]
以下、図面を適宜参照して、本発明の実施形態に係るコイル用導体線、コイル用電線、及びその製造方法をより詳細に説明する。
[Details of the embodiment of the present invention]
Hereinafter, a coil conductor wire, a coil wire, and a manufacturing method thereof according to an embodiment of the present invention will be described in more detail with reference to the drawings as appropriate.

・コイル用導体線
実施形態に係るコイル用導体線1は、図1に示すように複数の導体素線10,…と、高抵抗層20とを備える。導体素線10は金属から構成されて主として導体として機能する。高抵抗層20は、複数の導体素線10,…を一体に保持する機能を有する。かつ、高抵抗層20は、導体素線10の構成金属よりも電気抵抗が高い材料を含む。この点から、高抵抗層20は、複数の導体素線10を電気的にある程度分離する区画部材としても機能する。更に、高抵抗層20の材料は、導電性を有している。この点から、高抵抗層20は、電流が流れ得る領域としても機能する。図1に示す導体線1の外形、断面形状、サイズなど、導体素線10の外形、断面形状、サイズ、本数などは例示である。
-Coil conductor wire The coil conductor wire 1 which concerns on embodiment is provided with the some conductor strand 10, ..., and the high resistance layer 20, as shown in FIG. The conductor wire 10 is made of metal and mainly functions as a conductor. The high resistance layer 20 has a function of integrally holding the plurality of conductor wires 10. The high resistance layer 20 includes a material having a higher electrical resistance than the constituent metal of the conductor wire 10. From this point, the high resistance layer 20 also functions as a partition member that electrically separates the plurality of conductor strands 10 to some extent. Furthermore, the material of the high resistance layer 20 has conductivity. From this point, the high resistance layer 20 also functions as a region where current can flow. The outer shape, sectional shape, size, number, etc. of the conductor wire 10 such as the outer shape, sectional shape, size, etc. of the conductor wire 1 shown in FIG.

・・外形
コイル用導体線1の外形は、横断面円形状の丸線(導体線1A)、横断面長方形状の平角線(導体線1B)などが挙げられる。その他の横断面形状として、六角形などの多角形、楕円などの異形などが挙げられる。丸線(導体線1A)は、コイル成形性に優れて、コイルを製造し易い。平角線(導体線1B)は、丸線に比較して占積率が高いコイルを得易い。特に幅が広い平角線は、同じ断面積を有する丸線と比較して磁束が通過し易いため渦電流が生じ易いといえ、この点から導体線1Bは、渦電流損の低減効果が大きいと期待される。
..Outline Examples of the outer shape of the coil conductor wire 1 include a circular wire having a circular cross section (conductor wire 1A), a rectangular wire having a rectangular cross section (conductor wire 1B), and the like. Other cross-sectional shapes include polygons such as hexagons and irregular shapes such as ellipses. The round wire (conductor wire 1A) is excellent in coil moldability and easy to manufacture a coil. The rectangular wire (conductor wire 1B) is easy to obtain a coil having a higher space factor than the round wire. In particular, a wide rectangular wire is more likely to generate eddy currents because magnetic flux easily passes than a round wire having the same cross-sectional area. From this point, the conductor wire 1B has a great effect of reducing eddy current loss. Be expected.

・・サイズ
コイル用導体線1の横断面積は、用途に応じて適宜選択でき、小さいほど渦電流が少ないコイルを得易く、大きい場合には大電流用途のコイルに利用できる。例えば、上記横断面積は、0.005mm以上500mm以下程度、更に0.5mm以上50mm以下程度が挙げられる。例えば、丸線(導体線1A)では、直径0.1mmφ(100μmφ)以上直径5mmφ以下程度が挙げられる。例えば、平角線(導体線1B)では、一辺の長さ(幅又は厚さ)が0.5mm(500μm)以上15mm以下程度が挙げられる。
.. Size The cross-sectional area of the coil conductor wire 1 can be selected as appropriate according to the application. The smaller the coil, the easier it is to obtain a coil with less eddy current. For example, the cross-sectional area is about 0.005 mm 2 or more and 500 mm 2 or less, and further about 0.5 mm 2 or more and 50 mm 2 or less. For example, in the case of a round wire (conductor wire 1A), a diameter of about 0.1 mmφ (100 μmφ) or more and about 5 mmφ or less can be mentioned. For example, in the flat wire (conductor wire 1B), the length (width or thickness) of one side is about 0.5 mm (500 μm) or more and about 15 mm or less.

・・導体素線の含有量
コイル用導体線1における導体素線10の合計面積割合が高いほど、電流が十分に流れ得る領域を十分に確保でき、占積率の高いコイルを得易く好ましい。上記合計面積割合は、導体線1の横断面において65面積%以上、更に70面積%以上、75面積%以上、更には80面積%以上、特に90面積%以上が好ましい。
.. Content of conductor strands The higher the total area ratio of the conductor strands 10 in the coil conductor wire 1, the more preferably a region where current can sufficiently flow can be secured, and a coil with a high space factor can be easily obtained. The total area ratio is preferably 65 area% or more, more preferably 70 area% or more, 75 area% or more, further 80 area% or more, particularly 90 area% or more in the cross section of the conductor wire 1.

コイル用導体線1における導体素線10の本数が多いほど細分化されていることになるため、渦電流の発生を低減できて好ましい。例えば、上記本数は、4本以上、更に9本以上が挙げられる。   As the number of conductor wires 10 in the coil conductor wire 1 is increased, the number of conductor wires 10 is reduced. Therefore, the generation of eddy currents can be reduced, which is preferable. For example, the number is 4 or more, and further 9 or more.

・・導体素線と高抵抗層との配置状態
高抵抗層20は、上述のように導体素線10を電気的にある程度分離することを目的とするため、導体素線10間に介在する介在部22を有し、導体素線10同士が接触しないように配置されている。代表的には、図1のコイル用導体線1に示すように、高抵抗層20は、各導体素線10の外周を囲むように網目状に存在する。この形態は、各導体素線10が高抵抗層20によって確実に分離されるため、渦電流の発生を低減し易く好ましい。その他、複数の導体素線10のうち、少なくとも一部の導体素線10は、その全周が高抵抗層20に覆われず、一部が高抵抗層20と接触し、他部が高抵抗層20に接触しない形態が挙げられる。この形態は、例えば、高抵抗層20が十字状や格子状に存在し、最外側に位置する各導体素線10の外周面の一部が導体線1の外周面を構成する。
.. Arrangement state of conductor wire and high resistance layer The high resistance layer 20 is intended to electrically isolate the conductor wire 10 to some extent as described above. It has the part 22 and is arrange | positioned so that the conductor strands 10 may not contact. Typically, as shown in the coil conductor wire 1 of FIG. 1, the high resistance layer 20 exists in a mesh shape so as to surround the outer periphery of each conductor wire 10. This configuration is preferable because each conductor wire 10 is surely separated by the high resistance layer 20, so that generation of eddy currents can be easily reduced. In addition, at least some of the plurality of conductor wires 10 are not covered by the high resistance layer 20 at all of the conductor wires 10, some are in contact with the high resistance layer 20, and other portions are high resistance. The form which does not contact the layer 20 is mentioned. In this embodiment, for example, the high resistance layer 20 exists in a cross shape or a lattice shape, and a part of the outer peripheral surface of each conductor element wire 10 located on the outermost side constitutes the outer peripheral surface of the conductor wire 1.

・・捻じり部
コイル用導体線1の一例として、複数の導体素線10が捻じられた捻じり部(図示せず)を備える形態が挙げられる。捻じり部とは、1本の導体素線10を導体線1の長手方向にみたとき、ある横断面における位置が別の横断面における位置とは異なって配置される場合に、上記の位置の切り替え部分をいう。図1に示す丸線の導体線1Aを例にして説明すると、図1に示す横断面では左上に位置する導体素線10が、別の横断面では右下に位置するとき、これら両横断面の間で導体素線10の位置の切り替えが行われているといえる。この切り替え部分が捻じり部である。捻じり部は損失低減のためには少ない方が好ましい。即ち、捻じり部のピッチは長い方が好ましい。捻じり部は、上述のように製造過程で線材が捻じられた痕跡であり、導体線1における捻じり部のピッチは、製造過程での捻じり(撚りピッチ)に影響を受ける。代表的には、捻じり部のピッチの方が、製造過程での撚りピッチよりも長い傾向にある。製造過程での撚りピッチがコンフォーム押出などの塑性加工を受けることで伸びるからである。
.. Twisted portion As an example of the coil conductor wire 1, a form including a twisted portion (not shown) in which a plurality of conductor strands 10 are twisted is mentioned. The twisted portion is a position of the above-mentioned position when a position in one cross section is different from a position in another cross section when one conductor strand 10 is viewed in the longitudinal direction of the conductor wire 1. The switching part. The circular conductor wire 1A shown in FIG. 1 will be described as an example. When the conductor wire 10 located at the upper left in the cross section shown in FIG. 1 is located at the lower right in another cross section, both the cross sections shown in FIG. It can be said that the position of the conductor wire 10 is switched between the two. This switching portion is a twisted portion. It is preferable that the number of twisted portions is small in order to reduce loss. That is, it is preferable that the pitch of the twisted portion is longer. The twisted portion is a trace of the wire being twisted in the manufacturing process as described above, and the pitch of the twisted portion in the conductor wire 1 is affected by the twist (twisting pitch) in the manufacturing process. Typically, the pitch of the twisted portion tends to be longer than the twist pitch in the manufacturing process. This is because the twist pitch in the manufacturing process is extended by undergoing plastic processing such as conform extrusion.

・・機械的特性
コイル用導体線1は、螺旋状や渦巻き状に巻回されてコイルに利用されることから、塑性加工性に優れることが望まれる。そこで、導体線1の一例として、室温における破断伸び(以下、単に伸びと呼ぶことがある)が30%以上を満たす形態が挙げられる。又は、導体線1の一例として、室温における0.2%耐力(以下、単に耐力と呼ぶことがある)が80MPa以上を満たす形態が挙げられる。伸びが30%以上であったり、耐力が80MPa以上であったりすれば、コイル成形性、折り曲げなどの加工性に優れる。伸びが高いほど、コイル成形性などに優れることから、35%以上、更に40%以上が挙げられる。耐力が90MPa以上であれば、加工性により優れる。導体素線10の構成材料や高抵抗層20の構成材料などによっては、伸びや耐力が更に高い形態が挙げられる。
.. Mechanical characteristics Since the coil conductor wire 1 is wound in a spiral shape or a spiral shape and used for a coil, it is desired to have excellent plastic workability. Therefore, an example of the conductor wire 1 is a form in which the breaking elongation at room temperature (hereinafter sometimes simply referred to as elongation) satisfies 30% or more. Alternatively, as an example of the conductor wire 1, a form in which a 0.2% proof stress at room temperature (hereinafter sometimes simply referred to as proof stress) satisfies 80 MPa or more is given. If the elongation is 30% or more or the proof stress is 80 MPa or more, the processability such as coil formability and bending is excellent. The higher the elongation, the better the coil formability, etc., so 35% or more, further 40% or more can be mentioned. If the proof stress is 90 MPa or more, it is more excellent in workability. Depending on the constituent material of the conductor wire 10 and the constituent material of the high resistance layer 20, a form with higher elongation and yield strength can be mentioned.

・・導体素線
・・・構成材料
導体素線10の構成金属は、例えば、銅(純銅)、銅合金、アルミニウム(純アルミニウム)、及びアルミニウム合金から選択される1種が挙げられる。これらの金属は一般に電気伝導率(S/cm)や導電率(%IACS)が高い。そのため、導体素線10として、銅線、銅合金線、アルミニウム線、及びアルミニウム合金線の少なくとも1種の線材を含むコイル用導体線1は、その全体として高い導電性を有して、導体断面積を小さくし易い。その結果、導体線1の外寸や横断面積を小さくでき(導体線1を細くでき)、占積率の高いコイルを形成し易い。特に、複数の導体素線10のうちの少なくとも一部が銅線であれば、好ましくは全てが銅線であれば、導電性に非常に優れ、占積率のより高いコイルを得易い上に、電気抵抗が低いためジュール損を低減できる。複数の導体素線10のうちの少なくとも一部が、銅合金線、アルミニウム線、アルミニウム合金線であれば、銅よりも導電性に劣るため、渦電流の発生を低減し易い。
.. Conductor strand ... Constituent material The constituent metal of the conductor strand 10 includes, for example, one selected from copper (pure copper), copper alloy, aluminum (pure aluminum), and aluminum alloy. These metals generally have high electrical conductivity (S / cm) and electrical conductivity (% IACS). Therefore, the conductor wire for coil 1 including at least one kind of wire material of copper wire, copper alloy wire, aluminum wire, and aluminum alloy wire as the conductor wire 10 has high conductivity as a whole, Easy to reduce the area. As a result, the outer dimension and cross-sectional area of the conductor wire 1 can be reduced (the conductor wire 1 can be made thinner), and a coil with a high space factor can be easily formed. In particular, if at least some of the plurality of conductor wires 10 are copper wires, preferably all are copper wires, it is easy to obtain a coil with excellent conductivity and a higher space factor. Since the electrical resistance is low, Joule loss can be reduced. If at least a part of the plurality of conductor wires 10 is a copper alloy wire, an aluminum wire, or an aluminum alloy wire, since the conductivity is inferior to copper, the generation of eddy currents can be easily reduced.

コイル用導体線1に備える各導体素線10の構成金属が同一種である形態(例えば、全ての導体素線10が銅線である形態)、構成金属が異なる導体素線10を含む形態(例えば、銅線と銅合金線とを含む形態など)とすることができる。導体線1中の全ての導体素線10の構成金属が同一種であれば、原料となる金属素線100を準備し易い、製造段階で一様に変形し易いなどの点から、導体線1の製造性に優れる。構成金属の組成によっては、占積率が高いコイルを得易い、一様に変形し易くコイル成形性などに優れる、といった効果を更に奏する。一方、導体線1中に複数種の構成金属からなる導体素線10を含む場合は、各導体素線10の電気抵抗率が異なり、高抵抗な導体素線10を含み得るため、渦電流損を低減し易い。なお、この場合、高抵抗層20の構成材料は、電気抵抗が最も高い金属から構成される導体素線10よりも電気抵抗が高い材料とする。   A configuration in which the constituent metals of the conductor strands 10 included in the coil conductor wire 1 are the same type (for example, a configuration in which all the conductor strands 10 are copper wires), and a configuration including conductor strands 10 having different constituent metals ( For example, it may be a form including a copper wire and a copper alloy wire. If the constituent metals of all the conductor wires 10 in the conductor wire 1 are of the same type, the conductor wire 1 can be easily prepared from the point that it is easy to prepare a metal wire 100 as a raw material and to be uniformly deformed at the manufacturing stage. Excellent manufacturability. Depending on the composition of the constituent metals, it is possible to further obtain an effect that it is easy to obtain a coil with a high space factor, that it is easily deformed uniformly and is excellent in coil formability. On the other hand, in the case where the conductor wire 1 includes the conductor strands 10 made of a plurality of types of constituent metals, the electrical resistivity of each conductor strand 10 is different and may include the high-resistance conductor strand 10, so eddy current loss Is easy to reduce. In this case, the constituent material of the high resistance layer 20 is a material having an electric resistance higher than that of the conductor wire 10 made of a metal having the highest electric resistance.

各導体素線10の構成金属、本数、後述する高抵抗層20の構成材料は、製造過程で準備する原料(金属素線100、高抵抗材200など)を実質的に維持する。従って、導体素線10や高抵抗層20が所望の組成、本数などとなるように、準備する金属素線100の組成や本数、高抵抗材200の組成などを選択するとよい。   The constituent metal and the number of each conductor wire 10 and the constituent material of the high resistance layer 20 described later substantially maintain the raw materials (metal strand 100, high resistance material 200, etc.) prepared in the manufacturing process. Therefore, the composition and number of the metal strands 100 to be prepared and the composition of the high resistance material 200 may be selected so that the conductor wires 10 and the high resistance layer 20 have a desired composition and number.

・・・外形
コイル用導体線1に備える各導体素線10は、種々の外形をとり得る。製造過程で塑性変形を受け得るからである。例えば、製造過程で丸線の金属素線100を利用した場合、丸線のコイル用導体線1Aでは、最外側に位置する各導体素線10の外周側領域が丸線に沿ったような曲面形状となる傾向にあり、平角線のコイル用導体1Bでは、各導体素線10は平角線のように長方形状となる傾向にある。
... External shape Each conductor strand 10 with which the conductor wire 1 for coils can take various external shapes. This is because plastic deformation can occur during the manufacturing process. For example, when the round metal wire 100 is used in the manufacturing process, in the round coil conductor wire 1A, the outer peripheral side region of each conductor wire 10 positioned on the outermost side is a curved surface along the round wire. In the flat wire coil conductor 1B, each conductor wire 10 tends to be rectangular like a flat wire.

・・・サイズ
コイル用導体線1に備える各導体素線10の横断面積は小さいほど、渦電流の発生を抑制できて好ましい。例えば、上記横断面積は0.05mm以上1mm以下程度、更に0.1mm以上0.5mm以下程度が挙げられる。各導体素線10の横断面積が小さくても、合計面積割合が上述のように高ければ、導電性に優れる。代表的には、各導体素線10の横断面積が実質的に同一である形態が挙げられる。製造過程で準備する金属素線100の大きさなどによっては、横断面積が異なる導体素線10を含む形態とすることができる。
... Size The smaller the cross-sectional area of each conductor wire 10 provided in the coil conductor wire 1, the more preferable it is to suppress the generation of eddy currents. For example, the cross-sectional area is about 0.05 mm 2 or more and 1 mm 2 or less, and further about 0.1 mm 2 or more and 0.5 mm 2 or less. Even if the cross-sectional area of each conductor wire 10 is small, the conductivity is excellent if the total area ratio is high as described above. A typical example is a form in which the cross-sectional areas of the respective conductor wires 10 are substantially the same. Depending on the size or the like of the metal strand 100 prepared in the manufacturing process, the conductor strand 10 having a different cross-sectional area may be included.

・・・組織
コイル用導体線1は、特定の配向性を有する導体素線10を含むことを特徴の一つとする。詳しくは、導体線1の横断面についてX線回折を行うと、結晶の(200)面が配向している。具体的には、(111)面の回折強度、(200)面の回折強度、(220)面の回折強度、(311)面の回折強度、(222)面の回折強度、(400)面の回折強度をとり、これらの回折強度の総和をSとする。また、(200)面の回折強度をI(200)とし、回折強度の総和Sに対する回折強度I(200)の比をI(200)/Sとする。導体線1は、I(200)/Sが0.2以上を満たす導体素線10を含む。
... Structure The coil conductor wire 1 includes a conductor wire 10 having a specific orientation. Specifically, when X-ray diffraction is performed on the cross section of the conductor wire 1, the (200) plane of the crystal is oriented. Specifically, diffraction intensity of (111) plane, diffraction intensity of (200) plane, diffraction intensity of (220) plane, diffraction intensity of (311) plane, diffraction intensity of (222) plane, and (400) plane Taking the diffraction intensity, let S be the sum of these diffraction intensities. Further, the diffraction intensity of the (200) plane is I (200), and the ratio of the diffraction intensity I (200) to the total diffraction intensity S is I (200) / S. The conductor wire 1 includes a conductor wire 10 that satisfies I (200) / S of 0.2 or more.

上述のように(200)面が配向した金属から構成される導体素線10は、伸びや耐力といった機械的特性に優れる傾向にある。具体的には、伸びが30%以上を満たしたり、耐力が80MPa以上を満たしたりする。このような導体素線10を含むコイル用導体線1も、伸びが30%以上を満たしたり、耐力が80MPa以上を満たしたりすることができ、コイル成形性や加工性などに優れ、コイル用線材に好適である。導体線1の一例として、複数の導体素線10の一部が上述の特定の配向性を有し、他部が上述の配向性を満たさない形態が挙げられる。しかし、機械的特性などを考慮すると、導体線1に備える複数の導体素線10の全てが上述の配向性を満たすことが好ましい。   As described above, the conductor wire 10 composed of the metal with the (200) plane oriented tends to be excellent in mechanical properties such as elongation and yield strength. Specifically, the elongation satisfies 30% or more, or the proof stress satisfies 80 MPa or more. The coil conductor wire 1 including such a conductor wire 10 can also satisfy an elongation of 30% or more, a proof stress of 80 MPa or more, excellent coil formability, workability, and the like, and a coil wire. It is suitable for. As an example of the conductor wire 1, a form in which a part of the plurality of conductor wires 10 has the above-described specific orientation and the other part does not satisfy the above-described orientation. However, in consideration of mechanical characteristics and the like, it is preferable that all of the plurality of conductor strands 10 included in the conductor wire 1 satisfy the above-described orientation.

更に、(220)面の回折強度をI(220)とし、回折強度の総和Sに対する回折強度I(220)の比をI(220)/Sとするとき、コイル用導体線1は、I(200)/Sが0.2以上を満たし、かつI(220)/Sが0.01超を満たす導体素線10を含む形態が挙げられる。(200)面及び(220)面の双方が配向した金属から構成される導体素線10は、伸びや耐力といった機械的特性に更に優れる傾向にあり、このような導体素線10を含む上記の形態は、コイル用線材により好適である。   Further, when the diffraction intensity of the (220) plane is I (220) and the ratio of the diffraction intensity I (220) to the total diffraction intensity S is I (220) / S, the coil conductor wire 1 is I (220). 200) / S satisfies 0.2 or more and I (220) / S includes a conductor wire 10 that exceeds 0.01. The conductor strand 10 composed of a metal in which both the (200) plane and the (220) plane are oriented tends to be more excellent in mechanical properties such as elongation and yield strength. The form is more suitable for the coil wire.

(200)面及び(220)面はいずれも、配向しているほど、即ち、I(200)/SやI(220)/Sが大きいほど、伸びや耐力などの機械的特性に優れて好ましく、上限は特に設けない。I(200)/Sは0.25以上、更に0.28超が好ましく、I(220)/Sは0.02以上、更に0.03以上が好ましい。   The more the (200) plane and (220) plane are oriented, that is, the larger I (200) / S and I (220) / S are, the better the mechanical properties such as elongation and proof stress are. There is no particular upper limit. I (200) / S is preferably 0.25 or more, more preferably more than 0.28, and I (220) / S is preferably 0.02 or more, more preferably 0.03 or more.

コイル用導体線1の一例として、微細な結晶組織を有する導体素線10を含む形態が挙げられる。具体的には、平均結晶粒径が30μm以下である導体素線10を含む形態が挙げられる。このような微細組織を有する導体素線10は、1.伸びや耐力に優れ、例えば、伸びが30%以上を満たしたり、耐力が80MPa以上を満たしたりする、2.端子固着力を高められる傾向にある。これらの点から、上述の微細組織を有する導体素線10を含むコイル用導体線1は、コイル成形性や加工性、コイル使用時の特性などに優れ、コイル用線材として好適に利用できる。導体線1の一例として、複数の導体素線10のうちの一部の導体素線10が上述の微細組織を有する金属から構成され、他部が上述の微細組織を有さない金属から構成される形態が挙げられる。しかし、上述のようにコイル用途を考慮すると、導体線1に備える複数の導体素線10の全てが上述の微細組織を有する金属から構成されることが好ましい。   As an example of the coil conductor wire 1, a form including a conductor wire 10 having a fine crystal structure can be given. Specifically, the form containing the conductor strand 10 whose average crystal grain diameter is 30 micrometers or less is mentioned. The conductor wire 10 having such a fine structure is as follows. 1. Excellent elongation and yield strength, for example, the elongation satisfies 30% or more, or the yield strength satisfies 80 MPa or more. There is a tendency to increase the terminal fixing force. From these points, the coil conductor wire 1 including the conductor wire 10 having the above-described fine structure is excellent in coil formability, workability, characteristics when using the coil, and the like, and can be suitably used as a coil wire. As an example of the conductor wire 1, some of the plurality of conductor wires 10 are made of a metal having the above-described microstructure, and the other portion is made of a metal not having the above-mentioned microstructure. Form. However, considering the coil application as described above, it is preferable that all of the plurality of conductor strands 10 included in the conductor wire 1 are made of the metal having the above-described microstructure.

結晶が微細であるほど、即ち、上述の平均結晶粒径が小さいほど、伸びや耐力、端子固着力などの特性に優れて好ましく、下限は特に設けない。上記平均結晶粒径は25μm以下、更に20μm以下、更には18μm以下が好ましい。平均結晶粒径の測定方法の詳細は、後述する。   The finer the crystal, that is, the smaller the above-mentioned average crystal grain size, the better the properties such as elongation, yield strength and terminal fixing force, and no lower limit is particularly provided. The average crystal grain size is preferably 25 μm or less, more preferably 20 μm or less, and further preferably 18 μm or less. Details of the method of measuring the average crystal grain size will be described later.

・・高抵抗層
・・・構成材料
高抵抗層20の構成材料は、導体素線10の構成金属よりも電気抵抗が高い導電性材料(高抵抗導電材)を含むことを特徴の一つとする。高抵抗層20の構成材料がエナメルのような電気絶縁体のみであれば、コイル用導体線1内における電流が流れない領域(電気絶縁体)の割合が高くなり電流が流れ得る領域の割合が低くなる。その結果、導体線1の外寸が大きくなり、コイルの占積率の低下を招くからである。高抵抗層20の構成材料全体が高抵抗導電材である場合、電流が流れ得る領域の割合を十分に高められ、このような導体線1では占積率の高いコイルを得易い。
..High resistance layer: the constituent material The constituent material of the high resistance layer 20 includes a conductive material (high resistance conductive material) having a higher electrical resistance than that of the constituent metal of the conductor wire 10. . If the constituent material of the high resistance layer 20 is only an electrical insulator such as enamel, the ratio of the area (electrical insulator) where current does not flow in the coil conductor wire 1 is high, and the ratio of the area where current can flow is Lower. As a result, the outer dimension of the conductor wire 1 is increased, and the space factor of the coil is reduced. In the case where the entire constituent material of the high resistance layer 20 is a high resistance conductive material, the ratio of the region through which current can flow can be sufficiently increased, and such a conductor wire 1 makes it easy to obtain a coil with a high space factor.

上記高抵抗導電材の具体例として、例えば、無機材料であれば、アルミニウム、ニッケル、錫、鉄、アルミニウム合金、ニッケル合金、錫合金、鉄合金、銅とアルミニウムとを含む金属間化合物といった金属、銅の酸化物(例えば、酸化銅(I):CuO)、鉄の酸化物(例えば、四酸化三鉄:Fe)などといった非金属が挙げられる。銅とアルミニウムを含む金属間化合物は、例えば、導体素線10が銅線で、この銅線の外周にアルミニウムやその合金から構成される高抵抗層20を備える場合、製造過程で両者の界面に生成されたものを含む。有機材料であれば、上記高抵抗導電材は、導電性ポリマー(但し、後述のコンフォーム押出などが可能なもの)が挙げられる。各材料の体積抵抗率(比抵抗、μΩ・cm)の代表値を表1に示す。 As a specific example of the high resistance conductive material, for example, if it is an inorganic material, a metal such as aluminum, nickel, tin, iron, aluminum alloy, nickel alloy, tin alloy, iron alloy, and an intermetallic compound containing copper and aluminum, Non-metals such as copper oxide (eg, copper (I) oxide: Cu 2 O), iron oxide (eg, triiron tetroxide: Fe 3 O 4 ), and the like can be given. The intermetallic compound containing copper and aluminum is, for example, when the conductor wire 10 is a copper wire and the high resistance layer 20 made of aluminum or an alloy thereof is provided on the outer periphery of the copper wire, at the interface between the two in the manufacturing process. Includes generated ones. In the case of an organic material, examples of the high resistance conductive material include a conductive polymer (however, a material that can be subjected to conform extrusion described later). Table 1 shows typical values of volume resistivity (specific resistance, μΩ · cm) of each material.

Figure 2016126992
Figure 2016126992

上記高抵抗導電材が上述の金属であれば、例えば、導体素線10が銅線の場合、導体素線10(銅)に比較して電気抵抗が十分に高く、かつ導電性も十分に有する。そのため、高抵抗層20が上記金属を含む場合には、渦電流の発生をある程度低減しつつ、リッツ線に比較して電流が流れ得る領域を十分に有するため、占積率が高いコイルを得易い。また、高抵抗層20が上記金属を含む場合には、上述の金属が塑性加工性に優れるため、コイル成形性や加工性などに優れ、コイル用線材として好適に利用できる。更に、高抵抗層20の製造にあたり、原料に上述の金属を用いた場合、上述の金属が塑性加工性に優れるため、1.被覆層210を容易に形成できる、2.コンフォーム押出や伸線、圧延などの塑性加工を良好に行える、3.コンフォーム押出によって複数の導体素線10を良好に一体化できる、ことからコイル用導体線1の製造性にも優れる。その他、上記高抵抗導電材がニッケルや鉄、その合金などの磁性材料である場合には、コイルの周囲の交番磁界により導体素線10に発生する渦電流損の低減も期待できる。上記交番磁界は、コイルに近接配置される他の電線や、コイルが配置される磁性コアからの漏れ磁束などにより発生する。   If the high-resistance conductive material is the metal described above, for example, when the conductor wire 10 is a copper wire, the electrical resistance is sufficiently higher than that of the conductor wire 10 (copper) and the conductivity is sufficiently high. . Therefore, when the high resistance layer 20 contains the above metal, it has a sufficient area where current can flow as compared with the litz wire while reducing the generation of eddy current to some extent, so that a coil with a high space factor can be obtained. easy. Further, when the high resistance layer 20 includes the above metal, the above metal is excellent in plastic workability, so that it is excellent in coil moldability, workability, and the like, and can be suitably used as a coil wire. Furthermore, when the above-mentioned metal is used as a raw material in the production of the high resistance layer 20, the above-mentioned metal is excellent in plastic workability. 1. The coating layer 210 can be easily formed. 2. Good plastic working such as conform extrusion, wire drawing and rolling; Since the plurality of conductor strands 10 can be satisfactorily integrated by conform extrusion, it is excellent in manufacturability of the coil conductor wire 1. In addition, when the high-resistance conductive material is a magnetic material such as nickel, iron, or an alloy thereof, reduction of eddy current loss generated in the conductor wire 10 due to an alternating magnetic field around the coil can be expected. The alternating magnetic field is generated by a leakage magnetic flux from another electric wire arranged close to the coil or a magnetic core where the coil is arranged.

上記高抵抗導電材が上述の非金属無機材料であれば、上述の金属に比較して、導電性に劣るものの、電気抵抗がより高い。また、高抵抗層20の製造にあたり、金属素線100などに酸化処理を行った被覆線材110を利用することで容易に製造できる。更に、酸化処理によって被覆層210を非常に薄く形成し易い。その結果コイル用導体線1に存在する高抵抗層20も非常に薄くなり(例えば、厚さが10μm未満、5μm以下、更に1μm以下)、導体線1における導体素線10の割合を高め易い。従って、高抵抗層20が上記金属酸化物を含む場合には、渦電流の発生をより低減できる上に、占積率がより高いコイルを得易く、導体線1の製造性にも優れる。   If the high-resistance conductive material is the above-described non-metallic inorganic material, the electrical resistance is higher although the conductivity is inferior to that of the above-described metal. Further, when the high resistance layer 20 is manufactured, the high resistance layer 20 can be easily manufactured by using the covered wire 110 obtained by oxidizing the metal strand 100 or the like. Furthermore, it is easy to form the coating layer 210 very thin by oxidation treatment. As a result, the high resistance layer 20 present in the coil conductor wire 1 is also very thin (for example, the thickness is less than 10 μm, 5 μm or less, and further 1 μm or less), and the ratio of the conductor wire 10 in the conductor wire 1 can be easily increased. Therefore, when the high resistance layer 20 includes the metal oxide, generation of eddy current can be further reduced, and a coil having a higher space factor can be easily obtained, and the manufacturability of the conductor wire 1 is excellent.

上記高抵抗導電材が導電性ポリマーといった有機材料であれば、上述の金属に比較して、導電性に劣るものの、電気抵抗がより高い。従って、高抵抗層20が上記有機材料を含む場合には、渦電流の発生をより低減できる。   If the high-resistance conductive material is an organic material such as a conductive polymer, the electrical resistance is higher although the conductivity is inferior to that of the metal described above. Therefore, when the high resistance layer 20 includes the organic material, generation of eddy current can be further reduced.

・・・介在部の厚さ
高抵抗層20は導体素線10を区画できれば、その厚さは薄くてよい。また、均一的な厚さでなくてもよい。例えば、介在部22の最小厚さが0.01μm以上100μm以下程度、更に0.01μm以上10μm以下程度、更には1μm以下程度が挙げられる。
... Thickness of the interposition part The high resistance layer 20 may be thin as long as the conductor wire 10 can be partitioned. Further, the thickness may not be uniform. For example, the minimum thickness of the interposition part 22 is about 0.01 μm to 100 μm, further about 0.01 μm to 10 μm, and further about 1 μm.

・・その他の含有物
コイル用導体線1は、複数の導体素線10及び高抵抗層20に加えて、電気絶縁体(例えば、酸化銅(II):CuO、一酸化鉄:FeO、三酸化二鉄:Feなど)を含むことができる。電気絶縁体は、導体素線10の外周に層状に存在する形態(直上、又は高抵抗層20の中間層、又は高抵抗層20の外層)、又は高抵抗層20内に粒状などになって分散して存在する形態が挙げられる。例えば、導体素線10の外周に層状に電気絶縁体を備えると、導体素線10を電気的に分離でき、渦電流の発生を効果的に低減できる。但し、電気絶縁体の含有は、電流が流れ得る領域の低下を招くため、電気絶縁体の含有量は、導体線1の横断面において10面積%以下、更に5面積%以下が好ましい。
.. Other inclusions In addition to the plurality of conductor wires 10 and the high-resistance layer 20, the coil conductor wire 1 includes an electrical insulator (for example, copper (II) oxide: CuO, iron monoxide: FeO, trioxide) Diiron: Fe 2 O 3 etc.). The electrical insulator is formed in a layered form on the outer periphery of the conductor wire 10 (directly above, or an intermediate layer of the high resistance layer 20 or an outer layer of the high resistance layer 20), or is granular in the high resistance layer 20. The form which exists in dispersion | distribution is mentioned. For example, when an electrical insulator is provided in a layered manner on the outer periphery of the conductor wire 10, the conductor wire 10 can be electrically separated, and generation of eddy current can be effectively reduced. However, since the inclusion of the electrical insulator causes a decrease in the region where current can flow, the content of the electrical insulator is preferably 10 area% or less, more preferably 5 area% or less in the cross section of the conductor wire 1.

・コイル用電線
実施形態に係るコイル用電線2は、上述のコイル用導体線1を導体とし、この導体の外周に絶縁層30を備える。電線2の外形は、横断面円形状の丸線(電線2A)、横断面長方形状の平角線(電線2B)などが挙げられる。上述の導体線1をそのままコイルに利用できるが、絶縁層30を備える電線2をコイルに利用すると、絶縁層30によって、コイルのターン間の絶縁、コイルとこのコイルの近傍に配置される周囲部品との絶縁などを図ることができる。電線2に備える導体線1の仕様(組成、組織(導体素線10の配向性・結晶粒径など)、形状、サイズなど)は、絶縁層30を形成する前の導体線1の仕様を実質的に維持する。
-Coil electric wire The coil electric wire 2 which concerns on embodiment uses the above-mentioned coil conductor wire 1 as a conductor, and is equipped with the insulating layer 30 on the outer periphery of this conductor. Examples of the outer shape of the electric wire 2 include a round wire having a circular cross section (electric wire 2A) and a rectangular wire having a rectangular cross section (electric wire 2B). The above-described conductor wire 1 can be used for a coil as it is, but when the electric wire 2 including the insulating layer 30 is used for the coil, the insulating layer 30 provides insulation between the turns of the coil, and the coil and surrounding components arranged in the vicinity of the coil. And insulation can be achieved. The specifications (composition, structure (orientation / crystal grain size, etc. of conductor wire 10), shape, size, etc.) of the conductor wire 1 provided in the electric wire 2 are substantially the same as the specification of the conductor wire 1 before the insulating layer 30 is formed. To maintain.

・・絶縁層
絶縁層30の構成材料は樹脂が挙げられる。具体的な樹脂は、例えば、ポリイミド、ポリアミドイミド、ポリエステルイミド、ポリエーテルイミド、H種ポリエステル、ポリオレフィン、ポリアミド、ポリエーテルスルホン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリテトラフルオロエチレンなどが挙げられる。その他の樹脂も適用できる。また、絶縁層30は、単層構造、多層構造のいずれでもよい。絶縁層30は、コイル用導体線1の周方向及び長手方向に亘って均一的な厚さで形成された形態が代表的である。絶縁層30の厚さは、例えば、10μm以上150μm以下程度が挙げられる。
..Insulating layer The constituent material of the insulating layer 30 is a resin. Specific examples of the resin include polyimide, polyamideimide, polyesterimide, polyetherimide, H-type polyester, polyolefin, polyamide, polyethersulfone, polyphenylene sulfide, polyetheretherketone, and polytetrafluoroethylene. Other resins can also be applied. The insulating layer 30 may have either a single layer structure or a multilayer structure. The insulating layer 30 is typically formed in a uniform thickness over the circumferential direction and the longitudinal direction of the coil conductor wire 1. As for the thickness of the insulating layer 30, about 10 micrometers or more and 150 micrometers or less are mentioned, for example.

・・その他の層
絶縁層30の最外層として、又は絶縁層30の外周に潤滑層を備えることができる。潤滑層を有することで、コイル成形性や得られたコイルをスロットやケースなどに収納するときの装入性などを向上できる。潤滑層は、例えば、絶縁層30の外周に塗布された表面潤滑油から構成される形態、絶縁層30の最外層が潤滑性を有する樹脂、例えば潤滑性向上剤などの添加剤を配合した樹脂などによって形成された形態が挙げられる。潤滑層の構成材料の一例として、パラフィン又はワックスを添加したアミドイミド樹脂が挙げられる。
.. Other layers A lubricating layer can be provided as the outermost layer of the insulating layer 30 or on the outer periphery of the insulating layer 30. By having the lubrication layer, it is possible to improve the coil formability and the insertability when the obtained coil is accommodated in a slot or a case. The lubricating layer is, for example, a form composed of surface lubricating oil applied to the outer periphery of the insulating layer 30, a resin in which the outermost layer of the insulating layer 30 has lubricity, for example, a resin blended with additives such as a lubricity improver The form formed by etc. is mentioned. As an example of the constituent material of the lubricating layer, an amidoimide resin to which paraffin or wax is added may be mentioned.

絶縁層30の最内層として、又はコイル用導体線1と絶縁層30との間に密着層を備えることができる。密着層を有することで、導体線1と絶縁層30との間の密着性を向上できる。密着層は、密着性向上剤などの添加剤を配合した樹脂などによって形成することができる。密着性向上剤の一例として、メルカプタン類、とりわけ2−メルカプトイミダゾールや5−アミノ−1,3,4−チアジアゾール−2−チオールなどは密着効果が高い。   An adhesion layer may be provided as the innermost layer of the insulating layer 30 or between the coil conductor wire 1 and the insulating layer 30. By having the adhesion layer, the adhesion between the conductor wire 1 and the insulating layer 30 can be improved. The adhesion layer can be formed of a resin containing an additive such as an adhesion improver. As an example of the adhesion improver, mercaptans, particularly 2-mercaptoimidazole and 5-amino-1,3,4-thiadiazole-2-thiol have a high adhesion effect.

・コイル用導体線の製造方法/コイル用電線の製造方法
上述のコイル用導体線1は、例えば、以下の準備工程と、被覆工程と、一体化工程とを備えるコイル用導体線の製造方法によって製造することができる。
準備工程 複数の金属素線を準備する工程
被覆工程 各金属素線の外周に、上記金属素線を構成する金属よりも電気抵抗が高い導電性材料から構成される被覆層を形成して、複数の被覆線材を準備する工程
一体化工程 上記複数の被覆線材を束ねた状態でコンフォーム押出によって一体化して、集合線材を作製する工程
又は、上記一体化工程は、上記複数の金属素線が上記被覆線材によって互いに区画されるように、上記複数の金属素線と上記複数の被覆線材とを束ねた状態でコンフォーム押出によって一体化して、集合線材を作製する工程、とすることができる。
Coil conductor wire manufacturing method / coil wire manufacturing method The coil conductor wire 1 described above includes, for example, a coil conductor wire manufacturing method including the following preparation process, covering process, and integration process. Can be manufactured.
Preparation step Step of preparing a plurality of metal wires Covering step A coating layer made of a conductive material having a higher electrical resistance than the metal constituting the metal strands is formed on the outer periphery of each metal strand. The step of preparing the coated wire material of the integration step of integrating the plurality of coated wire materials by means of conform extrusion while bundling the plurality of coated wire materials, or the step of producing the aggregated wire material, The plurality of metal strands and the plurality of covered wires are bundled and integrated by conform extrusion so as to be partitioned from each other by the covered wire, and the assembly wire can be produced.

別の製造方法として、例えば、以下の素線準備工程と、素線一体化工程とを備えるコイル用導体線の製造方法が挙げられる。
素線準備工程 複数の金属素線と、上記金属素線を構成する金属よりも電気抵抗が高い導電性材料から構成される複数の高抵抗素線とを準備する工程
素線一体化工程 上記複数の金属素線を上記複数の高抵抗素線によって区画するように束ねた状態でコンフォーム押出によって一体化して、集合線材を作製する工程
As another manufacturing method, the manufacturing method of the conductor wire for coils provided with the following strand preparation processes and a strand integration process is mentioned, for example.
Wire preparation step A step of preparing a plurality of metal wires and a plurality of high resistance wires made of a conductive material having an electric resistance higher than that of the metal constituting the metal wires. A process of producing a collective wire by integrating the metal wires in a bundled state so as to be partitioned by the plurality of high resistance wires by conform extrusion

上述のコイル用導体線の製造方法では、被覆線材を束ねた状態、又は金属素線と被覆線材とを束ねた状態、又は金属素線と高抵抗素線とを束ねた状態で同時に押し出すことで、被覆層又は高抵抗素線を構成していた高抵抗導電材によって複数の金属素線(導体素線)を容易に一体化できる。また、被覆層が塑性変形などすることで、又は高抵抗素線が塑性変形などすると共に金属素線に接合することで、高抵抗層20を容易に形成できる。従って、上述の製造方法によれば、複数の導体素線10が高抵抗層20によって区画された集合線材を容易に製造できる。得られた集合線材は、そのままコイル用導体線1とすることができる。更に、コンフォーム押出を利用する上記の製造方法によれば、上述のように1.複数の線材を一体化するための加熱設備の省略、2.複数の線材の強固な一体化、3.集合線材の優れた機械的特性(伸び、耐力など)の実現、4.後加工(伸線や熱処理など)の省略、5.長尺材の連続生産(詳細は後述)、などといった点から、コイル用導体線1を生産性よく製造できる。コンフォーム押出を利用する利点として、特定の配向性を有する組織が得られる(少なくとも(200)面が配向している)、結晶を微細にできる(例えば、導体素線10の平均結晶粒径が30μm以下)、優れた表面性状が得られる、などが挙げられる。   In the above-described method for manufacturing a coil conductor wire, it is possible to extrude at the same time in a state in which a covered wire is bundled, a state in which a metal wire and a covered wire are bundled, or a state in which a metal wire and a high-resistance wire are bundled. A plurality of metal wires (conductor wires) can be easily integrated by the high resistance conductive material constituting the covering layer or the high resistance wire. Further, the high resistance layer 20 can be easily formed by the plastic deformation of the coating layer or the plastic deformation of the high resistance strand and the joining to the metal strand. Therefore, according to the manufacturing method described above, it is possible to easily manufacture an aggregate wire in which a plurality of conductor wires 10 are partitioned by the high resistance layer 20. The obtained assembly wire can be used as the coil conductor wire 1 as it is. Furthermore, according to the manufacturing method using conform extrusion, as described above, 1. 1. Omission of heating equipment for integrating multiple wires. 2. Strong integration of multiple wires; 3. Realization of excellent mechanical properties (elongation, yield strength, etc.) of the assembly wire; 4. Omission of post-processing (drawing, heat treatment, etc.) From the viewpoint of continuous production of long materials (details will be described later) and the like, the coil conductor wire 1 can be manufactured with high productivity. As an advantage of using conform extrusion, a structure having a specific orientation can be obtained (at least the (200) plane is oriented), and the crystal can be made fine (for example, the average crystal grain size of the conductor wire 10 is 30 μm or less), and excellent surface properties can be obtained.

上述のコイル用導体線の製造方法は、更に、以下の加工工程と、熱処理工程とを備えることができる。
加工工程 上記集合線材に伸線加工を施して、加工材を作製する工程
熱処理工程 上記加工材に熱処理を施して、コイル用導体線を作製する工程
The above-described method for manufacturing a coil conductor wire can further include the following processing steps and a heat treatment step.
Processing step A step of drawing the assembly wire to produce a workpiece Heat treatment step A step of applying heat treatment to the workpiece to produce a coil conductor wire

上述の加工工程によって、集合線材の寸法精度や形状精度を更に高められる。また、上述の熱処理工程によって、加工工程で導入された加工歪みなどを除去して、伸びなどに優れるコイル用導体線が得られる。従って、上述の加工工程及び熱処理工程を備える製造方法によれば、寸法精度・形状精度及び機械的特性に優れるコイル用導体線を製造できる。   By the above-described processing steps, the dimensional accuracy and shape accuracy of the assembly wire can be further increased. In addition, the above-described heat treatment step removes the processing strain introduced in the processing step, thereby obtaining a coil conductor wire having excellent elongation and the like. Therefore, according to the manufacturing method including the above-described processing step and heat treatment step, it is possible to manufacture a coil conductor wire having excellent dimensional accuracy, shape accuracy, and mechanical characteristics.

上述のコイル用電線2は、上述のコイル用導体線の製造方法の各工程(準備工程、被覆工程、及び一体化工程、又は、素線準備工程及び素線一体化工程)に加えて、以下の絶縁工程を備えるコイル用電線の製造方法によって製造することができる。
絶縁工程 上記集合線材、又は上記コイル用導体線の外周に絶縁層を形成して、コイル用電線を作製する工程
In addition to each process (preparation process, coating process, and integration process, or strand preparation process and strand integration process) of the above-described coil conductor wire manufacturing method, the above-described coil wire 2 is as follows. It can manufacture with the manufacturing method of the electric wire for coils provided with this insulation process.
Insulating step A step of forming an electric wire for a coil by forming an insulating layer on the outer periphery of the assembly wire or the coil conductor wire.

上述のコイル用電線の製造方法は、上述の集合線材やコイル用導体線に絶縁層を形成することで、コイル用電線を容易に製造できる。   In the above-described method for manufacturing a coil wire, the coil wire can be easily manufactured by forming an insulating layer on the above-described assembly wire or coil conductor wire.

以下、各工程を詳細に説明する。
・・準備工程/素線準備工程
準備工程では、原料として、最終的に導体素線10となる金属素線100を準備する。金属素線100は、上述の導体素線の構成材料の項で述べた導電性に優れて電気抵抗が低い金属から構成される線材が挙げられる。金属素線100の形状、サイズ、本数は適宜選択できる。金属素線100の使用本数が多いほど、導体の細分化が行えて好ましい。金属素線100のサイズは、最終的に得られるコイル用導体線1の大きさなどにもよるが、例えば、金属素線100を丸線とする場合、その直径は、0.1mmφ以上10mmφ以下程度が挙げられる。金属素線100や後述の高抵抗素線のサイズは、コンフォーム押出などの塑性加工を受けることで、最終的なサイズ(導体線1内の導体素線10のサイズ)とは異なる場合が多く、代表的には導体素線10の方が小さい。
Hereinafter, each process will be described in detail.
-Preparation process / element preparation process In a preparation process, the metal element wire 100 which finally becomes the conductor element wire 10 is prepared as a raw material. Examples of the metal strand 100 include a wire made of a metal having excellent conductivity and low electrical resistance described in the section of the constituent material of the conductor strand. The shape, size, and number of the metal strands 100 can be selected as appropriate. The larger the number of metal strands 100 used, the better the conductor can be subdivided. Although the size of the metal strand 100 depends on the size of the coil conductor wire 1 finally obtained, for example, when the metal strand 100 is a round wire, the diameter thereof is 0.1 mmφ to 10 mmφ. Degree. The size of the metal strand 100 and the high-resistance strand described later is often different from the final size (the size of the conductor strand 10 in the conductor wire 1) due to plastic processing such as conform extrusion. Typically, the conductor wire 10 is smaller.

素線準備工程では、原料として、最終的に導体素線10となる金属素線100(上記準備工程参照)と、最終的に高抵抗層20となる高抵抗素線(図示せず)とを準備する。この工程は、後述の被覆工程が不要であり、工程数を低減できる。   In the strand preparation process, as a raw material, a metal strand 100 (see the above preparation process) that finally becomes the conductor strand 10 and a high resistance strand (not shown) that finally becomes the high resistance layer 20 are used. prepare. This step does not require a coating step described later, and the number of steps can be reduced.

高抵抗素線は、上述の高抵抗層の構成材料の項で述べた高抵抗導電材、特に塑性加工性に優れる点から上述の金属から構成される線材が挙げられる。高抵抗素線の形状、サイズ、本数は、塑性変形後に導体素線10を区画できるように選択するとよい。特に、高抵抗素線のサイズは、金属素線100よりも横断面積が小さいと(細径であると)、金属素線100間に隙間なく介在させ易い上に、コイル用導体線1における導体素線10の割合を高め易く好ましい。例えば、高抵抗素線の横断面積(又は線径)は、金属素線100の50%以下、更に25%以下、更には10%以下が挙げられる。   Examples of the high-resistance strand include the high-resistance conductive material described in the section of the constituent material of the above-described high-resistance layer, particularly a wire composed of the above-described metal from the viewpoint of excellent plastic workability. The shape, size, and number of high resistance strands may be selected so that the conductor strands 10 can be partitioned after plastic deformation. In particular, the size of the high-resistance strand is such that if the cross-sectional area is smaller than that of the metal strand 100 (having a small diameter), the high-resistance strand can be easily interposed between the metal strands 100 without gaps, and the conductor in the coil conductor wire 1 It is easy to increase the ratio of the strand 10 and is preferable. For example, the cross-sectional area (or wire diameter) of the high-resistance strand is 50% or less, further 25% or less, and further 10% or less of the metal strand 100.

金属素線100、高抵抗素線はいずれも、公知の金属線の製造方法を利用して製造することができる。   Both the metal wire 100 and the high-resistance wire can be manufactured using a known metal wire manufacturing method.

・・被覆工程
この工程では、裸の金属素線100の外周に、最終的に高抵抗層20となる被覆層210を形成して被覆線材110を作製する。被覆層210の形成には、以下の種々の方法が利用できる。いずれの方法も、被覆層210の厚さは薄いほど、最終的に得られる高抵抗層20も薄くでき、導体素線10の割合が高いコイル用導体線1が得られて好ましい。例えば、被覆層210の厚さは、3mm以下、更に2mm以下、更には1mm以下が挙げられる。後述する成膜法や酸化法では、被覆層210の厚さが10μm以下、更に5μm以下、1μm以下、更には0.1μm以下といった非常に薄いものを容易に形成できる。
In this step, the covering wire 210 is formed by forming a covering layer 210 that finally becomes the high resistance layer 20 on the outer periphery of the bare metal wire 100. The following various methods can be used for forming the coating layer 210. In any of these methods, the thinner the covering layer 210 is, the higher the resistance layer 20 finally obtained can be made thin, and the coil conductor wire 1 with a high proportion of the conductor wire 10 can be obtained, which is preferable. For example, the thickness of the coating layer 210 is 3 mm or less, further 2 mm or less, and further 1 mm or less. In a film forming method or an oxidation method described later, a very thin layer having a thickness of 10 μm or less, further 5 μm or less, 1 μm or less, or 0.1 μm or less can be easily formed.

1.上述の高抵抗導電材から構成されるパイプ200を金属素線100に嵌合する方法(以下、嵌合法と呼ぶことがある)。
2.高抵抗導電材から構成されるシート(図示せず)を用意し、金属素線100にシートを巻き付けて溶接やろう付けなどで固定する方法(以下、巻付法と呼ぶことがある)。
3.金属素線100に高抵抗導電材をめっき(電気めっき、無電解めっきなど)、蒸着、塗布(ペーストの塗布など)などする方法(以下、成膜法と呼ぶことがある)。
4.金属素線100に酸化処理を施す方法(以下、酸化法と呼ぶことがある)。
1. A method of fitting the pipe 200 made of the above-described high-resistance conductive material to the metal strand 100 (hereinafter sometimes referred to as a fitting method).
2. A method of preparing a sheet (not shown) made of a high resistance conductive material, winding the sheet around the metal wire 100 and fixing it by welding or brazing (hereinafter sometimes referred to as a winding method).
3. A method (hereinafter sometimes referred to as a film forming method) of plating (high-resistance conductive material) on the metal wire 100 (electroplating, electroless plating, etc.), vapor deposition, application (paste application, etc.).
4). A method of performing an oxidation treatment on the metal element wire 100 (hereinafter sometimes referred to as an oxidation method).

1.嵌合法では、例えば、金属製のパイプ200内に金属素線100を収納して同時に伸線などを行うことで、金属素線100とパイプ200との間の隙間を無くし、両者を金属学的に接合でき、被覆線材110を容易に製造できる。また、嵌合法では、巻付法で必須となるシートの合わせ目の接合工程が不要であり、被覆層210を容易に形成できて好ましい。なお、金属素線100が銅線である場合、例えば、純アルミニウムとアルミニウム合金とを比較すると、柔らかい純アルミニウムよりも硬いアルミニウム合金の方が銅に噛み込み易く、被覆層210を形成し易い傾向にある。   1. In the fitting method, for example, the metal strand 100 is housed in a metal pipe 200 and wire drawing is performed at the same time, thereby eliminating a gap between the metal strand 100 and the pipe 200 and making them metallurgical. The coated wire 110 can be easily manufactured. In addition, the fitting method is preferable because it does not require the step of joining the sheet seam, which is essential in the winding method, and the covering layer 210 can be easily formed. In addition, when the metal strand 100 is a copper wire, for example, when pure aluminum and an aluminum alloy are compared, a hard aluminum alloy is easier to bite into copper than a soft pure aluminum, and the coating layer 210 tends to be formed. It is in.

2.巻付法は、任意の大きさ、組成の金属素線100に容易に適用できる。また、巻付法は、嵌合法と同様に均一的な厚さの被覆層210を形成できる。   2. The winding method can be easily applied to the metal strand 100 having an arbitrary size and composition. Moreover, the winding method can form the coating layer 210 of uniform thickness similarly to the fitting method.

3.成膜法は、金属素線100との密着性に優れる被覆層210を形成し易い上に、上述のように比較的薄い被覆層210を形成し易い。   3. In the film forming method, it is easy to form the coating layer 210 having excellent adhesion to the metal wire 100 and also to form the relatively thin coating layer 210 as described above.

4.酸化法は、金属素線100の構成金属の酸化物(例えば、酸化銅など)からなる被覆層210(最終的には高抵抗層20)を容易に形成できる。また、金属素線100の構成金属や後述する下地被覆層の構成金属を被覆層210の構成要素とするため、この被覆層210は、金属素線100との密着性に優れる。   4). The oxidation method can easily form the covering layer 210 (finally the high resistance layer 20) made of an oxide (for example, copper oxide) of the constituent metal of the metal wire 100. In addition, since the constituent metal of the metal strand 100 and the constituent metal of the base coating layer described later are used as the constituent elements of the coating layer 210, the coating layer 210 is excellent in adhesion to the metal strand 100.

高抵抗層20が鉄の酸化物を含む形態を製造するには、例えば、1.嵌合法、2.巻付法、3.成膜法のいずれかによって鉄からなる下地被覆層を形成した後、4.酸化法を行うことで、少なくとも一部(特に表面側領域)が鉄の酸化物から構成される被覆層20を形成できる。酸化条件は、所望の金属酸化物を生成できるように、金属素線100の構成金属や下地被覆層の構成金属に応じて選択するとよい。例えば、金属素線100が銅線である場合、雰囲気を大気、加熱温度を300℃以上1000℃以下程度、保持時間を0.1秒以上10時間以下程度とすることで、CuOを含む銅の酸化物を形成できる。 In order to manufacture a form in which the high resistance layer 20 includes an iron oxide, for example: Fitting method, 2. Winding method, 3. 3. After forming the base coating layer made of iron by any of the film forming methods, By performing the oxidation method, it is possible to form the coating layer 20 in which at least a part (particularly the surface side region) is made of an iron oxide. The oxidation conditions may be selected according to the constituent metal of the metal strand 100 and the constituent metal of the underlying coating layer so that a desired metal oxide can be generated. For example, when the metal strand 100 is a copper wire, Cu 2 O is contained by setting the atmosphere to air, the heating temperature to about 300 ° C. to 1000 ° C., and the holding time to about 0.1 seconds to 10 hours. Copper oxide can be formed.

・・一体化工程/素線一体化工程
一体化工程では、複数の被覆線材110を束ねた状態で一体化する。この場合、束ね線材120は、金属素線100の周囲に最終的に高抵抗層20となる被覆層210が必ず存在する。そのため、この形態は、金属素線100を構成していた成分が被覆層210を構成していた高抵抗導電材によって確実に区画された集合線材を容易に製造できる。
.. Integration process / element integration process In the integration process, a plurality of coated wire rods 110 are integrated in a bundled state. In this case, the bundled wire 120 always has a coating layer 210 that eventually becomes the high resistance layer 20 around the metal strand 100. Therefore, this form can easily manufacture an assembly wire in which the components constituting the metal strand 100 are surely partitioned by the high resistance conductive material constituting the coating layer 210.

一方、被覆線材110によって複数の金属素線100が互いに区画されるように、金属素線100の周囲を被覆線材110で囲むなどして束ねた場合、この束ね線材(図示せず)は、金属素線100の周囲に最終的に高抵抗層20となる被覆層210が存在する。このように被覆線材110を適切に配置することでも、金属素線100を構成していた成分が被覆層210を構成していた高抵抗導電材によって区画された集合線材を製造できる。   On the other hand, when the metal wire 100 is bundled by surrounding the metal wire 100 with the covered wire 110 so that the plurality of metal wires 100 are partitioned from each other by the covered wire 110, the bundled wire (not shown) A covering layer 210 that finally becomes the high resistance layer 20 exists around the strand 100. Thus, even if the covered wire 110 is appropriately disposed, it is possible to manufacture an aggregate wire in which the components constituting the metal strand 100 are partitioned by the high-resistance conductive material forming the cover layer 210.

他方、素線一体化工程では、高抵抗素線によって複数の金属素線100が互いに区画されるように、金属素線100の周囲を高抵抗素線で囲むなどして両素線を束ねた状態で一体化する。この束ね線材(図示せず)は、金属素線100の周囲に最終的に高抵抗層20となる高抵抗素線が存在する。このように高抵抗素線を適切に配置することで、被覆層210を形成しなくても、金属素線100を構成していた成分が高抵抗素線を構成していた高抵抗導電材によって区画された集合線材を製造できる。例えば、金属素線100の外周に高抵抗素線を巻き付けた巻き付け線材を用意すると取り扱い易い。この巻き付け線材によって金属素線100が互いに区画されるように、金属素線100の周囲を巻き付け線材で囲むなどして両素線を束ねることができる。   On the other hand, in the strand integration process, both strands are bundled by surrounding the metal strand 100 with a high resistance strand so that the plurality of metal strands 100 are separated from each other by the high resistance strand. Integrate in state. In this bundled wire (not shown), there is a high-resistance element wire that finally becomes the high-resistance layer 20 around the metal element wire 100. By appropriately arranging the high-resistance strands in this way, the components constituting the metal strand 100 can be made by the high-resistance conductive material constituting the high-resistance strand without forming the covering layer 210. A partitioned assembly wire can be manufactured. For example, it is easy to handle if a wound wire in which a high resistance wire is wound around the outer periphery of the metal wire 100 is prepared. Both strands can be bundled by surrounding the metal strand 100 with a winding wire so that the metal strand 100 is partitioned from each other by the winding wire.

そして、上述の製造方法では、一体化にコンフォーム押出を利用する。公知のコンフォーム押出装置を利用できる。以下、図2を参照して、コンフォーム押出装置の一例を説明する。   And in the above-mentioned manufacturing method, conform extrusion is utilized for integration. A known conform extrusion apparatus can be used. Hereinafter, an example of the conform extrusion apparatus will be described with reference to FIG.

コンフォーム押出装置80は、回転可能に支持された円筒状のホイール81と、ホイール81の周方向に設けられて、押出対象(ここでは束ね線材120など)が配置される溝82と、溝82の開口部の一部を覆って蓋として機能するシュー83と、溝82に取り付けられて上記素材を堰き止めるアバットメント85と、堰き止められた材料を押し出すダイス86と、ダイス86を収納するダイチャンバ84とを備える。   The conform extrusion apparatus 80 includes a cylindrical wheel 81 that is rotatably supported, a groove 82 that is provided in the circumferential direction of the wheel 81 and in which an object to be extruded (here, the bundled wire 120 and the like) is disposed, and a groove 82. A shoe 83 that covers a part of the opening of the slab and functions as a lid, an abutment 85 that is attached to the groove 82 and dams the material, a die 86 that pushes out the dammed material, and a die chamber that houses the die 86 84.

回転するホイール81の溝82に押出対象を挿入すると、ホイール81と押出対象との間の摩擦力によって押出対象が順次引き込まれる。引き込まれた押出対象がアバットメント85によって堰き止められ、かつ、溝82がシュー83によって閉塞されることによって押出圧力が発生する。この押出圧力によって、ダイチャンバ84の材料溜まり箇所に押出対象が流れ込み、ダイス86によって、押出対象を所望の形状に押し出して成形し、押出材(ここでは、集合線材(コイル用導体線1))を製造できる。   When an object to be extruded is inserted into the groove 82 of the rotating wheel 81, the object to be extruded is sequentially drawn by the frictional force between the wheel 81 and the object to be extruded. When the object to be pushed out is blocked by the abutment 85 and the groove 82 is closed by the shoe 83, an extrusion pressure is generated. This extrusion pressure causes the extrusion target to flow into the material accumulation location of the die chamber 84, and the extrusion target is extruded into a desired shape by the die 86 to form the extrusion material (here, the aggregate wire (coil conductor wire 1)). Can be manufactured.

コンフォーム押出を利用する利点の一つとして、加工度の自由度や形状の自由度が高いことが挙げられる。例えば、加工度(断面減少率)が実質的に0%、即ち、束ね線材120などを実質的に接合するだけといった低加工度から、加工度が50%以上、更に60%以上、70%以上、80%以上、更には90%以上といった高加工度の加工も容易に行える。また、例えば、押出対象が丸線であっても平角線のような多角形線や楕円などの異形線などを容易にかつ精度よく成形できる。このような高加工度の加工が可能であったり、形状の自由度が高かったりすることで、最終形状や最終サイズの集合線材を容易に製造でき、製造性に優れる。   One advantage of using conform extrusion is that the degree of freedom in processing and the degree of freedom in shape are high. For example, the degree of workability (cross-sectional reduction rate) is substantially 0%, that is, the degree of workability is 50% or more, further 60% or more, 70% or more, from a low workability such as substantially joining the bundled wire 120 or the like. , 80% or more, and 90% or more can be easily processed. Also, for example, even if the object to be extruded is a round line, a polygonal line such as a flat line or an irregular line such as an ellipse can be easily and accurately formed. Since such a high degree of processing is possible and the degree of freedom of shape is high, the final shape and the final size aggregate wire can be easily manufactured, and the productivity is excellent.

コンフォーム押出を利用する利点の一つとして、原料を供給し続けることで連続的に押出可能なため、理論上無限長の線材を製造できることが挙げられる。ここで、ビレットを押し出す一般的な押出法(冷間、温間、熱間のいずれでもよい)でも、一体化した集合線材を製造可能である。しかし、この場合、押出材の長さがビレットの大きさによって制約され、長尺化が難しい。ビレット自体を長尺材とすると、安定した押出が難しいからである。また、一般的な押出法では、大きな加工度の押出を安定して行うことが難しため、横断面積が小さい集合線材を製造する場合には、押出の加工度を小さくし、押出後に総加工度が大きい伸線や圧延を行うことが好ましいと考えられる。総加工度が大きな伸線などを行うと、加工硬化によって伸びなどが低くなる。そのため、総加工度が大きな伸線後などに軟化などの熱処理が必須となる。以上の点から、一般的な押出法を利用する場合には、コイル用導体線1のような集合線材を生産性よく製造することが難しいと考えられる。これに対し、コンフォーム押出を利用する上述の製造方法は、コイル用導体線1を生産性よく量産できて好ましい。   One of the advantages of using conform extrusion is that a continuous infinite length wire can be manufactured because continuous extrusion is possible by continuing to supply raw materials. Here, an integrated assembly wire can be manufactured by a general extrusion method of extruding a billet (which may be cold, warm, or hot). However, in this case, the length of the extruded material is restricted by the size of the billet, and it is difficult to increase the length. This is because if the billet itself is a long material, stable extrusion is difficult. In addition, in general extrusion methods, it is difficult to stably perform extrusion with a large degree of processing. Therefore, when manufacturing aggregated wires with a small cross-sectional area, the degree of processing of extrusion is reduced and the total degree of processing after extrusion is reduced. It is considered preferable to perform wire drawing or rolling with a large. When wire drawing or the like having a large total processing degree is performed, elongation and the like are lowered by work hardening. Therefore, heat treatment such as softening is indispensable after drawing with a large total workability. From the above points, when a general extrusion method is used, it is considered difficult to produce a collective wire such as the coil conductor wire 1 with high productivity. In contrast, the above-described manufacturing method using conform extrusion is preferable because the coil conductor wire 1 can be mass-produced with high productivity.

・・一体化工程の前工程
コンフォーム押出を行う前に、複数の素線を束ねた状態を維持可能にする工程を備えることができる。この工程として、例えば、以下の捻じり工程、又は収納工程が挙げられる。後述するように複数の素線を捻じり合わせたり、一つの金属筒に収納したりすることで、素線同士のばらけを低減でき、コンフォーム押出装置80に装入し易く作業性に優れる上に、押出後に素線同士を密着させ易い。
・ ・ Pre-process of integration process Before performing conform extrusion, the process which can maintain the state which bundled several strands can be provided. As this process, the following twist process or the accommodation process is mentioned, for example. As described later, by twisting together a plurality of strands or storing them in a single metal tube, the variation between the strands can be reduced, and it is easy to insert into the conform extrusion device 80 and has excellent workability. Moreover, it is easy to stick the strands after extrusion.

・・・捻じり工程
この工程は、複数の被覆線材110を束ねて捻じる、又は複数の金属素線100及び複数の被覆素線110を束ねて捻じる、又は複数の金属素線100及び複数の高抵抗素線を束ねて捻じることでばらけを防止できる。捻じり工程を経た場合には、上述の捻じり部を備えるコイル用導体線1が得られる。捻じり合わせるピッチ(撚りピッチ)は、ばらけを低減できる程度でよく、上述の捻じり部を少なくする観点からは長い方が好ましく、例えば、100mm以上、更に500mm以上が挙げられる。
... Twist process This process bundles and twists a plurality of coated wire rods 110, or bundles and twists a plurality of metal strands 100 and a plurality of coated strands 110, or a plurality of metal strands 100 and a plurality of strands. It is possible to prevent loosening by bundling and twisting the high resistance strands. When the twisting process is performed, the coil conductor wire 1 having the above-described twisted portion is obtained. The pitch for twisting (twisting pitch) may be such that the variation can be reduced, and is preferably longer from the viewpoint of reducing the twisted portion described above, for example, 100 mm or more, and further 500 mm or more.

・・・収納工程
この工程は、複数の被覆線材110を一つの金属筒に収納する、又は複数の金属素線100及び複数の被覆線材110を一つの金属筒に収納する、又は複数の金属素線100及び複数の高抵抗素線とを一つの金属筒に収納することを行う。金属筒を、例えば、上述の高抵抗層の構成材料の項で述べた高抵抗導電材の金属から構成されるものとすれば、最終的に高抵抗層20とすることができ、渦電流の低減効果を高められる。又は、金属筒を、例えば、金属素線100のように導電性に優れる金属から構成されるものとすれば、最終的に電流が流れ得る領域とすることができ、高占積率のコイルの形成に好適なコイル用導体線1が得られる。
・ ・ ・ Accommodating step This step accommodates a plurality of covered wire rods 110 in one metal tube, or a plurality of metal wire wires 100 and a plurality of covered wire rods 110 in a single metal tube, or a plurality of metal wire elements. The wire 100 and the plurality of high resistance strands are accommodated in one metal cylinder. If the metal tube is made of, for example, the metal of the high-resistance conductive material described in the section of the material for the high-resistance layer, the high-resistance layer 20 can be finally formed. Reduction effect can be enhanced. Alternatively, if the metal tube is made of a metal having excellent conductivity such as the metal wire 100, for example, it can be a region where current can finally flow, and a coil with a high space factor can be formed. A coil conductor wire 1 suitable for formation is obtained.

金属筒を利用する場合には、捻じり部を有さないコイル用導体線1が得られる。金属筒は、ばらけを低減できれば薄くてよく、例えば、厚さが3mm以下程度、更に1mm以下程度が挙げられる。薄肉の金属筒を用いると、最終的に高抵抗層20となった場合に導体線1中の高抵抗層20の割合を低減できる。   When a metal cylinder is used, the coil conductor wire 1 having no twisted portion is obtained. The metal cylinder may be thin as long as the fluctuation can be reduced. For example, the thickness is about 3 mm or less, and further about 1 mm or less. When a thin metal cylinder is used, the proportion of the high resistance layer 20 in the conductor wire 1 can be reduced when the high resistance layer 20 is finally obtained.

・・加工工程
この工程は、コンフォーム押出によって得られた集合線材の寸法補正や形状補正などを目的とした塑性加工、具体的には伸線及び圧延の少なくとも一方の加工を行う。この加工は、上述の目的から加工度が小さいもの(例えば、20%以下程度、更に5%以下)とすることができる。コンフォーム押出後の集合線材に加工度が大きな加工を行うことができる。しかし、この場合、パス数の増加やその後の熱処理時間の長大化などによるコイル用導体線1の生産性の低下、熱処理の長時間化などに起因する結晶粒の粗大化、更には線材の機械的特性の低下などを招く。これらを考慮すると、コンフォーム押出後に行う塑性加工の加工度は小さいことが好ましい。コンフォーム押出後に塑性加工を行った場合、加工度にもよるが低加工度であれば、コンフォーム押出直後の配向性や結晶粒の大きさが実質的に維持される。
.. Machining step This step performs plastic working for the purpose of dimensional correction or shape correction of the aggregate wire obtained by conform extrusion, specifically, at least one of wire drawing and rolling. This processing can be performed with a small processing degree (for example, about 20% or less, and further 5% or less) for the above-mentioned purpose. Processing with a high degree of processing can be performed on the aggregated wire after extrusion of the conform. However, in this case, the productivity of the coil conductor wire 1 is reduced due to an increase in the number of passes and the subsequent heat treatment time is increased, the crystal grains are coarsened due to the prolonged heat treatment, and further, the wire machine It causes deterioration of the physical characteristics. Considering these, it is preferable that the degree of plastic working performed after the conform extrusion is small. When plastic working is performed after conform extrusion, the orientation and crystal grain size immediately after conform extrusion are substantially maintained if the degree of processing is low, although it depends on the degree of processing.

・・熱処理工程
コンフォーム押出以降に熱処理を行うことができる。熱処理を行うことで、軟化や加工歪みの除去などを行える。上述のようにコンフォーム押出直後の集合線材は、伸びなどに優れるため、この熱処理を省略できるが、上述の加工工程を経た場合には熱処理を行うことが好ましい。熱処理条件は、例えば、加熱温度が250℃以上500℃以下程度、保持時間が1秒以上10時間以下程度、雰囲気は、酸化防止のため、低酸素雰囲気が好ましい。低酸素雰囲気は、例えば、水素含有ガスや炭酸ガス含有ガスなどの還元ガス雰囲気、真空雰囲気(減圧雰囲気)、窒素やアルゴンなどの不活性ガス雰囲気が挙げられる。コンフォーム押出を行っている場合には、上記の熱処理条件であれば、配向性や結晶粒の大きさに影響を与え難く、コンフォーム押出直後の配向性や結晶粒の大きさを実質的に維持し易い。
-Heat treatment process Heat treatment can be performed after the conform extrusion. By performing the heat treatment, softening and removal of processing strain can be performed. As described above, the aggregate wire immediately after the extrusion of the conformation is excellent in elongation and the like, and thus this heat treatment can be omitted. However, it is preferable to perform the heat treatment when the above processing steps are performed. The heat treatment conditions are, for example, a heating temperature of about 250 ° C. or more and about 500 ° C. or less, a holding time of about 1 second or more and about 10 hours or less, and an atmosphere is preferably a low oxygen atmosphere for preventing oxidation. Examples of the low oxygen atmosphere include a reducing gas atmosphere such as a hydrogen-containing gas and a carbon dioxide gas-containing gas, a vacuum atmosphere (a reduced pressure atmosphere), and an inert gas atmosphere such as nitrogen and argon. In the case of conform extrusion, the orientation and crystal grain size are hardly affected under the above heat treatment conditions. Easy to maintain.

・・絶縁工程
この工程は、導体の外周に、上述の絶縁層の項で述べた樹脂を有機溶剤に溶解した樹脂ワニスを塗布する工程と、上記樹脂ワニスを焼付する工程とを繰り返して絶縁層30を形成する。導体は、コンフォーム押出を経た集合線材、コンフォーム押出後に上述の塑性加工や熱処理が施された線材などが挙げられる(いずれの線材も、コイル用導体線1の一例に該当)。
.. Insulating step This step repeats the step of applying a resin varnish obtained by dissolving the resin described in the above-mentioned insulating layer in an organic solvent and the step of baking the resin varnish on the outer periphery of the conductor. 30 is formed. Examples of the conductor include aggregate wires that have undergone conform extrusion, and wires that have been subjected to the above-described plastic processing and heat treatment after conform extrusion (any wire corresponds to an example of the coil conductor wire 1).

上記塗布する工程、上記焼付する工程は、エナメル線などの電線の製造で利用されている公知の方法を適用できる。一例を述べると、導体又は一層以上の焼付層を備える被覆導体に樹脂ワニスを塗布した後、設定温度を350℃以上500℃以下程度とした炉内を1パスあたり5秒以上10秒以下程度の時間通過させて焼付けすることを、数回繰り返して、絶縁層30を形成する。   A publicly known method utilized in manufacture of electric wires, such as an enamel wire, can be applied to the process of applying and the process of baking. As an example, after applying a resin varnish to a conductor or a coated conductor having one or more baked layers, the inside of the furnace having a set temperature of about 350 ° C. to 500 ° C. is about 5 seconds to 10 seconds per pass. The insulating layer 30 is formed by repeating baking for several times several times.

以下、試験例を挙げて、より具体的な実施形態を説明する。
[試験例1]
複数の金属素線を用いて、種々の方法によって一体化させた集合線材(試料No.1〜No.3、No.100、No.200)を作製し、得られた集合線材について、機械的特性の測定、渦電流損の測定、組織観察を行った。その結果を表2に示す。
Hereinafter, more specific embodiments will be described with reference to test examples.
[Test Example 1]
Using a plurality of metal strands, an assembly wire (samples No. 1 to No. 3, No. 100, No. 200) integrated by various methods is produced, and the obtained assembly wire is mechanical. The characteristics were measured, the eddy current loss was measured, and the structure was observed. The results are shown in Table 2.

試料No.1の集合線材は、直径12.5mmφの無酸素銅線(電気抵抗1.7μΩ・cm)と、アルミニウム合金(5052、電気抵抗4.9μΩ・cm)から構成されるパイプ(外径17mmφ、厚さ2mm)とを用意して被覆線材を作製し、複数の被覆線材をコンフォーム押出によって一体化したものである(図1参照)。作製手順は以下の通りである。パイプ内に無酸素銅線を配置して、穴径15mmφの伸線ダイスに通してパイプを締め付けて被覆線材を作製する。得られた被覆線材を直径7.3mmφまで伸線する。得られた7.3mmφの被覆伸線材を4本束ねて、撚りピッチ200mmで捻じる。捻じられた束ね線材にスウェージングを行って、直径12.5mmφに成形する。得られた12.5mmφの成形線材をコンフォーム押出装置で押し出して、丸線(直径3mmφ)の押出材と、平角線(厚さ2mm×幅4mm)の押出材とを得た。得られた押出材はいずれも、無酸素銅から構成される導体素線の周囲がアルミニウム合金に囲まれて区画されていると共に、複数の導体素線がアルミニウム合金を介して一体化されている。押出材はいずれも、捻じり部を有している。押出材における導体素線の合計面積割合はいずれも、95面積%程度である。   Sample No. 1 is a pipe (outer diameter 17 mmφ, thickness) made of an oxygen-free copper wire (electric resistance 1.7 μΩ · cm) having a diameter of 12.5 mmφ and an aluminum alloy (5052, electric resistance 4.9 μΩ · cm). 2 mm) is prepared to produce a coated wire, and a plurality of coated wires are integrated by conform extrusion (see FIG. 1). The production procedure is as follows. An oxygen-free copper wire is disposed in the pipe, and the pipe is tightened through a wire drawing die having a hole diameter of 15 mmφ to produce a coated wire. The obtained coated wire is drawn to a diameter of 7.3 mmφ. Four obtained 7.3 mmφ coated wire-drawing materials are bundled and twisted at a twist pitch of 200 mm. The twisted bundled wire is subjected to swaging to form a diameter of 12.5 mmφ. The obtained 12.5 mmφ shaped wire was extruded with a conform extrusion device to obtain a round wire (diameter 3 mmφ) extrudate and a flat wire (thickness 2 mm × width 4 mm) extrudate. In each of the obtained extruded materials, the conductor wire composed of oxygen-free copper is surrounded and surrounded by the aluminum alloy, and the plurality of conductor wires are integrated through the aluminum alloy. . Each extruded material has a twisted portion. The total area ratio of the conductor wires in the extruded material is about 95 area%.

試料No.2の集合線材は、被覆線材として直径3.2mmφのニッケルメッキ銅線(めっき厚さ20μm)を用意し、複数のめっき線をコンフォーム押出によって一体化したものである(無酸素銅線の電気抵抗1.7μΩ・cm、ニッケルの電気抵抗6.9μΩ・cm)。19本のニッケルメッキ銅線を束ねて、撚りピッチ200mmで捻じり、以降、試料No.1と同様に、スウェージング(直径12.5mmφ)⇒コンフォーム押出を経て、丸線(直径3mmφ)の押出材と、平角線(厚さ2mm×幅4mm)の押出材とを得た。得られた押出材はいずれも、無酸素銅から構成される導体素線の周囲がニッケルに囲まれて区画されていると共に、複数の導体素線がニッケルを介して一体化されている。押出材はいずれも、その横断面におけるニッケ74ル部分の平均厚さが9μm程度である。また、押出材はいずれも、捻じり部を有している。押出材における導体素線の合計面積割合はいずれも、97.5面積%程度である。   Sample No. The aggregate wire No. 2 is prepared by preparing a nickel-plated copper wire (plating thickness 20 μm) having a diameter of 3.2 mm as a coated wire, and integrating a plurality of plated wires by conform extrusion (electricity of an oxygen-free copper wire). Resistance 1.7 μΩ · cm, nickel electrical resistance 6.9 μΩ · cm). Nineteen nickel-plated copper wires were bundled and twisted at a twist pitch of 200 mm. In the same manner as in No. 1, swaging (diameter: 12.5 mmφ) ⇒ conform extrusion was performed to obtain a round wire (diameter 3 mmφ) extruded material and a flat wire (thickness 2 mm × width 4 mm) extruded material. In each of the obtained extruded materials, a conductor wire made of oxygen-free copper is surrounded and surrounded by nickel, and a plurality of conductor wires are integrated via nickel. In any of the extruded materials, the average thickness of the nickel 74 portion in the cross section is about 9 μm. Moreover, all the extrusion materials have a twist part. The total area ratio of the conductor wires in the extruded material is about 97.5 area%.

試料No.3の集合線材は、被覆線材として表面酸化を行った銅線を用意し、複数の表面酸化銅線をコンフォーム押出によって一体化したものである。直径3.2mmφの無酸素銅線(電気抵抗1.7μΩ・cm)に酸化処理(大気雰囲気、950℃×10秒)を施して、線材表面に酸化銅を形成した。得られた表面酸化銅線の成分分析を行ったところ、線材の表面に酸化銅(I):CuO(電気抵抗1×10μΩ・cm程度)が含まれる酸化層(厚さ1μm程度)が存在していた。19本の表面酸化銅線を束ねて、撚りピッチ200mmで捻じり、以降、試料No.1と同様に、スウェージング(直径12.5mmφ)⇒コンフォーム押出を経て、丸線(直径3mmφ)の押出材と、平角線(厚さ2mm×幅4mm)の押出材とを得た。得られた押出材はいずれも、無酸素銅から構成される導体素線の周囲が酸化銅に囲まれて区画されていると共に、複数の導体素線が酸化銅を介して一体化されている。押出材はいずれも、その横断面における酸化銅部分の平均厚さが0.5μm程度である。また、押出材はいずれも、捻じり部を有している。押出材における導体素線の合計面積割合はいずれも、99.9面積%程度である。 Sample No. The aggregated wire 3 is prepared by preparing a copper wire subjected to surface oxidation as a coated wire, and integrating a plurality of surface oxidized copper wires by conform extrusion. An oxygen-free copper wire (electric resistance: 1.7 μΩ · cm) having a diameter of 3.2 mmφ was subjected to oxidation treatment (atmospheric atmosphere, 950 ° C. × 10 seconds) to form copper oxide on the surface of the wire. When component analysis of the obtained surface copper oxide wire was performed, an oxide layer (thickness of about 1 μm) containing copper (I) oxide: Cu 2 O (electric resistance of about 1 × 10 8 μΩ · cm) on the surface of the wire rod was obtained. ) Existed. Nineteen surface copper oxide wires were bundled and twisted at a twist pitch of 200 mm. In the same manner as in No. 1, swaging (diameter: 12.5 mmφ) ⇒ conform extrusion was performed to obtain a round wire (diameter 3 mmφ) extruded material and a flat wire (thickness 2 mm × width 4 mm) extruded material. In each of the obtained extruded materials, the conductor wire composed of oxygen-free copper is surrounded by copper oxide and partitioned, and a plurality of conductor wires are integrated via copper oxide. . In each of the extruded materials, the average thickness of the copper oxide portion in the cross section is about 0.5 μm. Moreover, all the extrusion materials have a twist part. The total area ratio of the conductor wires in the extruded material is about 99.9 area%.

試料No.100の集合線材は、複数の無酸素銅線のみをコンフォーム押出によって一体化したものである。19本の無酸素銅線(直径3.2mmφ)を束ねて、撚りピッチ200mmで捻じり、以降、試料No.1と同様に、スウェージング(直径12.5mmφ)⇒コンフォーム押出を経て、丸線(直径3mmφ)の押出材と、平角線(厚さ2mm×幅4mm)の押出材とを得た。得られた押出材はいずれも、無酸素銅線が塑性変形して一体化されている。   Sample No. 100 aggregate wires are obtained by integrating only a plurality of oxygen-free copper wires by conform extrusion. 19 oxygen-free copper wires (diameter: 3.2 mmφ) were bundled and twisted at a twist pitch of 200 mm. In the same manner as in No. 1, swaging (diameter: 12.5 mmφ) ⇒ conform extrusion was performed to obtain a round wire (diameter 3 mmφ) extruded material and a flat wire (thickness 2 mm × width 4 mm) extruded material. In each of the obtained extruded materials, an oxygen-free copper wire is plastically deformed and integrated.

試料No.200の集合線材は、複数の無酸素銅棒を束ねてビレットとし、このビレットを押し出した後、伸線及び圧延の少なくとも一方を行い、その後に熱処理を施したものである。作製手順は以下の通りである。19本の無酸素銅棒(断面積100mm)を束ねて押出機のコンテナ(内径50mmφ)に詰めて、450℃に加熱しながら押し出して、直径13mmφの押出材を成形する。13mmφの押出材に伸線を施して丸線(直径3mmφ)を得る。13mmφの押出材に伸線及び圧延を施して平角線(厚さ2mm×幅4mm)を得る。得られた丸線、平角線にそれぞれ、真空熱処理(350℃×3時間)を行う。熱処理後に得られた丸線、平角線はいずれも、塑性変形によって一体化されている。 Sample No. The assembly wire 200 is formed by bundling a plurality of oxygen-free copper bars into a billet, extruding the billet, performing at least one of wire drawing and rolling, and then performing heat treatment. The production procedure is as follows. Nineteen oxygen-free copper bars (cross-sectional area 100 mm 2 ) are bundled and packed in an extruder container (inner diameter 50 mmφ) and extruded while heating at 450 ° C. to form an extruded material having a diameter of 13 mmφ. A 13 mmφ extruded material is drawn to obtain a round wire (diameter 3 mmφ). A 13 mmφ extruded material is drawn and rolled to obtain a rectangular wire (thickness 2 mm × width 4 mm). Each of the obtained round wire and flat wire is subjected to vacuum heat treatment (350 ° C. × 3 hours). Both the round wire and the flat wire obtained after the heat treatment are integrated by plastic deformation.

作製した試料No.1〜No.3、No.100、No.200の集合線材に、以下の条件で引張試験を行って、伸び(破断伸び)と耐力(0.2%耐力)とを測定した。   The prepared sample No. 1-No. 3, no. 100, no. Ten aggregate wires were subjected to a tensile test under the following conditions to measure elongation (breaking elongation) and yield strength (0.2% yield strength).

(引張試験の測定条件)
チャック間長さ250mm、クロスヘッド速度50mm/min
(Measurement conditions for tensile test)
Length between chucks 250mm, crosshead speed 50mm / min

作製した試料No.1〜No.3、No.100、No.200の集合線材に、渦電流式変位計(コントローラ:センテック株式会社製LS−500−2、センサヘッド:センテック株式会社製HA−80S)を用いて、以下の条件で渦電流損を測定した。   The prepared sample No. 1-No. 3, no. 100, no. Eddy current loss was measured under the following conditions using an eddy current displacement meter (controller: LS-500-2 manufactured by Sentech Co., Ltd., sensor head: HA-80S manufactured by Sentech Co., Ltd.) on 200 aggregate wires.

(渦電流損の測定条件)
図3に示すように、直径3mmφ、長さ30mmの試料(丸線)3Aを10本用意し、丸線3Aの軸が平行するように接触させて平面状に並べる。又は、図4に示すように、厚さ2mm×幅4mmの試料(平角線)3Bを10本用意し、各平角線3Bの幅方向に接触させて平面状に並べる。並べられた試料の上に、厚さ0.6mmの厚紙からなるスペーサ92を配置し、スペーサ92の上にセンサヘッド90を押し当てて、出力電圧を測定する。得られた出力電圧を渦電流損に換算する。この試験では、銅のみからなる試料No.100,No.200の出力電圧(渦電流損)を100とし、試料No.1〜No.3の出力電圧(渦電流損)を相対値で示す。相対値が小さいほど、渦電流損が少ない。
(Eddy current loss measurement conditions)
As shown in FIG. 3, ten specimens (round line) 3A having a diameter of 3 mmφ and a length of 30 mm are prepared, and are arranged in a plane by contacting them so that the axes of the round lines 3A are parallel. Alternatively, as shown in FIG. 4, ten samples (flat wire) 3B having a thickness of 2 mm and a width of 4 mm are prepared, and are arranged in a planar shape in contact with the width direction of each flat wire 3B. A spacer 92 made of thick paper having a thickness of 0.6 mm is placed on the arranged samples, and the sensor head 90 is pressed onto the spacer 92 to measure the output voltage. The obtained output voltage is converted into eddy current loss. In this test, a sample No. made of only copper was used. 100, no. The output voltage (eddy current loss) of 200 is set to 100. 1-No. 3 shows an output voltage (eddy current loss) as a relative value. The smaller the relative value, the less eddy current loss.

作製した試料No.1〜No.3、No.100、No.200の集合線材の横断面をとって、銅成分(試料No.1〜No.3では導体素線、No.100及びNo.200では任意の領域)について以下の条件でX線回折を行い、回折強度を調べた。
(X線回折の測定条件)
測定装置:SmartLab−2D−PILATUS(株式会社リガク製)
使用X線:Cu−Kα
励起条件:45kV 200mA
コリメーター径:0.3mm
測定法:θ−2θ法
測定面:横断面
銅の回折面(nml)に対応する回折強度をI(nml)とし、主要な面、具体的には(111)面、(200)面、(220)面、(311)面、(222)面、(400)面の回折強度I(111)、I(200)、I(220)、I(311)、I(222)、I(400)をとり、その総和をSとする。そして、総和Sに対するI(200)の比I(200)/S、総和Sに対するI(220)の比I(220)/Sを求めた。
The prepared sample No. 1-No. 3, no. 100, no. Take the transverse cross section of the assembly wire of 200, X-ray diffraction is performed under the following conditions for the copper component (conductor wire in samples No. 1 to No. 3, arbitrary region in No. 100 and No. 200), The diffraction intensity was examined.
(Measurement conditions for X-ray diffraction)
Measuring device: SmartLab-2D-PILATUS (manufactured by Rigaku Corporation)
X-ray used: Cu-Kα
Excitation conditions: 45 kV 200 mA
Collimator diameter: 0.3mm
Measurement method: θ-2θ method Measurement surface: transverse section The diffraction intensity corresponding to the copper diffraction surface (nml) is defined as I (nml), and the main surfaces, specifically, (111) surface, (200) surface, ( 220), (311), (222), and (400) plane diffraction intensities I (111), I (200), I (220), I (311), I (222), I (400) And the sum is S. Then, the ratio I (200) / S of I (200) to the sum S and the ratio I (220) / S of I (220) to the sum S were obtained.

作製した試料No.1〜No.3、No.100、No.200の集合線材の横断面をとって、銅成分(試料No.1〜No.3では導体素線、No.100及びNo.200では任意の領域)について、以下の条件で平均結晶粒径を調べた。
(平均結晶粒径)
各試料の横断面を薬液でエッチングして銅成分の結晶組織を出し、JIS H 0501(1986)に基づき選定した倍率で顕微鏡写真を撮影し、顕微鏡写真について、切断法を用いて測定した。
The prepared sample No. 1-No. 3, no. 100, no. The cross-section of the assembly wire of No. 200 was taken, and the average crystal grain size was determined under the following conditions for the copper component (conductor wire in samples No. 1 to No. 3 and arbitrary region in No. 100 and No. 200). Examined.
(Average crystal grain size)
The cross section of each sample was etched with a chemical solution to obtain a crystal structure of the copper component, a micrograph was taken at a magnification selected based on JIS H 0501 (1986), and the micrograph was measured using a cutting method.

Figure 2016126992
Figure 2016126992

表2に示すように、導体素線よりも電気抵抗が高い導電性材料を含む高抵抗層によって導体素線が区画されている試料No.1〜No.3はいずれも、銅のみから構成される試料No.100,No.200と比較して、渦電流損を低減できることが分かる。試料No.1〜No.3はいずれも、導体素線である銅線の周囲が上記高抵抗層によって囲まれていることからも、渦電流損を効果的に低減できたと考えられる。また、試料No.1〜No.3に示すように高抵抗層の構成材料の電気抵抗が高いほど(ここではアルミニウム合金<ニッケル<酸化銅)、渦電流損を低減できることが分かる。酸化銅を含む試料No.3では、試料No.100,No.200の半分程度まで渦電流損を低減できることが分かる。なお、試料No.100,No.200は、銅のみから構成されることで、渦電流損の相対値が等しくなっている。   As shown in Table 2, the sample No. 1 in which the conductor wire is partitioned by a high resistance layer containing a conductive material having an electric resistance higher than that of the conductor wire. 1-No. 3 is a sample No. 3 composed only of copper. 100, no. It can be seen that eddy current loss can be reduced compared to 200. Sample No. 1-No. In all cases 3, the eddy current loss can be effectively reduced because the copper wire as the conductor wire is surrounded by the high resistance layer. Sample No. 1-No. As can be seen from FIG. 3, the higher the electric resistance of the constituent material of the high resistance layer (here, aluminum alloy <nickel <copper oxide), the eddy current loss can be reduced. Sample No. containing copper oxide 3 sample No. 3 100, no. It can be seen that the eddy current loss can be reduced to about half of 200. Sample No. 100, no. Since 200 is made of only copper, the relative values of eddy current loss are equal.

これらのことから、導体素線よりも電気抵抗が高い導電性材料を含む高抵抗層によって導体素線が区画されているコイル用導体線は、従来の金属単体からなる導体に比較して、渦電流の発生を抑制できるといえる。かつ試料No.1〜No.3はいずれも、導体素線の全てが導電性に優れる銅線である上に導体素線の合計面積割合が高く(90面積%以上)、更には高抵抗層の少なくとも一部を電流が流れ得る領域に利用できる。そのため、試料No.1〜No.3はいずれも、占積率の高いコイルが得られるコイル用線材として好適に利用できるといえる。   For these reasons, the coil conductor wire in which the conductor wire is partitioned by a high resistance layer containing a conductive material having a higher electric resistance than the conductor strand is more vortex than a conventional conductor made of a single metal. It can be said that generation of current can be suppressed. Sample No. 1-No. In all cases 3, all the conductor wires are copper wires having excellent conductivity, the total area ratio of the conductor wires is high (90 area% or more), and current flows through at least a part of the high resistance layer. Available for gaining area. Therefore, sample no. 1-No. It can be said that all 3 can be suitably used as a wire for a coil from which a coil with a high space factor can be obtained.

また、試料No.1〜No.3はいずれも、一般的な押出法を用いた試料No.200に比較して、(200)面が配向しており、更には(220)面も配向していることが分かる。具体的には試料No.1〜No.3はいずれも、I(200)/Sが0.29以上、概ねの試料が0.30以上であり、I(220)/Sが0.03以上である。このような特定の配向性を有することで、試料No.200に比較して機械的特性にも優れていることが分かる。具体的には、試料No.1〜No.3はいずれも、伸びが40%以上であり、かつ耐力が90MPa以上である。このように機械的特性に優れることで、試料No.1〜No.3はいずれも、コイル成形性などに優れて、コイル用線材として好適に利用できるといえる。   Sample No. 1-No. No. 3 is a sample No. 3 using a general extrusion method. Compared to 200, it can be seen that the (200) plane is oriented and the (220) plane is also oriented. Specifically, Sample No. 1-No. In all cases, I (200) / S is 0.29 or more, almost all samples are 0.30 or more, and I (220) / S is 0.03 or more. By having such a specific orientation, the sample No. It can be seen that the mechanical properties are excellent as compared with 200. Specifically, Sample No. 1-No. In all cases, the elongation is 40% or more and the proof stress is 90 MPa or more. In this way, the sample No. 1-No. It can be said that all 3 are excellent in coil moldability and can be suitably used as a coil wire.

更に、試料No.1〜No.3はいずれも、一般的な押出法を用いた試料No.200に比較して、平均結晶粒径が小さいことが分かる。具体的には、試料No.1〜No.3はいずれも、平均結晶粒径が16μm以下、概ねの試料が15μm以下である。このような微細な結晶組織を有することで、試料No.200に比較して機械的特性にも優れていることが分かる(機械的特性に関する詳細は上述の通り)。   Furthermore, sample no. 1-No. No. 3 is a sample No. 3 using a general extrusion method. It can be seen that the average grain size is smaller than 200. Specifically, Sample No. 1-No. In all cases 3, the average crystal grain size is 16 μm or less, and the general sample is 15 μm or less. By having such a fine crystal structure, sample no. It can be seen that the mechanical properties are also superior to 200 (details regarding the mechanical properties are as described above).

そして、このように渦電流損を低減でき、占積率が高いコイルが得られる線材、更には機械的特性にも優れる線材は、コンフォーム押出を利用することで、容易にかつ生産性よく製造できることが分かる。特に、試料No.1〜No.3はいずれも、コンフォーム押出後に熱処理を施さなくても、30%以上(ここでは40%以上)という高い伸びを有する。従って、コンフォーム押出を利用することで、複数の線材の一体化にあたり、別途、加熱工程が不要である上に、押出後の熱処理工程をも省略できる。このようにコンフォーム押出を利用した製造方法によって容易にかつ連続的に製造できる点で、導体素線よりも電気抵抗が高い導電性材料を含む高抵抗層によって導体素線が区画されているコイル用導体線は、製造性にも優れるといえる。その他、この例では、コンフォーム押出前に複数の線材を捻じった束ね線材とすることで、取り扱い易くなり、コンフォーム押出装置に供給し易くなったことからも、製造性に優れるといえる。   In addition, the wire that can reduce the eddy current loss and obtain a coil with a high space factor as well as the wire that also has excellent mechanical properties can be easily manufactured with high productivity by using conform extrusion. I understand that I can do it. In particular, sample no. 1-No. All 3 have a high elongation of 30% or more (here, 40% or more) even without heat treatment after conform extrusion. Therefore, by utilizing conform extrusion, a separate heating step is not necessary for integrating a plurality of wires, and a heat treatment step after extrusion can be omitted. In this way, the coil in which the conductor wire is partitioned by the high resistance layer containing a conductive material having a higher electric resistance than the conductor wire in that it can be easily and continuously manufactured by a manufacturing method using conform extrusion. It can be said that the conductor wire is excellent in manufacturability. In addition, in this example, it can be said that it is excellent in manufacturability because it is easy to handle and supply to the conform extrusion apparatus by forming a bundled wire by twisting a plurality of wires before conform extrusion.

本発明は、上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能であり、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。   The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention. The present invention is shown by the scope of claims and is equivalent to the scope of claims. All changes within the meaning and scope are intended to be included.

本発明のコイル用導体線及び本発明のコイル用電線は、モータ、トランス、リアクトルなどの各種のコイル部品のコイルの素材に好適に利用できる。   The coil conductor wire of the present invention and the coil electric wire of the present invention can be suitably used for the coil material of various coil parts such as a motor, a transformer, and a reactor.

1 コイル用導体線 2 コイル用電線
1A コイル用導体線(丸線) 2A コイル用電線(丸線) 3A 試料(丸線)
1B コイル用導体線(平角線) 2B コイル用電線(平角線)
3B 試料(平角線)
10 導体素線 20 高抵抗層 22 介在部 30 絶縁層
100 金属素線 200 高抵抗材(パイプ) 210 被覆層
110 被覆線材 120 束ね線材
80 コンフォーム押出装置 81 ホイール 82 溝 83 シュー
84 ダイチャンバ 85 アバットメント 86 ダイス
90 センサヘッド 92 スペーサ
1 Coil conductor wire 2 Coil wire 1A Coil conductor wire (round wire) 2A Coil wire (round wire) 3A Sample (round wire)
1B Coil conductor wire (flat wire) 2B Coil wire (flat wire)
3B sample (flat wire)
DESCRIPTION OF SYMBOLS 10 Conductor strand 20 High resistance layer 22 Interposition part 30 Insulation layer 100 Metal strand 200 High resistance material (pipe) 210 Coating layer 110 Covering wire 120 Bundling wire 80 Conform extrusion apparatus 81 Wheel 82 Groove 83 Shoe 84 Die chamber 85 Abutment 86 Die 90 Sensor head 92 Spacer

Claims (8)

複数の導体素線と、
前記複数の導体素線を一体に保持した状態で各導体素線を区画する高抵抗層とを備え、
前記複数の導体素線のうち、少なくとも一部の導体素線は、横断面についてX線回折を行って、(111)面、(200)面、(220)面、(311)面、(222)面、(400)面の回折強度の総和をSとし、前記総和Sに対する(200)面の回折強度I(200)の比をI(200)/Sとするとき、前記I(200)/Sが0.2以上を満たし、
前記高抵抗層は、前記導体素線を構成する金属よりも電気抵抗が高い導電性材料を含むコイル用導体線。
A plurality of conductor wires;
A high resistance layer that partitions each conductor wire in a state in which the plurality of conductor wires are integrally held,
Among the plurality of conductor strands, at least some of the conductor strands are subjected to X-ray diffraction with respect to a cross-section, and (111) plane, (200) plane, (220) plane, (311) plane, (222) ) Plane, (400) plane, the sum of diffraction intensities is S, and the ratio of the (200) plane diffraction intensity I (200) to the total sum S is I (200) / S. S satisfies 0.2 or more,
The high resistance layer is a coil conductor wire including a conductive material having an electric resistance higher than that of a metal constituting the conductor wire.
前記総和Sに対する(220)面の回折強度I(220)の比をI(220)/Sとするとき、前記I(220)/Sが0.01超を満たす請求項1に記載のコイル用導体線。   2. The coil according to claim 1, wherein when the ratio of the diffraction intensity I (220) of the (220) plane to the total sum S is I (220) / S, the I (220) / S satisfies more than 0.01. Conductor wire. 前記複数の導体素線のうち、少なくとも一部の導体素線は、銅線である請求項1又は請求項2に記載のコイル用導体線。   The coil conductor wire according to claim 1, wherein at least a part of the plurality of conductor strands is a copper wire. 前記導電性材料は、アルミニウム合金、ニッケル、銅の酸化物、アルミニウム、錫、鉄、ニッケル合金、錫合金、鉄合金、鉄の酸化物、及び銅とアルミニウムとを含む金属間化合物から選択される少なくとも1種である請求項1〜請求項3のいずれか1項に記載のコイル用導体線。   The conductive material is selected from aluminum alloy, nickel, copper oxide, aluminum, tin, iron, nickel alloy, tin alloy, iron alloy, iron oxide, and intermetallic compounds including copper and aluminum. It is at least 1 sort, The conductor wire for coils of any one of Claims 1-3. 前記複数の導体素線のうち、少なくとも一部の導体素線の平均結晶粒径は、30μm以下である請求項1〜請求項4のいずれか1項に記載のコイル用導体線。   The coil conductor wire according to any one of claims 1 to 4, wherein an average crystal grain size of at least a part of the plurality of conductor strands is 30 µm or less. 前記高抵抗層は、前記各導体素線の周囲を囲む請求項1〜請求項5のいずれか1項に記載のコイル用導体線。   The said high resistance layer is a conductor wire for coils of any one of Claims 1-5 surrounding the circumference | surroundings of each said conductor strand. 前記複数の導体素線が捻じられた捻じり部を備える請求項1〜請求項6のいずれか1項に記載のコイル用導体線。   The coil conductor wire according to any one of claims 1 to 6, further comprising a twisted portion in which the plurality of conductor wires are twisted. 請求項1〜請求項7のいずれか1項に記載のコイル用導体線と、前記コイル用導体線の外周に設けられる絶縁層とを備えるコイル用電線。   The coil electric wire provided with the conductor wire for coils of any one of Claims 1-7, and the insulating layer provided in the outer periphery of the said conductor wire for coils.
JP2015002691A 2015-01-08 2015-01-08 Coil conductor wire and coil wire Active JP6382726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015002691A JP6382726B2 (en) 2015-01-08 2015-01-08 Coil conductor wire and coil wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015002691A JP6382726B2 (en) 2015-01-08 2015-01-08 Coil conductor wire and coil wire

Publications (2)

Publication Number Publication Date
JP2016126992A true JP2016126992A (en) 2016-07-11
JP6382726B2 JP6382726B2 (en) 2018-08-29

Family

ID=56358143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015002691A Active JP6382726B2 (en) 2015-01-08 2015-01-08 Coil conductor wire and coil wire

Country Status (1)

Country Link
JP (1) JP6382726B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019106852A (en) * 2017-07-21 2019-06-27 株式会社デンソー Rotating electrical machine
WO2020080126A1 (en) * 2018-10-16 2020-04-23 株式会社デンソー Rotary electric machine
WO2020253918A1 (en) * 2019-06-19 2020-12-24 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Electric conductor
US11110793B2 (en) 2017-12-28 2021-09-07 Denso Corporation Wheel driving apparatus
JP2021146941A (en) * 2020-03-19 2021-09-27 日本発條株式会社 Vehicular harness junction structure and vehicle seat
US20210335520A1 (en) * 2017-11-08 2021-10-28 Autonetworks Technologies, Ltd. Electric wire conductor, covered electric wire, and wiring harness
JP2022010161A (en) * 2017-12-28 2022-01-14 株式会社デンソー Rotary electric machine
US11368073B2 (en) 2017-12-28 2022-06-21 Denso Corporation Rotating electrical machine
US11374465B2 (en) 2017-07-21 2022-06-28 Denso Corporation Rotating electrical machine
WO2023081309A1 (en) * 2021-11-04 2023-05-11 Resonant Link, Inc. Conductive materials in alternating magnetic fields
US11664693B2 (en) 2017-12-28 2023-05-30 Denso Corporation Rotating electrical machine
US11664708B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
US11863023B2 (en) 2017-12-28 2024-01-02 Denso Corporation Rotating electrical machine
US11962194B2 (en) 2017-12-28 2024-04-16 Denso Corporation Rotating electric machine
US11979063B2 (en) 2017-12-28 2024-05-07 Denso Corporation Rotating electric machine
US11984778B2 (en) 2020-03-05 2024-05-14 Denso Corporation Rotating electric machine
US12028004B2 (en) 2017-12-28 2024-07-02 Denso Corporation Rotating electrical machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129813A (en) * 1988-11-08 1990-05-17 Furukawa Electric Co Ltd:The Manufacture of heat resistant and dielectrically covered conductor
JP2007227242A (en) * 2006-02-24 2007-09-06 Mitsubishi Cable Ind Ltd Assembled conductor
JP2007227266A (en) * 2006-02-24 2007-09-06 Mitsubishi Cable Ind Ltd Assembled conductor
US20120092117A1 (en) * 2010-10-15 2012-04-19 Toyota Jidosha Kabushiki Kaisha Conductor wire for motor and coil for motor
WO2012081571A1 (en) * 2010-12-13 2012-06-21 日本精線株式会社 Copper alloy wire and copper alloy spring
JP2013187076A (en) * 2012-03-08 2013-09-19 Mitsubishi Cable Ind Ltd Collective conductor and manufacturing method thereof
JP5565506B1 (en) * 2013-07-03 2014-08-06 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, electronic and electrical equipment parts and terminals
JP2014207091A (en) * 2013-04-11 2014-10-30 トヨタ自動車株式会社 Cluster of wires and production method of the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129813A (en) * 1988-11-08 1990-05-17 Furukawa Electric Co Ltd:The Manufacture of heat resistant and dielectrically covered conductor
JP2007227242A (en) * 2006-02-24 2007-09-06 Mitsubishi Cable Ind Ltd Assembled conductor
JP2007227266A (en) * 2006-02-24 2007-09-06 Mitsubishi Cable Ind Ltd Assembled conductor
US20120092117A1 (en) * 2010-10-15 2012-04-19 Toyota Jidosha Kabushiki Kaisha Conductor wire for motor and coil for motor
WO2012081571A1 (en) * 2010-12-13 2012-06-21 日本精線株式会社 Copper alloy wire and copper alloy spring
JP2013187076A (en) * 2012-03-08 2013-09-19 Mitsubishi Cable Ind Ltd Collective conductor and manufacturing method thereof
JP2014207091A (en) * 2013-04-11 2014-10-30 トヨタ自動車株式会社 Cluster of wires and production method of the same
JP5565506B1 (en) * 2013-07-03 2014-08-06 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, electronic and electrical equipment parts and terminals

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11843334B2 (en) 2017-07-13 2023-12-12 Denso Corporation Rotating electrical machine
US11374465B2 (en) 2017-07-21 2022-06-28 Denso Corporation Rotating electrical machine
JP2019106852A (en) * 2017-07-21 2019-06-27 株式会社デンソー Rotating electrical machine
CN110945755B (en) * 2017-07-21 2022-08-02 株式会社电装 Rotating electrical machine
US11664708B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
US11824428B2 (en) 2017-07-21 2023-11-21 Denso Corporation Rotating electrical machine
US11962228B2 (en) 2017-07-21 2024-04-16 Denso Corporation Rotating electrical machine
JP2019106853A (en) * 2017-07-21 2019-06-27 株式会社デンソー Rotating electrical machine
US11984795B2 (en) 2017-07-21 2024-05-14 Denso Corporation Rotating electrical machine
US11664707B2 (en) 2017-07-21 2023-05-30 Denso Corporation Rotating electrical machine
JP2019106854A (en) * 2017-07-21 2019-06-27 株式会社デンソー Rotating electrical machine
CN110945755A (en) * 2017-07-21 2020-03-31 株式会社电装 Rotating electrical machine
US11831228B2 (en) 2017-07-21 2023-11-28 Denso Corporation Rotating electrical machine
US20210335520A1 (en) * 2017-11-08 2021-10-28 Autonetworks Technologies, Ltd. Electric wire conductor, covered electric wire, and wiring harness
US11551828B2 (en) * 2017-11-08 2023-01-10 Autonetworks Technologies, Ltd. Electric wire conductor, covered electric wire, and wiring harness
US11110793B2 (en) 2017-12-28 2021-09-07 Denso Corporation Wheel driving apparatus
US12028004B2 (en) 2017-12-28 2024-07-02 Denso Corporation Rotating electrical machine
US11664693B2 (en) 2017-12-28 2023-05-30 Denso Corporation Rotating electrical machine
US11962194B2 (en) 2017-12-28 2024-04-16 Denso Corporation Rotating electric machine
JP2022010161A (en) * 2017-12-28 2022-01-14 株式会社デンソー Rotary electric machine
JP7355100B2 (en) 2017-12-28 2023-10-03 株式会社デンソー rotating electric machine
US11863023B2 (en) 2017-12-28 2024-01-02 Denso Corporation Rotating electrical machine
US11979063B2 (en) 2017-12-28 2024-05-07 Denso Corporation Rotating electric machine
US11368073B2 (en) 2017-12-28 2022-06-21 Denso Corporation Rotating electrical machine
US11996741B2 (en) 2018-10-16 2024-05-28 Denso Corporation Rotating electrical machine
JP7238329B2 (en) 2018-10-16 2023-03-14 株式会社デンソー Rotating electric machine
JP2020065351A (en) * 2018-10-16 2020-04-23 株式会社デンソー Rotary electric machine
WO2020080126A1 (en) * 2018-10-16 2020-04-23 株式会社デンソー Rotary electric machine
WO2020253918A1 (en) * 2019-06-19 2020-12-24 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Electric conductor
US11984778B2 (en) 2020-03-05 2024-05-14 Denso Corporation Rotating electric machine
JP2021146941A (en) * 2020-03-19 2021-09-27 日本発條株式会社 Vehicular harness junction structure and vehicle seat
JP7377145B2 (en) 2020-03-19 2023-11-09 日本発條株式会社 Vehicle harness joint structure and vehicle seat
WO2023081309A1 (en) * 2021-11-04 2023-05-11 Resonant Link, Inc. Conductive materials in alternating magnetic fields

Also Published As

Publication number Publication date
JP6382726B2 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
JP6382726B2 (en) Coil conductor wire and coil wire
US9478328B2 (en) High frequency cable, high frequency coil and method for manufacturing high frequency cable
JP4143087B2 (en) Ultra-fine insulated wire and coaxial cable, manufacturing method thereof, and multi-core cable using the same
CN110869525A (en) Covered electric wire and electric wire with terminal
JP6080336B2 (en) Electric wire / cable
JP4557887B2 (en) Covered wire and automotive wire harness
JP2014032751A (en) Copper aluminum complex wire for motor winding
CN111263824A (en) Stranded conductor for insulated wire, flexible wire and cable
CN109923226B (en) Aluminum alloy wire, aluminum alloy stranded wire, coated electric wire, and electric wire with terminal
JP4143088B2 (en) Coaxial cable, manufacturing method thereof, and multicore cable using the same
JP2018186175A (en) Winding wire for coil
US20220148756A1 (en) Aluminum base wire, stranded wire, and method for manufacturing aluminum base wire
CN110808124A (en) Preparation method of super-soft high-conductivity stranded conductor
CN110914923B (en) Coated electric wire, electric wire with terminal, and stranded wire
CN213424629U (en) Insulated wire, and coil and motor provided with same
JP7109938B2 (en) High-frequency coil wire, insulated wire, and method for manufacturing high-frequency coil wire
WO2024043284A1 (en) Aluminum-based wire, aluminum-based strand wire, and aluminum-based cable
WO2021049183A1 (en) Electrically conductive wire, insulated electric wire, coil, and electric/electronic instrument
WO2022163290A1 (en) Composite wire and coated wire
KR101594530B1 (en) a strand having a limited spring effect
US20220223313A1 (en) Copper alloy wire, plated wire, electric wire and cable using these
JP2022109209A (en) Copper alloy wire, plated wire, electric wire, and cable
KR20170072695A (en) Method for the preparation of graphene composite conducting line
JP2022016764A (en) Terminal-equipped wire and manufacturing method thereof
JP7123578B2 (en) Insulated wire for high frequency coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180802

R150 Certificate of patent or registration of utility model

Ref document number: 6382726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250